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The thermodynamical properties are calculated for a three-dimensional model of N harmonically interacting
spin-polarized fermions in a parabolic potential well. The obtained dependences of the chemical potential and
of the internal energy on the complete range of the temperature and of the number of particles turn out to obey
a scaling law, similar to the scaling from the continuum approximation for the density of states. The calcula-
tional technique is based on our path-integral approach of symmetrized density matrices for identical particles

in a parabolic confining well. [S1063-651X(98)03504-1]

PACS number(s): 05.30.—d, 03.75.Fi, 32.80.Pj

I. INTRODUCTION

In two previous papers the present authors extended the
method of symmetrized density matrices to systems confined
in a parabolic well [1] and used this method to obtain ex-
pressions for the density and the pair-correlation function
[2]. The evaluation of the internal energy, the specific heat,
the moment of inertia [3,4], the density, and the static re-
sponse functions was performed for bosons, inspired by the
recently observed Bose-Einstein condensation [5-7] and the
theoretical work around this phenomenon using other meth-
ods [8-14]. In both Refs. [1] and [2] the general expressions
for most of the quantities mentioned above are also given for
Fermi-Dirac statistics. In the present paper a method is pre-
sented to explicitly evaluate the thermodynamic quantities
for spin-polarized fermions. The model is a parabolic well
containing N fermions, all in the same spin state and inter-
acting through a harmonic two-body potential that may be
either attractive or repulsive.

A quantum dot would be a physical system that could be
described by such a model if also a magnetic field were taken
into account to freeze away the opposite spin states. When
no magnetic field is taken into account two spin states (spin
up and spin down) should be present in the model. Recently
[15], the investigation of confined fermions in the same ex-
perimental configuration used for the Bose alkali metals was
proposed. The Thomas-Fermi approximation [16] was used
to study the spatial distribution of these trapped fermion sys-
tems. In order to analyze these more physically relevant
models in the future, we first develop in the present paper the
basic techniques required for spin-polarized fermions. The
model also has some importance in itself because it can be
used to test new approaches to Monte Carlo simulations of
interacting fermions such as many-body diffusion [17-19].

*Also at Rijksuniversitair Centrum te Antwerpen, Universiteit
Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
and Technische Universiteit Eindhoven, NL 5600MB Eindhoven,
The Netherlands.
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The paper is organized as follows. In Sec. II we collect
the expressions from [1] and [2] for the fermion case. In Sec.
IIT we show how the chemical potential, the free energy, and
the internal energy can be obtained for a given number of
fermions as a function of the temperature. Subsequently the
low-temperature limit is considered and the ground-state en-
ergy is evaluated in Sec. IV. In Sec. V a discussion and the
conclusions are given.

II. FERMION OSCILLATORS

In this section the basic formulas that have been derived
in the path-integral treatment of [1] and [2] are summarized
and rewritten in such a way that they are more appropriate
for dealing with fermions, in particular for the numerical
treatment. Before doing so, it is instructive to point out
where the numerical accuracy problems are coming from.
Having pinpointed their origin, a method is proposed to ac-
curately evaluate the relevant thermodynamic quantities.

A. Summary of previous results

We consider a model of N fermions with parallel spin in
a harmonic confinement potential and with a quadratic inter-
particle interaction. The one-body potential energy V; and
the two-body potential energy V, of the model system are
given by

mQ? &
V:V1+V2, V1: I'12~,
2 j=1 "
mo? &
V,=——— 2 (r-r) @.1)
4 j.l=1

The two-body interaction is assumed to be repulsive; replac-
ing —? by »? in V, gives the case of attraction. In each
dimension we found one degree of freedom (the center of
mass) with frequency () and N—1 degrees of freedom with
frequency w given by

3871 © 1998 The American Physical Society
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TABLE 1. Reduced partition function z, for N=2,3,...,10.

