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Confinement of poly(allylamine) in Preyssler-type
polyoxometalate and potassium ion framework
for enhanced proton conductivity
Tsukasa Iwano1, Satoru Miyazawa1, Ryota Osuga2, Junko N. Kondo2, Kayako Honjo3, Takashi Kitao 3,4,

Takashi Uemura 3,4,5 & Sayaka Uchida 1

Polyoxometalate based solids are promising candidates of proton-conducting solid electro-

lytes. In this work, a Preyssler-type polyoxometalate is crystallized with potassium ions and

poly(allylamine), which is also a good proton conductor, from aqueous solutions. Here we

show that the hygroscopicity induced low durability of polyoxometalate and poly(allylamine)

can be circumvented by the electrostatic interaction between the polyoxometalate and

protonated amine moieties in the solid state. Crystalline compounds are synthesized with

poly(allylamine) of different average molecular weights, and all compounds achieve proton

conductivities of 10−2 S cm−1 under mild-humidity and low-temperature conditions. Spec-

troscopic studies reveal that the side-chain mobility of poly(allylamine) and hydrogen-

bonding network rearrangement contribute to the proton conduction of compounds with

poly(allylamine) of low and high average molecular weights, respectively. While numbers of

proton-conducting amorphous polyoxometalate-polymer composites are reported previously,

these results show both structure-property relationship and high functionality in crystalline

composites.
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T
he performance of cation-conducting solid polymer elec-
trolytes is key to improving the efficiency of fuel cells and
secondary batteries. Nafions, which are sulfonated fluor-

ocarbon polymers, have achieved great success commercially in
polymer electrolyte fuel cells (PEFCs): Nafions show high proton
conductivity (>10−2 S cm−1) under high-humidity (relative
humidity (RH) 100%) and low-temperature (<373 K) conditions1.
Another example is polyethylene oxides (i.e., high-molecular-
weight poly(ethylene glycol)s, PEGs), which can transport cations
efficiently (10−4 S cm−1) at room temperature (rt) in next-
generation Li- and Na-ion secondary batteries2–4. However, these
polymers show low durability especially at elevated temperatures,
so that composites of polymers with inorganic or carbon-based
materials have been fabricated and utilized5.

Polyoxometalates (POMs), which are nano-sized anionic
metal-oxygen clusters of early transition metals6–11, can effi-
ciently transport protons12–16 since smearing of the negative
charge over the external surface oxygens makes the effective
surface charge density small. In fact, it has been well known for
a long time that Keggin-type acidic POMs (e.g., H3[PW12O40],
H4[SiW12O40]) show high proton conductivities close to
Nafions17–19. However, application is limited because the struc-
tural stability is low and proton conductivity largely decreases
upon slight decrease in RH. To solve these problems, POMs have
been hybridized with polymers20–24 especially with those con-
taining amine groups, which serve as protonation sites. While
these POM-polymer composites are promising candidates of
future solid electrolytes, it is rather difficult to obtain relationship
among composition, structure, and property because of the
amorphous nature.

We have recently reported that crystalline composites of
Keggin-type POMs with PEGs (POM-PEGs) show moderate
proton conductivities under non-humidified and intermediate-
temperature conditions25. Furthermore, we utilized a Preyssler-
type [Na(H2O)P5W30O110]14− POM26, which is known to show
higher acidity as acid salts than Keggin-type POMs, and the
POM-PEGs showed proton conductivities of 10−4 S cm−1 under
non-humidified and low-temperature conditions27. Recently,
neutron diffraction and scattering measurements have revealed
that a single PEG chain stays as a distorted helix in the channels
of POM-PEGs, and that protons are conducted via the PEG
chain performing a longitudinal motion along the channel28.
The longitudinal motion of PEG is localized by the electrostatic
interaction with Cs+ in the channel28. Confinement effects of
PEG in nano-channels of metal-organic frameworks (MOFs)
have received great attention, and it has been revealed that che-
mical or physical properties such as transition temperatures of
confined PEGs are different from those of the bulk polymer29.

