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Confinement and chiral symmetry breaking via domainlike structures in the QCD vacuum
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A qualitative mechanism for the emergence of domain structured background gluon fields due to singulari-
ties in gauge field configurations is considered, and a model displaying a type of mean field approximation to
the QCD partition function based on this mechanism is formulated. An estimation of the vacuum parameters
~gluon condensate, topological susceptibility, string constant and quark condensate! indicates that domainlike
structures lead to an area law for the Wilson loop, nonzero topological susceptibility and spontaneous break-
down of chiral symmetry. Gluon and ghost propagators in the presence of domains are calculated explicitly and
their analytical properties are discussed. The Fourier transforms of the propagators are entire functions and thus
describe confined dynamical fields.
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I. INTRODUCTION

Nearly every approach to the problem of the QCD grou
state accepts that the vacuum is characterized by st
background gluon fields and, as results of lattice calculati
suggest, by a clustered or lumpy distribution of topologi
charge and action density in configuration space. We s
refer to such structures interchangeably as ‘‘clusters’’ a
‘‘domains.’’ They were first observed in typical lattice gaug
configurations via cooling or smearing algorithms@1,2#
which incrementally suppress quantum fluctuations by
cally minimizing or at least reducing the action density. F
more recent work on cooling the reader is referred to@3#. On
the other hand, the resulting cooled gauge fields tend to
rise to a diminished string constant indicating a loss of c
finement. An alternative way of analyzing the underlyi
fluctuations of topological charge density is via the chiral
of fermionic modes in the background of topologic
‘‘lumps,’’ as originally undertaken by@4,5# and rediscussed
recently in@6#. Used with lattice fermions with good chira
properties such as overlap@7,8# or domain wall@9# fermions
the method indicates localization of low-lying fermion
modes with definite chirality, the very modes responsible
the chiral condensate, for example@10#. These results can b
described in terms of the instanton liquid model@11# and are
regarded as evidence for instantons on the lattice. While s
an interpretation connects clusters of topological charge w
chiral symmetry breaking, it says nothing about their r
evance to confinement@12#. However, it might be significan
that @8# have repeated the procedure of@6# with overlap fer-
mions and no smearing and still observe strong localiza
and definite chirality of the low lying modes. This is a pie
of evidence for the possibility that localization of chiral fe
mionic modes is due to the effective degrees of freed
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†Email address: nedelko@thsun1.jinr.ru
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responsible for both confinement and chiral symmetry bre
ing.

Several mechanisms of confinement have been propo
since the formulation of quantum chromodynamics. All try
realize confinement as a dual-Meissner effect, and thus
on a condensation of singular gauge configurations suc
monopoles and vortices@13,14#. In particular center vortices
are considered as effective degrees of freedom relevant
to confinement and chiral symmetry breaking@14#. In gen-
eral, besides the above-mentioned configurations chara
ized by topologically conserved charges there exist also
pologically trivial domain wall singularities in gauge fixe
fields @15#. The form in which singular fields occur in th
gauge fixed formulation varies with the gauge choice,
their presence itself is most probably an intrinsically u
avoidable feature of non-Abelian theories, universal fo
large variety~if not all! of gauge fixing prescriptions. Con
sensus about this has been growing since the pionee
works of Gribov and Singer@16#. This suggests that the
manifestation of singular gauge fields is linked to the ty
and dimensionality of the manifold of singularities rath
than to the peculiarities of their realization within a particu
gauge fixing prescription.

We take as a working hypothesis that an effect of this k
can be seen in the restrictive influence of singular ga
fields on fluctuations in the vicinity of singularities@17,18#
and formulate a simplified model which allows one to stu
manifestations of this effect in vacuum properties and qua
gluon dynamics analytically.

The subtleties of separating fields into regular and sin
lar parts and the behavior of regular fields at the singulari
are irrelevant if one could calculate the QCD functional
tegral ‘‘exactly.’’ But these issues become crucial if one u
dertakes approximations@18#. For example, in gauge invari
ant quantities singularities due to ambiguities in gauge fix
should not occur. In the action such a finiteness, despite
gularities in the gauge field, occurs either due to cance
tions between derivative and commutator parts in the fi
©2001 The American Physical Society25-1
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ALEX C. KALLONIATIS AND SERGEI N. NEDELKO PHYSICAL REVIEW D 64 114025
strength if the singularity is topologically nontrivial~mono-
pole or vortex! or due to finiteness of both terms separat
for topologically trivial configurations~domain walls!. How-
ever this cancellation of singularities in the action dens
can be destroyed by unconstrained fluctuations around
singular fields. Thus finiteness of the action implies spec
constraints on fluctuations. In Ref.@18# an example of this is
considered in detail for Polyakov gauge monopoles.

We formulate a model partition function which incorp
rates singularities in gauge fields effectively via their restr
tive effect on fluctuations. We assume that singularities
present in general in gauge potentials, and in their vicin
one can divide an arbitrary field,A, into singularSand regu-
lar Q parts:

A m
a ~x!5Sm

a ~x!1Qm
a ~x!. ~1!

In order thatA generates finite action, it must be ‘‘clos
enough’’ to a pure gauge configuration in the vicinity of t
singularity, meaning that@Q,S#50 and that the field strengt
for pure gaugeS vanishes:

Smn5]mSn2]nSm1 ig@Sm ,Sn#50. ~2!

This can be realized in two ways. If Eq.~2! is satisfied via a
cancellation between derivative and commutator parts t
the singularity in S is topologically non-trivial and non-
Abelian. If the two parts separately vanish then the singu
ity is topologically trivial. The gauge potentialS is then Abe-
lian, namely a constant unit color vectorna can be associate
with the fieldS.

To be explicit, at the cost of generality, we shall take t
second of these possibilities and further assume that si
larities in vector potentials are concentrated on hypersurfa
]Vj ( j 51, . . . ,N) in Euclidean space of volumeV, in the
vicinity of which gauge fields can be divided as above int
sum of a singular pure gaugeSm

( j ) and regular fluctuation par
Qm

( j ) , with a color vectornj
a associated withS( j ). For such

fields to have finite action the fluctuations charged with
spect tonj must obey specific conditions on]Vj . The inte-
riors of these regions thus constitute ‘‘domains’’Vj . De-
manding finiteness of the classical action density, one arr
at

n̆ jQm
( j )50, c52 ih” jeia jg5c, c̄5c̄ ih” je2 ia jg5, ~3!

for xP]Vj , with the adjoint matrixn̆ j5Tanj
a in the condi-

tion for gluons, and a bag-like boundary condition f
quarks,hm

j (x) being a unit vector normal to]Vj .
Equations~3! indicate that gauge modes neutral with r

spect tonj
a are not restricted and provide for interactio

between domains. In a given domainVj the effect of fluc-
tuations in the rest of the system is manifested by an exte
gauge fieldBj m

a neutral with respect tonj
a . This motivates an

approximation in which domains are treated as decoup
but, simultaneously, with a compensating mean field int
duced in their interiors. The model becomes analytica
tractable if we consider spherical domains with fixed rad
11402
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R and approximate the mean field inVj by a covariantly
constant~anti-!self-dual configuration with the field strengt

B̂mn
( j )5n̂( j )Bmn

( j ) , B̃mn
( j )56Bmn

( j ) ,

Bmn
( j )Brn

( j )5B2dmr , n̂( j )5t3cosj j1t8sinj j ,

j jP$~2k11!p/6%k50
5 , ~4!

where the parameterB5const is the same for all domain
and the constant matrixnj

ata belongs to the Cartan subalge
bra, the generatorsta being in the fundamental represent
tion. Note that since the mean field represents an effec
fluctuations outside the domain there is no source for
field on the boundary and therefore it should be treated
strictly homogeneous in all further calculations. The hom
geneity itself appears as a simplifying approximation. B
cause of the uniformity~on average! of the system outside
the domain, slowly varying fields should be taken into a
count first of all, with leading contributions to this comin
from covariantly constant fields inside and on the bound
of a domain, with a dominance of~anti-!self-dual fields,
since they are expected to have lower action density@19,20#
than arbitrary constant fields~see also the Ginsburg-Landa
type consideration in Appendix B, where the appearance
discrete set of valuesj j is also motivated!.

The model for a partition function that we postulate a
then use for calculations describes a statistical system o
nite densityv215N/V composed ofN→` noninteracting
spherical regions in a total Euclidean volumeV→`, each of
which is characterized by a set of internal parameters w
random values: the anglev j between chromoelectric an
chromomagnetic fields, spherical anglesw j and u j of the
chromomagnetic field, the anglej j in the color matrixn̂ j ,
chirality violating anglea j entering the fermionic boundar
condition and the coordinatezj of a domain. Clusters are
characterized also by the fluctuation fieldsQm

j , c j and c̄ j

satisfying boundary conditions~3!, whose dynamics is
driven by the QCD Lagrangian in the presence of the m
field. The propagators of fluctuation fields for a given bac
ground and boundary condition can be found analytica
Thus this partition function offers a systematic prescripti
for calculation of the correlation functions, based on a d
composition over fluctuations and taking the mean field i
account explicitly. Such a treatment of fluctuations as per
bations of a certain background field is sensible only if t
essential features of the system can be seen in the lo
orders of the decomposition~at least semi-quantitatively!. In
other words one has to verify whether such basic phenom
as confinement and spontaneous chiral symmetry brea
are provided by the domain-structured mean field and bou
ary conditions under consideration.