2,=b(3+b?)
23=b%*(3+10b+6b>+6b>+T7b*+3b°+b7)

24=b[1+15b+27b%+ 62b> + 63b*+ 87>+ 80b°+ 87h" + O(b®)]

25=b°[6+37b+105b%+ 23153+ 413b*+ 6695°+ 9216+ 119767+ O(b®)]
26=b"[15+75b+290b+ 687b>+ 1590b* + 29945+ 5304h°+ 8388b7 + O (h®) ]
27=b°[20+ 135b + 543b2+ 1645b>+ 4206b* + 9381b°+ 191315°+ 3580267+ O (b®)]
25=b"[ 154 173b+ 780b%+ 2871b> + 8296b* + 21453b° + 49110h°+ 1047237 + O(b®) ]
29=b"3[6+ 135b+ 847h%+ 3612b> + 12348h* + 36166b° + 939720+ 223572b" + O (b*)]
210=b"[1+57b+ 615b%+3261b>+ 13503h* + 45345b5 + 13461065+ 357933b7 + O (b®)]

w=\Q>-Nw?, (2.2)

which means that the frequency () of the center of mass is
larger than the frequencies w of the degrees of freedom in
the relative coordinate system. Changing the sign of w? al-
lows us to obtain the case with w larger than ().

In our path-integral treatment presented in [1], a recur-
rence relation was obtained for the partition function Z;(N)
corresponding to the degrees of freedom with frequency w in
the relative-coordinate system. Introducing

b=e P (2.3)
for brevity in the notation, we found that

(N—m)/2

3
ZI(N)_ E fN " 1( —pN- m) Z(m). (2.4)

This recurrence relation applies for bosons (§=+ 1) and for
fermions (= —1). The subscript I refers to identical par-
ticles, which can be specified to be fermions (subscript F') or
bosons (subscript B). The total partition function Z,;(N) dif-
fers from 7Z;(N) only by a factor that accounts for the center-
of-mass contribution

1 3
sinh ) Bw

Z(N)=
sinh EBQ

7,(N). (2.5)

B. The “‘sign’’ problem and the canonical ensemble

For three-dimensional fermions, the contribution (2.4) to
the partition function from the relative degrees of freedom
clearly illustrates the kind of numerical inaccuracies that
originate for the fermion case é=—1. If the partition func-
tions for 1,2, ... ,(N—1) particles are known, Cramer’s rule
can be used to calculate the partition function for N fermi-
ons. Factorizing the denominators in the partition function
(2.4) by introducing the quantities

N

an=b""27, (NI (1-67)3, (2.6)
j=1

a careful analysis shows that z, are polynomials in b. Typi-
cal terms of the expansion in powers of b are summarized in
Table I. In Table II the polynomial z is given in full detail.

These expressions clearly illustrate that the recurrence re-
lation (2.4) with its alternating signs is numerically not

TABLE II. Reduced partition function z;.

Z10/bP=1457b+615b>+ 32615+ 13503b* + 45345b° + 1346100+ 357933b7 + 87905458 + 2010684b° + 43451285 1°
+8918028b 1 + 175221216 "2+ 33074766 >+ 60269475b *+ 1062918455 15+ 1820052215 '°+ 3031594505 7
+492298273b '3+ 780509769b 1°+ 121011696952+ 183679680852 +273282888952%+ 39890231585 %
+5717909554b%*+ 8054427489+ 1115801188850+ 15210615846b>" + 204163941635 28+ 269955465006 °
+351805186265°0+ 45204591771b' + 57294327336bh 32+ 71652967164b3 + 884501887055 + 1078019803925 3
+ 1297604687675 30+ 154293502560b%" + 181278676665b38+ 2104869193095 + 2415851836595
+274128160656b*' + 307573138975b*>+ 3412822384383+ 3745505135706 * + 4066182875296 %

+ 4367101708775+ 464053823241b*" + 4879244290706 *8 + 5076635376066 + 522721627332b°

+ 5326698445205 +537233278185b°%+ 536289729798b 3 + 5298885994925°* + 518233866459H°