Here we show that a Preyssler-type [Bi(H2O)P5W30O110]12−

POM30 with a low anion charge facilitates the migration of
protons by decreasing the electrostatic interactions between POM
and protons. In addition, poly(allylamine) (PAA) is utilized as a
polymer because (1) amine groups contribute to increase the
number of protonation sites and to extend the hydrogen-bonding
network, which results in efficient proton transport and (2) PAA
would be positively charged by protonation, and structural sta-
bility may improve via electrostatic interaction with POM. Iso-
structural crystalline composites of Preyssler-type POM with
PAAs of different average molecular weights (PAA5000, 3000,
and 1600) are synthesized, and the compounds show proton
conductivity of 10−2 S cm−1 under mildly-humidified (RH 75%)
and low-temperature (368 K) conditions. The compounds with
PAA of high average molecular weights (PAA5000 and 3000)
show low activation energies in proton conduction (0.16 eV and
0.24 eV) suggesting that protons conduct via rearrangement of
the hydrogen-bonding network composed of water molecules and

PAA (i.e., Grotthuss mechanism). On the other hand, the com-
pound with PAA of low average molecular weight (PAA1600)
shows a much higher activation energy (0.41 eV) suggesting that
the side-chain mobility of PAA contributes to the proton con-
duction, which is confirmed by NMR spectroscopy. The impor-
tance of this work can be summarized as follows: Highly proton
conductive but hygroscopic POM and PAA are stabilized via
electrostatic interaction in the solid state. While there is a large
number of proton-conducting amorphous POM-polymer com-
posites exist, these crystalline composites realize both structure-
property relationship and high functionality.

Results
Crystal structure. A composite of POM and PAA5000 was
crystallized in an aqueous solution. IR spectroscopy showed that
the crystal contained both components (Supplementary Figure 1).
The chemical formula of the crystal was determined as
K8H4[Bi(H2O)P5W30O110]•0.03PAA5000•19H2O [I] by induc-
tively coupled plasma optical emission spectrometry (ICP-OES),
atomic absorption spectrometry (AAS), CHN combustion ana-
lysis, and thermogravimetry (TG) (Supplementary Figure 2).
Elemental analysis of more than three different lots synthesized
with different concentrations of the components in the synthetic
solution well agreed with this chemical formula, showing that
the chemical formula is uniquely determined and that the
amounts of PAA and K+ in I is not controllable.

Single-crystal X-ray diffraction (SXRD) analysis showed that
the structure of Preyssler-type POM in I agrees with the previous
report (Fig. 1a, Supplementary Data 1 and Supplementary
Figure 3)30: A bismuth atom (Bi(III)) with a coordination water,
which are disordered between two positions, exists on the
principal axis of the doughnut-shape POM with pseudo-D5h

symmetry. The Bi(III) is coordinated by five phosphate oxygens
(Bi-O= 2.50−2.73 Å).

Figure 1b–d show the crystal structure of I in the ab and bc-
plane, respectively. Eight K+ per chemical formula (K1-K12, where
K1-K4 and K5-K12 have site occupancies of 1.0 and 0.5,
respectively) were located with SXRD analysis as counter cations
of POM. K+ connects adjacent POMs: K1 has four bonds with
POMs (K-O: 2.82−3.01 Å) and links three adjacent POMs. K2 has
four bonds with POMs (K-O: 2.88−3.07 Å) and links two adjacent
POMs. K3 has four bonds with POMs (K-O: 2.79−3.10 Å)
and links two adjacent POMs. K4 has six bonds with POMs (K-O:
2.86−3.08 Å) and links two adjacent POMs. See Supplementary
Table 2 and Supplementary Figures 3 and 4 for the details of the
local arrangements of POMs with K+. POMs are arranged three-
dimensionally in the crystal lattice by the aid of K+, which results
in an all-inorganic framework. Void analysis (Fig. 1c, e ) shows that
three-dimensional channels with a minimum aperture of ca. 4 Å
were formed. The void volume of I without the water of
crystallization and PAA was 14% (995 Å3, Z= 2) of the crystal
lattice.

