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ABSTRACT

Context. The mean free path and anisotropy of galactic cosmic rays is calculated in weak plasma wave turbulence that is isotropically
distributed with respect to the ordered uniform magnetic field.
Aims. The modifications on the value of the Hillas energy, above which cosmic rays are not confined to the Galaxy, are calculated.
The original determination of the Hillas limit has been based on the case of slab turbulence where only parallel propagating plasma
waves are allowed.
Methods. We use quasilinear cosmic ray Fokker-Planck coefficients to calculate the mean free path and the anisotropy in isotropic
plasma wave turbulence.
Results. In isotropic plasma wave turbulence the Hillas limit is enhanced by about four orders of magnitude to Ec = 2.03 ×
105An1/2

e (Lmax/10 pc) PeV resulting from the dominating influence of transit-time damping interactions of cosmic rays with obliquely
propagating magnetosonic waves.
Conclusions. Below the energy Ec the cosmic ray mean free path and the anisotropy exhibit the well known E1/3 energy dependence.
At energies higher than Ec both transport parameters steepen to a E3-dependence. This implies that cosmic rays even with ultrahigh
energies of several hundreds of EeV can be rapidly pitch-angle scattered by interstellar plasma turbulence, and are thus confined to
the Galaxy.
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1. Introduction

To unravel the nature of cosmic sources that accelerate cos-
mic rays to ultrahigh energies has been identified as one of
the eleven fundamental science questions for the new century
(Turner et al. 2002). Cosmic rays with energies up to at least
1014 eV are likely accelerated at the shock fronts associated with
supernova remnants (for review see Blandford & Eichler 1987).
Radio emissions and X-rays give conclusive evidence that elec-
trons are accelerated there to near-light speed (Koyama et al.
1995, 1997; Tanimori et al. 2001; Allen et al. 1997; Slane et al.
1999; Borkowski et al. 2001). The HESS observations of su-
pernova remnants up to ∼100 TeV provide direct evidence of
very high energy particle acceleration in the shocks (Aharonian
et al. 2004, 2005), while the leptonic or hadronic nature of
these gamma-rays is currently being disputed (e.g. Enomoto
et al. 2002; Reimer & Pohl 2002). The supernova remnant ori-
gin would be consistent with the observed GeV excess of diffuse
galactic gamma radiation from the inner Galaxy (Büsching et al.
2001), although the GeV excess has been found to be present
in all directions including galactic latitudes where no supernova
remnants are present and the outer Galaxy (Strong et al. 2004).
This indicates that the origin of the GeV excess is more complex

� Appendices are only available in electronic form at
http://www.aanda.org

and is not straightforwardly connected with supernova remnants
in the inner Galaxy.

More puzzling are the much higher energy cosmic rays with
energies as large as 1020.5 eV. It has been argued (Lucek & Bell
2000; Bell & Lucek 2001; Hillas 2006) that, due to the am-
plification of the magnetic field in the shock, the acceleration
of cosmic rays in young supernova remnants is possible up to
∼1018 eV. This implies that such particles may have a Galactic
origin. For ultrahigh-energy (1018−1020.5 eV) cosmic rays an ex-
tragalatic origin is favored by many researchers. Extragalactic
ultrahigh-energy cosmic rays (UHECRs) coming from cosmo-
logical distances ≥50 Mpc should interact with the universal
cosmic microwave background radiation (CMBR) and produce
pions. For an extragalactic origin of UHECRs the detection or
non-direction of the Greisen-Kuzmin-Zatsepin cutoff resulting
from the photopion attenuation in the CMBR will have far-
reaching consequences not only for astrophysics but also for fun-
damental particle physics as e.g. the breakup of Lorentz sym-
metry (Coleman & Glashow 1997) or the non-commutative
quantum picture of spacetime (Amelio-Camelia et al. 1998).

Radio synchrotron radiation intensity and polarisation sur-
veys of our own and external galaxies (for review see Sofue
et al. 1986) have revealed that the interstellar medium is trans-
versed by large-scale ordered magnetic fields with superposed
plasma wave turbulence. The Galactic magnetic field has a reg-
ular and a random component of about equal strength. The
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turbulent field has a broad spectrum of scales with the largest one
being 10−100 pc (e.g. Beck 2007, and references therein). This
could be compared with the gyroradius of ∼1 pc for 1015 eV par-
ticles, or ∼1 kpc for 1018 eV particles. The conventional size
of the Galactic halo derived from abundances of radioactive
isotopes in cosmic rays is about 4−6 kpc (Ptuskin & Soutoul
1998; Strong & Moskalenko 1998; Webber & Soutoul 1998).
The turbulent magnetic field may thus present a mechanism for
isotropization of Galactic cosmic rays up to 1017−1018 eV (see,
e.g., Candia et al. 2003).