In the zeroth order of the expansion we shall find that
gluon condensate, topological susceptibilityx and the string
constants for color groupSU(3) take the compact form
5-2
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CONFINEMENT AND CHIRAL SYMMETRY BREAKING . . . PHYSICAL REVIEW D64 114025
g2^Fmn
a ~x!Fmn

a ~x!&54B2, x5
B4R4

128p2 , s5B f~pBR2!,

f ~z!5
2

3z S 32
A3

2zE0

2z/A3dx

x
sinx

2
2A3

z E
0

z/A3dx

x
sinxD ,

while the quark condensate density at the domain cen
calculated in the lowest nonvanishing order over qu
fields, reads

^c̄c&52
q

2p2R3~11q!
@2F~BR2/2A3!1F~BR2/A3!#

F~z!5ez2z211
z2

4 E0

`dte2t2z(cotht21)/2

sinh2t
~cotht21!,

q5B2R4/16,

whereq is the absolute value of the topological charge as
ciated with a single domain.

To gain numerical estimates of these quantities we fi
the mean field strength parameterB and domain radiusR to
fit the known value of the string tension,

AB5947 MeV, R215760 MeV, ~5!

which leads to the values

~as /p!^F2&50.081 GeV4, As5420 MeV,

x5~197 MeV!4, ^c̄c&52~228 MeV!3,
~6!

with domain chargeq50.15 and densityv21542.3 fm24.
This estimation shows a high density of clusters and str
background fields in the system, with confinement of sta
charges and spontaneously broken chiral symmetry. The
no separation of scales characterizing the system,ABR'1.
The qualitative picture as well as numerical values obtai
indicate consistency of the gross features of the model.

These results suggest that formation of clusters, predo
nantly ~anti-!self-dual and with average size 2R'0.5 fm,
can have a purely quantum origin whose explanation co
require reference to the existence of obstructions in ga
fixing.

It should be noted that the physical content of the ab
numbers can differ from other approaches. For instance
QCD sum-rules@21# determination of the gluon condensa
is not exactly comparable to ours, since in our case cor
tions of orderO(as) and higher contain nonperturbative in
formation via explicit dependence of quark and gluon pro
gators on the mean field.

Moreover, the above parameters only give a character
tion of the ‘‘bulk’’ properties of the theory and say littl
about confinement of dynamical color modes and hadron
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tion. Information about these aspects is contained in
quark and gluon Green’s functions, in particular in the
propagators. It is shown that, as expected, the Dirich
boundary condition removes gluon zero modes, and
propagator in this problem is well defined, unlike the ana
gous problem in the infinite volume. Both propagators ha
support in the interior of the hypersphere, where they h
the usual ultraviolet singularity. Thus at short distances
propagators have standard perturbative form plus power
rections. The singularity in the configuration representat
of propagators is integrable and their Fourier transforms
ist, so that in momentum space the propagators are e
analytical functions due to their compact support. This
regard as a manifestation of the confinement of dynam
fields.

The paper is organized as follows. In Sec. II the bound
conditions are discussed and the model partition function
defined. We consider properties of the ensemble of m
fields in Sec. III and estimate the lowest dimension glu
condensate, the topological susceptibility, the string cons
and the quark condensate in the lowest nonvanishing orde
fluctuation fields. Gluon and ghost propagators are calcula
in Sec. IV and their analytical properties are discussed
Sec. V we give an outline of the problems remaining to
solved and possible perspectives. The Appendixes con
some technical and illustrative material.

II. THE PARTITION FUNCTION

In this section we formulate a partition function whic
will be used in subsequent sections for modelling the Q
partition function in the presence of clustered backgrou
fields. It should be clear from the very beginning that we w
not derive the model to be considered from the original QC
functional integral. The mathematically accurate framewo
for such a derivation, a self-consistent mean field approxim
tion requiring calculation of the effective action of QCD as
functional of the mean field and characteristic functions
the domains, is yet to be formulated. The best that can
done at this stage is to identify several ingredients of
formalism required for motivating the model within QCD
postulate the model partition function, and then look for s
natures of justificationa posteriori, by means of explicit cal-
culations.

Clustered structure of the gauge fields is introduced by
proposition that singular configurations may not be exclud
ad hoc from the functional space of integration; rather t
character of singularities should be restricted by the nat
requirement that the classical action density for a given~in
general, singular! configuration has to be finite.

We assume that in the vicinity of a singularity an arbitra
gluon field A can be divided as in Eqs.~1!, ~2!, Am

a (x)
5Sm

a (x)1Qm
a (x), with Q a regular field andS the singular

pure gauge part,

Ŝm~x!5
1

ig
@]mU~x!#U21~x!, U~x!5eig f̂ (x), f̂ 5 f ata.

The field strength corresponding toSm
a vanishes. In this pape

we will consider Abelian singular configurations
5-3



-

of

ss
se
ia
on
e-

u
et
s
a
al
ca
-
-
s

m
nc
A

ion
-
hu
ic
rg
in
a
re

or

ar

on

q.
ld

ion

-
the

e
uf-

sfy

e

rma-

n as
to

c-
ay

ior.
of

nd
ld
and

ion

n-
its
to

a
ld.
e

ate
and
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]mŜn2]nŜm5@Ŝm ,Ŝn#50.

This can be implemented via

f̂ 5(
j 51

N

n̂j f j~x!, n̂ j5const, @]m ,]n# f j~x!50, @ n̂ j ,n̂k#50,

where each of the functionsf j is singular on a three
dimensional boundary]Vj of the ~four-dimensional! region
Vj , while the matricesn̂ j belong to the Cartan subalgebra
SU(3) and can be parametrized by

n̂ j5t3cosj j1t8sinj j , 0<j j,2p.

The boundaries of the densely packed regionsVj necessarily
intersect each other and, for instance, color orientation a
ciated with the boundary becomes ambiguous in the inter
tion regions. Strictly speaking, this means that the Abel
singular fields should be accompanied by topologically n
trivial vortexlike configurations, such that the thre
dimensional ‘‘domain wall’’~a topologically trivial object!
should start and finish at the two-dimensional singular s
faces, corresponding to a type of dislocation. A compl
picture would include the whole hierarchy of singular field
domain walls, vortices, monopoles and instantons. It is h
to formulate a complete approach in a precise way. A qu
tative discussion of this aspect of domain-like structures
be found in Ref.@22#. Even if we neglect the effects of ‘‘dis
locations’’ on the boundaries]Vj , a self-consistent consid
eration is still a complicated problem. However, in this ca
one can get some idea about features of the required for
ism by means of an artificial example—QED in the prese
of the singular background fields, considered in Appendix
The linearity of electrodynamics enables a formal definit
of the free energy~effective action! as a functional of a back
ground field and characteristic functions of clusters, and t
relegates the question about formation of clusters in a typ
gauge field configuration to a competition between ene
and entropy. In the case of an Abelian weakly interact
theory one hardly expects domain formation. On the contr
in non-Abelian strongly interacting theory singular fields a
most probably unavoidable, but unlike QED a straightf
ward formulation is a difficult task.

First of all we should determine the appropriate bound
conditions for the fluctuation fields about the singular fieldS
for finiteness of the action density. Substituting Eq.~1! into
the QCD Lagrangian, we obtain

LQCD52
1

4
Qmn

a Qmn
a 1c̄@ i ]”2m1gQ”̂ 1gS”̂ #c

1
ig

2
Qmn

a @S̆m
abQn

b2S̆n
abQm

b #2
g2

2
@~S̆2!bb8Qn

bQn
b8

2~S̆mS̆n!bb8Qm
b Qn

b8#, ~7!

andQmn
a is the usual field strength tensor for the fluctuati

field. We see from Eq.~7! that conditions on the gluon field
arise
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n̆ jQm50 for xP]Vj , ~8!

while quark fields should satisfy the condition given in E
~3!. Equation~8! means that the modes of the gluon fie
longitudinal to the color vectornj

a are not restricted, so it is
convenient to decompose gluon fluctuations inside the reg
Vj into transverse and longitudinal parts with respect tonj

a :

Qm
a 5Am

ja1nj
aBm

j , nj
aAm

a j[0,

Am
ja50 for xP]Vj . ~9!

The separation in Eq.~1! into singular and regular parts im
poses certain restrictions on the gauge transformations if
original and transformed fieldsQ are subject to the sam
boundary conditions. To determine these restrictions it is s
ficient to consider the infinitesimal transformation

Sm1Qm→Sm1Qm1dQm ,

dQm
a 5]mva2 f abcvb~ncBm1Am

c 1Sm
c !, ~10!

from which we conclude that gauge functions should sati
the conditions

va5nj
av j1v'

ja , nj
av'

ja50,

]mv'
ja5v'

ja50 for xP]Vj . ~11!

The longitudinal functionsv j need not be restricted. Th
condition Eq.~11! dictates that gauge fixing for the fieldsQ
should be achieved by means of restricted gauge transfo
tions.

The original conditions Eqs.~3! show that the interaction
of quark and gluon fluctuations within thek-th region with
the field fluctuations in the rest of the system can be see
a coupling to external gauge fields which are longitudinal
the color directionnk

a of the boundary]Vk . This feature
motivates an approximative treatment of the partition fun
tion, in which clusters are treated as decoupled but, by w
of compensation, a mean field is introduced in their inter
A self-consistent mean field approach requires calculation
the effective action as a functional of the mean field a
characteristic functions of the domains. Its minima wou
contain information about mean field character, shape
typical domain size.

Here we assume that the effective action favors format
of clusters with typical sizeR and nonzero mean field. In
Appendix B it is shown that with this and an arbitrary co
stant mean field the effective action for a domain exhib
twelve degenerate discrete minima corresponding
~anti-!self-dual configurations and six values@for SU(3)# of
the anglej associated with the Weyl group. There is also
degeneracy in the orientation of the chromomagnetic fie
The valuej05p/6 is specific for an ansatz with the effectiv
action polynomial in TrB̂k, but the periodp/3 is universal.
Since the volume of the domain is finite the degener
minima do not correspond to thermodynamical phases
have to be summed in the partition function.
5-4
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The partition function for the model is defined as

Z5N lim
V,N

)
i 51

N E
V

d4zi

V E
S
ds iEF Q

i
DQiE

F c
i
Dc iDc̄ i

3d@D~B̆( i )!Q( i )#DFP@B̆( i ),Q( i )#e2SVi

QCD[Q( i )1B ( i ),c( i ),c̄( i )] ,

~12!

where the thermodynamic limit assumesV,N→` with the
densityv215N/V taken finite. The fieldsQ( i ), c i andc̄ i are
subject to boundary conditions Eq.~3!, in which the original
singularities are effectively encoded. Interaction between
original domains is substituted by the mean field. A ba
ground gauge condition is imposed. The Faddeev-Popov
terminant should be calculated on a restricted space of fu
tions consistent with Eq.~11!, which can be implemented in
the form of an integral over ghost fields (h̄ j

a ,hj
a) subject to

the boundary condition

n̆ jhj50 for xP]Vj . ~13!