The powder X-ray diffraction (PXRD) pattern (Fig. 2b) well
agreed with that calculated from the SXRD data (Fig. 2a),
confirming that the crystal structure shown in Fig. 1 represents
the whole bulk solid. Besides, the PXRD pattern of K12[Bi(H2O)
P5W30O110]·26H2O (Fig. 2c) was different from that of I, showing
that structure change occurs when PAA is accommodated in the
crystal lattice. Notably, the use of allylamine monomer instead
of PAA resulted in the crystallization of a solid with a different
PXRD pattern (Fig. 2d), and this compound was highly soluble
in water so that it is not realistic to use it as a solid electrolyte.

States of PAA in the crystal lattice. While the position of PAA
could not be resolved by SXRD, considering the size of the
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channel aperture, PAA probably resides along the [111] direction
with the water of crystallization (see Fig. 1c–e). Packing ratio
of PAA in the void was estimated with the void volume (995 Å3,
Z= 2) and number of monomer units of PAA in the unit cell
(5.3): Assuming that the volume of PAA monomer unit is ca.
65 Å3.31, the packing ratio is 35% (=5.3 × 65/995). Considering
that water of crystallization are also contained in the channel,
this estimation suggests single-chain accommodation of PAA.
In addition, PLATON SQUEEZE32 has shown that there are
773 electrons per unit cell in the void. Considering that PAA
(monomer unit: 57 g mol−1) amounts to 302 electrons (=5.3 ×
57) per unit cell, PAA accounts for 39% (=302/773) of the
electrons in the unit cell, which fairly agrees with the packing
ratio. These results suggest that PAA occupies 35–40% of the
contents and/or space in the void.

The number of acidic protons (H+) per chemical formula was
estimated as 4 according to the number of potassium ions (8) and
anion charge of POM (−12). Since the number of acidic protons
(4) is larger than the number of monomer units of PAA per
chemical formula (2.6), it can be reasonably assumed that the

amine groups of PAA are completely protonated and PAA has
become cationic, contributing to stabilize the crystal structure
via electrostatic interactions.

In order to confirm the existence of PAA in the crystal lattice,
Raman spectra of a single crystal of I at different vertical positions
(0–30 μm beneath the crystal surface) were measured (Fig. 3)29.
Bulk poly(allylamine hydrochloride) showed bands at ca. 1450
and 1350 cm−1, which can be assigned to C–N stretch and C–H
deformation, respectively (Fig. 3b)33. Note that POM did not
show any bands in this region (Fig. 3a). The Raman spectrum
of the surface of a single crystal (= axial depth of the focal spot
is 0 μm from the surface) of I showed several high-intensity bands
below 1000 cm−1 and a broad band at 1300–1500 cm−1 due to
POM and PAA, respectively (Fig. 3c). When the focal spot was set
to 10 μm beneath the surface (Fig. 3d), the relative intensity of the
broad band at 1300–1500 cm−1 increased, and this band was
clearly observed when the focal spots were set deeper (Fig. 3e, f ).
These results confirm the existence of PAA in the crystal lattice.

Differential scanning calorimetry (DSC) measurements were
performed to investigate the states of PAA in I. The DSC
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curve of the bulk poly(allylamine hydrochloride) showed a
small endothermic peak around 380 K, which is in-line with the
reported glass transition temperature (Supplementary Figure 5a,
b)34. On the other hand, no obvious glass transition was observed
for I (Supplementary Figure 5c). Such a phenomenon was also
observed in the case of a single-chain PEG confined in the
channel of a POM-PEG composite28 or a MOF29. Generally,
temperature dependent glass transitions are molecular coopera-
tive phenomena that a single polymer chain is incapable of
displaying.

