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We report the existence of confined massless fermion states in a graphene quantum well �QW� by means of

analytical and numerical calculations. These states show an unusual quasilinear dependence on the momentum

parallel to the QW: their number depends on the wave vector and is constrained by electron-hole conversion in

the barrier regions. An essential difference with nonrelativistic electron states is a mixing between free and

confined states at the edges of the free-particle continua, demonstrated by the direction-dependent resonant

transmission across a potential well.

DOI: 10.1103/PhysRevB.74.045424 PACS number�s�: 73.21.�b, 71.10.Pm, 81.05.Uw

Recent studies have demonstrated the production of

stable, ultrapure, two-dimensional �2D� carbon crystals, also

known as graphene.1–3 These 2D crystals possess unusual

properties, such as unconventional quantum Hall effect4–7

and a strong electric-field effect.8 A large part of these new

properties is a consequence of the linear �in wave vector�
energy spectrum near the Fermi energy and are expected to

lead to a new class of carbon- or graphene-based nanoelec-

tronic devices. Previous theoretical studies of relativistic fer-

mions interacting with strong fields have indicated that the

quantum behavior of the particles may differ considerably

from the nonrelativistic case.9 In this paper, we investigate

the nature of electron states in graphene QWs and their quan-

tized spectrum.

Graphene layers consist of a honeycomb lattice of

covalent-bond carbon atoms, which can be treated as two

interpenetrating triangular sublattices, labeled A and B, and

are often discussed in terms of unrolled, single-wall carbon

nanotubes. The low-energy band structure of graphene is

gapless and the corresponding electronic states are found

near two cones located at unequivalent corners of the Bril-

louin zone.10 The low-energy carrier dynamics is equivalent

to that of a 2D gas of massless charged fermions. Their be-

havior is governed by the 2D Dirac Hamiltonian,11,12

H = vF��� · p̂� , �1�

where the pseudospin matrix �� has components given by

Pauli’s matrices, p̂= �px , py� is the momentum operator, and

vF is the effective speed of light of the system, which in this

case corresponds to the Fermi velocity vF�1�106 m/s.

The Hamiltonian �1� acts on the states represented by the

two-component spinors �= ��A ,�B�T, where �A and �B rep-

resent the envelope functions associated with the probability

amplitudes at the respective sublattice sites of the honey-

comb graphene structure. The low-energy spectrum of free

carriers is E= ±�vF�kx
2+ky

2�1/2, with kx and ky the wave vector

along the x and y axes, in the vicinity of the cones at the

Brillouin zone; the � ��� sign refers to electron �hole�
bands. Equation �1� also implies that the carriers are chiral

particles, with the pseudospin aligned parallel �antiparallel�

to the direction of propagation of the electrons �holes�.
Representing the effect of an external electrostatic field by

an external potential U and including a diagonal effective

mass-like term mvF
2 leads to the Dirac equation

�vF��� · p̂� + mvF
2�z�� = �E − U�� . �2�

The term �mvF
2 creates a gap in the dispersion and may arise

from spin-orbit interaction or from the coupling between the

graphene layer and the substrate.13 For a circularly symmet-

ric potential with m=0, the solutions inside the potential well

match free-particle solutions outside, therefore ruling out

bound states.14 This is caused by the conservation of the

chirality in the interaction with the potential and the absence

of a gap in the spectrum and can be understood as a mani-

festation of a relativistic tunneling effect first discussed by

Klein15,16 for one-dimensional �1D� potentials, in which

Dirac fermions can propagate to hole states across a steep

potential barrier without any damping. For massless particles

this tunneling is expected to occur for any value of U0. How-

ever, as we show below, for a 1D potential a finite value of

the momentum parallel to the potential barrier can suppress

this tunneling and thus allow the confinement of electrons.

Very recent studies have demonstrated the confinement of

electrons in a graphene strip.17 In this case, in order to obtain

the confinement the authors assumed a position-dependent

effective mass for the particles. This assumption does not

permit the observation of Klein tunneling and of the

momentum-dependent reflection and transmission. There-

fore, the confinement in this case is qualitatively different

from ours specified below. In order to demonstrate the con-

finement in an electrostatic quantum well, we consider a zero

or constant effective mass throughout the system and first a

1D square-well potential U�x�=U0	��x�−L /2�, U0
0, cf.