The integration measureds i is

E
S
ds i . . . 5

1

48p2E0

2p

da iE
0

2p

dw iE
0

p

du i sinu i

3E
0

p

dv i (
k50,1

d~v i2pk!E
0

2p

dj i

3(
l 50

5

dS j i2~2l 11!
p

6 D . . . . ~14!

Here w i and u i are the spherical angles of the chromoma
netic field,v i is the angle between the chromomagnetic a
chromoelectric fields,j i is the angle in the color matrixn̂i ,
a i is the chiral angle andzi is the center of the domainVi
with the boundary

~x2zj !
25R2.

The partition function Eq.~12! describes a statistical sys
tem of densityv21 composed of noninteracting hypersphe
cal clusters, each of which is characterized by a set of in
nal parameters and whose internal dynamics are represe
by the fluctuation fields. Correlation functions can be cal
lated taking the mean field into account explicitly and d
composing over the fluctuations. First of all we consid
vacuum characteristics of the system to zeroth order in
expansion.

III. VACUUM PROPERTIES TO LOWEST ORDER IN
FLUCTUATIONS

The above prescribed perturbative treatment of fluct
tions means in particular that they cannot change vacu
properties of the system. Thus our immediate task is to
whether the mean field itself reproduces the main nonper
bative characteristics of the pure gluonic vacuum. To achi
11402
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this we have to compute vacuum expectation values o
number of basic quantities omitting integration over fluctu
tion fields. Thus we will calculaten-point connected correla
tors of field strength and thereby the corresponding glu
condensates, string constant and topological susceptibili

A. Mean field correlators

A straightforward application of Eq.~12! to the vacuum
expectation value of a product ofn field strength tensors
each of the form

Bmn
a ~x!5(

j

N

n( j )aBmn
( j )u„12~x2zj !

2/R2
…,

gives for the connectedn-point correlation function

^Bm1n1

a1 ~x1! . . . Bmnnn

an ~xn!&

5 lim
V,N→`

(
j

N E
V

dzj

V E ds jn
( j )a1 . . . n( j )anBm1n1

( j ) . . . Bmnnn

( j )

3u„12~x12zj !
2/R2

… . . . u„12~xn2zj !
2/R2

…

5Bntm1n1 , . . . ,mnnn

a1 . . . an Jn~x1 , . . . ,xn!, ~15!

where the tensort is given by the integral

tm1n1 , . . . ,mnnn

a1 . . . an 5E ds jn
( j )a1 . . . n( j )anBm1n1

( j ) . . . Bmnnn

( j ) ,

and can be calculated explicitly using the measure, Eq.~14!.
This tensor vanishes for oddn. In particular, the integral ove
spatial directions is defined by the generating formula

1

4p
E

0

2p

dw jE
0

p

du jsinu je
iBmn

( j ) Jmn

5
sinA2B2@JmnJmn6 J̃mnJmn#

A2B2@JmnJmn6 J̃mnJmn#
~16!

where the plus and minus correspond toBmn
( j ) being self-dual

or anti-self-dual. The translation-invariant function

Jn~x1 , . . . ,xn!5
1

vE d4zu„12~x12z!2/R2
… . . .

3u„12~xn2z!2/R2
… ~17!

can be seen as the volume of the region of overlap on
hyperspheres of radiusR and centers (x1 , . . . ,xn), normal-
ized to the volume of a single hyperspherev5p2R4/2,

Jn51, for x15 . . . 5xn .

It is obvious from this geometrical interpretation thatJn is a
continuous function and vanishes if the distance between
two pointsuxi2xj u>2R; correlations in the background fiel
have finite range 2R. The Fourier transform ofJn is then an
5-5
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ALEX C. KALLONIATIS AND SERGEI N. NEDELKO PHYSICAL REVIEW D 64 114025
entire analytical function and thus correlations do not ha
particle interpretation. It should be stressed that the statis
ensemble of background fields is not Gaussian since all c
nected correlators are independent of each other and ca
be reduced to the two-point correlations.

As a simplest application of the above correlators we
a gluon condensate density which to this approximation

g2^Fmn
a ~x!Fmn

a ~x!&54B2. ~18!

Note that the coupling constant is absorbed into the ga
field.

B. Topological charge and susceptibility

Another vacuum parameter which plays a significant r
in the resolution of theUA(1) problem is the topologica
susceptibility@23–25#. To define this we consider first th
topological charge density for the color groupSU(3),

Q~x!5
g2

32p2 F̃mn
a ~x!Fmn

a ~x!,

which in the mean field approximation takes the form

Q~x!5
B2

8p2(
j 51

N

u@12~x2zj !
2/R2#cosv j , ~19!

where v jP$0,p% depending on the duality of thej-th do-
main. We thus see that the topological charge density is c
stant in each domain, and the sign of this constant is un
related. For a given field configuration then the topologi
charge is additive

Q5E
V
d4xQ~x!5q~N12N2!, q5B2R4/16,

2Nq<Q<Nq

whereq is a ‘‘unit’’ topological charge, namely the absolu
value of the topological charge of a single domain, andN1

(N2) is the number of domains with~anti-!self-dual field,
N5N11N2 . With a fixed total number of domainsN the
probability of finding the topological chargeQ in a given
configuration is given by the distribution

PN~Q!5
NN~Q!

NN
5

N!

2N~N/22Q/2q!! ~N/21Q/2q!!
,

whereNN(Q) is the number of configurations with a give
charge andNN is the total number of configurations. Th
distribution is symmetric aboutQ50, where it has a maxi-
mum forN even. ForN odd the maximum is atQ56q. We
conclude that the topological charge averaged over the
semble of clusters vanishes.

The topological susceptibility

x5E d4x^Q~x!Q~0!& ~20!
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is determined by the two-point correlator of topologic
charge density, which in the lowest approximation reads

^Q~x!Q~y!&5
B4

64p4 J2~x2y!, ~21!

and we get

x5
B4R4

128p2 . ~22!

C. Area law for the Wilson loop

In the same mean field approximation the Wilson loop
given by the integral

W~L !5 lim
V,N→`

)
j 51

N E
V

d4zj

V E ds j

1

Nc
Tr

3expH i E
SL

dsmn~x!B̂mn~x!J ,

where the measureds j corresponds to an integral over th
set of parameters

$zk ,fk ,uk ,vk ,jk%k51
N

of the field strength

B̂mn~x!5(
k

n̂(k)Bmn
(k)u„12~x2zk!

2/R2
….

Note that path ordering in our case is not necessary since
matricesn̂(k) are assumed to be in the Cartan subalgebra

Strictly speaking the contourSL around which the path-
ordered exponential is integrated should be a rectan
whose Euclidean-time length should be taken arbitra
large before the spatial length. It is for such a contour t
one has a strict interpretation of the behavior of the expon
in terms of a static potential@26,27#. However the expecta
tion that there be an area law is not dependent on the spe
geometry of the contour. In view of the rotational properti
of our approximation to the vacuum fields, it is computatio
ally more convenient to consider acircular contour in the
(x3 ,x4) plane of radiusL with the center at the origin. If an
area law is established, as will be the case, the nume
value of the resulting string constant would not be precis
that corresponding to a rectangular contour. However du
the fact that the loop must be taken large in order to extr
the potential, the difference between a circle and a rectan
should not lead to radically different values of the stri
constant.

To illustrate the steps in the calculation while avoidin
cumbersome formulas we consider here the case of c
groupSU(2). Thedetails ofSU(3) will be given in Appen-
dix C, though the final result will be quoted below. For col
SU(2) we have

n̂(k)5ekt3 , ek561.
5-6
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CONFINEMENT AND CHIRAL SYMMETRY BREAKING . . . PHYSICAL REVIEW D64 114025
The thermodynamic limit (V,N→`) assumes that the sub
volume

v5V/N5p2R4/2

is fixed. Calculation of the trace in color space leads to
result

1

2
Tr expH i E

SL

dsmn~x!B̂mn~x!J 5cosS (
k

ekBmn
(k)Jmn~zk! D ,

where we have denoted

Jmn~zk!5E
SL

dsmn~x!u„12~x2zk!
2/R2

…. ~23!

Using the properties of the measure of integration over
collective coordinates one gets

W~L !5 lim
V,N→`

F E
V

d4zj

V E ds j

1

2
~eiBmn

( j ) Jmn(zj )

1e2 iBmn
( j ) Jmn(zj )!GN

.

We have exploited here the property that the integral o
collective variables does not depend on the indexj. As the
contour of the Wilson loop is in the (x3 ,x4)-plane, the only
nonzero components ofJmn are

J3452J43~z!5E
SL

dx3dx4u„12~x2z!2/R2
…, ~24!

and

BmnJmn~z!52B43J43~z!52E3J43~z!52BJ43~z!cosu,
~25!

whereu is the angle between the chromoelectric fieldE and
the third coordinate axis. Now we can calculate the integ
over the spatial orientations of the vacuum field

E ds je
iBmn

( j ) Jmn(zj )5
1

4pE0

2p

dfE
0

p

du j sinu je
2iBJ43cosu j

5
sin 2BJ43~zj !

