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The thermodynamical properties are calculated for a three-dimensional model of N harmonically interacting

spin-polarized fermions in a parabolic potential well. The obtained dependences of the chemical potential and

of the internal energy on the complete range of the temperature and of the number of particles turn out to obey

a scaling law, similar to the scaling from the continuum approximation for the density of states. The calcula-

tional technique is based on our path-integral approach of symmetrized density matrices for identical particles

in a parabolic confining well. @S1063-651X~98!03504-1#

PACS number~s!: 05.30.2d, 03.75.Fi, 32.80.Pj

I. INTRODUCTION

In two previous papers the present authors extended the

method of symmetrized density matrices to systems confined

in a parabolic well @1# and used this method to obtain ex-
pressions for the density and the pair-correlation function
@2#. The evaluation of the internal energy, the specific heat,
the moment of inertia @3,4#, the density, and the static re-
sponse functions was performed for bosons, inspired by the
recently observed Bose-Einstein condensation @5–7# and the
theoretical work around this phenomenon using other meth-
ods @8–14#. In both Refs. @1# and @2# the general expressions
for most of the quantities mentioned above are also given for
Fermi-Dirac statistics. In the present paper a method is pre-
sented to explicitly evaluate the thermodynamic quantities
for spin-polarized fermions. The model is a parabolic well
containing N fermions, all in the same spin state and inter-
acting through a harmonic two-body potential that may be
either attractive or repulsive.

A quantum dot would be a physical system that could be
described by such a model if also a magnetic field were taken
into account to freeze away the opposite spin states. When
no magnetic field is taken into account two spin states ~spin
up and spin down! should be present in the model. Recently
@15#, the investigation of confined fermions in the same ex-
perimental configuration used for the Bose alkali metals was
proposed. The Thomas-Fermi approximation @16# was used
to study the spatial distribution of these trapped fermion sys-
tems. In order to analyze these more physically relevant
models in the future, we first develop in the present paper the
basic techniques required for spin-polarized fermions. The
model also has some importance in itself because it can be
used to test new approaches to Monte Carlo simulations of
interacting fermions such as many-body diffusion @17–19#.

The paper is organized as follows. In Sec. II we collect
the expressions from @1# and @2# for the fermion case. In Sec.
III we show how the chemical potential, the free energy, and
the internal energy can be obtained for a given number of
fermions as a function of the temperature. Subsequently the
low-temperature limit is considered and the ground-state en-
ergy is evaluated in Sec. IV. In Sec. V a discussion and the
conclusions are given.

II. FERMION OSCILLATORS

In this section the basic formulas that have been derived
in the path-integral treatment of @1# and @2# are summarized
and rewritten in such a way that they are more appropriate
for dealing with fermions, in particular for the numerical
treatment. Before doing so, it is instructive to point out
where the numerical accuracy problems are coming from.
Having pinpointed their origin, a method is proposed to ac-
curately evaluate the relevant thermodynamic quantities.

A. Summary of previous results

We consider a model of N fermions with parallel spin in
a harmonic confinement potential and with a quadratic inter-
particle interaction. The one-body potential energy V1 and
the two-body potential energy V2 of the model system are
given by

V5V11V2 , V15

mV2

2 (
j51

N

rj
2 ,

V252

mv2

4 (
j ,l51

N

~rj2rl!
2. ~2.1!

The two-body interaction is assumed to be repulsive; replac-
ing 2v2 by v2 in V2 gives the case of attraction. In each

dimension we found one degree of freedom ~the center of
mass! with frequency V and N21 degrees of freedom with
frequency w given by
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w5AV2
2Nv2, ~2.2!

which means that the frequency V of the center of mass is
larger than the frequencies w of the degrees of freedom in
the relative coordinate system. Changing the sign of v2 al-
lows us to obtain the case with w larger than V.

In our path-integral treatment presented in @1#, a recur-
rence relation was obtained for the partition function ZI(N)
corresponding to the degrees of freedom with frequency w in
the relative-coordinate system. Introducing

b5e2b\w ~2.3!

for brevity in the notation, we found that

ZI~N !5

1

N (
m50

N21

jN2m21S b ~N2m !/2

12bN2mD
3

ZI~m !. ~2.4!

