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ABSTRACT: We demonstrate an unusual electrochemical reaction of sulfur with lithium upon 

encapsulation in narrow�diameter (sub�nanometer) single�walled carbon nanotubes (SWNTs). 

Our study provides mechanistic insight on the synergistic effects of sulfur confinement and Li+ 

ion solvation properties that culminate in a new mechanism of these sub�nanoscale�enabled 

reactions (which cannot be solely attributed to the lithiation�delithiation of conventional sulfur). 

Two types of SWNTs with distinct diameters, produced by electric arc (EA�SWNTs, average 

diameter 1.55 nm) or high�pressure carbon monoxide (HiPco�SWNTs, average diameter 1.0 nm), 

are investigated with two comparable electrolyte systems based on tetraethylene glycol dimethyl 

ether (TEGDME) and 1,4,7,10,13�pentaoxacyclopentadecane (15�crown�5). Electrochemical 

analyses indicate that a conventional solution�phase Li�S reaction occurs in EA�SWNTs, which 

can be attributed to the smaller solvated [Li(TEGDME)]+ and [Li(15�crown�5)]+ ions within the 

EA�SWNT diameter. In stark contrast, the Li�S confined in narrower diameter HiPco�SWNTs 

exhibits unusual electrochemical behavior which can be attributed to a solid�state reaction 
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 3

enabled by the smaller HiPco�SWNT diameter compared to the size of solvated Li+ ions. Our 

results of the electrochemical analyses are corroborated and supported with various 

spectroscopic analyses including operando Raman, X�ray photoelectron spectroscopy, and first�

principles calculations from density functional theory. Taken together, our findings demonstrate 

that controlled solid�state lithiation�delithiation of sulfur and an enhanced electrochemical 

reactivity can be achieved by sub�nano encapsulation and one�dimensional confinement in 

narrow�diameter SWNTs.  

 

Electrochemical reactions between lithium (Li) and sulfur (S) constitute the fundamental 

building blocks for enabling rechargeable Li�S battery chemistries. When sulfur is in its native 

cyclo�S8 molecular state and ethers are used as the electrolyte solvents, a series of complex 

lithiation reactions occur in the electrolyte, generating Li polysulfides that ultimately result in the 

precipitation of lower�order polysulfides or lithium sulfide. The exact chemical fate and transport 

processes in these uncontrolled interfacial chemical environments are poorly understood to date, 

which pose fundamental challenges to improving Li�S batteries. As an alternative strategy to 

controlling these chemical interactions, we have sought to shift the current Li�S electrochemical 

reaction paradigm from solution to the solid phase. Specifically, one of our previous studies 

suggested that the Li�S electrochemical mechanism is dictated by the geometry of the sulfur 

confinement,1 and solid�state (or quasi�solid�state) Li�S electrochemical reactions could occur in 

liquid electrolytes by confining sulfur in sub�nanometer pores in microporous carbon. Due to the 

sub�nano pore size, solvated Li+ ions enter the pores through a desolvation process so that solid�

state or quasi�solid�state Li�S electrochemical reactions occur in this sub�nano confined 
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 4

environment. Similar solid�state Li�S electrochemical mechanisms enabled by sub�nanometer 

confinement were also proposed by the Gentle2 and Huang3 groups, with other hypotheses 

including the existence of small sulfur allotropes in sub�nanometer confinements,4 carbon 

sulfurization,5 and formation of solid electrolyte interphase (SEI) on the sub�nanometer confined 

sulfur.6,7 In all of these previous studies, it is apparent that the physical confinement of sulfur 

plays a crucial role in dictating the detailed electrochemical mechanisms in Li�S reactions. 

To further study the control over Li�S reactions in confined chemical environments, we utilize 

single�walled carbon nanotubes (SWNTs) in this study to confine sulfur. SWNTs with 

nanometer�sized diameters provide an ideal encapsulation host for sulfur because of their 

intrinsic one�dimensional (1�D) confinement within the rigid but electronically�conductive 

SWNT wall. Various materials including fullerenes,8�11 inorganic molecules,12�16 organic 

molecular dopants,17 metal and metal oxide catalytic nanoparticles18,19 have been encapsulated in 

SWNTs. Recently in 2014, Fujimori et al. proposed that sulfur in a metallic state could be 

confined in electric arc produced SWNTs (EA�SWNTs) with either linear or zigzag chain 

structure.20 Based on this proposed S@SWNT structure, Yang et al. studied the electrochemical 

lithiation�delithiation of sulfur confined in EA�SWNTs,21 and their results demonstrated an 

electrochemical behavior consistent with the typical solution�phase Li�S reaction. 