2BJ43~zj !
,

and the Wilson loop takes the form

W~L !5 lim
N,V→`

F 1

VEV
dz

sin 2BJ43~z!

2BJ43~z! GN

.

Calculating the integral overz we obtain finally

W~L !5 lim
N→`

F12
1

N
U~L !GN

5e2U(L)
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U~L !5
p2R2L2

v S 12
1

2pBR2E0

2pBR2dx

x
sinxD

1
p2

v S 4

3
R3L1

1

2
R4D2

p2~12cos 2pBR2!

v~2pB!2

1
4p2L

v~2pB!3/2E0

A2pBR2

dx sinx22
p2L4

v E
0

R2/L2

ds

3E
(12As)2

(11As)2

dt
sin$BL2@2w2sinw1s~2c2sinc!#%

BL2@2w2sinw1s~2c2sinc!#
,

cos
w

2
5

t2s11

2At
, cos

c

2
5

t1s21

2Ast
, ~26!

where the thermodynamic limit (N,V→`,v5V/N
5p2R4/2) has been taken. One can check thatU(L)50
whenB→0, as it should.

In the limit of large Wilson loopL@R the behavior of the
first four terms inU(L) can be determined by inspection. F
the last term a slightly more involved calculation gives t
largeL behavior

2
p2L4

v E
0

R2/L2

dsE
(12As)2

(11As)2

dt

3
sin$BL2@2w2sinw1s~2c2sinc!#%

BL2@2w2sinw1s~2c2sinc!#

'2
8p2LR3

3v

with corrections coming atO(R4). Thus only the first term in
U(L), going likeL2, displays an area dependence. The fi
result for the string constant forSU(2) is

W~L !5e2spL21O(L), s5B f~pBR2!,

f ~z!5
2

z S 12
1

2zE0

2z dx

x
sinxD .

For the case ofSU(3), asshown in Appendix C, the function
f (z) turns out to be

f ~z!5
2

3z S 32
A3

2zE0

2z/A3dx

x
sinx2

2A3

z E
0

z/A3dx

x
sinxD .

~27!

It is positive forz.0 and has a maximum forz51.55p. We
choose this maximum to estimate the model parameters
fitting the string constant to the lattice result,

AB5947 MeV, R215760 MeV, ~28!

with unit chargeq50.15, densityv21542.3 fm24 and the
‘‘observable’’ gluonic parameters of the vacuum
5-7



d

o

re

a
be

n
te
c
e

be
-

ar
lly

c

ct
in
n
ri
c

be

o
se

e
u

a
-
n
e

he
-
s

th
le
en
n

ro
-

y

m
on-
m-
es-
ain

the
ion

ht,

the

re-
less
al

.
sate
om
ld
the

the
to

e
the

ALEX C. KALLONIATIS AND SERGEI N. NEDELKO PHYSICAL REVIEW D 64 114025
As5420 MeV, x5~197 MeV!4,

~as /p!^F2&50.081 GeV4. ~29!

The high density ensures area law dominance already at
tances 2L'1.522 fm.

The result for the gluon condensate is larger than the m
recent estimate within QCD sum rules@28#. As already men-
tioned, our value is not directly comparable to sum-rule
sults due to differences in the content ofO(as) corrections.
What appears to be important is that all these quantities
nonzero, and their values can be fit to the expected num
simultaneously.

Obviously, if B goes to zero then the string constant va
ishes. This underscores the role of the gluon condensa
the confinement of static charges. On the other hand we
also see that if the number of domains is fixed and the th
modynamic limit is defined asV,R→`,N5const,`,
namely if the clusters are macroscopically large, thenW(L)
51, which indicates the absence of a linear potential
tween static~infinitely heavy! charges in a purely homoge
neous field. However this does not mean that heavy qu
(mQ

2 @B) are not confined if domains are macroscopica
large. As is shown in Ref.@29#, the nonrelativistic potential is
quadratic in the distance between heavy quarks with the
efficient proportional tomQ

21 .
Since we have integrated over background fields exa

the role of a finite range of correlation functions is hidden
the above calculation. In order to see this role explicitly o
would need to decompose the integrand into an infinite se
and integrate term by term. At this step all correlation fun
tions of the background field up to infinite order would
manifest. The arguments of Refs.@30# about the crucial im-
portance of a fast decay of correlators for confinement
static charges would be seen to apply here via this repre
tation.

A comment on the values of the parametersR andB ap-
pearing in our estimation is in order. We observe that ther
no separation of the two scales characterizing the vacu
The average strength of vacuum fieldsB and the average
domain sizeR, are comparable to each other,ABR'1. Nei-
ther large domains nor stochasticity of background fields
seen here whicha posteriori justifies the mean field averag
ing prescription in the partition function. This prescriptio
corresponds to a system less ordered than, for instanc
spin glass. Nor does the partition function represent a
erophase mixture@31#, since the condition for quasi
equilibrium is not satisfied: one may not think of these clu
ters as droplets of different thermodynamic phases as
are too small and too transient compared to the basic sca
interactions determined in this picture by the gluon cond
sate value. The mean field in the clusters is singled out
due to a hierarchy of scales, but due to certain specific p
erties: the~anti-!self-duality, and the Abelian character if dis
locations at the boundaries are neglected. Homogeneit
the background field appears as an approximation.
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D. Quark condensate density at domain center

A complete consideration of the fermionic eigen-proble
for the background field and boundary conditions under c
sideration will be given in a separate work. However to co
plete the picture of vacuum properties in the model, we
timate here the quark condensate density at the dom
center.

A complete calculation of the quark condensate in
lowest nonvanishing order over fluctuations requires solut
of the equations

~ iD” 2m!S~x,y!52d~x,y!, ~30!

ih” ~x!eiag5S~x,y!52S~x,y!, ~x2z!25R2, ~31!

S~x,y!ih” ~y!e2 iag55S~x,y!, ~y2z!25R2, ~32!

wherehm(x)5(x2z)m /ux2zu, andDm is the covariant de-
rivative in the fundamental representation,

Dm5]m2 iB̂m5]m1
i

2
n̂Bmnxn .

Substituting

S5~ iD” 1m!@P6H01P7O1H111P7O2H21#, ~33!

into Eq. ~30! where

O65N1S61N2S7 ,

N65
1

2
~16n̂/un̂u!,

S65
1

2
~16SW BW /B!,

and B̂5un̂uB, shows that the scalar functionsHz , with z
50,61, should satisfy the equations:

~2D21m212zB̂!Hz5d~x,y!. ~34!

We note that if solutions vanishing at infinity were soug
then the Green functionH21 would be divergent in the
massless limit due to the contribution of zero modes of
Dirac operator in the presence of the~anti-!self-dual homo-
geneous field. The present bag-like boundary conditions
move zero eigen-values from the spectrum, and the mass
limit is regular. Due to averaging over self- and anti-self-du
configurations and all possible values of anglea in the par-
tition function, chiral symmetry is not broken explicitly
However, as we show below, a nonzero quark conden
arises in the massless limit due to an interplay of rand
distribution of the domains with self- and anti-self-dual fie
and the boundary conditions with the random value of
chirality violating anglea.

In order to avoid cumbersome calculations and expose
role of the former zero modes in a transparent way we turn
the particular choicey5z50 and calculate the value of th
quark condensate at the center of the domain. In this case
5-8
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CONFINEMENT AND CHIRAL SYMMETRY BREAKING . . . PHYSICAL REVIEW D64 114025
functions Hz can depend only onxm , Bmnxn and hm

5xm /Ax2, and hence are functions ofx2 only, and the gen-
eral solutions for scalar Green’s functions take the form

Hz5D~x2umz!1CzF~x2umz!,

wheremz5m2/2B1z, and

F~x2um!5e2Bx2/4M ~11m,2,Bx2/2!.

Here D(x2um) is the vanishing at infinity scalar propagat
with mass 2Bm in the homogeneous~anti-!self-dual field and
F is a solution to the homogeneous equation regular ax2

50, expressed in terms of the confluent hypergeome
function. The constantsCz can be used to fit the boundar
condition. Terms withH0 andH11 are regular in the mass
less limit and cannot contribute to the trace of the qu
propagator. Thus we concentrate on the termH21. Using
identities

gmBmrxrP7S15 iBx”P7S1 ,

gmBmrxrP7S252 iBx”P7S2 ,

one can show that the boundary condition is satisfied if
the boundary

2e7 iamH21522H218 2B̂R2H21 ,

which implies that in the massless limitC21 takes the form

C2152
B̂2

4p2m2
1

e6 ia

2p2R3m
F~B̂R2/2!1O~1!,

F~z!5ez2z211
z2

4 E0

`dte2t2z(coth t21)/2

sinh2t
~cotht21!.

Moreover the singular terms cancel inD” H21 and

lim
m→0

mH21~x,0!5
e6 ia

2p2R3
F~B̂R2/2!e2B̂x2/4, ~35!

and thus,

Tr S~0,0!5
e6 ia

2p2R3 (
un̂u

F~B̂R2/2!. ~36!

It should be noted that the part of the propagator respons
for the nonzero trace, Eq.~35!, is proportional to the zero
mode of the Dirac operator

iD” P7O2e2B̂x2/4[0.

Now we have to average Eq.~36! over domain configu-
rations taking into account the quark determinant. Accord
to @32# the a-dependence of the quark determinant is

expH ia

32p2E dxB̃mnBmnu~12x2/R2!J 5exp$6 iqa%
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whereq is the topological charge associated with a doma
and thus au-term is generated effectively by the quark d
terminant. After averaging overa we get a finite value for
the condensate at the center of the domain

^c̄c&52
q

2p2R3~11q!
(
un̂u

F~B̂R2/2!.

Numerically this is equal tô c̄c&52(228 MeV)3 for B
andR fixed by the string constant as in Eq.~28!.

