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Confined quantum Zeno dynamics of a watched
atomic arrow
Adrien Signoles†, Adrien Facon†, Dorian Grosso, Igor Dotsenko, Serge Haroche*,
Jean-Michel Raimond, Michel Brune and Sébastien Gleyzes

In a quantum world, a watched arrow never moves. This is the
quantum Zeno effect1. Repeatedly asking a quantum system
‘are you still in your initial state?’ blocks its coherent evolution
through measurement back-action. Quantum Zeno dynamics
(QZD; refs 2,3) gives more freedom to the system. Instead of
pinning it to a single state, it sets a border in its evolution
space. Repeatedly asking the system ‘are you beyond the
border?’ makes this limit impenetrable. As the border can be
designed by choosing the measured observable, QZD allows
one to dynamically tailor the system’s Hilbert space. Recent
proposals, particularly in the cavity quantum electrodynamics
context4,5, highlight the interest of QZD for quantum state
engineering tasks6–11, which are the key to quantum-enabled
technologies and quantum information processing. We report
the observation of QZD in the 51-dimensional Hilbert space
of a large angular momentum J = 25. Continuous selective
interrogation limits the evolution of this angular momentum
to an adjustable multi-dimensional subspace. This confined
dynamics leads to the production of non-classical ‘Schrödinger
cat’ states12,13, quantum superpositions of angular momenta
pointing in different directions. These states are promising
for sensitive metrology of electric and magnetic fields. This
QZD approach could also be generalized to cavity and circuit
quantum electrodynamics experiments4,5,13 by replacing the
angular momentum with a photonic harmonic oscillator.

Quantum Zeno dynamics modifies the classical motion of
a system by introducing a impenetrable barrier in the Hilbert
space4–11. This barrier can be equivalently induced by repeating a
projective quantum measurement, performing a selective pulsed
unitary acting on the states at the border (‘Bang Bang’ control)
or even by applying a strong continuous coupling to these states3,
as verified in a recent experiment14. In that experiment, however,
the evolution of the system was restricted to a two-dimensional
subspace. The dynamics was simply that of a spin 1/2, and did not
exhibit the most striking features of QZD (ref. 4).

In this Letter we implement QZD in a large atomic angular
momentum J =25 (‘spin’ or top), represented as an arrow pointing
on a generalized Bloch sphere. In the 51-dimensional Hilbert
space, we isolate tailorable multi-dimensional manifolds. We show
how QZD induces a very non-classical dynamics inside the
Zeno subspace, leading to the generation of Schrödinger cat spin
states12, in which the arrow points at the same time in two
different directions. As spin-squeezed states15, which are the focus
of intense attention, these cat states lead to quantum-enabled
metrological applications13.

The angular momentum projection on the polar axis of the
generalized Bloch sphere is quantized, taking the values J −k, with

k= 0 . . . 2J (the corresponding eigenstates being |J , J − k〉). The
dynamical evolution from the initial state |J , J 〉 (north pole of the
Bloch sphere) is induced by a resonant field driving transitions
between these eigenstates. In classical terms, it corresponds to a
rotation of the arrow along a meridian from the north to the south
pole and back. In quantum terms, at each stage of the rotation, the
system is in a spin coherent state16, superposition of |J , J −k〉s, the
average value of J −k coinciding with the projection of the arrow on
the polar axis.

Repeatedly measuring the value of this projection would freeze
the rotation, merely realizing the quantum Zeno effect. Here,
instead, we implement theQZDby applying continuously a selective
unitary evolution addressing only one of the |J , J − k〉 states. This
state corresponds to a well-defined ‘limiting latitude’ on the Bloch
sphere. The spin is forbidden to cross the limiting latitude and its
motion remains confined on the north polar cap5.

This confined motion is non-trivial. As the rotating spin reaches
the limiting latitude crossing point, it vanishes suddenly and
reappears at a point on the limiting latitude with opposite longitude
(inversion of the spin’s azimuthal phase). The rotation then resumes
towards the north pole. The complete, smooth rotation of the
classical dynamics is interrupted by sudden phase inversions and
replaced by a confined motion on the polar cap bounded by the
limiting latitude. Caught at the phase inversion time, the spin is
transiently in a quantum superposition of two spin coherent states
pointing along opposite longitudes—a cat state.