To demonstrate the effects of the confined chemical environment on Li�S reactions, we utilize 

two types of SWNTs with different diameters, EA�SWNTs (average diameter = 1.55 ± 0.1 nm) 

and high�pressure carbon monoxide produced SWNTs (HiPco�SWNTs, average diameter = 1.0 ± 

0.2 nm), and two different electrolytes: 1 M lithium bis(trifluoromethane sulfonyl)imide 

(LiTFSI) in tetraethylene glycol dimethyl ether (TEGDME) and 1,4,7,10,13�
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 5

pentaoxacyclopentadecane (15�crown�5), respectively.  Structurally, 15�crown�5 molecule is the 

cyclo�counterpart of the linear TEGDME. The selection of these two solvents is based on the 

rationale that the structures of solvated Li+ ions in these two solvents differ solely due to the 

structures of the solvent molecules (linear vs. cyclic), thus providing a rigorous comparison of 

the Li�S electrochemical behavior in the EA�SWNTs and HiPco�SWNTs with distinct diameter 

sizes. Our findings are complemented by a suite of experimental and computational 

characterization techniques including operando Raman, X�ray photoelectron spectroscopy, and 

first�principles calculations from density functional theory.  

���������	�
���	��

Sulfur was infused into EA�SWNTs and HiPco�SWNTs via exposure to saturated sulfur vapor at 

600 °C for 2 days in sealed hourglass�shaped quartz tubes followed by the removal of superficial 

sulfur (exterior of the SWNTs), as detailed in the Methods/Experimental Section. According to 

our previous study, S2 molecules generated at 600 °C can diffuse into the SWNTs and 

subsequently polymerize to form long�chain sulfur diradicals.22 The sulfur content was 

determined with elemental analysis via colorimetric titration (Figure S1 in Supporting 

Information): 4.57 wt.% in S@EA and 11.33 wt.% in S@HiPco. The sulfur contents were also 

confirmed by energy�dispersive X�ray spectroscopy analysis (EDX) and electron energy loss 

spectroscopy (EELS) (Figures S2 and S3 in Supporting Information). The microstructures of 

S@EA and S@HiPco were characterized with low�kV monochromated and aberration�corrected 

high�resolution transmission electron microscopy (HRTEM). As shown in �	���� ��, an 

irregularly�shaped sulfur chain can be observed to be folded inside an EA�SWNT with diameter 

of 1.5 nm; Similarly, a shorter swirl�like sulfur chain can be observed inside a HiPco�SWNT. It 
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 6

is worth mentioning that despite the low electron beam energy, the S@SWNTs was unstable 

under prolonged beam irradiation: As shown in Figure S4 in Supporting Information, a breach on 

the HiPco�SWNT wall in Figure 1a was quickly created by the electron beam, and the sulfur 

chain escaped. Nevertheless, we observe the sulfur chains confined in the EA� and HiPco�

SWNTs do not have a well�defined structure and are distinctly different from the linear or zig�

zag structures previously proposed. Indeed, our density functional theory (DFT) based 

calculations demonstrate that a more disordered structure of the sulfur chain is more stable than 

the linear and zigzag conformations when they are confined in a SWNT.22 In particular, our DFT 

optimizations depicted in �	���� �� show that the sulfur chain inside the SWNT tends to 

accommodate conformations that resemble the cyclo�S8 allotrope, i.e., the bond distances, bond 

angles, and dihedral angles are similar to the cyclo�S8 allotrope geometry (see Table S1�4 in the 

Supporting Information for further details and geometric analyses). Our optimized sulfur 

geometries can be rationalized by recognizing that this allotrope is the most thermodynamically 

stable form at ambient temperatures.23 



�� ��
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 7

�	������TEM images of (a) S@EA (left) and S@HiPco (right); (b) Optimized geometry of a 
sulfur chain inside a (7,7) SWNT (top) and view of the sulfur chain without the (7,7) SWNT 
(bottom). The diameter of the optimized S@(7,7)SWNT is 9.93 Å. The optimized total electronic 
energy is �1.6 KeV, and the cohesive energy is �0.9 eV. 