IV. PROPAGATORS IN THE PRESENCE OF DOMAINS

In order to study in more detail the influence of doma
structure and the mean field on the properties of the dyna
cal quarks and gluons we have to find their propagato
They can be analytically calculated by reduction to the sca
problem, essentially that of a four-dimensional harmonic
cillator with total angular momentum coupled to the extern
field. The general solution is given by decomposition ov
hyperspherical harmonics. In the following section w
present the exact solution for the scalar propagator, tho
with most derivations relegated to Appendixes D and E. W
the scalar result we derive propagators for ghost and gl
fluctuations in an external~anti-!self-dual field with Dirichlet
boundary conditions imposed on the fluctuations on a hyp
spherical surface.

A. Scalar propagator

The problem to be solved is given by the scalar Gree
function equation

@~]m2 iBm!22M 2#G~x,x8um!52d (4)~x2x8!,

Bm52
1

2
Bmnxn , BmnBmr5B2dnr , ~37!

with the homogeneous Dirichlet boundary condition

G~x,x8um!x25R25G~x,x8um!x825R250,

whereR is the radius of a hypersphere centered at the or
andm5M 2/2B.

We present first the solution to the corresponding eig
value problem:

2@~]m2 iBm!22M 2#cl5lcl .

One may chooseBmn such that

B345E, B125B, 2B<E<B.

A representation of the eigenfunctions in terms of a comp
orthonormalized set of eigenfunctions of the fou
dimensional Laplace operator is achieved in the followi
hyperspherical coordinate system~see for example,@33#!

x15r sinh cosf

x25r sinh sinf
5-9
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x35r cosh cosx

x45r cosh sinx. ~38!

The angular eigenfunctions are

Ckm1m2
~h,f,x!5~21! um11m2u~2p!21Qk

m12m2 ,m11m2~h!

3expi @~m12m2!x1~m11m2!f#

Qk
k2r 2s,s2r~h!5A2~k11!~k2r !! ~k2s!! r !s!

3 (
n50

r
~21!r 2ncosk2r 2s12nh sinr 1s22nh

~k2r 2s1n!!n! ~r 2n!! ~s2n!!
,

~r ,s50,1, . . . ,k!,

wherek,m1 ,m2 are respectively the orbital angular mome
tum and the two azimuthal quantum numbers, relevant fo
four-dimensional hyperspherical symmetry. That theCkm1m2

are eigenfunctions with the said eigenvalues is proven
Appendix D.

The eigenfunctions for the complete problem are a pr
uct of radial and angular parts,

c~x!5 f ~r !Ckm1m2
~h,f,x!.

The radial equation has a solution expressed in terms of
confluent hypergeometric function, in the notation of@34#,

f ~r !5~Br2/2!k/2e2Br2/4

3M S k

2
112m2,11

M 22l

2B
,k12;Br2/2D ,

~39!

where the function regular atr 50 is chosen for normaliz-
ability. Herem2,1 should be put equal tom2 for the self-dual
field, andm1 for the anti-self-dual field. It is convenient t
denote

n2,15
k

2
112m2,1. ~40!

Another independent solution~not normalizable in our prob
lem!, which is regular at infinity and singular at the origi
would be obtained by replacing the functionM with the
function U. Imposition of the Dirichlet condition atr 5R
forces eigenvaluesl to take discrete values defined by th
zeros ofM (a,b,z) as a function ofa at fixed b and z. The
eigenvaluesl are strictly positive. As we will see below, th
case ofM 2522B will be met in the problem for the gluon
propagator. In this case the lowest eigenvaluel0 is defined
by (k5m15m250)

M ~2l0 ,2;BR2/2!50,

and is a positive function ofBR2, as can be checked.
The propagator can be found by the standard metho

decomposition over hyperspherical harmonics, see for
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stance@35#, exploiting the above hyperspherical represen
tion. The derivation is given in Appendix E but it consists
essentially two steps. First we exploit completeness of
angular eigenfunctions in order to reduce the four dim
sional problem to a one-dimensional Sturm-Liouville pro
lem with a known exact solution for the radial dependen
Second we add a solution to the homogeneous equation
a coefficient selected to implement the above boundary c
dition.

Using the solution to the eigenvalue equation withl50,
one gets independent solutions for the homogeneous e
tion. In the notation of@34#, the two solutions~respectively
regular at the origin and at infinity! are

R1~r uk,n2,1,m!5r ke2Br2/4M ~n2,11m,k12;Br2/2!

R2~r uk,n2,1,m!5r ke2Br2/4U~n2,11m,k12;Br2/2!.
~41!

The Sturm-Liouville equation is satisfied by

Xkn2,1
~r ,r 8um!5B

G~n2,11m!

4G~k12!
Rkn2,1

~r ,r 8um! ~42!

with

Rkn2,1
~r ,r 8um!5H R1~r uk,n2,1,m!R2~r 8uk,n2,1,m!, r ,r 8

R1~r 8uk,n2,1,m!R2~r uk,n2,1,m!, r .r 8.
~43!

In terms of these quantities, the Green’s function is

G~x,x8um!5
B

4 (
k,m1 ,m2

G~n2,11m!

G~k12!
Ckm1m2

~h8,f8,x8!

3Ckm1m2
~h,f,x!

3FRkn2,1
~r ,r 8um!2

U~n2,11m,k12;BR2/2!

M ~n2,11m,k12;BR2/2!

3R1~r uk,n2,1,m!R1~r 8uk,n2,1,m!G . ~44!

The first term inside square brackets guaranteesG to be a
Green’s function through the solution to the Sturm-Liouvi
equation. The coefficient in the second term is determined
the boundary condition. The only singularity inG is the
usual ultraviolet one atx5x8. For more details we refer the
reader to Appendix D.

B. Ghost and gluon propagators

We work in the background gauge

Dm
abAm

b 50,

and use conventions for the adjoint representation of co
SU(3):
5-10
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D̆m5]m2 i n̆Bm , n̆5Tana, Tbc
a 52 i f abc.

n̆5T3cosjk1T8sinjk , jk5~2k11!p/6,
~45!

k50,1, . . . ,5.

B̆mn5n̆Bmn , B̆5An̆2B.

The color matrixn̆ can be diagonalized by the unitary tran
formation

n5Un̆U†5diag~z1 ,2z1,0,z2 ,2z2 ,z3 ,2z3 ,0!

z15sinj, z25~sinj1A3cosj!/2,

z35~2sinj1A3cosj!/2,

whereU5diag(W,0,W,W,0) with

W5
1

A2
S 1 2 i

1 i D . ~46!

For the values of the anglejk as in Eq.~45! the z i take
values from the set (61,61/2). Namely, fork50,1,2,3,4,5
respectively, the threez i are (1/2,1,1/2), (1,1/2,21/2),
(1/2,21/2,21), (21,21/2,1/2), (21/2,1/2,1). The diago-
nalized covariant derivative takes the form

Dm5UD̆mU†5]m2 inBm . ~47!

In the Feynman gauge, diagonalized equations for the g
and gluon propagators take the form

2D2G~x,x8!5d~x2x8!,
~48!

~2D2dmn12inBmn!Gnr~x,x8!5dmrd~x2x8!,

with the diagonalized boundary conditions

nGnr~x,x8!50, nG~x,x8!50, for x25R2 or x825R2,

wheren and the propagators are diagonal matrices in co
indices. As evident above, the matrixn has two zero eigen
values and the corresponding gluon components are no
stricted by the above boundary condition so the equations
these modes are simply the free ones. These modes are
not confined in the model under consideration.

The scalar equation for the ghost propagator has b
solved in the previous section, where one should simply
place B→nB and putM50. The equation for the gluon
propagator and the boundary condition can be further dia
nalized with respect to Lorentz indices and is thus reduce
four scalar equations, each of which has a well defined s
tion since, as discussed above, dangerous zero mode
called chromons@19,20#, do not satisfy Dirichlet conditions
and do not contribute to the Green’s function. The origin
propagators are restored by the inverse transformations.

In the case of the gluon propagator one can avoid
second diagonalization by looking for a solution of the fo
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Gnr~x,x8!5~D2dnr12inBnr!D~x,x8!. ~49!

Substitution of Eq.~49! into the original Green’s function
equation gives

@2~D2!214n2B2#D~x,x8!5d~x2x8!,

with the solution given formally by

D~x,x8!5
1

2~D2!214n2B2 d~x2x8!

5
1

4unuB S 1

2D212unuB
2

1

2D222unuBD
3d~x2x8!. ~50!

The two terms above are nothing but scalar propagators
‘‘mass term’’ M 2562unuB. Substituting Eq.~50! into Eq.
~49! and using notation of the previous subsection for
scalar propagator withB→unuB and m561 one gets after
simple manipulations

Gmn~x,x8!5
1

2
dmn@G~x,x8u1!1G~x,x8u21!#

1
inBmn

2unuB @G~x,x8u1!2G~x,x8u21!#, ~51!

where only nonzero elements of the diagonal matrixn are
involved. With this representation it is clear that the boun
ary condition for the gluon propagator is satisfied if the s
lar Green’s functionsG(x,x8u61) are subject to the homo
geneous Dirichlet condition independently of each other.
explicit form is obtained via Eq.~44! by substitutionB
→unuB andm561. This can be done straightforwardly fo
the terms withk2m2,1.0 in the expansion over hyper
spherical harmonics, as is obvious from the integral rep
sentations of the confluent hypergeometric functions@34#
(b.a.0)

M ~a,b,z!5
G~b!

G~a!G~b2a!
E

0

1

dteztta21~12t !b2a21,

~52!

U~a,b,z!5
1

G~a!
E

0

`

dte2ztta21~11t !b2a21,

with a511m1k/22m2,1 andb5k12, in our case. Specia
comment is required for the terms witha5k/22m2,150 in
the decomposition ofG(x,x8u21).

