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Abstract

Previous studies suggest that factual learning, that is, learning from obtained outcomes, is

biased, such that participants preferentially take into account positive, as compared to nega-

tive, prediction errors. However, whether or not the prediction error valence also affects

counterfactual learning, that is, learning from forgone outcomes, is unknown. To address

this question, we analysed the performance of two groups of participants on reinforcement

learning tasks using a computational model that was adapted to test if prediction error

valence influences learning. We carried out two experiments: in the factual learning experi-

ment, participants learned from partial feedback (i.e., the outcome of the chosen option

only); in the counterfactual learning experiment, participants learned from complete feed-

back information (i.e., the outcomes of both the chosen and unchosen option were dis-

played). In the factual learning experiment, we replicated previous findings of a valence-

induced bias, whereby participants learned preferentially from positive, relative to negative,

prediction errors. In contrast, for counterfactual learning, we found the opposite valence-

induced bias: negative prediction errors were preferentially taken into account, relative to

positive ones. When considering valence-induced bias in the context of both factual and

counterfactual learning, it appears that people tend to preferentially take into account infor-

mation that confirms their current choice.

Author summary

While the investigation of decision-making biases has a long history in economics and

psychology, learning biases have been much less systematically investigated. This is sur-

prising as most of the choices we deal with in everyday life are recurrent, thus allowing

learning to occur and therefore influencing future decision-making. Combining beha-

vioural testing and computational modeling, here we show that the valence of an out-

come biases both factual and counterfactual learning. When considering factual and
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counterfactual learning together, it appears that people tend to preferentially take into

account information that confirms their current choice. Increasing our understanding of

learning biases will enable the refinement of existing models of value-based decision-

making.

Introduction

Goal-directed behaviour is composed of two core components [1]: one component is the deci-

sion-making process that starts with representing the available options and terminates in

selecting the option with the highest expected value; the second component is reinforcement

learning (RL), through which outcomes are used to refine value expectations, in order to

improve decision-making. Human decision-making is subject to biases (i.e. deviations from

the normative prescriptions), such as the framing effect [2]. While the investigation of deci-

sion-making biases has a long history in economics and psychology, learning biases have been

much less systematically investigated [3]. This is surprising as most of the decisions we deal

with in everyday life are experience-based and choice contexts are recurrent, thus allowing

learning to occur and therefore influencing future decision-making. In addition, it is impor-

tant to investigate learning biases as there is evidence that RL processes play a role in psychiat-

ric conditions and maladaptive economic behaviour [4,5].

Standard RL algorithms learn action-outcome associations directly from obtained out-

comes on a trial and error basis [6]. We refer to this direct form of learning as “factual learn-

ing”. Despite the fact that standard models, built around the notion of computational and

statistical optimality, prescribe that an agent should learn equally well from positive and nega-

tive obtained outcomes [7–9], previous studies have consistently shown that humans display a

significant valence-induced bias. This bias generally goes in the direction of preferential learn-

ing from positive, compared to negative, outcome prediction errors [10–14]. This learning

asymmetry could represent a RL counterpart of the “good news/bad news” effect that is

observed for probabilistic reasoning [15].

However, human RL cannot be reduced simply to learning from obtained outcomes. Other

sources of information can be successfully integrated in order to improve performance and RL

has a multi-modular structure [16]. Amongst the more sophisticated learning processes that

have already been demonstrated in humans is counterfactual learning. Counterfactual learning

refers to the ability to learn from forgone outcomes (i.e. the outcomes of the option(s) that

were not chosen) [17,18]. Whether or not a valence-induced bias also affects counterfactual

learning remains unknown.

To address this question, we ran two experiments involving instrumental learning and

computational model-based analyses. Two groups of healthy adults performed variants of a

repeated two-armed bandit task involving probabilistic outcomes [19,20] (Fig 1A). We ana-

lysed the data using a modified Rescorla-Wagner model that assumes different learning rates

for positive and negative, and factual and counterfactual, prediction errors (Fig 1B) [21,22].