This recurrence relation applies for bosons (j511) and for
fermions (j521). The subscript I refers to identical par-
ticles, which can be specified to be fermions ~subscript F! or
bosons ~subscript B!. The total partition function Z I(N) dif-
fers from ZI(N) only by a factor that accounts for the center-
of-mass contribution

Z I~N !5S sinh
1

2
bw

sinh
1

2
bV

D
3

ZI~N !. ~2.5!

B. The ‘‘sign’’ problem and the canonical ensemble

For three-dimensional fermions, the contribution ~2.4! to
the partition function from the relative degrees of freedom
clearly illustrates the kind of numerical inaccuracies that
originate for the fermion case j521. If the partition func-
tions for 1,2, . . . ,(N21) particles are known, Cramer’s rule
can be used to calculate the partition function for N fermi-
ons. Factorizing the denominators in the partition function
~2.4! by introducing the quantities

zN5b23N/2
ZF~N !)

j51

N

~12b j!3, ~2.6!

a careful analysis shows that zN are polynomials in b . Typi-
cal terms of the expansion in powers of b are summarized in
Table I. In Table II the polynomial z10 is given in full detail.

These expressions clearly illustrate that the recurrence re-
lation ~2.4! with its alternating signs is numerically not

TABLE I. Reduced partition function zN for N52,3, . . . ,10.

z25b(31b2)

z35b2(3110b16b2
16b3

17b4
13b5

1b7)

z45b3@1115b127b2
162b3

163b4
187b5

180b6
187b7

1O(b8)#

z55b5@6137b1105b2
1231b3

1413b4
1669b5

1921b6
11197b7

1O(b8)#

z65b7@15175b1290b2
1687b3

11590b4
12994b5

15304b6
18388b7

1O(b8)#

z75b9@201135b1543b2
11645b3

14206b4
19381b5

119131b6
135802b7

1O(b8)#

z85b11@151173b1780b2
12871b3

18296b4
121453b5

149110b6
1104723b7

1O(b8)#

z95b13@61135b1847b2
13612b3

112348b4
136166b5

193972b6
1223572b7

1O(b8)#

z105b15@1157b1615b2
13261b3

113503b4
145345b5

1134610b6
1357933b7

1O(b8)#

TABLE II. Reduced partition function z10 .

z10 /b15
51157b1615b2

13261b3
113503b4

145345b5
1134610b6

1357933b7
1879054b8

12010684b9
14345128b10

18918028b11
117522121b12

133074766b13
160269475b14

1106291845b15
1182005221b16

1303159450b17

1492298273b18
1780509769b19

11210116969b20
11836796808b21

12732828889b22
13989023158b23

15717909554b24
18054427489b25

111158011888b26
115210615846b27

120416394163b28
126995546500b29

135180518626b30
145204591771b31

157294327336b32
171652967164b33

188450188705b34
1107801980392b35

1129760468767b36
1154293502560b37

1181278676665b38
1210486919309b39

1241585183659b40

1274128160656b41
1307573138975b42

1341282238438b43
1374550513570b44

1406618287529b45

1436710170877b46
1464053823241b47

1487924429070b48
1507663537606b49

1522721627332b50

1532669844520b51
1537233278185b52

1536289729798b53
1529888599492b54

1518233866459b55

1501687264528b56
1480736747215b57

1455986553010b58
1428116140777b59

1397862850832b60

1365978330982b61
1333210742599b62

1300265798386b63
1267794502825b64

1236364132672b65

1206455118098b66
1178444248222b67

1152611340019b68
1129133921739b69

1108101637948b70

189519477403b71
173326342790b72

159402845476b73
147590266765b74

137699218057b75
129525967669b76

122859393796b77
117493002580b78

113228933857b79
19885384267b80

17297628572b81
15321514726b82

13832246167b83
12725103340b84

11912972224b85
11325507922b86

1906297026b87
1611414355b88

1406837455b89
1266998784b90

1172746528b91
1110189817b92

169257169b93
142900069b94

126170152b95

115728664b96
19303894b97

15421180b98
13106746b99

11753755b100
1972819b101

1531755b102

1285204b103
1150903b104

178197b105
140038b106

120010b107
19928b108

14758b109
12298b110

11056b111
1492b112

1213b113
199b114

139b115
118b116

17b117
13b118

1b120
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stable: The leading terms are of order bM , where M in-

creases drastically if the number of fermions increases. Nev-

ertheless, the expression for z10 , e.g., is useful to check ex-

pressions for the partition function or derived quantities for

their accuracy. Because for the fermions, unlike the boson

case, solving the recurrence relations thus runs into severe

numerical problems, we will use the generating function

technique for the actual calculation of the free energy and the

internal energy. To convince ourselves that numerical inac-

curacies have been avoided, the internal energy of the model

for up to ten fermions has been calculated both ways, i.e.,

from the recurrence relations and with the generating func-

tion technique, and the results of both methods coincide.