Using the representations Eqs.~52! it immediately follows
that

lim
a→0

M ~a,b,z!511O~a!, lim
a→0

U~a,b,z!511O~a!.

With this and Eqs.~41!–~44! one can be convinced that th
singularity in the gamma-function in Eq.~44! at a5n2,121
5k/22m2,150 is cancelled by the contribution coming from
the expression in the square brackets. Thus we conclude
5-11
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ALEX C. KALLONIATIS AND SERGEI N. NEDELKO PHYSICAL REVIEW D 64 114025
the gluon propagator exists. This confirms the absence o
zero modes under the imposed Dirichlet boundary con
tions.

C. A comment on analytical properties

The scalar propagator Eq.~44! which determines the ana
lytic properties of the off-diagonal components of the gh
and gluon propagators has compact support in the hy
spherical region of radiusR in Euclidean space-time with th
usual ultraviolet integrable singularity atx85x. Thus the
Fourier transform of the propagator averaged over dom
position, given by the integral

G̃~p2!5E
VR

d4xeipxG~x!,

~53!

G~x2y!5v21E
V
dzG~x2z,y2z!,

leads to aG̃(p2) which is an entire analytical function in th
complexp2 plane. Entire propagators are typical for nonloc
field theories and have been interpreted as confinemen
dynamical charged fields@19,36,37#. Thus the presence o
domains maintains confinement of off-diagonal gluons a
ghosts.

An instructive example is given by a toy calculatio
which illustrates the qualitative behavior of the Fourier tra
form of propagators with compact support in a finite regi
of R4. We calculate the Fourier transform of the function

D~x!5
u~12x2/R2!

4p2x2
.

The calculation proceeds via the following steps~where p
5upu)

D̃~p!5
1

pE21

1

dtA12t2E
0

R

drreiprt

5
2

pE0

1

dtA12t2E
0

R

drr cos~prt !

5
1

pE0

R

drJ1~pr !5
1

p2E0

Rp

dxJ1~x!

5
2

p2 (
k50

`

J2k12~Rp!

5
12J0~Rp!

p2
, ~54!

where we have used the identity

J0~z!12(
k51

`

J2k~z!51.
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This propagator is an entire function with the properties

D̃~0!5R2/4, D̃~ ip !5
I 0~Rp!21

p2
,

lim
p2→`

D̃~p!5
1

p2 F12A 2

pRp
cos~Rp2p/4!G , ~55!

lim
p2→`

D̃~ ip !5
eRp

p2A2pRp
,

which indicate the standardp22 behavior for asymptotically
large Euclidean momenta, and an exponential rising in
physical region~large energy!. We intend to consider else
where detailed analytic properties of the Green’s functions
the present approach~including that for fermions!.

V. CONCLUSIONS AND OPEN PROBLEMS

The idea of domains in the vacuum is not a new one a
various hints and attempts at implementation of such an i
can be found@19,38–40#. These approaches assume expl
itly or implicitly that the boundaries of domains are pop
lated by the ~chromo!electric and/or ~chromo!magnetic
‘‘charges and/or currents’’ which produce nonzero fie
strength inside domains. Thus the source for the mean fi
inside is assumed to be present on the boundary. Spe
configurations suitable in principle for a description of su
domains are known~see for instance@38,41–44#!. In this
picture domains are assumed to be stable and in this s
are somewhat similar to the usual domains in ferromagn

The model presented in this work differs cardinally fro
this picture. The central idea that enables us to introduce
consider domains is the observation made in Refs.@17,18#
that the presence of singular pure gauge background fi
imposes specific conditions on quark, ghost and gluon fl
tuations. The boundaries correspond to the locations of
gularities in the pure gauge vector potentials which by the
selves do not generate any field strength. Such bounda
make their presence felt only via their impact on quant
fluctuations. The mean field inside domains appears as a
lective effect of quantum fluctuations, which themselves
main subject to certain boundary conditions. The doma
are not stable in this picture, but describe a specific clas
field fluctuations in the system. Within this model all th
fundamental features of the QCD vacuum—gluon conden
tion, topological susceptibility, confinement of static and d
namical charges and a non-zero quark condensate—em
in a transparent and simple way.

So far we have discussed this mechanism in a pu
qualitative manner and the relationship of the model w
real QCD has to be clarified. It should be recalled that o
motivation skipped over two points, both requiring more fo
mal justification. In the first step we prescribed a particu
way of dealing with singular pure gauges and thus the Q
functional integral incorporated densely packed interact
domains. In the second step we replaced this integral b
model partition function describing decoupled hypersphe
5-12
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CONFINEMENT AND CHIRAL SYMMETRY BREAKING . . . PHYSICAL REVIEW D64 114025
cal domains or clusters. The role of the mean field ins
domains is to compensate effectively for the decoupling. T
problem of verification of both steps remains open. In p
ticular, a possible relationship between this kind of dom
formation via singular pure gauges and the Gribov probl
has yet to be understood.

Concerning phenomenological applications, a comp
solution to the fermionic eigenvalue problem would imm
diately enable clarification of the connection between
picture of spontaneous chiral symmetry breaking in t
model and the Banks-Casher relation@10#.

With quark and gluon propagators in the mean field
tailed applications to hadron physics are accessible. The
son spectrum, for example, can be computed via a boson
tion procedure as applied in@37,45# or via Bethe-Salpete
equations. Entire quark and gluon propagators are expe
to give rise to the Regge character of the spectrum of r
tivistic bound states@45,46#.

In this context theUA(1) problem can be also addresse
Preliminary estimations show that due to nonzero topolog
susceptibility the pseudoscalar correlators in the isove
and isoscalar channels are different in the massless limit
strong splitting between the masses of theh8 andp mesons
is expected. Alternately, the anomalous Ward identity of@23#
could be studied order by order in the decomposition o
fluctuation fields. The fact that for the pure glue theory
reasonable value for the topological susceptibility is obtain
simultaneous with a non-zero quark condensate is encou
ing in this respect.

It would be tempting to look for the present picture
lattice simulations. However, domains of constant field c
only be taken seriously in a statistical sense, so one sh
compare results not configuration by configuration~say, after
moderate cooling! but for correlators and condensates calc
lated within the model and on the lattice, where a full sta
tical ensemble has been taken into account.

Returning to gluonic fluctuations, the picture of dynam
cal confinement remains incomplete. Diagonal or ‘‘neutr
gluons remain freely propagating modes in the pre-m
field framework. Intuitively it is clear that this problem i
ultimately related to the topological triviality of the class
singular field we have considered here. Incorporating a w
hierarchy of singular fields can resolve this problem.

Finally, a set of open problems relate to the general pr
erties of quantum field theory with domain-like structur
and Dirichlet boundary conditions on fluctuation fields. E
tire propagators, which appear as a result, indicate that
theory is nonlocal. The ramifications of non-locality need
be investigated, particularly in light of recent work by E
mov @47#. Although the choice of boundary conditions is n
expected to generally influence short-distance singularitie
Green’s functions, the explicit structure of ultraviolet dive
gencies and the question of renormalizability of a quant
field model with Dirichlet boundary conditions imposed o
fields in regions of space should be investigated explicitl
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APPENDIX A: QUANTUM ELECTRODYNAMICS

The purpose of the following is to illustrate how the e
fective action as a functional of the mean field and char
teristic functions can be defined formally in the Abelian ca
Consider QED

L52
1

4
QmnQmn1c̄~ i ]”2m2eQ” !c2ec̄S”c ~A1!

in the presence of an external pure gauge singular field of
form

Sm5(
j

N

]m f j~x!,

where the functionsf j have topologically trivial singularities
on hypersurfaces]Vj and are assumed to be not Fouri
transformable. Gauge transformations which would remo
such a pure gauge field are then not defined. HereQmn

5]mQn2]nQm is the field strength for the photon fields
Thus S appears only in the interaction term coupling to t
fermion field. The fluctuation fieldsQ, c andc̄ are assumed
to be regular differentiable functions everywhere in Eucl
ean space. It should be stressed that unlike non-Abe
theory there is no internal necessity for considering singu
fields in electrodynamics, and the example below is artific
in this sense.

The fieldS in the vicinity of thej-th singular surface can
be represented as

Sm;hm
j ~hn

j ]n! f j~x!, ~A2!

wherehm
j is a unit vector normal to the surface]Vj . Finite-

ness of the action density thus requires that

c̄~x!h” j~x!c~x!50, xP]Vj . ~A3!

This condition is satisfied if, forx on the boundary

c52 ih” jeia jg5c, c̄5c̄ ih” je2 ia jg5, ~A4!

which is the well-known bag-like boundary condition@32#.
Note that we are working in Euclidean space-time and
fields c and c̄ are independent variables. The anglea j is
5-13
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ALEX C. KALLONIATIS AND SERGEI N. NEDELKO PHYSICAL REVIEW D 64 114025
arbitrary and need not be the same for differentj. It should
be stressed that the boundary condition violates chiral s
metry. No conditions on the photon fluctuation fieldQ arise
since it is decoupled fromS. Now we can write down the
functional integral straightforwardly

Z@S#5E DQd~]Q!E
FS

DcDc̄e2S[Q1S,c,c̄] , ~A5!

where now the spaceFS contains only those fields whic
satisfy the boundary conditions Eq.~A4!. We stress that the
field S in Eq. ~A5! is considered as a fixed background fie
Gauge fixing for the fieldQ can be achieved by regula
gauge transformations. We see from Eq.~A5! that due to the
presence of the singular fieldS, the integral over fermionic
fluctuations is separated into integrations over fields ins
subregionsVj bounded by the surfaces]Vj where the back-
ground field is singular, and these fluctuations are subjec
the boundary conditions~A4!.