The first experiment aimed to replicate previous findings of a “positivity bias” at the level of

factual learning. In this first experiment, participants were presented only with the obtained

outcome (chosen outcome: RC; Fig 1A) [10]. In the second experiment, in order to investigate

whether or not counterfactual learning rates are also affected by the valence of prediction

errors, we used a variant of the same instrumental learning task, in which participants were

also presented with the forgone outcome (unchosen outcome: RU; Fig 1B). Our design allowed

us to test three competing hypotheses concerning the effect of valence on counterfactual
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learning (Fig 2A). The first hypothesis–“no bias”—was that unlike factual learning, counter-

factual learning would be unbiased. The second hypothesis,—“positivity bias”—was that fac-

tual and counterfactual learning would present the same valence-induced bias, such that

Fig 1. Behavioural task variants and computational model. (A) Behavioural task variants. In Experiment 1 (leftmost panel) participants were shown
only the outcome of the chosen option. In Experiment 2 (rightmost panel) participants were shown the outcome of both the chosen and the unchosen
options. (B) Computational models. The schematic summarises the value update stage of our computational model. The model contains two
computational modules, a factual learning module (in red) to learn from chosen outcomes (RC) and a counterfactual learning module (in blue) to learn from
unchosen outcomes (RU) (note that the counterfactual learning module does not apply to Experiment 1). Chosen (QC) and unchosen (QU) option values
are updated with delta rules that use different learning rates for positive and negative factual (PEC) and counterfactual prediction errors (PEU).

https://doi.org/10.1371/journal.pcbi.1005684.g001

Confirmation bias in human reinforcement learning

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005684 August 11, 2017 3 / 22

https://doi.org/10.1371/journal.pcbi.1005684.g001
https://doi.org/10.1371/journal.pcbi.1005684


Fig 2. Factual and counterfactual learning biases. (A) Predicted results. Based on previous studies we expected that in Experiment 1 factual learning
would display a “positivity” bias (i.e. the learning rate for the chosen positive outcomes would be relatively higher than that of the chosen negative
outcomes (aþ

c > a�
c ; note that in Experiment 1 the “positivity” and the “confirmation” bias are not discernible). In Experiment 2, one possibility was that this

“positivity” bias would extend to counterfactual learning, whereby positive outcomes would be over-weighted regardless of whether the outcome was
chosen or unchosen (“valence” bias) (aþu > a�u ). Another possibility was that counterfactual learning would present an opposite bias, whereby the learning
rate for unchosen negative outcomes was higher than the learning rate of unchosen positive outcomes (aþ

u < a�
u ) (“confirmation” bias). (B) Actual results.

Learning rate analysis of Experiment 1 data replicated previous findings, demonstrating that factual learning presents a “positivity” bias. Learning rate
analysis of Experiment 2 indicated that counterfactual learning was also biased, in a direction that was consistent with a “confirmation” bias. ***P<0.001
and *P<0.05, two-tailed paired t-test.

https://doi.org/10.1371/journal.pcbi.1005684.g002
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positive counterfactual prediction errors would be more likely to be taken into account than

negative counterfactual prediction errors. In this scenario, factual and counterfactual learning

biases would be consequences of a more general positivity bias, in which positive prediction

errors have a greater impact on learning, regardless of whether the option was chosen or not.

Finally, the third hypothesis–“confirmation bias”—was that valence would affect factual and

counterfactual learning in opposing directions, such that negative unchosen prediction errors

would be more likely to be taken into account than positive unchosen prediction errors. In

this scenario, factual and counterfactual learning biases would be consequences of a more gen-

eral confirmation bias, in which outcomes that support the current choice are preferentially

taken into account.

Results

Behavioural task and full computational model

To investigate both factual and counterfactual reinforcement learning biases, we designed an

instrumental task based on a previous paradigm, in which we showed a significant positivity

bias in factual learning [10]. Here, we used two variants of the task, which differed in that the

task used in Experiment 1 involved participants (N = 20) being shown only the outcome of

their chosen option, whereas in Experiment 2 (N = 20) the outcome of the unchosen option

was also displayed (Fig 1A). To test our hypotheses concerning valence-induced learning

biases (Fig 2A) we fitted the data with a Rescorla-Wagner model assuming different learning

rates for positive and negative outcomes, which respectively elicit positive and negative predic-

tion errors (Fig 1B). The algorithm used to explain Experiment 1 data involved two learning

rates for obtained outcomes (aþ
c and a�

c for positive and negative prediction errors of the

obtained outcomes, respectively). In addition to the obtained outcome learning rates, the algo-

rithm used to explain Experiment 2 data also involved two learning rates for forgone outcomes

(aþu and a�
u for positive and negative prediction errors of the forgone outcomes, respectively).

