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RESEARCH ARTICLE

Confinement of knotted polymers in a slit

R. Matthews∗, A.A. Louis and J.M. Yeomans

Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford 0X1 3NP, England

(v4.5 released September 2009)

We investigate the effect of knot type on the properties of a ring polymer confined to a slit. For
relatively wide slits, the more complex the knot, the more the force exerted by the polymer
on the walls is decreased compared to an unknotted polymer of the same length. For more
narrow slits the opposite is true. The crossover between these two regimes is, to first order, at
smaller slit width for more complex knots. However, knot topology can affect these trends in
subtle ways. Besides the force exerted by the polymers, we also study other quantities such
as the monomer-density distribution across the slit and the anisotropic radius of gyration.

Keywords: knotted polymers; confinement; Langevin dynamics

1. Introduction

Whilst knots are generic, and any polymer of sufficient length in solution is very
likely to be knotted [1], they have proven to have particular relevance in bio-
logical systems. The DNA contained in the cells of living organisms is typically
both long and confined: the genome of E. coli, a well studied bacterium [2], is
about 3 × 104 persistence lengths [2] (∼ 1.5mm) and is contained in a cell with
a typical volume ∼ µm3 [3]. Although the DNA is organized using supercoiling
and proteins (particularly in eukaryotes) [4], confinement makes entanglements
likely [5, 6], particularly during processes such as replication [7]. Knots in DNA
can prevent transcription [8], a process necessary for the production of proteins.
Indeed, there is a family of enzymes, the topoisomerases [9], one of whose func-
tions is to control knotting. Evidence of highly confined DNA knotting has also
been found in bacteriophages [10], viruses that infect bacteria. These knots may
affect the ejection speed of a bacteriophage’s DNA [11, 12]. Given its relevance in
biology, it is important to understand the interplay of knotting and confinement.

The confinement of linear polymers in a slit, between two infinite, parallel walls,
has been well studied. The simplest model is to consider a single chain with walls
that provide only geometric constraints. For D > R, where D and R are slit
and polymer size respectively, the chain will maintain a shape similar to that
seen without confinement. For D < R, however, significant deformation occurs. A
scaling form for the free energy of such a chain for D < R was given by Daoud and
de Gennes [13] using a blob picture, in which the polymer is taken to form a series
of independents blobs of size determined by D, within each of which the polymer
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behaves as if it is free. They predicted

Fconf

kBT
≅ N

( a

D

)1/ν
, (1)

where N is the number of monomers in the chain, a is monomer size and ν is a three
dimensional exponent ≈ 3/5. Predictions made by Daoud and de Gennes for the
polymer size were verified by Webman, Lebowitz and Kalos using simulations [14].
Later, it was predicted that the ratio between the monomer density by the wall and
the force exerted on the wall is universal, independent of microscopic details [15].
Again, attempts have been made to verify this prediction by simulation, see ref. [16]
and references therein. Whilst the majority of simulation work has used Monte
Carlo methods, a recent study has also compared the results of Molecular Dynamics
simulations to scaling predictions [17]. Other work has considered issues such as
attractive walls [18].

By comparison to the case of linear polymers, there has been little work on
knotted polymers in slits and basic issues remain open. Tesi et al. [6] looked at the
probability that a knot will be found in a slit-confined polymer. They found that for
relatively wide slits the probability increased as the slit width decreased. However,
for narrower slits, the probability peaked and eventually became less than the value
for wide slits. Janse van Rensburg [19] applied both analytical calculations and a
Monte Carlo approach that samples configurations with the same topology but
varying N . The change of the average value of N with slit width was investigated.
Knotted polymers were found to expand as the width increased, in contrast to
unknotted polymers whose size showed a plateau after a certain width was reached.
In ref. [20], the ends of knotted and unknotted polymers were attached to parallel
plates, separated so as to stretch the chains. It was found that the forces exerted
on knotted polymers deviated from scaling predictions. The results were used to
deduce an estimate of how the knot size scales with polymer length.