+ 5016872645285+ 4807367472150 + 455986553010678+ 428116140777b>° + 3978628508325
+3659783309825° + 3332107425995+ 3002657983865 %3 + 267794502825h %+ 236364132672 %
+2064551180985 %+ 178444248222b% + 1526113400195%8+ 1291339217396% + 1081016379485 7°
+89519477403b 7' + 733263427906 7%+ 59402845476b 73+ 47590266765b 74+ 37699218057b 7> + 295259676695 7
+22859393796b 77+ 174930025805 78+ 1322893385777+ 988538426753+ 7297628572b% + 53215147265 %2
+3832246167h%3+ 272510334003 + 191297222453 + 1325507922530+ 906297026557+ 611414355538
+406837455h%+ 266998784b 0+ 172746528b°' + 1101898 17h° + 69257169h %3+ 429000695 °* + 26170152H%
+ 1572866457+ 930389457+ 54211805+ 3106746b°° + 17537556 '+ 9728195 101 + 531755b 192

+2852045 '3+ 1509035 1%+ 781975 %+ 400385 1%+ 200105 17+ 99285 198+ 47585 10+ 2298 ' 10

+1056b0" +4925 12+ 2135134+ 99p 1144395 1154 185 1164+ 7117+ 3118+ 120
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stable: The leading terms are of order bM . where M in-
creases drastically if the number of fermions increases. Nev-
ertheless, the expression for z;,, e.g., is useful to check ex-
pressions for the partition function or derived quantities for
their accuracy. Because for the fermions, unlike the boson
case, solving the recurrence relations thus runs into severe
numerical problems, we will use the generating function
technique for the actual calculation of the free energy and the
internal energy. To convince ourselves that numerical inac-
curacies have been avoided, the internal energy of the model
for up to ten fermions has been calculated both ways, i.e.,
from the recurrence relations and with the generating func-
tion technique, and the results of both methods coincide.
How the chemical potential and the internal energy are cal-
culated will be elaborated in the next section.

III. THERMODYNAMIC PROPERTIES

The generating function 5 (u) corresponding to the par-
tition functions Zy(N) is defined in the standard way as

oo

EF(u)ZNZ uNZp(N). (3.1)
As shown in [1], it is given by
_ *© 1 ( ub%/Z)

This means that in our model the internal degrees of freedom
are represented by a system of noninteracting oscillators with
frequency w. Ep(u) is then formally the grand-canonical
partition function of that subsystem. However, it is not the
grand-canonical partition function of the full model system
with interaction for two reasons: First, one has to take the
center-of-mass correction into account and, second, the
eigenfrequency w in the relative coordinate system depends
on the number of particles. However, given w, the full
mechanism of the generating functions is applicable in the
relative coordinate system provided afterward the necessary
center-of-mass corrections are taken into account.

The partition function Zz(N) from the internal degrees of
freedom can be obtained by inverting the defining Taylor
series (3.1),

'—'F(Z)

Zp(N)= —~v+1 42, (3.3)

2 c z

where C is a closed contour in the complex z plane around
the origin. The generating function = z(z) is inaccessible for
numerical purposes. However, considering a circular contour
with radius u#, one obtains

27 H(ue .
ZF(N)——f L e Ndg

1 2
_ = iy _ ~iN®
= L exp[In E p(ue'’)—N In u]e de.

(3.4)

The extremum of [In Zx(ue’®)—N In u] on the real axis sat-
isfies the condition N=u(d/du)ln Ex(u). Using Eq. (3.2),
this requirement becomes

” 1 (v+1)(v+2) 3
N=2m. =y e & vt
(3.5)

which is precisely the result that one would obtain from the
grand-canonical treatment with u=e?#, taking into account
the degeneracy 1(v+1)(v+2) of the vth energy level. Fac-
torizing out the steepest-descent contribution = (u)/u” ob-
tained this way, one finds

Tp(N) = :Z )f W(0)d (3.6)
_ 1 Bp(ue”) —iNg
q’(ﬁ)—;me s (3.7)

where W(6) is a real function, suitable for numerical integra-
tion if u=eP* is determined. The advantage of a procedure
based on the generating function is that all contributions to
E (1) turn out to be positive, in contrast to the direct deter-
mination of the partition function (2.4), which numerically
involves severe sign problems, as argued in Sec. II.