How the chemical potential and the internal energy are cal-

culated will be elaborated in the next section.

III. THERMODYNAMIC PROPERTIES

The generating function JF(u) corresponding to the par-
tition functions ZF(N) is defined in the standard way as

JF~u !5 (
N50

`

uN
ZF~N !. ~3.1!

As shown in @1#, it is given by

JF~u !5expS 2(
j51

`
1

j

~2ub3/2! j

~12b j!3 D . ~3.2!

This means that in our model the internal degrees of freedom
are represented by a system of noninteracting oscillators with
frequency w . JF(u) is then formally the grand-canonical
partition function of that subsystem. However, it is not the
grand-canonical partition function of the full model system
with interaction for two reasons: First, one has to take the
center-of-mass correction into account and, second, the
eigenfrequency w in the relative coordinate system depends
on the number of particles. However, given w , the full
mechanism of the generating functions is applicable in the
relative coordinate system provided afterward the necessary
center-of-mass corrections are taken into account.

The partition function ZF(N) from the internal degrees of
freedom can be obtained by inverting the defining Taylor
series ~3.1!,

ZF~N !5

1

2pi
R

C

JF~z !

zN11 dz , ~3.3!

where C is a closed contour in the complex z plane around
the origin. The generating function JF(z) is inaccessible for
numerical purposes. However, considering a circular contour
with radius u , one obtains

ZF~N !5

1

2p
E

0

2p JF~ue iu!

uN e2iNudu

5

1

2p
E

0

2p

exp@ ln JF~ue iu!2N ln u#e2iNudu .

~3.4!

The extremum of @ ln JF(ueiu)2N ln u# on the real axis sat-
isfies the condition N5u(d/du)ln JF(u). Using Eq. ~3.2!,
this requirement becomes

N5 (
n50

`

nn , nn5

1

2

~n11 !~n12 !

11e2b~m2en! , en5\wS n1

3

2
D ,

~3.5!

which is precisely the result that one would obtain from the
grand-canonical treatment with u5ebm, taking into account
the degeneracy 1

2 (n11)(n12) of the nth energy level. Fac-
torizing out the steepest-descent contribution JF(u)/uN ob-
tained this way, one finds

ZF~N !5

JF~u !

uN E
0

p

C~u !du , ~3.6!

C~u !5

1

p

JF~ue iu!

JF~u !
e2iNu, ~3.7!

where C~u! is a real function, suitable for numerical integra-
tion if u5ebm is determined. The advantage of a procedure
based on the generating function is that all contributions to
JF(u) turn out to be positive, in contrast to the direct deter-
mination of the partition function ~2.4!, which numerically
involves severe sign problems, as argued in Sec. II.

A. The chemical potential

The chemical potential has to be determined from the re-
quirement ~3.5!. There are clearly two cases to be consid-
ered. For sufficiently low temperature, m will be larger than
3
2 \w , but at high temperature m might be smaller than 3

2 \w .
For the case m.

3
2 \w , the behavior of the denominator is

fundamentally different for the energy levels en,m as com-
pared to those satisfying en.m . Assume that m will be
found in the interval ]eL21 ,eL] between two consecutive
levels

m5eL2\wa , aP@0,1@ , ~3.8!

and treat the levels en<m separately from those with en

.m . We start the discussion under the assumption L>1 and
rewrite N as

N5 (
n51

L
1

2

~L2n11 !~L2n12 !

11b2a1n 1

1

2

~L11 !~L12 !ba

11ba

1 (
n51

`
1

2

~L1n11 !~L1n12 !ba1n

11ba1n .

Let NL denote the ~not necessarily integer! value that the
right-hand side of this equation would take for a50, i.e., if
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the chemical potential would be located exactly at eL . One
finds after some algebra ~provided L.0!

NL5

1

6
S L1

3

2
D ~L12 !~L11 !1~2L13 ! (

n51

L
nbn

11bn

1 (
n5L11

`
1

2

~L1n11 !~L1n12 !bn

11bn .