Motivated by the common occurrence of confined knotted polymers in biology,
we use a coarse-grained model to gain insight into the behaviour of knotted ring
polymers in a slit, concentrating on the force exerted on the walls. We then go on
to look at other quantities, such as the radius of gyration and the monomer density
distribution, that help us to interpret the trends seen.

We find that the effect of knotting differs depending on the degree of confinement
of the polymer. We find that for narrow slits, more complex knots exert higher
forces on the walls, whereas for relatively wide slits, the opposite is true. We relate
the forces to the monomer densities near the walls and interpret the results in
terms of the effect of knots on the ability of the polymer to spread out in the slit.

2. Model

We use a standard, bead-spring, polymer model [21]. Excluded volume is included
through a truncated Lennard-Jones potential:

VEV (x) = 4ǫ
[

(

σ
x

)12
−

(

σ
x

)6
+ 1

4

]

, x ≤ 21/6σ,

VEV (x) = 0, x > 21/6σ,
(2)
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Figure 1. Knot topology for 818, based on a diagram from ref. [26].

where σ is the size of a bead, ǫ is an energy scale and x is the bead separation.
Neighbouring beads are connected with FENE springs [22]

VFENE = −
kX2

0

2
ln

[

1 −

(

x

X0

)2
]

, (3)

where X0, the maximum extension, is set to 1.5σ and k is chosen as 30ǫ/σ2.
The polymer motion is simulated using the Langevin equation [23]:

mẍi = fi − ζẋi +
√

2ζkBTri(t), (4)

where xi is the position of the ith bead, fi is the total force acting on it, m is the
bead mass, ζ is a friction constant and kBT is the temperature, which we set to ǫ.
ri(t) are random vectors that satisfy

〈ri(t)〉 = 0,
〈

ri(t)rj(t
′)
〉

= δijδ(t − t′)I, (5)

where I is the identity matrix. The second and third terms in Eq. (4) represent
the drag due to the solvent and Brownian noise respectively. The parameters may
be combined to give a convenient unit of simulation time, t0 =

√

(σ2m/ǫ). We
integrate the motion using a velocity Verlet algorithm [24] with a timestep of
∆t = 0.01.

The polymer is placed in a slit between two parallel plane walls, modelled by
the same excluded volume potential as for the bead-bead interactions, Eq. (2).
The surfaces of the walls are taken as lying at the point at which the potential
is truncated. We consider slit widths from D = 4σ to D = 18σ. This range was
chosen, through initial exploratory simulations, to show the crossover between the
regimes where more complex knots are harder or easier to confine. The simulations
resemble those of Dimitrov et al. [17], who considered confined, linear polymers.

We choose a polymer length, N = 300, which is sufficiently short that the knots
will significantly affect the polymer properties. It should be borne in mind that,
since knots in polymers in a good solvent are weakly localized [25], different results
would be obtained for other values of N . The results do, however, give a qualitative
picture of how a knot, which is of significant length compared to N , will affect
a polymer in a slit.

We consider linear and unknotted ring polymers (denoted 01) and also polymers
with knot types 31, 61 and 91. Cp is a standard notation [27], where C gives
the minimum number of crossings in any projection onto a plane, the essential
crossings. p is used to distinguish knots with equal C. 31 and 91 are torus knots;
they both belong to a group of knots with similar topology. 61 is an even-twist
knot. In addition, we consider two other knots. Firstly, we include a twelve-crossing
even-twist knot. We label it 121, although the standard notation only extends up to
C = 10. Secondly, we also look at 818, which is chosen because in initial simulations
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it was found to have an unusually spherical average instantaneous shape [28]. In
Fig. 1. we show a knot diagram [26] for 818. The polymer model used should
prevent chain crossings [21] and we verified that the knot type remained constant
by calculating the Alexander polynomial [27], Ak(t), at t = −2.