 

The primary Li+ ion solvation structures in the electrolytes were characterized with electrospray 

ionization mass spectrometry (ESI�MS). As shown in �	�����,the exceptionally clean ESI�MS 

spectra of 1 M LiTFSI in TEGDME and 15�crown�5 indicate that the exclusive solvated Li+ ion 

species are [Li(TEGDME)]+ (m/z = 229.14) and [Li(15�crown�5)]+ (m/z = 227.12), respectively. 

The small peaks in the spectra (m/z = 245.12 and m/z = 243.10, respectively) can be attributed to 

the small amount of impurities with one �OH group instead of H in the solvent molecules.  The 

insets of Figure 2 show the optimized solvation structures of [Li(TEGDME)]+ and [Li(15�crown�

5)]+ based on DFT calculations. From the optimized solvation structures, the largest van der 

Waals dimensions of these two solvated Li+ ions can be estimated by fitting three�dimensional 

ellipsoid surfaces that enclose all of the DFT�optimized coordinates for each of the solvents. We 

obtain the largest dimension of 10.87 Å for [Li(TEGDME)]+ (ellipsoid axes: a = 4.56 Å, b = 5.12 

Å, c = 5.435 Å) and 11.34 Å for [Li(15�crown�5)]+ (ellipsoid axes: a = 3.51 Å, b = 5.24 Å, c = 

5.67 Å), respectively. Therefore, both solvated ions are smaller than the average van der Waals 

diameter of EA�SWNTs (12.1 Å), but much larger than the average van der Waals diameter of 

HiPco�SWNTs (6.6 Å). 
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 8



�	���� �� ESI�MS spectra of 1 M LiTFSI in (a) TEGDME and (b) 15�crown�5. The insets of 
each panel depict the DFT�optimized solvation structures. 

 

The electrochemical properties of S@EA and S@HiPco with Li were characterized with CV and 

galvanostatic lithiation�delithiation in these two electrolytes. �	����� �� and �� show the CV 

(0.05 mV s�1) and galvanostatic lithiation�delithiation (4 mA g�1) curves, respectively, of S@EA 

in TEGDME and 15�crown�5 electrolytes vs. Li+/Li. The CV scan in TEGDME electrolyte 

displays a series of cathodic peaks at 2.45 V, 2.13 V, and 1.97 V and two anodic peaks at 2.33 V 

and 2.5 V, which are consistent with its galvanostatic potential profile. The CV scan in 15�

crown�5 displays more cathodic peaks at 2.65 V, 2.15 V, 1.8 V, 1.6 V, and 1.35 V, and 

correspondingly more anodic peaks at 1.9 V, 2.2 V, 2.4 V, and 2.65 V, which are also consistent 

with its galvanostatic potential profile. The CV and galvanostatic potential curves of S@EA in 

TEGDME electrolyte provide strong evidence that S@EA undergoes conventional solution�

phase Li�S reactions involving Li polysulfides. The smaller size of solvated [Li(TEGDME)]+ 

ions compared to the EA�SWNTs diameter allows [Li(TEGDME)]+ ions to enter the EA�SWNTs 

with an excess of TEGDME molecules to react with the confined sulfur. In fact, the diameter of 

EA�SWNTs is large enough to accommodate both solvated [Li(TEGDME)]+ and [Li(15�crown�
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 9

5)]+ ions, enabling the conventional solution�phase Li�S electrochemical reaction in both 

electrolytes. The seemingly different electrochemical behaviors of Li�S@EA in 15�crown�5 may 

originate from the much higher viscosity of 15�crown�5 (21.7 cP at 25 °C)24 than that of 

TEGDME (4.05 cP at 25 °C). The diffusion of Li polysulfides during the electrochemical 

process can be suppressed by the higher viscosity of 15�crown�5 and the restrictive 1�D SWNT 

confinement. The suppression of Li polysulfide dissolution improves the differentiation of the 

step�wise charge transfer processes in sulfur lithiation�delithiation, which typically could not be 

well distinguished in non�confined Li�S electrochemical reactions with CV or 

chronopotentiometry methods.  



�	���� �� (a) CV and (b) galvanostatic lithiation�delithiation of S@EA in TEGDME and 15�
crown�5; (c) CV and (d) galvanostatic lithiation�delithiation of S@HiPco in TEGDME and 15�
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 10

crown�5. The scan rate of CV is 0.05 mV s�1, and the current density of galvanostatic lithiation�
delithiation is 4 mA g�1 with respect to the total mass of S@SWNTs. The capacity is also based 
on the mass of S@SWNTs. 