1

6
L3.

The result L,(6NL)1/3 is important for developing a sure-
fire algorithm to find the chemical potential. If one starts
from a value L that is the largest integer smaller than
(6N)1/3, it implies that m,eL . One can then decrease the
value of L step by step, until a value of L is found for which
NL>N but NL21,N .

Fortunately, this procedure can also be used if m is
smaller than the lowest energy of the model. It then results in
a negative value of L , which is related to the chemical po-
tential in Eq. ~3.8! by formally filling out eL with L negative.

A fresh refining routine is then started to find aP@0,1@ ,
which is bracketed as required for sure-fire root-finding pro-
grams. The actual determination of a ~for both cases m
.

3
2 \w and m,

3
2 \w! is straightforward from the equation

for N if written in the appropriate form for numerical treat-
ment:

N5 (
n50

`
1

2

~n11 !~n12 !

11bL2n2a 5 (
n50

`
1

2
~n11 !~n12 !

3H
1

11bL2n2a for n<L2a

b2L1n1a

b2L1n1a
11

otherwise .

~3.9!

The determination of the chemical potential along these
lines presents no numerical difficulties. Because the Fermi
energy is of order \w(6N)1/3, it seems natural to express kT

in units of \wN1/3. This scaling factor turns out to be sur-
prisingly good, as is shown in Fig. 1, where the temperature
dependence of the chemical potential m(T) in units of m(0)

is plotted against t5kT/\wN1/3. Introducing a density of
states and making the continuum approximation (kBT

!\w), the corresponding scaling law @15,16# with the Fermi
energy is implicit.

B. The free energy

Having determined the chemical potential, the free energy
FF(N)52(1/b) ln ZF(N) can be evaluated from Eq. ~3.6!,

FF~N !5FF
~0 !~N !2

1

b
lnS E

0

p

C~u !du D , ~3.10!

FF
~0 !~N !52

1

b
ln

JF~u !

uN , ~3.11!

where FF
(0)(N) is the zeroth-order steepest-descent result,

which would be obtained from the grand-canonical treat-
ment. The correction factor involving C~u! accounts for the
finite number of particles. For reference, C~u! is shown for
N510 in Fig. 2 as a function of u for various values of the
temperature. If N increases, C~u! becomes increasingly con-
centrated near the origin u50 for nonzero temperatures.

The resulting free energy per particle as a function of
temperature is shown in Figs. 3, 4, and 5 for N51, N510,
and N5100, respectively, in units of \w(6N)1/3 propor-
tional to the Fermi energy. For comparison, the contribution

FF
(0)(N) is also plotted ~dashed lines!. As expected, this

steepest-descent contribution becomes increasingly accurate
if the number of fermions increases.

C. The internal energy

The contribution of the relative degrees of freedom to the
internal energy

UF5

d

db
~bFF!5FF2T

d

dT
FF ~3.12!

can be obtained from the free energy obtained above by nu-
merical differentiation. The internal energy per particle is
plotted in Fig. 6 in units of \w(6N)1/3 proportional to the
Fermi energy. A scaling law similar to that for the chemical
potential is observed.

FIG. 2. Integrand C~u! of Eq. ~3.7! for ten fermions as a func-

tion of u for various values of the temperature, expressed in units of

T ref5\wN1/3/k .

FIG. 1. Scaled chemical potential m(T)/m(T50) as a function

of the scaled temperature t5kT/\wN1/3 for 10, 100, 1000, and

10 000 fermions. For reference, this quantity is also plotted for one

particle.
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In one dimension the thermodynamical properties of har-
monically interacting bosons and fermions can be derived
from each other. This case has been studied in @1#. In higher
dimensions, the fermion internal energy is smoothly decreas-
ing with decreasing temperature, whereas for the boson case
it shows sudden changes in slope, related to the condensa-
tion.

To within the numerical accuracy, the results are in agree-
ment with the standard description from the generating func-
tion treatment using

(
n50

`

ennn5\w (
n50

`
1

2

~n11 !~n12 !~n13/2!

11e2b~m2en! .

~3.13!

These results can also be compared with the internal energy
UF ,rec(N), which one would obtain from the recurrence rela-
tion. In terms of the expressions for zN discussed above, one
then obtains

UF ,rec~N !5\wS b

zN

]zN

]b
1

3

2
N13(

j51

N
jb j

12b jD .

~3.14!

This calculation is in practice only feasible for a limited
number of particles N<10 and for these cases it coincides
within the numerical accuracy with the results plotted in Fig.
6.