The radius of gyration of the unconfined linear polymer, RG(linear) = 14.2±0.1σ.
For the ring polymers with different knots, RG(01) = 10.65 ± 0.03σ, RG(31) =
9.01±0.02σ, RG(61) = 7.78±0.01σ, RG(818) = 6.86±0.01σ, RG(91) = 7.28±0.01σ
and RG(121) = 6.90±0.01σ. However, it should be kept in mind that the instanta-
neous configurations of linear polymers are not spherical, but rather one can define
3 axes that characterize a prolate shape [28]. We investigated the anisotropic instan-
taneous distribution of knotted polymer shapes, which tend to be more spherical
than linear polymers [29], although here there is no universal behaviour because it
depends on the size of the knot compared to the length of the polymer.

We note that for some of the more complex knots, an increase in the internal
energy of the chain larger than the standard error was observed: for narrow slits and
complex knots the probability of collision increases and so the amount of overlap
between beads is higher, leading to an internal energy increase due to the excluded
volume interaction. The largest such increase, ∆U = 0.56 ± 0.06kBT , was seen for
121 between D = 8σ and D = 4σ. In the middle of this range, the force on the
confining walls was 7.734 ± 0.003kBT/σ. This suggests that the internal energy
change accounts for . 1% of the free energy increase of the chains, with the rest
being due to entropy. We are thus confident that this effect, which depends on the
specific potential chosen, does not affect our conclusions, which are qualitative.

The starting configurations for the polymers were created by performing runs
in which D was reduced at a rate of 10−4σ/t0 from a wide slit, D = 25σ, to the
narrowest slit we considered, D = 4σ. The final configuration was then taken as the
starting configuration for all the simulations at different D for that particular knot
type. By performing extra compression runs, we checked that the configurations
used were not unusual: all those seen at end of the additional compression runs
were qualitatively similar. When viewed from the direction across the slit, they
showed a number of chain crossings that was typically equal to, or only slightly
larger than, the number of essential crossings of the knot.

Simulations for each D were performed separately. Starting from a polymer in
the configuration obtained from the compression run, an initialisation period of
105t0 was allowed before results were recorded for 107t0. Relaxation was slower in
the two free directions than the confined direction and also depended on D and
knot type [30]: depending on the particular system, the timescale may vary with
knot complexity in different ways [31]. The relaxation time in the free directions,
taken as the time for the auto-correlation function of the relevant component of
the radius of gyration to decay to 1/e, was typically on the order of 102t0 for the
knotted polymers and even for the slowest case (D = 4σ, linear polymer) was
clearly less than 104t0.

Errors were estimated from the variance of the relevant quantities, initially as-
suming that all data points were independent. During the simulations, data was
recorded every 100t0. If the estimate of the relevant correlation time, tC , was seen
to be significantly greater than 100t0 then the estimated error was increased by a
factor of

√

2tC/100t0 [24].

3. Results

We study the average force, f , exerted on the confining walls by the polymer as
function of D for different knot types. The average force for knotted and unknotted
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Figure 2. The average force, f , exerted on the walls of a confining slit by polymers with different knot
types – 01 (×), 31 (©), 61 (△), 818 (�), 91 (+) and 121 (♦) – divided by the values for a linear chain,
as a function of slit width, D. Errorbars are plotted but for most points they are much smaller than the
symbols.

rings is plotted as a ratio to the value for a linear chain in Fig. 2.
We first consider the forces exerted by linear and unknotted ring polymers, which

are very similar over the range of slit widths investigated. The scaling picture of a
confined polymer is based on it forming a series of blobs of dimension ∼ D [13].
For small widths, both linear and ring polymers should form the same number of
blobs. However, since linear polymers have a larger radius of gyration, it would be
expected that, for wide enough slits (D ≫ RG), the forces exerted by the unknotted
ring would decrease below those for linear polymers. At D = 30σ, the component
of the radius of gyration in the direction of confinement was 5.24 ± 0.01σ for a
linear polymer, compared to 5.14 ± 0.01σ for an unknotted ring, and the force
exerted by the unknotted polymer was 0.886 ± 0.006 of the linear polymer value.
The difference reflects the fact that RG(01) < RG(linear).