This confined evolution is similar to that predicted for QZD
in the cavity or circuit quantum electrodynamics context4,5. The
dynamics of an angularmomentum near the north pole of the Bloch
sphere is analogous to that of a one-dimensional field oscillator, with
k playing the role of the photon number12. In this analogy, the polar
cap of the Bloch sphere becomes the phase plane spanned by the
field quadratures. Our experiment can thus be viewed as a quantum
simulation of the cavity quantum electrodynamics version of QZD.

The spin J = 25 is implemented in a subspace of the Stark
manifold of a Rydberg atom. The interest of coherent manipulations
of Rydberg manifolds has already been demonstrated in pioneering
experiments on coherent wave packet dynamics17–19. We take
advantage of the versatility of this system to demonstrate here a
new quantum feature. Figure 1a sketches parts of three adjacent
Rydberg manifolds20 (principal quantum numbers nf =52, ne =51
and ng = 50) in a static electric field F, defining the quantization
axis Oz . The eigenstates are sorted in columns according to their
magnetic quantum numberm (selected to be positive). The circular
state21,22 in the ne manifold (thickest line) has the maximum allowed
m=ne −1 value.Aσ+-polarized radiofrequency (RF) field couples it
to a ladder of nearly equidistant levels (thick lines). The transitions
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Figure 1 | Rydberg energy levels. a, Stark manifolds with principal quantum
numbers ng=50, ne=51 and nf =52 (not to scale). In each manifold, the
levels, sorted by their magnetic quantum numberm, form a triangular
pattern. The thick lines represent the spin states ladder coupled to the
circular state |ne,0〉 (thickest line) by the σ+ RF field. The green and red
arrows show the transitions resonant with the probe pulse used for the spin
state population measurement (here for kp=3, see Methods) and with the
Zeno microwave field (MW) for kz=5 respectively. b, Spin states without
(black lines) and with (coloured lines) the Zeno MW. The Zeno field splits
the |ne,kz〉 state into two dressed states, |+〉 (green line) and |−〉 (blue
line), separating the Hilbert space into two subspaces HN and HS

(spanned by green and red states respectively). The RF field induces
transitions within these subspaces (tilted arrows) but is unable to connect
them through the gap Ωmw opened by the Zeno MW. The Rabi splitting and
the light shifts are exaggerated for clarity.

between adjacent ladder states are at the Stark angular frequency
ωa =(3/2)neea0F/~ within small second-order corrections in F (a0:
Bohr radius, e: charge quantum). Because the atom is prepared
initially in the circular state, the other levels in the manifold are not
populated by the RF-induced dynamics and are ignored. The atom
evolves within a ladder of 51 levels, |ne,k=0〉 . . . |ne,k=50〉, where
|ne,k=0〉 is the circular state.

The coherent evolution induced by the RF field is ruled by
the Hamiltonian23:

V̂ = ~Ωrf

2

∑

k

√

(k+1)(ne −k−1)|ne,k+1〉〈ne,k|+h.c.

This Hamiltonian describes the rotation of a J = 25 angular
momentum at a Rabi frequency Ωrf (ref. 16), with the
correspondence |ne,k〉→|J , J −k〉.

The atomic state, driven by the RF, moves down and up the
ladder, whereas the equivalent angular momentum rotates around
a meridian of its Bloch sphere. We observe this rotation by applying
the resonant RF for a time t1 and then measuring the populations
of |ne, k〉 as a function of t1 by field ionization (Methods).
Figure 2a shows P(k, t1) (k=0 . . .5) versus t1, for F =2.35 V cm−1,
corresponding to ωa/2π =230.15MHz and Ωrf/2π =152±4 kHz.
The conspicuous cascade down the state ladder reveals the spin
rotation. The insets show snapshots of the population distribution in
the ladder levels. Data are in excellent agreementwith the theoretical
expectations for a rotating spin coherent state24.