 

In sharp contrast, as shown in �	����� �
 and ��, the electrochemical characteristics of 

S@HiPco in TEGDME and 15�crown�5 electrolytes are not only fundamentally different from 

those observed for S@EA, but also identical to each other. The CV scans of S@HiPco display 

four cathodic peaks at 2.5 V (small in 15�crown�5), 2.12 V, 1.95 V, and 1.46 V, and three anodic 

peaks at 1.85 V, 2.23 V (shifted to 2.33 V in 15�crown�5), and 2.48 V, which are consistent with 

their galvanostatic potential profiles. The identical electrochemical behavior of S@HiPco in 

TEGDME and 15�crown�5 electrolytes implies identical Li�S electrochemical mechanisms, 

which cannot be explained by the conventional solution�phase Li�S electrochemical reaction. For 

comparison, the CV scans of simple sulfur�HiPco�SWNT and sulfur�EA�SWNT mixtures in 

TEGDME and 15�crown�5 electrolytes display conventional solution�phase Li�S electrochemical 

behavior as shown in Figure S5 in Supporting Information. This new mechanism is very likely 

due to the much smaller diameter of HiPco�SWNTs than that of EA�SWNTs. The inner van der 

Waals diameter of HiPco�SWNTs is approximately 6.6 Å, which can no longer accommodate 

either of the solvated [Li(TEGDME)]+ and [Li(15�crown�5)]+ ions. It is worth noting that the 

reaction between S@HiPco and Li is apparently different from the ones demonstrated in 

microporous carbon1�3 and with solid�state electrolytes, 25�27 which are characterized with single 

slope�like lithiation�delithiation curves and single pair redox peaks in CV. We hereby propose a 

new mechanism: the solvated [Li(TEGDME)]+ and [Li(15�crown�5)]+ ions cannot enter the 

interior of the HiPco�SWNTs; instead, the sulfur in S@HiPco is reduced through the SWNT wall 
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 11

via an out�of�plane π�electronic interaction, with Li+ physically outside of SWNT but interacting 

with the π�orbitals of the sp2�carbon.  



�	������ Operando Raman spectra showing the RBM region of S@EA and S@HiPco in both 
TEGDME and 15�crown�5 electrolytes during electrochemical lithiation�delithiation with a 
current density of 20 mA g�1 with respect to the total mass of S@SWNTs. Lithiation: 2.5 V to 1 
V, delithiation: 1 V to 3 V vs. Li+/Li. 

 

The operando Raman spectroscopy also demonstrates the clear correlation between the Li�S 

electrochemical reactions and the diameters of the SWNTs. �	����� � displays the operando 

Raman spectra near the radial breathing mode (RBM) region of SWNTs obtained during the 

galvanostatic lithiation�delithiation of S@SWNTs in TEGDME and 15�crown�5 electrolytes, 

respectively. (The full operando Raman spectra are shown in Figure S6 in the Supporting 

Information). Due to the van der Waals interaction between the confined sulfur chains and the 

wall of the EA�SWNTs, the RBM Raman peak is slightly shifted from 172 cm�1 in EA�SWNTs 

to 178 cm�1 in S@EA�SWNTs, which is consistent with our previous finding.22 During lithiation, 
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 12

the RBM peak gradually redshifted back to 172 cm�1 with diminishing intensity. The shift of the 

peak indicates the weakening van der Waals interaction between the lithiated sulfur and the wall 

of the EA�SWNTs due to the cleavage of the long sulfur chains. The diminishment of the peak 

may indicate the formation of solid electrolyte interphase (SEI) or SEI�like species on the EA�

SWNTs, which will be elaborated later in the analysis of the X�ray photoelectron spectroscopy 

(XPS) data. Another cause for the RBM peak diminishment in EA�SWNTs can be related to the 

Li to SWNT charge transfer (n�doping) resulting in bleaching of the optical interband transitions 

in the SWNTs and suppressing the resonance character of the Raman scattering. The reverse 

process can be observed in the spectra obtained during delithiation. After delithiation to 3 V, the 

RBM peak blue shifted to 175 cm�1 (lower than 178 cm�1 in the pristine S@EA), which indicates 

that sulfur was not fully converted back to the long chain structure in delithiation, resulting in a 

weaker interaction with the wall of the EA�SWNTs. Interestingly, the RBM peak also became 

more pronounced during delithiation, which may indicate the diminishing SEI�like species. 