The topological constraints of a knot that is relatively large compared to the
polymer prevent the formation of independent blobs so it is expected that results
for knotted rings will deviate from those for linear and unknotted polymers. Fig. 2
shows that, for narrow slits, polymers with more complex knots exert a higher
force, whilst for wide slits the opposite is true. The crossover occurs at smaller
slit widths for more complex knots, likely because they are more compact [30].
818, picked because it is unusually spherical, shows, uniquely amongst the knots
studied, non-monotonic behaviour for the force ratio as a function of D. The force
itself always showed monotonic behaviour for each knot type. We conjecture that
the non-monotonicity in the ratio for 818 reflects a qualitatively different behaviour
for this knot compared to the others due to its more spherical shape. A polymer
which typically has an extended shape may respond to increasing confinement by
losing rotational degrees of freedom for its overall configuration. A highly spherical
polymer, such as one with an 818 knot, on the other hand, cannot do this and must
deform. This leads to a more rapid increase in the force at relatively large D.

Although the force exerted by 818 is the highest at intermediate slit widths,
for narrower D it is very close to 61, a knot with less essential crossings. Once
the polymer is significantly deformed, its unconfined shape would not necessarily
be expected to further influence its behaviour. Polymers in narrower slits should
show behaviour like two-dimensional, absorbed polymers and, as shown in ref. [25]
for example, knots in such polymers show quite different behaviour to those in
three-dimensional polymers.

We next compare the radius of gyration of the polymers, focussing on the com-
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Figure 3. The radius of gyration, in the confined direction, Rperp, of polymers in a slit with different knot
types – 01 (×), 31 (©), 61 (△), 818 (�), 91 (+) and 121 (♦) – divided by the values for a linear chain, as
a function of slit width, D.
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Figure 4. Monomer densities as a function of ζ = z/(D + δa), where z is the distance from the centre of
the slit and δ is a correction necessary to achieve agreement with scaling formulae when D is comparable
to a [16, 17]. (a) Monomer density across the slit for D = 4σ (�), D = 12σ (©) and D = 18σ (×) for
linear polymers. The solid line is a scaling formula [16, 17]. We use a scaling exponent ν = 0.588 [17] and
a correction, δ = 1.38, found to give the best fit to the data. (b)-(d) Monomer density as function of the
position across the slit for various knot types: 01 (×), 31 (©), 61 (△), 818 (�), 91 (+) and 121 (♦). Results,
for (b) D = 4σ, (c) D = 12σ and (d) D = 18σ, are plotted as ratios to the values for linear polymers.

ponent in the confined direction, Rperp. In Fig. 3, results are plotted as ratios to
the values for a linear polymer. The results for Rperp show very similar trends to
those seen for the forces: as may be appreciated by comparing Figs. 2 and 3, the
ordering of the different knot types is almost identical for all D.

To help interpret the results for f and Rperp, we examine the monomer density as
a function of position across the slit for various D. The results are shown in Fig. 4.
Firstly, in Fig. 4(a), we compare the results for linear polymers to the following
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scaling formula for monomer density [16, 17]:

ρ(ζ) =
Γ(2 + 2/ν)

(Γ(1 + 1/ν))2
(1/4 − ζ2)1/ν , (6)

where ζ is the position across the slit divided by D+δa. δ is a correction, necessary
when D is comparable to a [16, 17]. Assuming a scaling exponent, ν = 0.588 [17], we
find the best fit to the data using δ = 1.38. The results show reasonable agreement
with the scaling formula, although clear differences are seen, particularly for D =
4σ. Given that, for this width, D is only a few times bigger than the bead size,
it is unsurprising that such deviations are seen. We also checked our results by
comparing the forces for linear polymers to a scaling formula derived from Eq. (1).
As in the work of Dimitrov et al. [17], we found good agreement using the same
value of δ as for the monomer density.