To induce the QZD, we continuously interrogate the atom
by selectively addressing one of the spin states with a ‘Zeno’
continuous wave microwave field (MW) resonant on the transition
|ne,kz〉→|ng ,kz〉 (red arrow on Fig. 1a). For levels |ne,k 6=kz〉, this
MW is non-resonant and produces only small light shifts. For k=kz ,
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Figure 2 | Evolution of the spin state populations. a, P(k, t1) for k≤5 in a
free RF-induced rotation (no Zeno MW applied). The points are
experimental with error bars (standard deviation) reflecting the statistical
nature of the detection process. The solid lines correspond to the
theoretical expectation for a spin coherent state rotating at the fitted
frequency Ωrf. The insets define the colour code for the different k values
and present the experimental histograms of P(k, t1) for three t1 values
(arrows in the main frame), together with the expected spin coherent state
distribution (solid lines with yellow dots). b, P(k, t1) for k≤5 in a QZD with
kz=5. The top frame gives the total population Ptot of HN . The lines result
from the complete numerical simulation of the experiment (Methods). The
insets give the observed P(k, t1) distribution at four t1 values (arrows in the
main frame) together with the numerical predictions (solid lines with yellow
dots). Each point corresponds to ∼3,000 repetitions of the experiment.

the Zeno MW admixes |ng , kz〉 with |ne, kz〉 replaced by a pair of
dressed states, |±〉, separated by Ωmw (dynamical Stark splitting).

The resulting level ladder is sketched in Fig. 1b. The σ+
transitions within the subspace {|ne, 0〉, |ne, 1〉, . . . |ne, kz − 1〉, |+〉}
(arrows in Fig. 1b) are nearly degenerate at the frequency ωa. The
Zeno MW dressing opens, between |+〉 and |−〉, a gap wider than
the coupling matrix element∼√

neΩrf of V̂ between the spin states.
It makes it nearly impossible for the RF drive to induce, in an
evolution from |ne, 0〉, transitions towards states below |+〉. The
population of |−〉 is negligible and this state can be disregarded in
the discussion. Moreover, after an appropriate adiabatic switching-
off of the Zeno MW (Supplementary Information), |+〉 is mapped
onto |ne,kz〉 (|−〉, being mapped onto |ng ,kz〉). The QZD thus splits
the angularmomentumHilbert space intoHN , made up of the kz +1
levels with k≤kz close to the north pole of the Bloch sphere, and the
complementary southern subspaceHS (k>kz ).

After a RF-induced QZD lasting a time t1, we probe the level
populations in HN . We adiabatically switch off the Zeno MW and
measure P(k, t1). Figure 2b presents the results of this procedure for
kz =5 and Ωmw/2π =3.4MHz. The state distribution now bounces
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Figure 3 | Evolution of the Q-function under quantum Zeno dynamics. a, Measured Q(θ ,φ) functions for kz=4 on the Bloch sphere, represented in a polar
projection. The black thin lines indicate three parallels, separated by 30 degrees, and eight meridians. The data are linearly interpolated from 96
measurements points at different (θ ,φ) values spanning the north polar cap. Left frame: initial |ne,k=0〉 state (no RF rotation). The other frames
correspond to increasing times t1 from left to right. The motion is confined by Zeno dynamics inside the limiting latitude (dashed red circle). The slight
anticlockwise rotation of the state is due to the differential light shifts induced by the Zeno MW. b, Corresponding numerical predictions.

off a ‘wall’ at k= kz + 1 and nearly returns into the initial state
after 1.6 µs. This dynamics is drastically different from the runaway
process observed without Zeno MW (Fig. 2a). It is in excellent
agreement with a complete numerical simulation of the experiment
based on the independently measured experimental parameters
(Supplementary Information).