Fig. 1, which allows an analytical solution for the eigenstates

and sheds light on some general features of the problem.

Later on, we consider a parabolic confinement.

With momentum conservation in the y direction, we look

for solutions in the form �C�x ,y�=�C�x�eikyy, C=A ,B, and

obtain

d�B/d� + 
�B = i�� − u − ���A, �3�
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d�A/d� − 
�A = i�� − u + ���B, �4�

where �=x /L, 
=kyL, �=EL /�vF, u=U�x�L /�vF, and

�=mvFL /� �for graphene �vF=0.539 eV nm�. Decoupling

Eqs. �3� and �4� gives for �A the result

d2�A

d�2
+

u�

�� − u + ��
d�A

d�

− �
2 + 

u�

�� − u + ��
− �� − u�2 + �2��A = 0, �5�

where u� is the derivative of the potential. For a square well,

these derivatives are Dirac � functions.

The character of the solutions depends on the value of 
,

which determines the sign of the last term on the left side of

Eq. �5�. The solutions are of three types: �i� traveling waves,

which describe free electrons, free holes, as well as mixed

states that occur due to the Klein tunneling of electrons to

holes outside the potential well; �ii� standing waves, which

for massless fermions arise only from finite values of 

above an energy-dependent cutoff and decay exponentially in

the barrier regions; and �iii� tunneling waves, which are os-

cillatory outside the well whereas inside it they are combi-

nations of exponentials with real exponents; these corre-

spond to holes that undergo ordinary tunneling across the

potential well. Type �ii� solutions occur in energy and wave-

vector ranges for which there are no hole states available at

the barrier regions. This suppresses the Klein tunneling,

since it depends on the electron-hole conversion at the inter-

face.

In this work, we focus on type �ii� solutions which

describe electron states confined across the well and

propagating along it. Their energies are in the region

delimited by the curves E= ���vFky�2+m2
vF

4�1/2+U0 and

E= ���vFky�2+m2
vF

4�1/2. At smaller wave vectors, tunneling

across the barriers introduces a cutoff in the spectrum for

E�−���vFky�2+m2
vF

4�1/2+U0. For confined states, the spinor

components decay exponentially in the region ��−1/2.

Then the A component can be written as �A���=A1e��. Sub-

stituting �A��� in Eq. �4� we find �B���= if−A1e��, with

f−= �
−�� / ��−u0+�� and the decay constant � given by

�= �
2− ��−u0�2+�2�1/2, where u0=U0L /�vF.

The solutions �A and �B for ����1/2 are of the type

�A��� = C2 cos���� + D2 sin���� , �6�

�B��� = �i/�� + ���	C2�
 cos���� + � sin�����

+ D2�
 sin���� − � cos�����
 , �7�

with �2=�2−
2−�2. For �
1/2, the solutions are similar

to those for ��−1/2 but with a negative exponent: �A���
=A3e−��, �B���= if+A3e−��, where f+= �
+�� / ��−u0+��. It

should be stressed that, in contrast with the nonrelativistic

case, the spinor components are neither even nor odd func-

tions, despite the symmetry of the potential. This symmetry,

however, is reflected in the probability density �=�†�
=�A���†�A���+�B���†�B���,14 which is an even function.

Moreover, for a step potential the derivatives of the spinor

components are not continuous because u� in Eq. �5� is a �
function. This can be demonstrated by considering the con-

tinuity of the y component of the probability current,

jy =v f�
†�y�, across the potential interface: using Eqs. �3�

and �4�, we obtain �u+=u0 / ��+���

�A←
� �1/2� = �1 − u+��A→

� �1/2� + u+
�A�1/2� , �8�

where the arrows indicate the limiting values from the left

and right of the interface. Notice in Eq. �8� that, even for

large values of �, a continuous derivative of �A may be

assumed only for u0
��.