In Figs. 4(b)-(d), we compare monomer densities across the slit for different knot
types for D = 4σ, 12σ and 18σ, by plotting them as ratios to the results for linear
polymers. These simulations show that knots change how the polymer is distributed
across the slit in a different way for different slit widths. For wide slits, D & 14σ,
the constraints of more complex knots make the polymer more compact [30] leading
to a lower monomer density at the walls. For narrower slits, D . 8σ, however, the
more complex the knot the higher the wall density. The value of the monomer
density is expected to control the force exerted by the polymer and comparison of
Figs. 2 and 4 show a close correlation between the two quantities.

Similarly, the trends for the radius of gyration across the slit shown in Fig. 3 can
be explained in terms of the results in Fig. 4: for narrower slits the monomers tend
to lie closer to the walls for more complex knots leading to an increase in Rperp,
whereas for wider slits the reverse is true.

Although it is intuitively reasonable that for wider slits more complex knots lead
to a more compact polymer and hence a lower monomer density at the walls, it
is less obvious why the monomer density at the walls should increase with knot
complexity in narrower slits. A suggestion as to why this may be the case is found
by looking at the distribution of (instantaneous) Rpara, the radius of gyration in
the two unconfined directions, for a slit with D = 18σ, the widest we consider.
As shown in Fig. 5, for more complex knots the distribution is narrower and has
a maximum at lower Rpara indicating that the more complex knots prevent the
polymer from exploring configurations where they are spread out along the slit.
Hence this suggests that when the slit becomes narrow and significantly distorts
the polymer, the polymer cannot so easily distribute its monomers further out in
the free directions and instead their density near the wall increases. As shown in
Fig. 6 the increase in the average Rpara as D is changed from 18σ to 4σ is less for
more complex knots.

3.1. Summary and Discussion

To summarize, we have investigated the effect of knot type on the properties of
a ring polymer confined in a slit of width D. We found that, for wide slits, more
complex knots exert lower forces than a linear polymer on the walls. For more
narrow slits the opposite occurs: knotting leads to larger forces. The forces are
seen to correlate with the monomer densities near the walls. The crossover occurs
at different slit widths for different knots. For larger slit width, when the polymers
are not significantly deformed, those with more complex knots have a smaller radius
of gyration [30], reducing the monomer density by the walls and correspondingly
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the force exerted on them. For smaller slits, the knot prevents the polymer from
deforming as much in the free directions as an unknotted polymer can, and so the
monomer densities, and consequently forces, are increased.

The example of 818, which has an unusual spherical shape and shows non-
monotonic behaviour of the force ratio (to that for a linear polymer) as a function
of D, demonstrates that the particular topology of the knot plays a role. We con-
jecture that the maximum for 818 occurs because, due to their shape, polymers
with 818 cannot respond to decreasing D by losing rotational degrees of freedom
for their overall configuration, as more elongated polymers can. Instead, they be-
gin to deform at a point, relative to their size, where other polymers still maintain
their preferred shape, if with reduced orientational freedom.

Although we exclusively consider one polymer length, the trends we have un-
covered should be generic: except in the large N limit, knots make polymers more
compact and will decrease their ability to spread out as they are confined. Therefore
we expect that there is a wide range of polymer lengths for which similar qual-
itative trends will be observed. An interesting issue to be explored in the future
is the crossover from weak to strong knot localization as the polymer is confined:
polymers in a good solvent in three-dimensions are weakly localized [25] whilst
those in two-dimensions are strongly localized. It would also be useful to look at
the crossover from the type of behaviour we observe to the large N limit, where,
due to localization, knot type will not affect polymer properties.
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