According to the current understanding (reviewed in
Schlickeiser 2002) the relativistic charged particles (hereafter
referred to as cosmic ray particles) in these space plasmas
are confined and accelerated by resonant interactions in these
weakly random electromagnetic fields. In the presence of low-
frequency magnetohydrodynamic plasma waves, whose mag-
netic field component is much larger than their electric field
component, the particle’s phase space distribution function ad-
justs rapidly to a quasi-equilibrium through pitch-angle diffu-
sion, which is close to the isotropic distribution. The isotropic
part of the phase space distribution function F(z, p, t) obeys the
diffusion-convection-equation

∂F
∂t
− S 0 =

∂

∂z

[
κ
∂F
∂z

]
− V
∂F
∂z

+
p
3
∂V
∂z
∂F
∂p
+

1
p2

∂

∂p

[
p2AM

∂F
∂p
− p2 ṗLossF

]
− F

Tc
(1)

where the parallel spatial diffusion coefficient κ, the cosmic ray
bulk speed V and the momentum diffusion coefficient A are
determined by pitch-angle averages of three Fokker-Planck
coefficients

κ =
v

3
λ =
v2

8

∫ 1

−1
dµ

(1 − µ2)2

Dµµ(µ)
, (2)
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1

3p2

∂

∂p
(p3D), D =

3v
4p

∫ 1

−1
dµ(1 − µ2)

Dµp(µ)

Dµµ(µ)
, (3)

AM =
1
2

∫ 1

−1
dµ

⎡⎢⎢⎢⎢⎢⎣Dpp(µ) − D2
µp(µ)

Dµµ(µ)

⎤⎥⎥⎥⎥⎥⎦ · (4)

In Eq. (1) the space coordinate z is parallel to the uniform back-
ground magnetic field B0, S 0 is the source term, ṗLoss and Tc
describe continuous and catastrophic momentum loss processes.
See also Appendix A for a glossary and definitions of important
symbols.

For many years the theoretical development of the resonant
wave-particle interactions has mainly concentrated on the spe-
cial case that the plasma waves propagate only parallel or an-
tiparallel to the ordered magnetic field – the socalled slab turbu-
lence. In this case only cosmic ray particles with gyroradii RL
smaller than the longest parallel wavelength L‖,max of the plasma
waves can resonantly interact. Obviously this condition is equiv-
alent to a limit on the maximum particle rigidity R:

R =
p
Z
≤ eB0L‖,max. (5)

An alternative way to express the condition (5) is

E15/Z ≤ 40 ·
(

B0

4 µ G

) (
L‖,max

10 pc

)
, (6)

where E15 denotes the cosmic ray particle energy in units of
1015 eV. The limit set by the right hand side of Eq. (6) is re-
ferred to as Hillas limit (Hillas 1984). According to this limit,
cosmic ray protons of energies larger than 40 PeV = 4 × 1016 eV
cannot be confined or accelerated in the Milky Way, and an ex-
tragalactic origin for this cosmic ray component has to be in-
voked. Moreover, as the cosmic ray mean free path in case of
spatial gradients is closely related to the cosmic ray anisotropy
(Schlickeiser 1989, Eq. (94)), the Hillas limit (6) implies strong
anisotropies at energies above 40 PeV which have not been
observed by the KASKADE experiment (Antoni et al. 2004;
Hörandel et al. 2006).

It is the purpose of this work to investigate how the Hillas
limit (6) is affected if we discard the assumption of purely
slab plasma waves, i.e. if we allow for oblique propagation an-
gles θ of the plasma waves with respect to the ordered mag-
netic field component. There is ample observational evidence
that obliquely propagating magnetohydrodynamic plasma waves
exist in the interstellar medium (Armstrong et al. 1995; Lithwick
& Goldreich 2001; Cho et al. 2002). In particular, we will con-
sider the alternative extreme limit that the plasma waves prop-
agation angles are isotropically distributed around the magnetic
field direction. It has been emphasised before by Schlickeiser &
Miller (1998) referred to as SM) that oblique propagation an-
gles of fast magnetosonic waves leads to an order of magnitude
quicker stochastic acceleration rate as compared to the slab case,
since the compressional component of the obliquely propagating
fast mode waves allows the effect of transit-time damping accel-
eration of cosmic ray particles. Here we will demonstrate that
the obliqueness of fast mode and shear Alfven wave propagation
also modifies the resulting parallel spatial diffusion coefficient
and the Hillas limit.

2. Relevant magnetohydrodynamic plasma modes

Most cosmic plasmas have a small value of the plasma beta
βP = c2

S/V
2
A, which is defined by the ratio of the ion sound cS

to Alfven speed VA, and thus indicates the ratio of thermal to
magnetic pressure. For low-beta plasmas the two relevant mag-
netohydrodynamic wave modes are the

(1) incompressional shear Alfven waves with dispersion relation

ω2
R = V2

Ak2
‖ (7)

at parallel wavenumbers |k‖| � Ωp,0/VA, which have no
magnetic field component along the ordered background
magnetic field δBz (‖ B0) = 0,

(2) the fast magnetosonic waves with dispersion relation

ω2
R = V2

Ak2, k2 = k2
‖ + k2

⊥ (8)

for wavenumbers |k| � Ωp,0/VA, which have a compressive
magnetic field component δBz � 0 for oblique propagation
angles θ = arccos(k‖/k) � 0.

In the limiting case (commonly referred to as slab model)
of parallel (to B0) propagation (θ = k⊥ = 0) the shear
Alfven waves become the left-handed circularly polarised
Alfven-ion-cyclotron waves, whereas the fast magnetosonic
waves become the right-handed circularly polarised Alfven-
Whistler-electron-cyclotron waves.