The two right panels in Figures 4 depict the operando Raman spectra during the lithiation�

delithiation of S@HiPco in TEGDME and 15�crown�5 electrolytes, respectively. The sulfur 

chains confined in HiPco�SWNTs have a stronger van der Waals interaction with the SWNT 

walls due to the narrower diameter resulting in the disappearance of the RBM peaks at 231 cm�1 

and 272 cm�1 and an appearance of new Raman peaks at 315 cm�1 and 377 cm�1 originating from 

the molecular vibrations of encapsulated sulfur chains coupled with electronic excitations in 

SWNTs, as confirmed by the observed 32S to 34S isotopic shift.22 These new Raman peaks of 

S@HiPco gradually diminished during the lithiation but without a noticeable peak shift. The 

diminishment of these peaks may be due to the formation of SEI�like species in S@HiPco 

similar to that observed in S@EA and the suppression of the SWNT interband transitions due to 
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 13

Li to SWNT charge transfer. 22 The absence of the peak shift may suggest that the reduction of 

confined sulfur (hypothetically via out�of�plane π�electronic interactions) does not alter the 

interaction with the wall. These new peaks completely disappear at the end of delithiation, while 

the Raman peaks in the RBM region at 188 cm�1 and 231 cm�1 are partially restored. Although 

the exact explanation of the Raman peak transformation in S@HiPco is unclear, the different 

operando Raman spectra can be unambiguously attributed to the narrower diameter of the 

HiPco�SWNTs than EA�SWNTs.  

�������The composition of the sulfur species in S@EA and S@HiPco calculated from XPS S 
2p spectra at different lithiation�delithiation states in TEGDME and 15�crown�5 electrolytes, 
respectively. 

  TEGDME 15-Crown-5 

  Lithiation Delithiation Lithiation Delithiation 

Potential (vs. Li
+
/Li) 2.8 V 2.0 V 1.2 V 2.3 V 2.8 V 2.8 V 1.5 V 1.2 V 2.3 V 2.8 V 

S@EA 

S % 100 60.8 40.5 52.4 64.1 100 76.4 43.0 59.8 81.7 

S
2- 

% 0 39.2 59.5 47.6 35.9 0 23.6 57.0 40.2 18.3 

Potential (vs. Li
+
/Li) 2.8 V 1.5 V 1.2 V 2.3 V 2.8 V 2.8 V 1.5 V 1.2 V 2.3 V 2.8 V 

S@HiPco 
S % 100 72.4 60.6 63.1 74.7 100 72.7 55.9 71.2 79.9 

S
2- 

% 0 27.6 39.4 36.9 25.3 0 27.3 44.1 28.8 20.1 

 

The S@EA and S@HiPco at different states of lithiation�delithiation in TEGDME and 15�

crown�5 electrolytes were further characterized with XPS. As shown in �	���� �, the S 2p 

spectra of pristine S@EA and S@HiPco both display S 2p3/2 and S 2p1/2 peaks of elemental 

sulfur at 164 eV and 165.2 eV. A small amount of the oxidized sulfur assigned to the peaks in 

the range of 166 eV to 171 eV in the pristine samples could be introduced during the sulfur 

infusion processes. The peaks of oxidized sulfur became more pronounced in the lithiated and 

delithiated samples due to the LiTFSI residue and possible [TFSI]� anion decomposition.28�30 The 
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 14

XPS spectra indicate that all the lithiated and delithiated S@SWNTs contain two sulfur species: 

elemental sulfur and lithium sulfide. These two species have different ratios at different 

lithiation�delithiation states as listed in ������. It is worth noting that due to the spontaneous 

disproportionation of Li polysulfides to elemental sulfur and Li2S upon solvent removal,31,32 the 

ratio of S/S2� obtained from the ex situ XPS of S@EA only reflects the extent of lithiation�

delithiation, not necessarily the actual products in the electrochemical environmental. On the 

other hand, the sulfur and Li2S species detected in S@HiPco are expectedly the actual products 

based on the proposed reactions in S@HiPco via out�of�plane π�electronic interactions without 

polysulfides.  
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�	���� �� XPS S 2p spectra of (a, b) S@EA and (c, d) S@HiPco at different lithiation�
delithiation states in TEGDME and 15�crown�5 electrolytes, respectively. The electrochemical 
lithiation�delithiation is performed with a current density of 20 mA g�1 with respect to the mass 
of S@EA and S@HiPco. Deconvolution color code: elemental sulfur peak: orange; oxidized 
sulfur species peaks: purple and green; Li2S peak: blue. 
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The most salient results from the S/S2� ratio in the XPS is that the capacity of S@EA and 

S@HiPco shown in �	����� cannot be solely attributed to the lithiation�delithiation of sulfur. 