IV. GROUND-STATE ENERGY

In this section the low-temperature limit will be consid-
ered. By counting the number of occupied energy levels, the
dominant contribution to the partition function can then be
calculated easily, taking into account the degeneracy 1

2 (n
11)(n12) of the levels with energy en5\w(n1

3
2 ). The

calculation is done first with the Fermi level L fully occu-
pied. The number of particles NF required for this assump-
tion to hold is

NF5 (
n50

L
1

2
~n11 !~n12 !5

1

6
~L13 !~L12 !~L11 !.

~4.1!

Consequently, the Fermi energy is of order (6N)1/3\w . The
total energy UF associated with the case with the Lth level
fully occupied is

FIG. 3. Scaled free energy per particle f 5(FF /N)/\w(6N)1/3

as a function of the scaled temperature t5kT/\wN1/3 for 1 particle.

For comparison, the zeroth-order steepest-descent contribution is

also plotted ~dashed line!.

FIG. 4. Same as Fig. 3, but for ten fermions.

FIG. 5. Same as Figs. 3 and 4, but for 100 fermions.

FIG. 6. Scaled internal energy per particle u

5(UF /N)/\w(6N)1/3 as a function of the scaled temperature t

5kT/\wN1/3 for 10 and 100 fermions. For reference, the result for

one particle is also plotted.
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UF5 (
n50

L
1

2
~n11 !~n12 !\wS n1

3

2
D

5

1

8
\w~L13 !~L11 !~L12 !2. ~4.2!

For a limited number of particles, the number of particles
and the energy UF are shown in Table III.

For an arbitrary number N of fermions not filling the
Fermi level completely, the determination of the ground-
state energy is slightly more involved. We first determine the
number of particles NF<N that fill the level L . From Eq.
~4.1! it follows that the highest fully occupied level L is
given by

L5intF S 3N1

1

9
A36N2

23 D
1/3

1

1

3
S 3N1

1

9
A36N2

23 D
21/3

22 G . ~4.3!

From this level L , one can determine the corresponding NF

and UF .
The resulting formula for the leading term in the partition

function for N particles in the zero-temperature limit is
b3N/2bMN, which defines the power M N as

M N5~L11 !S N2

1

24
~L12 !~L13 !~L14 ! D . ~4.4!

The ground-state energy E0 with N particles is E05UF

1(N2NF)\w(L111
3
2 ) because the remaining particles

are in the level L11 and consequently

E052

1

24
\w~L14 !~L13 !~L12 !~L11 !

1N\wS L111

3

2
D . ~4.5!

V. CONCLUSION AND DISCUSSION

In this paper we have given a short review of the calcu-
lation techniques for fermions, described in @1# and @2# for

identical particles in general. Next a numerical analysis of

the chemical potential and of the free energy is made for a

given expectation value of the number of particles as a func-

tion of temperature. In this analysis, we could easily illus-

trate what the consequences are of the minus sign coming

from the antisymmetric representation of the permutation

group in the expression for the partition function. Even when

the expressions are known analytically, the plot of a rela-

tively smooth function such as the free energy requires spe-

cial techniques as a consequence of numerical instabilities

due to a sign problem in the recurrence relation for the par-

tition function. The necessity of such techniques can be

checked by attempting a calculation of a few limits, which

lead to the application of l’Hôpital’s rule many times, even

proportional to the square of the number of particles in the

system.

It should be noted that the model contains only spin-

polarized fermions. In quantum dots, its production would

require a magnetic field. In our model this field is not in-

cluded. However, as we have shown in @1#, the expressions

for the partition function for fermions in the presence of an

external magnetic field can be obtained with the same calcu-
lational technique. The influence of the magnetic field on the
chemical potential and the specific heat of our model has not
been studied yet for fermions. In alkali-metal vapors the spin
polarization of the fermions would be inherent to the experi-
mental technique @20#.

The chemical potential and the internal energy exhibit a
scaling law in the sense that it is an almost universal function
of the temperature when plotted in the indicated scaled units.
Although we strongly suspect that the scaling comes via the
Fermi level of the confined system, as is the case in the
continuum limit, we have no mathematical proof of this ob-
servation in the low-temperature case kBT!\w .

We did not compare the present approach with other theo-
ries using the same or an analogous model. It should be
stressed, however, that we presented here results obtained
with a different scheme for the evaluation of path integrals
for fermions.
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