Schlickeiser & Miller (1998) investigated the quasilinear in-
teractions of charged particles with these two plasma waves. In
case of negligible wave damping the interactions are of reso-
nant nature: a cosmic ray particle of given velocity v, pitch angle
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cosine µ and gyrofrequency Ωc = Ωc,0/γ interacts with waves
whose wavenumber and real frequencies obey the condition

ωR(k) = vµk‖ + nΩc, (9)

for entire n = 0,±1,±2, . . .

2.1. Resonant interactions of shear Alfven waves

For shear Alfven waves only interactions with n � 0 are possible.
These are referred to as gyroresonances because inserting the
dispersion relation (7) in the resonance condition (9) yields for
the resonance parallel wavenumber

k‖,A =
nΩc

±VA − vµ , (10)

which apart from very small values of |µ| ≤ VA/v typically equals
the inverse of the cosmic ray particle’s gyroradius, k‖,A � n/RL
and higher harmonics.

2.2. Resonant interactions of fast magnetosonic waves

In contrast, for fast magnetosonic waves the n = 0 resonance
is possible for oblique propagation due its compressive mag-
netic field component. The n = 0 interactions are referred to
as transit-time damping, hereafter TTD. Inserting the dispersion
relation (8) into the resonance condition (9) in the case n = 0
yields

vµ = ±VA/ cos θ (11)

as necessary condition which is independent from the wavenum-
ber value k. Apparently all super-Alfvenic (v ≥ VA) cosmic ray
particles are subject to TTD provided their parallel velocity vµ
equals at least the wave speeds ±VA. Hence Eq. (11) is equiva-
lent to the two conditions

|µ| ≥ VA/v, v ≥ VA. (12)

Additionally, fast mode waves also allow gyroresonances (n � 0)
at wavenumbers

kF =
nΩc

±VA − vµ cos θ
, (13)

which is very similar to Eq. (10).

2.3. Implications for cosmic ray transport

The simple considerations of the last two subsections allow us
the following immediate conclusions:

(1) With TTD-interactions alone, it would not be possible to
scatter particles with |µ| ≤ VA/v, i.e., particles with pitch angles
near 90◦. Obviously, these particles have basically no parallel ve-
locity and cannot catch up with fast mode waves that propagate
with the small but finite speeds ±VA. In particular this implies
that with TTD alone it is not possible to establish an isotropic
cosmic ray distribution function. Gyroresonances are needed to
provide the crucial finite scattering at small values of µ.

(2) Conditions (11) and (12) reveal that TTD is no gyroradius
effect. It involves fast mode waves at all wavenumbers pro-
vided the cosmic ray particles are super-Alfvenic and have large
enough values of µ as required by Eq. (12). Because gyroreso-
nances occur at single resonant wavenumbers only, see Eqs. (10)
and (13), their contribution to the value of the Fokker-Planck

coefficients in the interval |µ| ≥ VA/v is much smaller than
the contribution from TTD. Therefore for comparable intensi-
ties of fast mode and shear Alfven waves, TTD will provide
the overwhelming contribution to all Fokker-Planck coefficients
Dµµ, Dµp and Dpp in the interval |µ| ≥ VA/v. At small values
of |µ| < VA/v only gyroresonances contribute to the values of
the Fokker-Planck coefficients involving according to Eqs. (10)
and (13) wavenumbers at k‖,A = kR � ±nΩc/VA.

(3) The momentum diffusion coefficient (4)

AM =
1
2

∫ 1

−1
dµ [Dpp(µ) − D2

µp(µ)

Dµµ(µ)
] = AT + A2 (14)

has contributions both from transit-time damping of fast mode
waves,

AT �
∫ 1

VA/v

dµDTTD
pp (µ), (15)

and from second-order Fermi gyroresonant acceleration by shear
Alfven waves (Schlickeiser 1989)

A2 =
1
2

∫ 1

−1
dµ

⎡⎢⎢⎢⎢⎢⎣DA
pp(µ) − [DA

µp(µ)]2

DA
µµ(µ)

⎤⎥⎥⎥⎥⎥⎦ · (16)

(4) On the other hand, the spatial diffusion coefficient (2)

κ =
v2

8

∫ 1

−1
dµ(1 − µ2)2 D−1

µµ (µ) (17)

is given by the integral over the inverse of the Fokker-Planck co-
efficient Dµµ, so here the small values of Dµµ due to gyroresonant
interactions in the interval |µ| < VA/v determine the spatial dif-
fusion coefficient and the corresponding parallel mean free path

κ = vλ/3 � v
2

8

∫ VA/v

−VA/v

dµ

DG
µµ(µ)

· (18)

The gyroresonances can be due to shear Alfven waves or fast
magnetosonic waves. For relativistic cosmic rays the relevant
range of pitch angle cosines |µ| ≤ vA/v is very small allowing
us the approximation DG

µµ(µ) � DG
µµ(0) so that

κ = vλ/3 � v
2

4
ε

DG
µµ(0)

=
vVA

4DG
µµ(0)

· (19)

(5) According to Eq. (90) of Schlickeiser (1989) the streaming
cosmic ray anisotropy due to spatial gradients in the cosmic ray
density is given by

δ =
Fmax − Fmin

Fmax + Fmin
=

1
2F
v

4
∂F
∂z

∫ 1

−1
dµ(1 − µ2) D−1

µµ(µ) (20)

which also is determined by the smallest value of Dµµ around
µ = 0. Approximating again Dµµ(µ) � DG

µµ(0) for |µ| ≤ ε =
VA/v we derive with Eq. (19) the direct proportionality of the
cosmic ray anisotropy with the parallel mean free path, i.e.