Based on the sulfur conversion in S@HiPco, the capacity contributed from sulfur lithiation is 82 

mAh g�1 in TEGDME and 78 mAh g�1 in 15�crown�5, suggesting that about 50% of the 

demonstrated capacity originates from a different mechanism (�	������). The extra capacity in 

S@EA is also significant: lithiation of sulfur only contributes 45 mAh g�1 to the total capacity of 

190 mAh g�1 in TEGDME and 44 mAh g�1 to the total capacity of 152 mAh g�1 in 15�crown�5 

(�	���� ��). The extra capacity does not originate from the lithiation�delithiation of neat EA�

SWNTs and HiPco�SWNTs, which displays negligible capacity (Figure S7 in the Supporting 

Information). The ex situ XPS C 1s spectra of the lithiated and delithiated S@EA and S@HiPco 

sheds some light on the origin of the extra capacity: As shown in �	�������and��, the spectra 

of the pristine S@EA and S@HiPco both indicate the existence of a C�C bond at 284.5 eV (blue 

curve), a C�O bond at 285.5 eV (green curve), and an isolated carbonyl C=O bond at 287 eV 

(purple curve). The latter two may arise from the impurity of the pristine SWNTs or impurities 

introduced during the sulfur encapsulation. During lithiation, both C�O and C=O peaks become 

much more pronounced by using the C�C peak at 284.5 eV as a reference. In addition, a strong 

peak representing carboxylic acid ester group (O=C�O) appears at 289.5 eV (orange) in 

lithiation. This observation indicates the formation of possible species including C�O�Li and 

O=C�O�Li due to the TEGDME and 15�crown�5 decomposition via electrochemical reduction in 

the present of Li+ ions.33,34 These observations are consistent with the indication from the 

operando Raman results displayed in �	�����
. Both S@EA and S@HiPco in either electrolyte 

clearly demonstrate decreasing the G�band peak (1580 cm�1) and increasing the D�band peak 

(1350 cm�1) during lithiation and the reverse trend during delithiation. Such reactions apparently 
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 17

do not occur under the same condition with pure EA�SWNTs and HiPco�SWNTs. Therefore, 

S@EA and S@HiPco nanostructures may possess catalytic activity to facilitate the formation of 

these species. After delithiation, the intensity of the peaks at 289.5 eV (O=C�O�Li), 287 eV 

(C=O), and 285.5 (C�O�Li) all significantly decrease in comparison to the C�C peak at 284.5 eV, 

which suggests the decomposition of the SEI�like layer under an electrochemical oxidation 

environment. The reversibility of these SEI�like species was still observed after 10 cycles in the 

XPS C 1s spectra (Figure S8 in Supporting Information).  
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�	������ XPS C 1s spectra of (a) pristine S@EA, lithiated and delithiated S@EA in TEGDME 
and 15�crown�5 electrolytes and (b) pristine S@HiPco, lithiated and delithiated S@HiPco in 
TEGDME and 15�crown�5 electrolytes; (c) operando Raman spectra in the D�band and G�band 
region of S@EA and S@HiPco during lithiation�delithiation (lithiation: 2.8 V to 1 V, 
delithiation: 1 V to 3 V). XPS deconvolution color code: C�C peak: blue; C�O peak: green; C=O 
peak: purple; O=C�O peak: orange. 
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The reversible formation and decomposition of the SEI�like layer, facilitated by the hypothesized 

catalytic activity of S@EA and S@HiPco, clearly contribute to the extra capacity during 

lithiation�delithiation. Indeed, our large�scale DFT calculations on these nanostructures 

corroborate the proposed catalytic activity by showing that a significant dynamic electron 

transfer occurs from the encapsulated sulfur to the surrounding SWNT/electrolyte. �	���� � 

depicts the electron density difference (Pρ = ρS@SWNT –  ρSWNT)35 for a (7,7) S@SWNT 

computed with dispersion�corrected DFT.36 As depicted below, Pρ gives a dynamic visualization 

of electronic rearrangement when sulfur is encapsulated within the SWNT: red regions denote an 

accumulation of electron density (primarily around the SWNT) and blue regions represent a 

depletion of density (from the sulfur). The amount of charge transfer is quite sizeable with 0.37 

e� being transferred from the sulfur to the SWNT within the unit cell depicted in �	�����. Most 

notably, our DFT calculations show similar trends with other SWNT chiralities (such as the 

(10,0) semiconducting SWNT) as well as S@SWNT geometries in the presence of a surrounding 

electrolyte (Figure S9 in the Supporting Information). 