The top frame in Fig. 2b shows the total population detected in
HN . It drops by ∼ 25% at the bouncing time. This loss is mainly
due to a residual transfer into HS through the Zeno barrier. The
insets show the histograms of P(k, t1) at four different times. As t1
increases, the P(k, t1) values become radically different from those
obtained without QZD (Fig. 1a). We can clearly see that the level
population at the bouncing time is no longer that of a coherent spin
state. Not only does QZD restrict the evolution to a subspace of five
states instead of 51, but the dynamics itself exhibits striking non-
classical features.

We get a clearer picture of this dynamics by a directmeasurement
of the spin’s Q-function25, transposing to spin systems the quantum
optics Husimi distribution. It is defined on the Bloch sphere as
Q(θ ,φ)=(2J +1)/(4π) 〈ne, 0|R†(θ ,φ)ρR(θ ,φ)|ne, 0〉, where ρ is the
angular momentum density operator and R the rotation along a
meridian of the Bloch sphere bringing the north pole to the direction
defined by the polar angles θ and φ.

Determining Q thus amounts to measuring the population in
|ne, 0〉 after rotating the state by means of a resonant RF pulse
whose duration t2 controls θ and whose adjustable phase controls
φ. We perform this rotation with a RF power much larger than
that used for the QZD (coupling

√
n�′

rf = 2π × 6.3MHz> Ωmw).
It couples HN and HS even in the presence of the Zeno MW
(Supplementary Information).

Figure 3a shows six snapshots of Q for kz = 4 and
Ωmw/2π =3.08±0.11MHz. The initial |ne, 0〉 state has a Gaussian
Q-function centred at the north pole, which first moves, upwards
in Fig. 3, towards the limiting latitude (dashed red line). It then
splits into two components with opposite azimuthal phases. The
upper component rapidly decreases, whereas the lower component
grows. At t1 = 0.76 µs the two peaks are balanced (fourth frame).
After the phase inversion, the Q-function is mainly located in the
lower part of the limiting latitude and resumes its motion towards
the north pole, reached again at t1 =1.46µs (last frame). Figure 3b
presents the results of the full numerical simulation. The excellent
agreement between simulation and experiment confirms our
understanding of the system Zeno dynamics and of the spin state
measurement process. The observed evolution, especially the phase

inversion, is very similar to the prediction of ref. 4 in the cavity
quantum electrodynamics context. The fact that here the atom
can populate the barrier state |+〉 does not qualitatively change
the dynamics.

At t1 =0.76µs, we expect the system to be in a superposition of
two spin coherent states with opposite azimuthal phases. However,
the coherence of this superposition is not conspicuous in the
Q-function. To get this information, we reconstruct the full angular
momentum density matrix, ρ, at this time, through a maximum
likelihood method26. It is based on the measurement of the
population of several levels after adjustable RF-induced rotations
and adiabatic switching-off of the Zeno MW (Methods).

Figure 4a shows, on the Bloch sphere, the corresponding
angular momentum Wigner function27 W (θ , φ) at t1 = 0.76 µs.
As in the quantum optics context, negative values for this quasi-
probability distribution are an unambiguous indication of the
state non-classicality. We observe two positive maxima near the
limiting latitude. They correspond to the two spin coherent state-
like components pointing towards opposite azimuthal phases at
the phase inversion time. In between, the interference fringes
with their negativite values give vivid evidence that we prepare
a genuine quantum superposition of two distinct mesoscopic
spin states—a cat state. These interference patterns cannot be
observed when the Zeno subspace is only of dimension two
(ref. 14). Figure 4b presents the simulated Wigner function, taking
into account the exact Hamiltonian of the system and all the
known imperfections. Experiment and simulation are in excellent
agreement (mutual fidelity 0.93). The measured state has a purity
Trρ2 = 0.75 (simulation: 0.91). It is limited by inhomogeneities of
the static electric field.

This experiment demonstrates the implementation of QZD in
a Hilbert space large enough to allow us to generate mesoscopic
superposition states. This is a significant step towards quantum
control through Hilbert space engineering. It has been shown that
the quantum control of the massively multi-level Rydberg states
structure leads to important applications in state tailoring17,19 and
quantum information18. The QZD opens an easily tailorable route
towards the generation of such states. Moreover, the concepts
and techniques used here are of general interest6–11 and could be
applied, for instance, to superconducting qubits in circuit quantum
electrodynamics (ref. 13), with direct applications to quantum
information processing28.