Now we define a procedure for averaging over singu
configurations. This is done by identifying the set of differe
singular configurations with a set of characteristic functio
dividing Euclidean space into subregions, whose bounda
coincide with the singular surfaces of a given singular fie

$S%↔$x1 , . . . ,xN%, (
j

N E
V
d4xx j

k~x!5V,

where the requirement of conservation of the total volum
imposed. Integration overS is defined as an averaging ov
an ensemble of characteristic functions and anglesa j coming
through the fermionic boundary conditions,

E DSZ@S#↔)
j

N E Dx jda jdS 12V21(
k

N E d4xxk~x!D
3Z@x1 , . . . ,xNua1 , . . . ,aN#, ~A6!

Z@xua#5)
j

N E DQd~]Q!E
Fj (a j )

Dc jDc̄ j

3expH 2E
Vj

d4xF1

4
Qmn

2

2c̄ j~ i ]”2m2eQ” !c j G J . ~A7!

In this representation translation invariance as well as ch
symmetry~for m50) are restored because of the averag
over all a j and characteristic functionsx j .

Let us integrate out the photon field and factorize the p
of the fermionic integral corresponding to thek-th region.
We obtain
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Zk@xua#5E
Fk(ak)

DckDc̄k)
j Þk

N E
Fj (a j )

Dc jDc̄ j

3 expH E
Vk

d4xc̄k~ i ]”2m!ck

1
e2

2 EVk

d4xd4yJk~x!D~x2y!Jk~y!J
3 expH EVj

d4xc̄ j~ i ]”2m!c j1e2(
j Þk

E
Vk

d4x

3E
Vj

d4yJk~x!D~x2y!Jj~y!1
e2

2

3 (
j , j 8Þk

E
Vj

d4xE
Vj8

d4yJj~x!D~x2y!Jj 8~y!J ,

where Jj (x) denotes the electromagnetic current andD(x
2y) is the standard photon propagator. Inserting ‘‘unit
represented as

15 )
xPVk

E DBkdFBk2e(
j Þk

E
Vj

d4yD~x2y!Jj~y!G ,
we arrive at the representation

Z@xua#5E DBkexp$2Seff@Bkux,a#%

3E
Fk(ak)

DckDc̄kexpH E
Vk

d4xc̄k~ i ]”2m1eB” k!

3ck1
e2

2 EVk

d4xd4yJk~x!D~x2y!Jk~y!J , ~A8!

e2Seff[B
kux,a]

5)
j Þk

N E
Fj (a j )

Dc jDc̄ j

3dFBk2e(
j Þk

E
Vj

d4yD~x2y!Jj~y!G
3 expH EVj

d4xc̄ j~ i ]”2m!c j

1
e2

2 (
j , j 8Þk

E
Vj

d4xE
Vj8

d4yJj~x!D~x2y!Jj 8~y!J .

~A9!

In this representation the partition functionZ@xua# is de-
fined by the fluctuations of the fermion field in an arbitrari
chosen subregionVk in the presence of the electromagne
field Bm

k , the dynamics of which are governed by the effe
tive actionSeff .
5-14
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CONFINEMENT AND CHIRAL SYMMETRY BREAKING . . . PHYSICAL REVIEW D64 114025
As is seen from Eq.~A8!, this effective action has ap
peared as an integral~or collective effect! of field fluctua-
tions in the rest of the infinite system, outside thek-th do-
main. This action functionally depends on a divisio
provided by a particular set of characteristic functions.

Physically different situations would arise depending
the properties of the effective action. This becomes obvi
if we write down the partition function averaged over
ensemble of the characteristic functions and boundary c
ditions ~anglesa j !,

Z5)
j

N E Dx jda jdS 12V21(
i

N E d4xx i~x!D
3E DBk exp$2Seff@Bkux,a#%

3E
Fk(ak)

DckDc̄kexpH E
Vk

d4xc̄k~ i ]”2m1eB” k!ck

1
e2

2 EVk

d4xd4yJk~x!D~x2y!Jk~y!J . ~A10!

Two qualitatively different pictures are possible. If the fun
tional Seff has an absolute minimum atBk50 and infinitely
small volumes of all regionsVj ( j Þk), then we recover the
standard QED partition function in the infinite volume.
however, the minimum is at nonzero mean field and so
nonvanishing averaged size of subregions is supportable
depart from standard electrodynamics. In principle the eff
tive action can be calculated~at least within perturbation
theory!. As mentioned in the Introduction, there is no reas
to expect that the second scenario is realized in electro
namics.

APPENDIX B: EFFECTIVE POTENTIAL FOR THE
CONSTANT FIELD

Consider a covariantly constant Abelian field with t
field strength parametrized as

Bmn
a 5naBmn , naTa5T3cosj1T8sinj,

Ei5B4i , Hi5
1

2
e i jkBjk , E21H252B2,

EH5uEuuHucosv, ~EH!25H2~2B22H2!cos2v,

and let the gauge invariant effective potential be given by
series

Ueff~B,v,j!5 (
k51

`

AkTr B̆2k,

~B̆2k!mn5n̆2kBma1
. . . Bak21n , ~B1!

with Ak constants. One can show that ifUeff is bounded from
below and has a nontrivial minimum as a function of para
11402
s

n-

e
we
-

n
y-

e

-

eter B then there is a set of twelve discrete minima cor
sponding to an~anti-!self-dual field and six values of th
anglej.

The odd powers ofn̆ andB do not appear in the potentia
since this would mean violation of Weyl symmetry and pa
ity respectively. The Weyl group is a discrete subgroup
global SU(3) and in this case can be seen as the group
permutations of the eigenvalues of the matrixn̆. Such per-
mutations can be arranged by a shift of the angle parame
ing the Abelian field configuration,j→j1pn/3. In other
words, the effective potential is periodic inj with a period
p/3, the angle ofSU(3). It is also periodic inv with the
periodp due to invariance under parity. This can be check
using formulas

Tr n̆253, Tr n̆45~9/4!, Tr n̆65~3/16!@101cos~6j!#,

Tr B2522~E21H2!524B2,

Tr B452@~E21H2!222~EH!2#58FB42
1

2
~EH!2G ,

Tr B6522~E21H2!@~E21H2!223~EH!2#

5216B2FB42
3

4
~EH!2G .

A nontrivial dependence onj appears fork>3. Higher terms
depend onj via functions cos 6lj ( l>1). Taking into acount
the first three terms in the decomposition and calculating
traces as above one gets

Ueff52C1B21
C2

L4 FB42
1

2
~EH!2G1

C3

L8
B2~101cos 6j!

3FB42
3

4
~EH!2G .

The coefficientsC2 and C3 are assumed to be positive t
provide for the boundedness of the potential from below, a
L is a scale. The sign of the constantC1 is of particular
importance. IfC1 is negative the minimum is trivialB50.
For C1 positive, the potential has a minimum at nonzeroB.
Using the identity

~EH!25H2~2B22H2!cos2v,

it is easy to check that there are degenerate absolute min
corresponding to field configurations with the parameters

H25B 2, vn5pn ~n50,1!,

jk5~2k11!p/6 ~k50,1, . . . ,5!,

B 252L4~AC2
213C1C32C2!/3C3.0.

These twelve discrete degenerate minima correspond to
dual and anti-self-dual field configurations and six values
angle j, and there is a continuous degeneracy relating
5-15



ia
s

ver

ALEX C. KALLONIATIS AND SERGEI N. NEDELKO PHYSICAL REVIEW D 64 114025
orientations of the chromomagnetic fieldH. With the sim-
plest polynomial form forUeff as above we havej05p/6.
This value depends on the form of the effective potent
however the periodp/3 related to the Weyl symmetry i
universal.

APPENDIX C: THE WILSON LOOP FOR SU„3…

For SU~3! the eigenvalues of the color matrix

n̂ j5t3cosj j1t8sinj j

take values from the set

1

A3
, 2

1

A3
,

1

2A3
, 2

1

2A3
n

s.

te

11402
l,

for all different values of the vacuum angle

j jP@~2l 11!p/3# l 50, . . . ,5.

This leads to the following result for the trace averaged o
the vacuum angle

W~L !5 lim
V,N→`

F E
V

d4zj

V E ds j

1

6
~e( i /A3)Bmn

j Jmn(zj )

1e2( i /A3)Bmn
j Jmn(zj )12e( i /2A3)Bmn

j Jmn(zj )

12e2( i /2A3)Bmn
j Jmn(zj )!GN

.

Then the Wilson loop takes the form
W~L !5 lim
N→`

F12
1

N
U~L !GN

5e2U(L)

U~L !5
p2R2L2

3v S 32
A3

2pBR2E0

2pBR2/A3dx

x
sinx2

2A3

pBR2E0

pBR2/A3dx

x
sinxD 1

p2

v S 4

3
R3L1

1

2
R4D

2
p2~12cos 2pBR2/A3!

v~2pB/A3!2
2

2p2~12cospBR2/A3!

v~pB/A3!2

1
4p2L

v S 1

~2pB/A3!3/2E0

A2pBR2/A3
dx

sinx

x
1

2

~pB/A3!3/2E0

ApBR2/A3
dx

sinx

x D
2

p2L4

v E
0

R2/L2

dsE
(12As)2

(11As)2

dtS A3
sin$BL2@2w2sinw1s~2c2sinc!#/A3%

BL2@2w2sinw1s~2c2sinc!#

14A3
sin$BL2@2w2sinw1s~2c2sinc!#/2A3%

BL2@2w2sinw1s~2c2sinc!#
D .
This leads to the string constant as given through the fu
tion as in Eq.~27!.

APPENDIX D: SCALAR FIELD EIGENVALUE PROBLEM

We introduce theO(4) generators

Li5 i e i jkxj]k ,

Mi5 i ~x4] i2xi]4!,

respectively for spatial rotations and Euclidean ‘‘boost
These satisfy the usual commutation relations.