A. The chemical potential

The chemical potential has to be determined from the re-
quirement (3.5). There are clearly two cases to be consid-
ered. For sufficiently low temperature, u will be larger than
2#w, but at high temperature & might be smaller than 37 w.

For the case u>3#Aw, the behavior of the denominator is
fundamentally different for the energy levels €,<u as com-
pared to those satisfying €,>u. Assume that u will be
found in the interval ]e€;_,,€;] between two consecutive
levels

hwa, ael0,1], (3.8)

M= €L
and treat the levels €,<u separately from those with €,
> u. We start the discussion under the assumption L=1 and
rewrite N as

i l(L v+ 1)(L—v+2) 1 (L+1)(L+2)b®
= 1+bp—atv 2 1+b®

i 1 (L+v+1)(L+v+2)be"
= 1+pet? :

Let N, denote the (not necessarily integer) value that the
right-hand side of this equation would take for =0, i.e., if
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FIG. 1. Scaled chemical potential u(7T)/u(T=0) as a function
of the scaled temperature t=kT/AwN'"> for 10, 100, 1000, and
10 000 fermions. For reference, this quantity is also plotted for one
particle.

the chemical potential would be located exactly at €; . One
finds after some algebra (provided L>0)

—1L3L2L12L3§L‘,W

Ni=g | L+ 5] (L+2)(L+1)+(2L+ )u=1 1557
o L(L+v+D)(L+v+2)b” 1
+V3l15 1+b" “ek

The result L<(6N;)'? is important for developing a sure-
fire algorithm to find the chemical potential. If one starts
from a value L that is the largest integer smaller than
(6N)'3, it implies that u<e; . One can then decrease the
value of L step by step, until a value of L is found for which
Ny =N but N; _;<N.

Fortunately, this procedure can also be used if wu is
smaller than the lowest energy of the model. It then results in
a negative value of L, which is related to the chemical po-
tential in Eq. (3.8) by formally filling out €; with L negative.

A fresh refining routine is then started to find a €[0,1[,
which is bracketed as required for sure-fire root-finding pro-
grams. The actual determination of « (for both cases u
>3fw and u<3hw) is straightforward from the equation
for N if written in the appropriate form for numerical treat-
ment:

L(r+1D)(r+2) « 1
N=2 E(Hb)L—(MLVEO S+ D(r+2)

=0
1
Tipl 7@ for v<L—«
X\ pLivia (3.9)
pIrvar] otherwise .

The determination of the chemical potential along these
lines presents no numerical difficulties. Because the Fermi
energy is of order Aiw(6N)!, it seems natural to express kT
in units of AwN'3. This scaling factor turns out to be sur-
prisingly good, as is shown in Fig. 1, where the temperature
dependence of the chemical potential w(7) in units of w(0)

is plotted against 1=kT/hwN'3. Introducing a density of
states and making the continuum approximation (kg7
<fiw), the corresponding scaling law [15,16] with the Fermi
energy is implicit.

B. The free energy

Having determined the chemical potential, the free energy
Fr(N)=—(1/8) In Zp(N) can be evaluated from Eq. (3.6),

FF(N):FgO)(N)—%ln( foﬂqf(e)de), (3.10)

1 EF(”)
FPN) == g0 =5,

(3.11)

where F(FO)(N) is the zeroth-order steepest-descent result,
which would be obtained from the grand-canonical treat-
ment. The correction factor involving W(6) accounts for the
finite number of particles. For reference, W(6) is shown for
N=10 in Fig. 2 as a function of @ for various values of the
temperature. If N increases, W(6) becomes increasingly con-
centrated near the origin #=0 for nonzero temperatures.