δ � v
8
∂F
∂ ln z

2VA

vDG
µµ(0)

=
VA

4
1

DG
µµ(0)

∂F
∂ ln z

=
1
3
λ
∂F
∂ ln z

· (21)

Introducing the characteristic spatial gradient of the cosmic ray
density 〈z〉−1 ≡ (1/F)|∂F/∂z| Eq. (21) reads

δ =
λ

3〈z〉 · (22)

Cosmic ray gradients derived from diffuse galactic GeV
gamma-ray emissivities (Strong & Mattox 1996) suggest a value
of 〈z〉 � 2 kpc.
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3. Quasilinear cosmic ray mean free path
and anisotropy isotropic plasma wave turbulence

Throughout this work we consider isotropic linearly polarised
magnetohydrodynamic turbulence so that the components of the
magnetic turbulence tensor for plasma mode j is

P j
lm(k) =

g j(k)
8πk2

(
δlm − kkkm

k2

)
. (23)

The magetic energy density in wave component j then is

(δB)2
j =

∫
d3k

3∑
i=1

Pii(k) =
∫ ∞

0
dkg j(k). (24)

We adopt a Kolmogorov-like power law dependence (index q >
1) of g j(k) above the minimum wavenumber kmin

g j(k) = g j
0k−q for k > kmin. (25)

The normalisation (24) then implies

g
j
0 = (q − 1)(δB)2

jk
q−1
min . (26)

Moreover we adopt a vanishing cross helicity of each plasma
mode, i.e. equal intensity of forward and backward moving
waves, so that g j

0 refers to the total energy density of each mode.
According to Eq. (30) of SM the Fokker-Planck coeffi-

cients DF
µµ and DF

pp = ε
2 p2Dµµ with ε = VA/v for fast mode

waves are the sum of contributions from transit-time damp-
ing (T) and gyroresonant interactions (G):

DF
µµ(µ) =

πΩ2(1 − µ2)

4B2
0

[DT(µ) + DG(µ)] (27)

with

DT(µ) = (q − 1)(δB)2
F|Ω|−1(RLkmin)q−1H[|µ| − ε]

×1 + (ε/µ)2

|µ|
[
(1 − µ2)(1 − (ε/µ)2)]q/2

×
∫ ∞

U
ds s−(1+q) J2

1(s), (28)

where the lower integration boundary is

U = kminRL

√
(1 − µ2)(1 − (ε/µ)2), (29)

and η = cos θ. RL = v/|Ω| denotes the gyrofrequency of the
cosmic ray particle, H is the Heaviside’ step function and J1(s)
is the Bessel function of the first kind.

The gyroresonant contribution from fast mode waves is

DG(µ) =
q − 1

2
(δB)2

F kq−1
min

∞∑
n=1

∑
j=±1

∫ 1

−1
dη(1 + η2)

×
∫ ∞

kmin

dkk−q[J
′
n(kRL

√
(1 − η2)(1 − µ2)]2

×
[
δ(k[vµη− jVA]+nΩ)+δ(k[vµη− jVA] − nΩ)

]
. (30)

On the other hand shear Alfven waves provide only gyroresonant
(n � 1) interactions yielding

(
DA
µµ,D

A
µp,D

A
pp

)
= π(q − 1)Ω2(1 − µ2)kq−1

min

(δB)2
A

32B2
0

∞∑
n=1

×
∑
j=±1

(
[1 − jµε]2, jεp[1 − jµε], (εp)2

) ∫ 1

−1
dη(1 + η2)

×
∫ ∞

kmin

dk k−q
[
δ
([
vµ − jVA

]
ηk + nΩ

)
+δ

([
vµ − jVA

]
ηk − nΩ

)][
(Jn−1(kRL

√
(1 − µ2)(1 − η2)

+Jn+1(kRL

√
(1 − µ2)(1 − η2)

]2
. (31)

According to SM at particle pitch-angles outside the interval
|µ| ≥ ε transit-time damping provides the dominant and over-
whelming contribution to these Fokker-Planck coefficients. This
justifies the approximations to derive Eqs. (19) and (21) for the
cosmic ray mean free path and anisotropy, respectively, Both
transport parameters are primarily fixed by the small but finite
scattering due to gyroresonant interactions in the interval |µ| < ε.
We then derive

λ � 3v
8

∫ ε

−ε
dµ(1 − µ2)2 [DF

µµ(µ) + DA
µµ(µ)]

−1

� 3vε
4[DF

µµ(µ = 0) + DA
µµ(µ = 0)]

, (32)

and

δ =
1
3
λ
∂F
∂ ln z

� vε

4[DF
µµ(µ = 0) + DA

µµ(µ = 0)]
∂F
∂ ln z

· (33)

In the following, we consider both transport coefficients for pos-
itively charged cosmic ray particles with Ω > 0 especially in the
limit kminRL � 1.