Proton conductivity. Figure 4a (inset) shows the Nyquist plot of
the impedance spectrum at 308 K and RH 75%. The bulk proton
conductivity was calculated by fitting the Nyquist plot with an
electrical equivalent circuit (see Supplementary Methods). The
proton conductivity of I increased with the temperature (298
−368 K, Supplementary Figure 6a) and reached a very high
proton conductivity of 8.5 × 10−3 S cm−1 at 368 K and RH 75%.
The activation energy calculated from the Arrhenius plot of the
temperature dependent proton conductivities was 0.16 eV
(Fig. 4a). It is well known that the activation energy of proton
conduction via hydrogen-bonding network rearrangement
(Grotthuss mechanism), is about 0.2 eV or less35, and proton
conduction in Nafions1 occurs by this mechanism. Notably, the
proton conductivity of K12[Bi(H2O)P5W30O110]·26H2O was 3.8 ×
10−3 S cm−1 (368 K and RH 75%) and smaller than that of I, and
the proton conductivity of poly(allylamine hydrochloride) could
not be measured because of the hygroscopicity.

Compounds with PAA of different molecular weights. Next,
compounds with POM and PAA of different average molecular
weights (PAA3000 and 1600) were synthesized. The chemical
formula of the compounds were determined as K5H7[Bi(H2O)
P5W30O110]•0.11PAA3000•16H2O [II] and K5H7[Bi(H2O)
P5W30O110]•0.25PAA1600•15H2O [III]. The PXRD patterns of II

(Supplementary Figure 7b) and III (Supplementary Figure 7c)
fairy agreed with that of I (Fig. 2a and Supplementary Figure 7a),
suggesting that the crystal structure is not affected by the average
molecular weights of PAA. The amounts of PAA monomer units
per chemical formula were estimated as 2.6, 5.8, and 7.0 for I, II,
and III, respectively, which increased with the decrease in average
molecular weights of PAA. This is probably because accom-
modation in the crystal lattice becomes more difficult with PAA
of longer chains.

Figure 4b, c (inset) show the Nyquist plots of the impedance
spectra of II and III, respectively, at 308 K and RH 75%. The
proton conductivities increased with the temperature (298−368
K, Supplementary Figure 6b, c) and reached very high proton
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conductivities of 9.7 × 10−3 and 8.3 × 10−3 S cm−1 for II and III,
respectively, at 368 K and RH 75%. The proton conductivities of
I–III at 368 K and RH 75% were within 8.3–9.7 × 10−3 S cm−1,
and did not depend much on the average molecular weights of
PAA. However, the activation energies estimated from the
Arrhenius plots were 0.24 and 0.41 eV for II and III, respectively
(Fig. 4b, c), and showed large differences. According to these
results, it can be reasonably assumed that proton conduction in I
and II are based on Grotthuss mechanism, while that of III is
probably based on vehicle mechanism, or more specifically,
segmental motion of the polymer moiety (see below)25,27,28. The
PXRD patterns before and after the impedance measurement
were essentially the same (Supplementary Figure 8), confirming
that the crystal structure is stable under this condition.

States of PAA investigated with NMR spectroscopy. Solid state
magic angle spinning (MAS) NMR spectroscopy was utilized to
gain insight into the states of PAA in I–III. 1H-MASNMR
spectrum of I is shown in Fig. 5a. The signal at 4.3 ppm fairly
agrees with the positions of protons of bulk water36 and PAA
backbone (SDBSWeb #4258 allylamine: http://sdbs.db.aist.go.jp,
National Institute of Advanced Industrial Science and Technol-
ogy, Dec. 19th, 2018). The signal at 7.3 ppm agrees with the
position of methylene protons of the PAA side-chain (SDBSWeb
#4258 allylamine: http://sdbs.db.aist.go.jp, National Institute of
Advanced Industrial Science and Technology, Dec. 19th, 2018).
Compounds II and III gave 1H-MASNMR spectra similar to that
of I (Supplementary Figure 9). Then, in order to compare the
local mobility of PAA, variable contact time 13C cross-
polarization MAS (13C-CPMAS) NMR spectroscopy was used.
Time constants for magnetization buildup (TCH) and subsequent
decay (T1ρ(H)) can be obtained according to the following equa-
tion,

IðtÞ ¼ I0ð1� TCH=T1ρðHÞÞ
�1fexpð�t=T1ρðHÞÞ � expð�t=TCHÞg

ð1Þ

where I(t) shows the intensity of the signal at contact time t, and

I0 shows the theoretical maximum intensity37. T1ρ(H) can be used
to semi-quantify the local mobility, which is longer if the polymer
chain is more mobile38.