Now in the scalar field eigenvalue problem we encoun
the structure

~]m2 iBm!25]222iBm]m2BmBm .
c-

’’

r

Given that

Bm]m52
1

2
Bmnxn]m5

1

2i
~EM32BL3!

we see that it is better to go over to theO(3)3O(3) gen-
erators,

K15
1

2
~L1M !

K25
1

2
~L2M !.

So with the field self-dual/anti-self-dual,E56B we obtain,
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Bm]m5H iBK2z , E5B,

iBK1z , E52B.

Then the four dimensional Laplace operator can be writt

]25
1

r 3 ] r~r 3] r !2
4

r 2 K1
2 .

The usual considerations show then that the eigenvalue
the complete set of mutually commuting operatorsK1

2

5K2
2, K1z andK2z are

k

2 S k

2
11D ~k50,1, . . .!, m1 ,m25

k

2
,
k

2
21, . . . ,2

k

2
.

~D1!

Eigenfunctions corresponding to these values can be fo
such that

K1zCkm1m2
5m1Ckm1m2

,

K2zCkm1m2
5m2Ckm1m2

, ~D2!

K1
2Ckm1m2

5
k

2 S k

2
11DCkm1m2

.

In the hyperspherical coordinates

x15r sinh cosf

x25r sinh sinf

x35r cosh cosx

x45r cosh sinx

4K1
2 takes the form,

4K1
252

]2

]h22cosec2h
]2

]f22sec2h
]2

]x2

1~ tanh2coth!
]

]h
.

Thus

4K1
2Ckm1m2

~h,f,x!5expi @~m12m2!x1~m11m2!f#

3F2
]2

]h21~m11m2!2cosec2h

1~m12m2!2sec2h1~ tanh

2coth!
]

]h GQk
m12m2 ,m11m2~h!.

Up to normalization, the angular eigenfunctionsQ can be
better written in terms of the hypergeometric function,
11402
of

nd

Qk
m12m2 ,m11m2~h!

} cosm12m2~h!sink2m11m2~h! 2F1

3S 2
k

2
1m1 ,2

k

2
2m2 ; m12m211; 2cot2h D .

For compactness of notation we denote

h~h!5cosm12m2~h!sink2m11m2~h!,

u~h!52F1S 2
k

2
1m1 ,2

k

2
2m2 ; m12m211; 2cot2h D .

Then, after some tedious calculation, one gets

4K1
2Ckm1m2

~h,f,x!

5expi @~m12m2!x1~m11m2!f#h~h!

3F2
d2u

dh
1coth

du

dh S 2~m12m2!11

cot2h

2@2~k2m11m2!11# D1u@~2m12k!~2m21k!

3cot2h12k~m12m211!14m1m2#G .
Rewriting in terms of the variablez52cot2h one eventually
brings this to the form

4K1
2Ckm1m2

~h,f,x!

5expi @~m12m2!x1~m11m2!f#4h~h!~12z!

3Fz~12z!
d2u

dz2
1

du

dz
@~m12m211!

2~12k1m12m2!z#2S k

2
2m1D S k

2
1m2Du

1
k

2 S k

2
11D u

12zG . ~D3!

But u satisfies the hypergeometric equation. Thus the fi
three sets of terms in the square brackets of Eq.~D3! vanish,
leaving

4K1
2Ckm1m2

~h,f,x!54
k

2 S k

2
11D

3ei [(m12m2)x1(m11m2)f]h~h!u~h!,

namely, Eq.~D2!, which completes the proof.
Putting all this together we arrive at the following repr

sentation for the square of the covariant derivative
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~]m2 iBm!25
1

r 3 ] r~r 3] r !2
4

r 2 K1
212BK2z2

1

4
B2r 2, E5B

~]m2 iBm!25
1

r 3 ] r~r 3] r !2
4

r 2 K1
212BK1z2

1

4
B2r 2,

E52B.

Using the eigenfunctionsCkm1m2
we can reduce the origina

eigenvalue problem to that corresponding to a radial oper

2F 1

r 3 ] r~r 3] r !2
k~k12!

r 2 12m2,1B2
B2r 2

4
2M 2G f ~r !

5l f ~r !,

wherem2,1 is defined in the main text.
So the complete eigenfunctions will be a product of rad

and angular parts,

c~x!5 f ~r !Ckm1m2
~h,f,x!.

The radial function can be solved, as described in the m
body of the paper, leading to the solution given in Eq.~39!.

A comment is necessary at this point on the half-inte
values of the azimuthal quantum numbers. The ang
eigenfunctions depend only on the sum and differences
ms, which will be whole integers. Also the combination

n2,1[
k

2
2m2,1115

k

2
1

k

2
11,

k

2
1

k

2
, . . . ,

k

2
2

k

2
11

5k11,k, . . . ,1.

This combination, and thus the eigenvalue spectrum,
always involve integral values.

APPENDIX E: DERIVATION OF THE SCALAR FIELD
PROPAGATOR

We represent the delta function in the hyperspherical
ordinates,

d (4)~x2x8!5
d~r 2r 8!d~h2h8!d~f2f8!d~x2x8!

r 3sinh cosh
,

where the primed variables correspond to the hypersphe
coordinates ofx8. We use the ansatz,

G~x,x8um!5 (
k,m1 ,m2

Vkm1m2
~h8,f8,x8!

3Ckm1m2
~h,f,x!Xkm1m2

~r ,r 8um!.

Inserting this into the original Green’s function equation, e
ploiting the delta-function representation and the fact that
functions C are eigenfunctions of the covariant derivati
squared operator, yields
11402
or

l

in

r
ar
of

ll

-

al

-
e

(
k,m1 ,m2

Vkm1m2
~h8,f8,x8!Ckm1m2

~h,f,x!

3F 1

r 3 ] r~r 3] r !2
k~k12!

r 2 12m2,1B2
B2r 2

4
2M 2G

3Xkm1m2
~r ,r 8um!,

52
d~r 2r 8!d~h2h8!d~f2f8!d~x2x8!

r 3sinh cosh
.

We can now separate the angular from the radial depend
in two equations,

(
k,m1 ,m2

Vkm1m2
~h8,f8,x8!Ckm1m2

~h,f,x!

5
d~h2h8!d~f2f8!d~x2x8!

sinh cosh
, ~E1!

F 1

r 3 ] r~r 3] r !2
k~k12!

r 2 12m2,1B2
B2r 2

4
2M 2G

3Xkm1m2
~r ,r 8um!

52
d~r 2r 8!

r 3 . ~E2!

Equation~E1! we recognize as the completeness relation
the angular eigenfunctions, thusV5C. Using Eq.~E2!, we
read off thatX does not depend on both quantum numb
m2 ,m1 but on one of them, depending on whether the fie
was self-dual or anti-self-dual. In fact we shall indicate th
dependence onm2,1 via the quantum numbern2,1 so thatX
5Xkn2,1

(r ,r 8um).
We can solve the radial problem by solving for the rad

Green’s function in the infinite volume and then adding
solution to the homogeneous equation with an arbitrary
efficient. The coefficient is fixed by imposing the finit
boundary condition atr 5R.

Using our solution to the eigenvalue equation we can e
ily extract homogeneous solutions, namely to the equatio

F 1

r 3 ] r~r 3] r !2
k~k12!

r 2 12m2,1B2
B2r 2

4
2M 2GR~r !50.

In the notation of@34#, the two solutions~respectively regu-
lar at infinity and the origin! are

R1~r uk,n2,1,m!5r ke2Br2/4M ~n2,11m,k12;Br2/2!

~E3!
R2~r uk,n2,1,m!5r ke2Br2/4U~n2,11m,k12;Br2/2!

with n2,1 defined in Eq.~40!.
We next solve for the Green’s function in theR5` case

by recasting the problem in the form of a Sturm-Liouvil
equation,

@] rp~r !] r1q~r !#X~r ,r 8!52d~r 2r 8!,
5-18
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so that

p~r !5r 3

q~r !52FB2r 2

4
1

k~k12!

r 2 22Bm2,11M 2G r 3.

The Sturm-Liouville equation is known to have the solutio

X~r ,r 8!52
1

p~r 8!w~r 8!
R~r ,r 8!

with w(r ) the Wronskian of the homogeneous solutions,

w5R1R282R2R18

and

R~r ,r 8!5H R1~r !R2~r 8!, r ,r 8,

R1~r 8!R2~r !, r .r 8.

The Wronskian for the two solutions is evaluated to be

w~r !52
G~k12!A2B

G~n2,11m)(Br2/2)3/2

so that

p~r !w~r !5
24G~k12!

BG~n2,11m!
.

We now construct the full Green’s function and impo
the boundary condition at finite R:
a
n

ys

11402
,

G~x,x8um!5 (
k,m1 ,m2

Ckm1m2
~h8,f8,x8!Ckm1m2

~h,f,x!

3@Xkn2,1
~r ,r 8um!1Akn2,1

~RuB,m!

3R1~r uk,n2,1,m!R1~r 8uk,n2,1,m!#.

ImposingG(R,r 8um)50 with r 8,r 5R we have

Akn2,1
~Rum!52

Xkn2,1
~R,r 8um!

R1~Ruk,n2,1,m!R1~r 8uk,n2,1,m!

51
Rkn2,1

~R,r 8!

w~R!p~R!R1~Ruk,n2,1,m!R1~r 8uk,n2,1,m!

51
R1~r 8uk,n2,1,m!R2~Ruk,n2,1,m!

w~R!p~R!R1~Ruk,n2,1,m!R1~r 8uk,n2,1,m!

5
R2~Ruk,n2,1,m!

w~R!p~R!R1~Ruk,n2,1,m!
.

Thus finally,

Akn2,1
~Rum!52B

G~n2,11m!

4G~k12!

U~n2,11m,k12;BR2/2!

M ~n2,11m,k12;BR2/2!
.

~E4!

It is straightforward to see that imposingG(r ,Rum)50, r
,R will give the same result forA.
D
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