The resulting free energy per particle as a function of
temperature is shown in Figs. 3, 4, and 5 for N=1, N=10,
and N=100, respectively, in units of Zw(6N)"> propor-
tional to the Fermi energy. For comparison, the contribution
F }O)(N) is also plotted (dashed lines). As expected, this
steepest-descent contribution becomes increasingly accurate
if the number of fermions increases.

C. The internal energy

The contribution of the relative degrees of freedom to the
internal energy

d d
UF:ﬁ(ﬁFF):FF_Tﬁ Fr (3.12)
can be obtained from the free energy obtained above by nu-
merical differentiation. The internal energy per particle is
plotted in Fig. 6 in units of Zw(6N)'® proportional to the
Fermi energy. A scaling law similar to that for the chemical
potential is observed.

1 1 L L
03\ |
\\ N=10
\
| \ T, = I
\ ———— TM,,=05
0.2 N e T i
. e T/T,=1.5
\‘\\ — — T~
\
0.1 - 3 |
L\
\
AN
AN
N
0.0 = . '
00 0.2 0.4 0.6 08 10

on

FIG. 2. Integrand W(6) of Eq. (3.7) for ten fermions as a func-
tion of @ for various values of the temperature, expressed in units of
Ti=hwN"/k.
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Exact
———— Zero order steepest descent N

0.0 05 1.0 1.5 20
t

FIG. 3. Scaled free energy per particle f=(Fy/N)/Aw(6N)'"
as a function of the scaled temperature t=kT/AwN" for 1 particle.
For comparison, the zeroth-order steepest-descent contribution is
also plotted (dashed line).

In one dimension the thermodynamical properties of har-
monically interacting bosons and fermions can be derived
from each other. This case has been studied in [1]. In higher
dimensions, the fermion internal energy is smoothly decreas-
ing with decreasing temperature, whereas for the boson case
it shows sudden changes in slope, related to the condensa-
tion.

To within the numerical accuracy, the results are in agree-
ment with the standard description from the generating func-
tion treatment using

- “1 (v D)(v+2)(v+302)
2 e =hw 2 S —— e

(3.13)

These results can also be compared with the internal energy
Uf rec(N), which one would obtain from the recurrence rela-
tion. In terms of the expressions for z, discussed above, one
then obtains

N oy
b (921\/ 3 ]bj
UraeeN) =hw| =254 N33 =
(3.14)
1 L 1 L
N=10 L

Exact
———— Zero order steepest descent

0.0 0.5 1.0 1.5 20
t

FIG. 4. Same as Fig. 3, but for ten fermions.

N=100 |

Exact
———— Zero order steepest descent

0.0 0.5 1.0 1.5 20
t

FIG. 5. Same as Figs. 3 and 4, but for 100 fermions.

This calculation is in practice only feasible for a limited
number of particles N=<10 and for these cases it coincides

within the numerical accuracy with the results plotted in Fig.
6.

IV. GROUND-STATE ENERGY

In this section the low-temperature limit will be consid-
ered. By counting the number of occupied energy levels, the
dominant contribution to the partition function can then be
calculated easily, taking into account the degeneracy % (v
+1)(v+2) of the levels with energy €,=#Aw(v+3). The
calculation is done first with the Fermi level L fully occu-
pied. The number of particles Ny required for this assump-
tion to hold is

Lo 1
Np= 2, 5 (1) (r+2)= 2 (L+3)(L+2)(L+1).

v=0
4.1)
Consequently, the Fermi energy is of order (6 N)*aw. The

total energy Up associated with the case with the Lth level
fully occupied is

3.5 L L L

3.0 1

251

0.0 0.5 1.0 15 2.0

FIG. 6. Scaled internal energy per particle u
=(Up/N)/Aw(6N)"? as a function of the scaled temperature ¢
=kT/HiwN" for 10 and 100 fermions. For reference, the result for
one particle is also plotted.
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TABLE III. Number of particles N and total energy Uy with the energy level vy fully occupied.