Figure 5b shows the solid-state 13C-CPMASNMR spectrum of
I, and each signal can be reasonably assigned to each carbon
moiety of PAA (SDBSWeb #4258 allylamine: http://sdbs.db.aist.
go.jp, National Institute of Advanced Industrial Science and
Technology, Dec. 19th, 2018). Compounds II and III gave 13C-
CPMASNMR spectra similar to that of I. Figure 5c–e show the
changes in intensities of the methylene side-chain carbon signal
of PAA in I–III, respectively, with variations of contact time (see
Supplementary Figure 10 for the raw data). The intensities of
the signals increased, reached maximum, and then decreased.
The magnetization decay of III was much slower than those of I
and II, showing that T1ρ(H) is longer and thus mobility of the
methylene side-chain carbon of PAA is higher. T1ρ(H) values were
estimated as 3.5, 3.6, and 9.5 ms for I, II, and III, respectively,
with eq. (1). This result suggests that side-chain mobility of III
with the lowest average molecular weight of PAA (i.e., PAA1600)
is faster than those of higher molecular weights. It has been
reported that activation energies for the side-chain mobility of
polymers in the solid state are at least 0.2 eV and sometimes
larger than 1 eV depending on the backbone and side-chain
structures39,40. Considering that the protonated amine group
resides on the side-chain of PAA and the trend in activation
energies of proton conduction (I: 0.16 eV ≈ II: 0.24 eV < III: 0.41
eV), it can be concluded that the side-chain mobility of PAA is
crucial to the proton conduction in III. Notably, the difference
among the T1ρ(H) values of carbon atoms of PAA backbone were
not so large, probably because the longitudinal motion of PAA is
localized by the electrostatic interactions with K+ and POM in
the channel, as in the case of POM-PEGs28.

States of water molecules investigated with IR spectroscopy.
Finally, the states of water molecules in I–III were investigated
with the ν(OH) bands of the in situ IR spectra under water vapor
at rt (Fig. 6, see Supplementary Figures 11–13 for the details).
Note that the proton conductivities were in the order of 5.6 ×
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10−4 S cm−1 (III) < 2.1 × 10−3 S cm−1 (II) ≈ 3.3 × 10−3 S cm−1

(I) around rt (308 K) and RH 75%. Upon the introduction of
water vapor, a broad band appeared around 3600–3000 cm−1 for
all compounds. The band was rather sharp and a maximum was
observed around 3400 cm−1 for III. On the other hand, the band
extended toward the higher frequency (wavenumber)

(3500–3600 cm−1) for I and II, and also toward the lower fre-
quency (3200 cm−1) for I. Previous reports by us and other
groups have shown that the bands at high (3500–3600 cm−1) and
low (3200–3400 cm−1) frequencies can be attributed to unper-
turbed (free) water molecules at the outside of a water cluster
and to perturbed hydrogen-bonded water molecules inside the
cluster, respectively41,42. Therefore, it can be reasonably stated
that I possesses an extensive hydrogen-bonding network of
water molecules and PAA, which agrees with the relatively large
number of the water of crystallization (19 (I) > 16 (II), 15 (III)),
and free water molecules (protons) at the periphery of the
hydrogen-bonding network.

Discussion
According to these results, the relationship between proton
conductivity and states of water molecules and PAA in the
compounds can be interpreted as follows. The mobile water
molecules (protons) as well as the extensive hydrogen-bonding
network probably contribute to the efficient proton conduction
and low activation energy of I (0.16 eV). Both the relative
intensities of the IR bands at high frequencies and proton con-
ductivities (308 K and RH 75%) were in the order of I ≈ II > III,
and activation energies of proton conduction was in the order of I
(0.16 eV) ≈ II (0.24 eV) < III (0.41 eV). Therefore, it can be con-
cluded that mobile water molecules (protons) largely contribute
to the efficient proton conduction and low activation energies of I
and II, while water molecules are rather fixed and the side-chain
mobility of PAA is crucial to the proton conduction in III.