Requiring the continuity of �A and �B at �=−1/2 and

1/2, we obtain the following transcendental equation for the

energy eigenvalues:

S−��,
, + 1�S+��,
, + 1� + S−��,
,− 1�S+��,
,− 1� = 0,

�9�

where S±�� ,
 ,s�=
− f±��+��−s���s and �=tan�� /2�. The

nonrelativistic limit can be obtained using �=�c+�, where �c

corresponds to the classical energy and considering the limit

���c, to give

f±�� + �� � �
 ± ���1 + �� , �10�

where ���
2+2��u0−�c��1/2, ���2��c−
2�1/2, and �

�u0 /2�. Equation �9� then becomes ��̄=� /2�

���1 + �� − � tan �̄����1 + �� + � cot �̄� − 2�
��2 = 0.

�11�

For ��1 and 
u0��, we recover the familiar transcenden-

tal equation for a nonrelativistic QW. In this limit, a nonzero

value for 
 is equivalent to a simple shift of the energy scale

��→�c−
2 /2� and the spectrum of the confined states be-

comes a set of nested parabolas. On the other hand, Eq. �11�
shows that, even for massive particles, the QW spectrum

does depend on the y component of the momentum, in con-

trast with the non-relativistic results. Thus, a significant

modification of the parabolic spectrum occurs as 
 increases.

Equation �9� was solved numerically. The results are

shown in Fig. 2 for U0=50 meV, L=200 nm, and �=0. The

dashed lines delimit the continuum region, which corre-

sponds to free electrons �E��ky +U0� with energies greater

than the barrier height, and free holes �E�−�vFky +U0� that

propagate in the system by means of the Klein tunneling

FIG. 1. �Color online� A square quantum well on a graphene

layer.
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mechanism. The cutoff at low wave vectors thus arises due to

the conversion of confined electrons to free holes. For large

values of ky, the dispersion branches are given approximately

by

E = �vF��n�/L�2 + ky
2�1/2, �12�

where n is an integer. For any given ky, the accuracy of this

approximation improves as L increases. The lower inset

shows �a� �A �solid curve� and i�B �dashed curve� for the

confined state, with ky =0.03 nm−1, shown by the solid tri-

angle and �b� the corresponding probability density in arbi-

trary units. The plot clearly indicates a discontinuity in the

derivative of the spinor component functions at the barrier

interfaces. The vertical dotted lines indicate the walls of the

well. The upper inset shows the effect of the mass, with

mvF
2 =10 meV. The dashed lines again represent the limits of

the free-particle continua. In this case, confined states are

allowed, for ky =0, in the range u0−����u0+�. This en-

ergy range broadens as ky increases and remains constant for

ky 
 �u0
2 /4−�2�1/2. At lower energies, there is again a cutoff,

due to the Klein tunneling at the barriers, which disappears

for 2�
u0.

Next, we consider a QW with a parabolic potential

profile U�x�=U0�2x /L�2 for �x��L /2 and U�x�=U0 for

�x�
L /2. Figure 3 shows the spectrum of confined states

obtained from a numerical solution of Eqs. �3� and �4� for

U0=50 meV and L=200 nm. The results are qualitatively

similar to those of the previous case, but now with the eigen-

values being approximately equally spaced for large wave

vectors.

An essential difference with nonrelativistic electrons, evi-

dent in all cases, is the appearance of new confined states at

the edges of the continua, where the quantized electron

branches intercept the free-particle regions. Thus, by an adia-

batic increase in ky one can transform a free-electron or a

free-hole state into a bound electron state. This occurs be-

cause the presence of the barriers allows a mixing of electron

and hole states with the same energy and y component of

momentum. As a result there is constructive interference be-

tween confined states and unbound electron or hole states

that are resonantly transmitted across the QW. We demon-

strate this by calculating the transmission coefficient of elec-

trons incident on a square well. Consider the propagating

solutions �A�x ,y�=�A�x�eikyy, with

�A�x� = �
ei�� + B1e−i��, � � − 1/2,

A2ei�� + B2e−i��, − 1/2 � � � 1/2,

A3ei��, � 
 1/2,

 �13�

where �= ���−u0�2−
2−�2�1/2; the solutions for �B are ob-

tained as in the previous calculation. Then, the transmission

coefficient is obtained as T= �A3�2, where

A3 =
�g+ − g−��f+ − f−�e−i�

�g+ − f+��g− − f−�e2i� − �g+ − f−��g− − f+�
, �14�

g±= �
± i�� / ��+�� and f±= �
± i�� / ��−u0+��. A �ky ,� /L�
contour plot of the transmission T is shown in Fig. 4 for