3.1. Gyroresonant Fokker-Planck coefficients at µ = 0

At µ = 0 the contribution from shear Alfven waves to the pitch-
angle Fokker-Planck coefficient is according to Eq. (23)

DA
µµ(µ = 0) � π(q − 1)Ω2kq−1

min (δB)2
A

16B2
0

∞∑
n=1

∫ ∞

kmin

dk k−q−1

×
⎛⎜⎜⎜⎜⎝1 + n2Ω2

V2
Ak2

⎞⎟⎟⎟⎟⎠ H

[
k − nΩ

VA

] ⎡⎢⎢⎢⎢⎢⎢⎣Jn−1

⎛⎜⎜⎜⎜⎜⎜⎝RL

√
k2 − n2Ω2

V2
A

⎞⎟⎟⎟⎟⎟⎟⎠
+Jn+1

⎛⎜⎜⎜⎜⎜⎜⎝RL

√
k2 − n2Ω2

V2
A

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦

2

, (34)

where we readily performed the η-integration. Substituting
t = RL[k2 − (n2Ω2/V2

A)]1/2, and using VA/Ω = εRL, Eq. (34)
reduces to

DA
µµ(µ = 0) � π(q − 1)Ω(δB)2

A

16εB2
0

[kminRL]q−1
∞∑

n=1

∫ ∞

UA

dt t

×
(
t2 +

2n2

ε2

) [
t2 +

n2

ε2

]−(q+4)/2

(Jn−1(t) + Jn+1(t))2 (35)
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where

UA = max

⎛⎜⎜⎜⎜⎜⎝0,
[
R2

Lk2
min −

n2

ε2

]1/2⎞⎟⎟⎟⎟⎟⎠ . (36)

Likewise the contribution from gyroresonant interactions with
fast mode waves is according to Eqs. (27) and (30)

DF
µµ(µ = 0) � π(q − 1)Ω2kq−1

min (δB)2
F

4VAB2
0

[VA

Ω

]q ∞∑
n=1

×n−qH

[
n − kminVA

Ω

] ∫ 1

−1
dη(1 + η2)

(
J
′
n

(
n
ε

√
1 − η2

))2

(37)

where we performed the k-integration. With VA/Ω = εRL,
Eq. (37) becomes

DF
µµ(µ = 0) � π(q − 1)Ω(δB)2

F

4B2
0

[kminRLε]q−1
∞∑

n=1

n−q

×H[n − εRLkmin]
∫ 1

−1
dη(1 + η2)

(
J
′
n

(
n
ε

√
1 − η2

))2

. (38)

The Bessel function integral in Eq. (38)

I1 =

∫ 1

−1
dη(1 + η2)

(
J
′
n

(
n
ε

√
1 − η2

))2

(39)

has been calculated asymptotically by SM to lowest order in the
small quantity ε = VA/v� 1 as

I1 � 3
2
ε

n
(40)

yielding

DF
µµ(µ = 0) � 3π(q − 1)Ωε(δB)2

F

4B2
0

[kminRLε]
q−1

×
∞∑

n=1

n−(q+1)H[n − εRLkmin]. (41)

In Appendix B we evaluate the Bessel function integral in
Eq. (35)

I2=

∫ ∞

UA

dt t

(
t2+

2n2

ε2

) [
t2+

n2

ε2

]−(q+4)/2

×(Jn−1(t)+Jn+1(t))2 (42)

for small and large values of kminRLε.
For values kminRLε ≤ 1 we obtain approximately

I2(kminRLε ≤ 1) � 8
π
εq+2n−q

[
1 + (−1)n1.00813

]
(43)

yielding

DA
µµ(µ = 0, kminRLε ≤ 1) � (q − 1)Ωε2(δB)2

A

21+qB2
0

×[kminRLε]q−1
[
2.00813ζ(q)+ 0.00813ζ(q, 0.5)

]
, (44)

in terms of the zeta and the generalised zeta functions of
Riemann (Whittaker & Watson 1978).

For values of kminRLε > 1 we obtain Eq. (43) for values of
n ≥ N + 1, where N = inf[kminRLε] is the largest integer smaller
than εRLkmin, while for smaller n

I2(kminRLε > 1, n = N) � 4εq+2N−(q+1) (45)

and

I2(kminRLε > 1, n ≤ N − 1) � 4n2

π(q + 3)
U−(q+3)

A . (46)

According to Eq. (35) this yields

DA
µµ(µ = 0, kminRLε > 1) � (q − 1)Ωε2(δB)2

A

2B2
0

[kminRLε]q−1

⎡⎢⎢⎢⎢⎢⎢⎣ π

2Nq+1
+

ε

2(q + 3)

N−1∑
n=1

n−(q+1)

⎡⎢⎢⎢⎢⎢⎣
(
RLkminε

n

)2

− 1

⎤⎥⎥⎥⎥⎥⎦
−(q+3)/2

+

∞∑
n=N+1

n−q[1 + (−1)n1.00813]

⎤⎥⎥⎥⎥⎥⎦ . (47)

Comparing the Fokker-Planck coefficients from fast mode
waves (41) and Alfven waves (Eqs. (44) and (47)) we note that
the latter one is always smaller by the small ratio ε = VA/v than
the first one:

DA
µµ(µ = 0) � εDF

µµ(µ = 0) (48)

so that the gyroresonant contribution from Alfven waves can be
neglected in comparison to the gyroresonant contribution from
fast mode waves.