v Np Up/hw Vg Np Uplhw v Ng Up/hw
1 4 9 10 286 2574 60 39711 3693123
2 10 30 15 816 10404 70 62196 3358584
3 20 75 20 1771 B 80 91881 1130163
4 35 P 25 3276 66339 90 129766 8953854
5 56 294 30 5456 130944 100 176851 27058203
6 84 504 35 8436 234099 150 585276 66721464
7 120 810 40 12341 s 200 1373701 416231408
8 165 1B 45 17296 609684 250 2667126 504086814
9 220 1815 50 23426 913614 300 4590551 20719608
10 286 2574 55 30856 1319094 400 10827401 8528922803

L
Up= 20 %(V+1)(y+2)ﬁw

=

N
)

=%ﬁw(L+3)(L+1)(L+2)2. 4.2)

For a limited number of particles, the number of particles
and the energy Uy are shown in Table III.

For an arbitrary number N of fermions not filling the
Fermi level completely, the determination of the ground-
state energy is slightly more involved. We first determine the
number of particles Np<N that fill the level L. From Eq.
(4.1) it follows that the highest fully occupied level L is
given by

1 1/3
L=int 3N+§\/36N2—3)
l 1 —1/3
t3 3N+§\/36N2—3) —2} (4.3)

From this level L, one can determine the corresponding N
and Ug.

The resulting formula for the leading term in the partition
function for N particles in the zero-temperature limit is
b3N2pMy | which defines the power My as

My=(L+1) N—21—4(L+2)(L+3)(L+4) . (44)

The ground-state energy E, with N particles is Ey=Up
+(N—Np)hw(L+1+3) because the remaining particles
are in the level L+ 1 and consequently

Eo=— 2]—4ﬁw(L+4)(L+3)(L+2)(L+1)

3
L+1+=

J’_
Nhw 3

. 4.5)

V. CONCLUSION AND DISCUSSION

In this paper we have given a short review of the calcu-
lation techniques for fermions, described in [1] and [2] for

identical particles in general. Next a numerical analysis of
the chemical potential and of the free energy is made for a
given expectation value of the number of particles as a func-
tion of temperature. In this analysis, we could easily illus-
trate what the consequences are of the minus sign coming
from the antisymmetric representation of the permutation
group in the expression for the partition function. Even when
the expressions are known analytically, the plot of a rela-
tively smooth function such as the free energy requires spe-
cial techniques as a consequence of numerical instabilities
due to a sign problem in the recurrence relation for the par-
tition function. The necessity of such techniques can be
checked by attempting a calculation of a few limits, which
lead to the application of 1’Hopital’s rule many times, even
proportional to the square of the number of particles in the
system.

It should be noted that the model contains only spin-
polarized fermions. In quantum dots, its production would
require a magnetic field. In our model this field is not in-
cluded. However, as we have shown in [1], the expressions
for the partition function for fermions in the presence of an
external magnetic field can be obtained with the same calcu-
lational technique. The influence of the magnetic field on the
chemical potential and the specific heat of our model has not
been studied yet for fermions. In alkali-metal vapors the spin
polarization of the fermions would be inherent to the experi-
mental technique [20].

The chemical potential and the internal energy exhibit a
scaling law in the sense that it is an almost universal function
of the temperature when plotted in the indicated scaled units.
Although we strongly suspect that the scaling comes via the
Fermi level of the confined system, as is the case in the
continuum limit, we have no mathematical proof of this ob-
servation in the low-temperature case kgT<<fiw.

We did not compare the present approach with other theo-
ries using the same or an analogous model. It should be
stressed, however, that we presented here results obtained
with a different scheme for the evaluation of path integrals
for fermions.
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