Improving the homogeneity of the electric field would allow
us to observe QZD on a longer timescale. We could perform
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Figure 4 | Wigner function of the spin cat state. a, Experimental Wigner
function,W(θ ,φ), obtained from the reconstructed density matrix ρ of the
spin after QZD at the phase inversion time t1=0.76 µs (corresponding to
the fourth frame in Fig. 3). The interference pattern between the two
classical components reveals the non-classical coherence of this state.
b, Result of the numerical simulation of the experiment. The fidelity of the
calculated density matrix ρc with ρ is Tr2(

√√
ρρc

√
ρ)=0.93.

the experiment for a smaller value Ωrf, which would reduce the
leakage through the Zeno barrier, improving the fidelity of the cat
state generation, and extend these experiments to larger kz values
to prepare larger Schrödinger cat states. This opens the way to
metrology beyond the standard quantum limit. The fast oscillations
of theWigner function near the north pole makes the measurement
of its value a signal which is very sensitive to small rotations13. Such
states could therefore be used as a very sensitive probe of small static
magnetic or electric fields.

We also plan to investigate engineered decoherence29, through
the application of a controlled electric field noise. The rich
level structure of the Rydberg manifolds opens the way to the
implementation of decoherence-free qubits through level-dressing
schemes30. Furthermore, the atomic state could bemapped onto that
of a high-Q cavity by tuning selected transitions in resonance by
means of the Stark effect. The realization of a few-qubits processor
with a single multi-level atom in a cavity is within reach.

Methods
The atoms are produced by excitation of a thermal rubidium beam. Two
electrodes A and B facing each other (diameter 60mm) produce the directing
electric field F along Oz . The gap between A and B is surrounded by four
independent electrodes, on which we apply RF signals to produce σ+ fields with
tunable phase and amplitude.

The experimental sequence duration is 35 µs. First, the atomic sample (1.5
atoms on the average) is prepared in the circular Rydberg state by pulsed laser
excitation followed by an RF-induced adiabatic rapid passage through the spin
ladder. The whole process is completed in 5.6 µs. Doppler-selective laser
excitation addresses atoms with a velocity v=254±4m s−1.

The residual static field inhomogeneities and the atomic motion limit the
useful observation time. Therefore the QZD itself lasts at most 3 µs, with a first
RF pulse of duration t1, eventually followed by a second RF rotation for the state
reconstruction experiments. The Zeno MW is then adiabatically switched off,
and the atoms fly towards the field-ionization detector D outside the
electrode structure.

Our detector resolves states in adjacent Rydberg manifolds, but does not
resolve directly the |ne,k〉 states. Hence the population P(kp, t1) of |ne,kp〉 is
measured by applying, before field ionization, a resonant π-microwave (MW)
pulse tuned to the |ne,kp〉→|nf ,kp〉 transition (green arrow on Fig. 1a). This
pulse does not address the levels |ne,k 6=kp〉, owing to the difference between the
linear Stark frequencies in adjacent manifolds. Field ionization selectively
measures the population of |nf ,kp〉, equal to P(kp, t1) within the π-pulse transfer
efficiency, ηkp ∼0.9 (Supplementary Information).

All parameters of the experiment are independently measured or extracted
from fits between the data and a numerical simulation of the experiment, taking
into account the complete level structure.

The Wigner function measurement is based on a complete reconstruction of
the atomic state ρt in the ng and ne manifolds. Measurements of the populations
of the |ng ,k〉 and |ne,k〉 (k<6) levels after a rotation of the spin states are used to
fit ρt using a maximum likelihood procedure. The final result is then projected
onto the spin state ladder. This approach leads to a direct calibration of the
experimental imperfections: approximately 9.3% of the population is spuriously
transferred in levels outside the union of HN and HS.
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