3.2. Cosmic ray mean free path

Neglecting DA
µµ(µ = 0) we obtain for the cosmic ray mean free

path (32)

λ(γ) � 3vε
4DF
µµ(µ = 0)

=
1

π(q − 1)

B2
0

(δB)2
F

RL(kminRLε)1−q∑∞
n=1 n−(q+1)H[n − εRLkmin]

, (49)

which exhibits the familiar Lorentzfactor dependence ∝βγ2−q �
γ2−q at Lorentzfactors γ ≤ γc below a critical Lorentz factor
defined by

γc = kc/kmin (50)

with kc = Ω0,p/VA = ωp,i/c being the inverse ion skin length.
The Lorentzfactor dependence λ ∝ γ2−q especially holds at
rigidities 1 ≤ kminRL ≤ ε = c/VA, in a rigidity range where
the slab turbulence model would predict an infinitely large mean
free path.

Expresing kmin = 2π/Lmax in terms of the longest wavelength
of isotropic fast mode waves Lmax = 10 pc yields

γc =
ωp,iLmax

2πc
= 2.16 × 1011n1/2

e

(
Lmax

10 pc

)
· (51)

The corresponding cosmic ray hadron energy is

Ec = Aγcmpc2 = 2.03 × 105An1/2
e

(
Lmax

10 pc

)
PeV (52)

which is four orders of magnitude larger than the Hillas limit (6)
for equal values of the maximum wavelength. This difference
demonstrates the dramatic influence of the plasma turbulence
geometry (slab versus isotropically distributed waves) on the
confinement of cosmic rays in the Galaxy. With isotropically
distributed fast mode waves, even ultrahigh energy cosmic rays
obey the scaling λγq−2 = const.
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Only, at ultrahigh Lorentzfactors γ > γc or energies E > Ec
the mean free path (49) approaches the much steeper dependence

λ(γ > γc) � 1
π(q − 1)

B2
0

(δB)2
F

RL(kminRLε)2 ∝ βγ3 � γ3, (53)

independent from the turbulence spectral index q. Here the mean
free path quickly attains very large values gretaer than the typical
scales of the Galaxy.

3.3. Anisotropy

Because of the direct proportionality between mean free path
and anisotropy, the cosmic ray anisotropy (33) shows the same
behaviour as a function of energy:

δ(E) � 1
3π(q − 1)

B2
0

(δB)2
F

∂F
∂ ln z

× RL(kminRLε)1−q∑∞
n=1 n−(q+1)H[n − εRLkmin]

(54)

which is proportional δ(E ≤ Ec) ∝ E2−q at energies below Ec
and δ(E > Ec) ∝ E3 at energies above Ec. In particular we obtain
no drastic change in the energy dependence of the anisotropy at
PeV energies. Quantitatively, with Eq. (22), q = 5/3 and VA =
20 km s−1 we find

δ(E) = 0.152

(
Lmax

10 pc

) ( 〈z〉
2 kpc

)−1 (
(B0/δB)F

10

)2

× (E/Ec)1/3∑∞
n=1 n−(8/3)H[n − (E/Ec)]

· (55)

At Ec = 20 EeV energies we calculate an anisotropy of less than
15 percent, whereas at smaller energies the anisotropy values
decrease proportional to (E/Ec)1/3.

4. Summary and conclusions

We have investigated the implications of isotropically distributed
interstellar magnetohydrodynamic plasma waves on the scatter-
ing mean free path and the spatial anisotropy of high-energy
cosmic rays. We demonstrate a drastic modification of the en-
ergy dependence of both cosmic ray transport parameters com-
pared to previous calculations that have assumed that the plasma
waves propagate only parallel or antiparallel to the ordered mag-
netic field (slab turbulence). In case of slab turbulence cos-
mic rays with Larmor radius RL resonantly interact with plasma
waves with wave vectors at kres = R−1

L . If the slab wave turbu-
lence power spectrum vanishes for wavenumbers less than kmin,
as a consequence then cosmic rays with Larmor radii larger
than k−1

min cannot be scattered in pitch-angle, causing the so-
called Hillas limit for the maximum energy EH

15 = 40Z ·
(B0/4 µG)(L‖,max/10 pc) of cosmic rays being confined in the
Galaxy. At about these energies this would imply a drastic in-
crease in the spatial anisotropy of cosmic rays that has not been
detected by KASKADE and other air shower experiments.

In case of isotropically distributed interstellar magnetohy-
drodynamic waves we demonstrated that the Hillas energy EH is
modified to a limiting total energy that is about 4 orders of mag-
nitude larger Ec = 2.03 × 105An1/2

e (Lmax/10 pc) PeV, where A
denotes the mass number and Lmax the maximum wavenumber of
isotropic plasma waves. Below this energy the cosmic ray mean
free path and the anisotropy exhibit the well known E2−q energy

dependence, where q = 5/3 denotes the spectral index of the
Kolmogorov spectrum. At energies higher than Ec both trans-
port parameters steepen to a E3-dependence. This implies that
cosmic rays even with ultrahigh energies of several tens of EeV
can be rapidly pitch-angle scattered by interstellar plasma turbu-
lence, and are thus confined to the Galaxy.