U0=50 meV and L=200 nm. As seen, T depends on the di-

FIG. 2. Spectrum of confined states in a graphene square QW vs

ky for U0=50 meV, L=200 nm, and mvF
2 =0. The lower inset shows

�a� �A and i�B for the state shown by the solid triangle and �b� the

related probability density. The upper inset shows the effect of a

nonzero mass, for mvF
2 =10 meV.

FIG. 3. As in Fig. 2 but for a parabolic QW.

FIG. 4. �Color online� Contour plot of the transmission coeffi-

cient of electrons incident on a graphene square well, with energy

E
U0, as a function of �, for U0=50 meV, L=200 nm, and

m=0.
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rection of propagation and displays an oscillatory behavior.

As �→0, T reaches a series of maxima for values of 
 that

coincide with the wavevectors for which mixing occurs, cf.

Fig. 2. Notice that for a significant range of incident angles T

is always equal to 1. This includes the case of nearly normal

incidence, ky �0, and is in sharp contrast with the nonrela-

tivistic case in which T exhibits periodic maxima equal to 1

as a function of kx. A similar direction-dependent transmis-

sion through graphene barriers was reported recently.18 A

direction-dependent transmission is also possible for nonrel-

ativistic electrons tunneling through magnetic barriers.19

The y components of the momentum for which mixing is

allowed correspond to confined states for which the

asymptotic limit �→0 applies. This yields the condition

sin���=0 or �=n�, where n is an integer. Using the defini-

tion of � and � gives


 = ��n2�2

2u0

−
u0

2
�2

− �2�1/2

. �15�

Since 
2
0, the values of n can be obtained from the con-

dition ±�n2�2 /2u0−u0 /2���, where the � ��� sign is as-

sociated with the upper �lower� continuum edges. From this

condition we find that for U0�2mvF
2 there is no mixing at

lower energies, although it persists at the upper continuum

edge and the minimum value of 
 for the mixing increases

with �.

A complementary way to see the direction dependence of

the transmission T is shown in Fig. 5�a�, with T plotted ver-

sus the angle of incidence 	=arctan�ky /��, for different elec-

tron energies as indicated. The QW parameters are L=200

and U0=50 meV. Notice that for 	�0, we have T�1 in

agreement with the ky �0 part of Fig. 4. In Fig. 5�b�, we plot

T versus the energy E for 	=� /3. As seen, T oscillates with

the energy due to the resonance effect caused by the confined

states �as in the Ramsauer-Townsend effect�. The energies

for the maxima of the transmission can be obtained from Eq.

�15� as �= �n��2 /2u0+u0 /2.

In summary, we showed that it is possible to confine

massless charge carriers by means of electrostatic potentials,

due to the wave-vector-dependent suppression of the

electron-hole conversion at the potential barriers. We thus

obtained the quantized spectrum of confined electron states

in graphene quantum wells as a function of the y component

of the wave vector. The results show a remarkable depen-

dence of the eigenvalues on the momentum with a cutoff at

low wave vectors. The relativistic correction to the classical

QW spectrum leads to a wave-vector dependence of the

number of confined states due to the electron-hole conver-

sion at the continuum edges. Accordingly, such QWs must be

treated as inherently 2D systems. This is further demon-

strated by the directional dependence of the transmission

shown in Figs. 4 and 5. Studying the resonance transmission

of electrons across a QW with energies above the height of

the confining walls, E
U0, can probe the discrete levels

which can be populated by tuning the Fermi energy of the

system with the electric-field effect.1
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