�	���� �� Electron density difference maps (Pρ = ρS@SWNT –  ρSWNT) for a (7,7) S@SWNT 
viewed along the (a) axis and (b) side length as computed with dispersion�corrected DFT. Red 
regions denote an accumulation of electron density (compared to the bare SWNT), and blue 
regions represent a depletion of electron density. 

a b 
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���
���	��� 

In summary, we have investigated the chemical properties of sulfur confined in EA�SWNTs and 

HiPco�SWNTs, and we demonstrate an unusual electrochemical reactivity of sulfur upon 

encapsulation in narrow�diameter (sub�nano) SWNTs with lithium. Our findings are 

corroborated and supported with various spectroscopic analyses including operando Raman, X�

ray photoelectron spectroscopy, and first�principles calculations from density functional theory. 

Collectively, these results show that electrochemical properties can be dramatically modulated 

by varying the diameter of the SWNTs and the dimension of the solvated Li+ ions. Specifically, 

the relatively large diameter of EA�SWNTs accommodates solvated Li+ ions so that solution�

phase Li�S reactions can occur within the interior of EA�SWNTs. In contrast, the narrower 

diameter of HiPco�SWNTs prevents solvated Li+ ions from entering the interior. As a result, the 

Li�S reaction in HiPco�SWNTs is markedly different and proposed to occur via a through�wall π�

electronic interaction.  Our combined spectroscopic and DFT analyses also suggest a formation�

decomposition mechanism of SEI�like species facilitated by the catalytic activity of the 

S@SWNTs, which is induced by the sulfur�SWNT interactions in this nano�chemical 

environment. This finding provides an exciting opportunity that can be further leveraged to probe 

fundamental chemical reaction mechanisms of S@SWNTs as energy storage or electrocatalytic 

materials. 

 

�������� !"��	#�����

$��"����	�� �% &'&()��* SWNTs (EA�SWNTs obtained from Carbon Solutions, Inc. and 

HiPco�SWNTs purchased from NanoIntegris) and sulfur (99.99%, Sigma�Aldrich) were sealed 
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in a vacuum hourglass�shaped quartz tube as shown in �	���� &�+ in the Supporting 

Information. SWNTs were loaded in the top compartment, and sulfur was loaded in the bottom 

one. The sealed tube was placed vertically in a muffle furnace for heat treatment at 600 °C for 48 

hours. Under the experimental conditions, the sulfur in the sealed tube reached vapor�liquid 

phase equilibrium. Therefore, the SWNTs were exposed to saturated sulfur vapor without contact 

with liquid sulfur. After the heat treatment, the obtained materials were further heated at 350 °C 

in flowing argon for 10 hours to completely remove the sulfur deposited on the exterior of 

SWNTs. 

�	
���
�"	
�����
���	,��	��*The samples were dispersed in DMF by ultrasonication with a 5 

s pulse on and a 10 s pulse off at room temperature for 2 h, and then dropped onto TEM grids. 

HRTEM imaging was performed on an aberration�corrected and monochromated G2 cubed Titan 

60�300 electron microscope under 60 kV. Scanning transmission electron microscopy (STEM) 

was performed with an aberration�corrected Nion UltraSTEM 100 at Oak Ridge National 

Laboratory, which is equipped with a second generation 5th order probe aberration corrector, a 

cold field emission electron gun, and a Gatan Enfina Energy Loss Spectrometer.  Imaging was 

performed at 60 keV, below the knock�on threshold for carbon atoms, to minimize damage on 

SWNTs using a semi�convergence angle of 30 mrad and an inner semi�angle of 54 mrad for the 

annular dark field detector.  EEL spectroscopy and spectrum imaging was performed 

simultaneously with imaging and with a dispersion of 0.1eV/channel. 