The physical reason for the four orders of magnitude higher
value of the limiting energy is the occurrence of dominating
transit-time damping interactions of cosmic rays with magne-
tosonic plasma waves due to their compressive magnetic field
component along the ordered magnetic field. This n = 0 reso-
nance is not a gyroresonance implying that cosmic rays interact
with plasma waves at all wavenumbers provided that the cos-
mic ray parallel speed (transit speed) equals the parallel phase
speed of magnetosonic waves. Only at small values of the cos-
mic ray pitch-angle cosine |µ| ≤ ε = VA/v, where the cosmic ray
particles spiral at nearly ninety degrees with very small paral-
lel speeds less than the minimum magnetosonic phase speed VA,
gyroresonant interactions are necessary to scatter csomic rays.
However, the gyroresonance condition of cosmic rays at µ = 0
reads kres = (RLε)−1 instead of the slab condition kres = (RL)−1

causing the limiting energy enhancement from EH to Ec by the
large factor ε−1 = c/VA � O(104).
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Appendix A: Glossary and definitions of important
symbols

A = m/mp : cosmic ray particle mass or nucleon number

AM : momentum diffusion coefficient os cosmic rays

β : cosmic ray velocity in units of c

βP = c2
S/V

2
A : plasma beta

B0 : uniform magnetic field strength

δB : strength of total fluctuating magnetic fields

δBF : strength of fast magnetosonic plasma wave

magnetic fields

δBA : strength of shear Alfven plasma wave

magnetic fields

c : vacuum speed of light

cS =

√
2kBT/mp : ion sound speed

γ = E/mc2 = (1 − β2)−1/2 : cosmic ray Lorentz factor

γc = Ec/mc2 : critical cosmic ray Lorentz factor where

the energy dependence of the mean free path changes

Di j : Fokker-Planck coefficient

δ(p) : cosmic ray anisotropy

E = γmc2 : total kinetic energy of cosmic ray particle

Ec = γcmc2 : critical cosmic ray total kinetic energy where the

energy dependence of the mean free path changes

ε = VA/c : ratio of Alfven speed to speed of light

F(z, p, t) : isotropic part of cosmic ray phase space density

g j(k) ∝ k−q : magnetic field turbulence

spectrum of plasma wave mode j

Jn(x) : Bessel function of first kind and order n

k = (kx, ky, kz) : plasma wave vector

and its cartesian components

k‖ = kz = k cos θ : component of plasma wave vector

parallel to uniform magnetic field

k⊥ =
√

k2
x + k2

y = k sin θ : component of plasma wave

vector perpendicular to uniform magnetic field

kmin = 2π/λmax : minimum wavenumber of plasma waves

kc = ωp,i/c : inverse ion skin length

κ = vλ/3: spatial diffusion coefficient of cosmic rays

parallel to uniform magnetic field

λ = 3κ/v : parallel mean free path of cosmic rays

λmax = 2π/kmin : maximum wavenumber of plasma waves

Lmax : maximum wavenumber of isotropic fast

magnetosonic waves

Ł‖,max : maximum wavenumber of parallel propagating

(slab) plasma waves

m = Amp : mass of cosmic ray particle

mp : proton mass

µ = p‖/p : pitch angle cosine of cosmic ray particle

ne : number density of electrons in interstellar medium

ωR : real part of plasma wave frequency

ωp,i =

√
4πnee2/mp : proton plasma frequency

in interstellar ionized gas

Ωc,0 = |ZeB0/mc| : nonrelativistic gyrofrequency of

cosmic ray particle in uniform magnetic field B0

Ωc = Ωc,0/γ : relativistic gyrofrequency of cosmic

ray particle in uniform magnetic field B0

Ωp,0 = eB0/mpc : nonrelativistic gyrofrequency of proton

in uniform magnetic field B0

p : total momentum of cosmic ray particle

ṗLoss : continuous momentum loss rate

of cosmic ray particle

P j
lm(k) : magnetic turbulence tensor for plasma mode j

q : spectral index of turbulence power law spectrum

R = p/Z : rigidity of cosmic ray particle

RL = v/Ωc : gyroradius of cosmic ray particle

in uniform magnetic field B0

T : temperature of interstellar gas

Tc : catastrophic loss time of cosmic ray particle

θ = arccos(k‖/k) : propagation angle of plasma wave

with respect to uniform magnetic field direction

u : velocity of plasma wave-carrying interstellar gas

v = βc : velocity of cosmic ray particle

V : cosmic ray bulk speed

VA = B0/
√

4πmpne : Alfven velocity

Z : cosmic ray particle charge or atomic number
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Appendix B: Asymptotic calculation of the integral
(42)

The task is to calculate the integral (42)

I2=

∫ ∞

UA

dt t

(
t2+

2n2

ε2

) [
t2+

n2

ε2

]−(q+4)/2 [
(Jn−1(t) + Jn+1(t)

]2
, (56)

for small and large values of kminRL using the approximations of
Bessel functions for small and large arguments (Abramowitz &
Stegun 1972), yielding

J2
n (t � 1) � t2n

22nΓ2[n + 1]
, (57)

and

J2
n (t � 1) � 1

πt
[1 + (−1)n sin(2t)]. (58)

According to Eq. (36)

UA = max

⎛⎜⎜⎜⎜⎜⎝0,
[
R2

Lk2
min −

n2

ε2

]1/2⎞⎟⎟⎟⎟⎟⎠ ,
the lower integration boundary UA = 0 in the case kminRLε ≤ 1
which includes in particular the limit kminRL � 1 because ε � 1.