In summary, we have shown that the low durability of POM and
PAA due to hygroscopicity was circumvented by the electrostatic
interaction between the POM and protonated amine moieties in
the solid state, and proton conductivities of 10−2 S cm−1 were
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achieved under mild-humidity (RH 75%) and low-temperature
(368 K) conditions. Spectroscopic studies have revealed that
the side-chain mobility of PAA and hydrogen-bonding network
rearrangement contribute to the proton conduction in compounds
with PAA of low and high average molecular weights, respectively.
We will report the states and dynamics of protons, water, and
polymers in the near future.

Methods
Materials. Potassium salt of Preyssler-type POM (K12[Bi(H2O)P5W30O110]·26H2O)
was synthesized according to a previously reported method30. Forty percent aqu-
eous poly(allylamine hydrochloride) solution (m= 5000, 3000, or 1600) was
provided from Nittobo Medical Co., Ltd. Allylamine hydrochloride and
poly(allylamine hydrochloride) (m= 120,000) were purchased from Kanto
Chemical Co. and Alfa Aesar, respectively, and used as received.

Synthesis. Compounds I−III were synthesized as follows: 1.0 g of K12[Bi(H2O)
P5W30O110]·26H2O (0.12mmol) was dissolved in 20mL of H2O (solution A). Six
milliliters of H2O was added to 3.0 g of 40% aqueous poly(allylamine hydrochloride)
solution (m= 5000, 3000, or 1600) (solution B). Solution B was added to solution A,
and the solution was left for 1 week at 278 K. Colorless crystals of I−III were
obtained in ca. 70% yield. As for the synthesis of the compound with allylamine (i.e.,
monomer), equal amount of monomer in mole was used instead of PAA. Elemental
analysis (calcd) for K8H4[Bi(H2O)P5W30O110]•0.03PAA5000•19H2O [I]: C 1.23
(1.25), H 0.59 (0.77), N 0.63 (0.48), K 3.6 (3.7), Bi 2.6 (2.5), P 2.1 (1.8), W 63 (65).
Elemental analysis (calcd) for K5H7[Bi(H2O)P5W30O110]•0.11PAA3000•16H2O
[II]: C 2.38 (2.50), H 0.47 (0.95), N 1.19 (0.97), K 2.3 (2.3), Bi 2.1 (2.4), P 2.1
(1.8), W 62 (64). Elemental analysis (calcd) for K5H7[Bi(H2O)P5W30O110]
•0.25PAA1600•15H2O [III] C 2.98 (2.87), H 0.74 (1.04), N 1.67 (1.11), K 2.3 (2.3),
Bi 2.3 (2.4), P 1.8 (1.8), W 61 (63). Elemental analysis of more than 3 different lots
for each compound well agreed with these formulae.

SXRD analysis. X-ray diffraction data of I was collected at 93 K with a CCD 2-D
detector by using Rigaku Saturn diffractometer with graphite monochromated
Mo Kα radiation. Structures were solved by direct methods (SHELX97), expanded
using Fourier techniques, and refined by full-matrix least squares against F2

with the SHELXL-2014 package. Tungsten atoms and part of the potassium
atoms were refined anisotropically. Phosphorus, oxygen, bismuth, and other
potassium atoms were refined isotropically. Hydrogen atoms, PAA, and water
of crystallization were not included in the model. Bismuth atom was disordered
between two positions with site occupancies of 0.8 and 0.2. Such disordering of
central metal ions (Na+, K+, Tb3+, Eu3+) with a water molecule has been observed
for several Preyssler-type POMs43–45. Void analysis was carried out by a Mercury
structure visualization software (CCDC) with a probe radius of 2.0 Å and
approximate grid spacing of 0.7 Å and PLATON SQUEEZE32. Crystal data for I:
triclinic P-1 (No. 2), a= 17.80(2) Å, b= 18.018(19) Å, c= 24.68(3) Å, α= 75.28
(8), β= 78.97(8), γ= 67.75(6), V= 7046(14), Z= 2, R1= 0.1100, wR2= 0.2880,
GOF= 1.122.