 ��
���
��#	
�������
���	,��	��* The electrodes were composed of 90 wt. % of S@SWNTs 

(or pure SWNTs) and 10 wt. % of polyvinylpyrrolidone (Sigma�Aldrich) binder. The areal 

loading of S@SWNTs or pure SWNTs is approximately 2 mg cm�2. Aluminum foil (99.45%, 

Alfa Aesar) was used as the current collector. Two�electrode coin cells with lithium foil (Alfa 
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Aesar) as the counter electrode were assembled in an argon�filled glovebox for the 

electrochemical analysis. Electrolytes consisting of 1 M LiTFSI (Sigma�Aldrich) in TEGDME 

(Sigma�Aldrich) and 15�crown�5 (Sigma�Aldrich) were used with a porous membrane separator 

(Celgard 2500). The cells were charged and discharged with different cycling currents between 1 

and 3 V (vs. Li+/Li) using an Arbin battery test station. CV scans were performed on a Gamry 

Interface 1000 analyzer.  

�������� ��#�� &"�
����
�"-* 2 mg S@SWNTs were dispersed in 100 mL of 

dimethylformamide by sonication for 5 h. The dispersion was centrifuged at 8000 rpm (11,000 g) 

for 15 min. The obtained supernatant was then filtered through a porous membrane (Celgard 

2500), which was also used as the separator in the cells for the operando Raman study. The 

S@SWNTs film coated membrane (�	����&�� in the Supporting Information) was used as the 

positive electrode in the modified cell for Operando Raman measurement. A coin cell case with 

a Kapton window on the positive side was purchased from MTI Corporation. The Kapton film 

was cut off, and a thin transparent glass slide was attached on the cell case using a Frame�Seal 

tape (Bio�rad). The cells were assembled in an argon�filled glovebox with the S@SWNTs film 

facing the glass window (�	����&�� in the Supporting Information). The cells were mounted 

onto a Raman microscope (Nicolet Almega XR with 532 nm wavelength laser source) with the 

window facing the laser source. The cells were lithiated and delithiated at a current density of 20 

mA g�1 with a Gamry Reference 3000 analyzer, while the Raman spectra was collected every 10 

minutes.  

./��-$�������
����&"�
����
�"-* The cells were discharged or charged to a certain potential 

and disassembled in an argon�filled glovebox. The S@SWNTs electrodes were washed with 

dimethoxyethane for 3 times to remove the electrolyte residual and dried at room temperature in 
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the glovebox for 48 hours. The chemical state of sulfur and carbon in the S@SWNTs was 

characterized with XPS (AXIS Supra) at the Irvine Materials Research Institute at University of 

California � Irvine. An inert gas�filled glove box is attached to the Supra’s UHV preparation 

chamber so the samples were not exposed to the ambient environment.  

�����#"����	�����������* Geometry optimizations of a (7,7) SWCNT filled with sulfur 

were carried out with the VASP code using a plane�wave basis and periodic boundary conditions, 

where the projector augmented wave (PAW) method was used to numerically represent the 

electron wave functions. We used the nonlocal optB86b�vdW exchange�correlation functional 

which explicitly calculates van der Waals effects (via nonlocal double real�space integrals of the 

electron density) to account for the dispersion interactions between the SWNT and the sulfur 

chain. A 4x1x1 mesh of k points was implemented for the Brillouin zone integration, and a 402 

eV energy cutoff was used for the electronic wavefunctions. A vacuum region of ~30 Å was 

used in the y and z�direction, and periodic boundary conditions were applied in all three 

dimensions. 
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The Supporting Information is available free of charge on the ACS Publications website at DOI: 

xxx 

Experimental details, sulfur content analysis via colorimetric titration, EDX and EELS of S@EA 

and S@HiPco SWNTs, additional HRTEM images of S@HiPco SWNTs, DFT optimizations 

and geometric analyses of S@SWNTs, CV of simple mixture of sulfur with EA�SWNTs and 
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HiPco�SWNTs in TEGDME and 15�crown�5 electrolytes, full operando Raman spectra, 

galvanostatic lithiation�delithiation of pure EA�SWNTs and HiPco�SWNTs, XPS C 1s spectra 

after 10 lithiation�delithiation cycles, DFT S@SWNT geometries in the presence of a 

surrounding electrolyte, digital images of the vacuum vessel for sulfur infusion, S@SWNT 

electrode, and modified cell for operando Raman experiments. 
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