4.1. Case kminRLε ≤ 1

With the identity

Jn−1(t) + Jn+1(t) =
2nJn(t)

t
(59)

we obtain

I2(kminRLε ≤ 1) = 4n2

[
W

[
q + 2

2

]
+

n2

ε2
W

[
q + 4

2

]]
(60)

where

W[α] ≡
∫ ∞

0
dt t−1 J2

n(t)[
t2 + n2

ε2

]α · (61)

With the asymptotics (57) and (58) we obtain

W[α] �
(
ε

n

)2α [ 1
22nΓ2[n + 1]

∫ 1

0
dtt2n−1

+
1
π

∫ n/ε

1
dtt−2[1 + (−1)n sin(2t)]

]

+
1
π

∫ ∞

n/ε
dtt−2(1+α)[1 + (−1)n sin(2t)]

�
(
ε

n

)2α
[
1
π

[
1 + (−1)n1.00813− ε

n

− (−1)n

2

(
ε

n

)2
cos

(
2n
ε

)]
+

1
n22n+1Γ2[n + 1]

]

+
1

π(1 + 2α)

(
ε

n

)1+2α
+

(−1)n

π
j1, (62)

where we use

2
∫ ∞

1
dx x−2 sin x = 2(sin(1) −Ci(1)) = 1.00813

and where

j1 =
∫ ∞

n/ε
dtt−2−2α sin 2t = 22α

[
ı−2−2αΓ

[
−(1 + 2α),−2ı

n
ε

]

+(−ı)−2−2αΓ

[
−(1 + 2α), 2ı

n
ε

]]
(63)

in terms of the incomplete gamma function. For large arguments
(n/ε)� 1 we obtain asymptotically

j1 � 1
2

(
ε

n

)2+2α
cos

(
2n
ε

)
· (64)

Collecting terms we find to lowest order in εn � 1

W[α] � 1
π

(
ε

n

)2α
[
1 + (−1)n1.00813+

π

n22n+1Γ2[n + 1]

]
(65)

so that

I2(kminRLε ≤ 1) � 8
π
εq+2n−q

×
[
1 + (−1)n1.00813 +

π

n22n+1Γ2[n + 1]

]
· (66)

4.2. Case kminRLε > 1

In this case UA = 0 for n ≥ N+1, and UA =
√

(RLkmin)2 − (n/ε)2

for n ≤ N, where

N = inf[εRLkmin] (67)

denotes the largest integer smaller than εRLkmin. Hence we
obtain again Eq. (66) for n ≥ N + 1

I2(kminRLε > 1, n ≥ N + 1) � 8
π
εq+2n−q

×
[
1 + (−1)n1.00813 +

π

n22n+1Γ2[n + 1]

]
· (68)

For values of n ≤ N we find that

I2(kminRLε > 1, n ≤ N) = 4n2

[
V

[
q + 2

2

]
+

n2

ε2
V

[
q + 4

2

]]
(69)

where

V[α]≡
∫ ∞

UA

dt t−1 J2
n(t)

[t2 + n2

ε2
]α
=

(
ε

n

)2α
∫ ∞

εUA/n
dt t−1 J2

n(nt/ε)

[1 + t2]α
· (70)

We may express

kminRLε = N(1 + φ) (71)

with φ < 1/N, so that the lower integration boundary in (70) is

ε

n
UA =

[(
kminRLε

n
− 1

) (
kminRLε

n
+ 1

)]1/2

=
N
n

[(
1 + φ − n

N

) (
1 + φ +

n
N

)]1/2
· (72)
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In cases where N ≥ 2, Eq. (72) yields that for all values of n
such that 1 ≤ n ≤ N − 1 the lower integration boundary εn UA is
greater unity. Using the expansion (58) in this case we find that

V[α, n ≤ N − 1] � 1
π

(
ε

n

)2α+1
∫ ∞

εUA/n
dt t−2−2α

×
[
1 + (−1)n sin

(
2nt
ε

)]
� 1
π(1 + 2α)

U−(2α+1)
A

×
[
1 + (−1)n 1 + 2α

2UA
cos(2UA)

]
� U−(2α+1)

A

π(1 + 2α)
(73)

In the remaining case n = N the lower integration boundary (72)

ε

N
UA =

√
φ(2 + φ) ≤ √

2.5φ < 1 (74)

is smaller unity, so that we approximate Eq. (70) in this case by

V[α, n = N] �
(
ε

N

)2α
[∫ 1

εUA/N
dt t−1 J2

N

(Nt
ε

)

+

∫ ∞

1
dt t−1−2α J2

N

(Nt
ε

)]
�

(
ε

N

)2α

×
[

j2 +
ε

πN(1 + 2α)

(
1 + (−1)n(1 + 2α)

ε

2N
cos

(
2N
ε

))]
(75)

where we approximate

j2 =
∫ 1

εUA/N
dt t−1 J2

N(
Nt
ε

) <

∫ ∞

0
dt t−1 J2

N

(Nt
ε

)
=

1
2N

(76)

by its upper limit to obtain

V[α, n = N] �
(
ε
N

)2α

2N
· (77)

Collecting terms in Eq. (69) we derive

I2(kminRLε > 1, n = N) � 4εq+2N−(q+1) (78)

and

I2(kminRLε > 1, n ≤ N − 1) � 4n2

π(q + 3)
U−(q+3)

A (79)