Measurements. Combustion analysis (Elementar, vario MICRO cube) was used
for the quantitative analysis of C, H, and N. ICP-OES (Agilent Technologies, ICP-
OES720) was used for the quantitative analysis of Bi, P and W. AAS (Hitachi,
ZA3000) was used for the quantitative analysis of K. Prior to the ICP-OES and
AAS analysis, ca. 10 mg of the solid (accurately weighed) was dispersed in 10 mL of
H2O with NaOH (0.2 g) to dissolve the solid completely, conc. HNO3 (0.3 mL) was
added, and the solution was diluted up to exactly 100 mL. PXRD patterns were
measured with a New advance D8 X-ray diffractometer (Bruker) by using Cu Kα
radiation (λ= 1.54056 Å, 40 kV−40 mA) at 2θ= 3 −20° and 1.8° min−1. Solid-
state MASNMR spectra (MAS rate= 5 and 10 kHz for 13C and 1H, respectively)
were recorded with an AVANCE 400WB spectrometer (Bruker), and the resonance
frequencies were 100.6 and 400.2 MHz for 13C and 1H, respectively. Adamantane
(1H 1.91 ppm, 13C 28.8 and 38.3 ppm) was used as an external standard for the
calibration of chemical shifts. Single-pulse excitation (1H) or cross-polarization
(CP) with contact times of 0.05−7.5 ms (13C) were used for the NMR measure-
ments. Micro-Raman measurements were performed using a JASCO NRS-4500
spectrometer with an excitation wavelength of 785 nm. The beam was focused onto
the sample using an optical microscope (×100 magnification), which allowed us to
focus the laser beam with a 1 μm lateral resolution and an axial depth resolution of
1.5 μm. Alternating current (AC) impedance measurements: About 0.3 g of each
compound was compressed at 150 kgf cm−2 into pellets of 10 mm in diameter and
ca. 1.0 mm in thickness. The pellets were cut into fourths, and one-fourth of the
pellet was used for the AC impedance measurement. AC impedance measurements
were carried out in a temperature and humidity chamber with a BioLogic VMP3
multichannel potentiostat/galvanostat (Science Instruments) over the frequency
range of 2 Hz to 2MHz and AC amplitude of 500 mV. Gold electrodes with copper
wire were attached on both faces of the pellets. Bulk conductivities were estimated
by a semicircle fitting of Nyquist plots. An electrical equivalent circuit, which

consists of a series of inductance (H, representing the effect of the external circuit)
and three blocks of a resistance (R) and constant phase element (CPE, used for
imperfect capacitors) in parallel, standing for bulk, grain boundary, and electrode
interface, was used to fit the impedance spectra (see Supplementary Methods for
the details). In situ IR spectra under water vapor were measured as follows: Each
powder sample was deposited on a CaF2 plate (20 mm diameter), which was placed
inclined at the center of an IR cell, and treated in vacuo at 298 K for 0.5 h. IR
spectra were obtained at a resolution of 4 cm−1 by averaging 64 scans using a Jasco
6100 FT-IR spectrometer equipped with an MCT detector. The IR spectra of the
sample in vacuum were recorded as background spectra. IR spectra of adsorbed
water were measured by increasing the water vapor pressure from 5 to 1 × 103 Pa
at rt, and background-subtracted IR spectra showing adsorbed water are presented
throughout this paper.

Data availability
The X-ray crystallographic coordinates for the structure of compound I is available
as Supplementary Tables 1 and 2. The data has also been deposited at the
Cambridge Crystallographic Data Centre (CCDC) under deposition number
1856730. The data can be obtained free of charge from the CCDC via http://www.
ccdc.cam.ac.uk/data_request/cif. The other data that support the findings of this
study are available from the corresponding author upon reasonable request.
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