Learning rate analysis

Replicating previous findings, in Experiment 1 we found that the positive factual learning rate

(aþ
c ) was significantly higher than the negative one (a�

c ; T(19) = 2.4; P = 0.03) (Fig 2B, left). In

Experiment 2, we analysed learning rates using a repeated-measure ANOVA with prediction

error valence (positive or negative) and prediction error type (factual or counterfactual) as

within-subjects factors. Falsifying the “positivity bias” hypothesis, the ANOVA revealed no

main effect of prediction error valence (F(1,19) = 0.2; P>0.6). We also did not find any effect of

prediction error type, indicating that, on average, factual and counterfactual learning were simi-

lar (F(1,19) = 0.5; P>0.4). Consistent with the “confirmation bias” hypothesis, we found a signif-

icant interaction between valence and type (F(1,19) = 119.2; P = 1.3e-9). Post-hoc tests indicated

that the interaction was driven by effects of valence on both factual (aþ
c > a�c ; T(19) = 3.6; P =

0.0017) and counterfactual learning rates (a�
u > aþu ; T(19) = 6.2; P = 5.8e-06) (Fig 2B, right).

To verify the robustness of this result in the context of different reward contingencies, we

analysed learning rates in each task condition separately. In both experiments, our task

included three different conditions (S1 Fig): a “Symmetric” condition, in which both options

were associated with a 50% chance of getting a reward; an “Asymmetric” condition, in which

one option was associated with a 75% chance of getting a reward, whereas the other option

was associated with only a 25% chance; and a “Reversal” condition, in which one option was

initially associated with a 83% chance of getting a reward and the other option was associated

with a 17% chance of getting a reward, but after 12 trials the reward contingencies were
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reversed. For Experiment 1, we analysed factual learning rates using a repeated-measure

ANOVA with prediction error valence (positive and negative) and task condition (Symmetric,

Asymmetric and Reversal) as within-subjects factors (S1B Fig). Confirming the aggregate

result, the ANOVA showed a significant main effect of valence (F(1,19) = 26.4, P = 5.8e-5), but

no effect of condition (F(2,38) = 0.7, P>0.5), and, crucially, no valence by condition interac-

tion (F(2,38) = 0.8, P>0.4). For Experiment 2, we analysed factual and counterfactual learning

rates using a repeated-measure ANOVA with prediction error valence (positive and negative),

prediction error type (factual or counterfactual) and condition (Symmetric, Asymmetric and

Reversal) as within-subjects factors (S1C Fig). Confirming the aggregate result, the ANOVA

showed no effect of prediction error type (F(1,19) = 0.0, P>0.9), no effect of valence (F(1,19) =

0.3, P>0.5), but a significant valence by type interaction (F(1,19) = 162.9, P = 9.1e-11). We

also found an effect of condition (F(2,38) = 5.1, P = 0.01), reflecting lower average learning

rates in the Reversal compared to the Asymmetric condition (T(19) = 2.99; P = 0.007), which

was not modulated by valence (F(2,38) = 0.2, P>0.7), or type (F(2,38) = 1.2, P>0.3). The

three-way interaction was not significant (F(2,38) = 1.8, P>.1), indicating that learning biases

were robust across different task contingencies.

Dimensionality reduction with model comparison

To further test our hypotheses and verify theparsimony of our findings, we ran a model compari-

son analysis including the ‘Full’ model (i.e., the model with four learning rates; Fig 1C, right)

and reduced, alternative versions of it (Fig 3A). The first alternative model was obtained by

reducing the number of learning rates along the dimension of the outcome type (factual or coun-

terfactual). This ‘Information’ model has only two learning rates: one for the obtained outcomes

(αC) and another for the forgone outcomes (αU). The second alternative model was obtained by

reducing the number of learning rates along the dimension of the outcome valence (positive or

negative). This ‘Valence’ model has only two learning rates (one for the positive outcomes (α+)

and another for the negative outcomes (α-)) and should win according to the “positivity bias”

hypothesis. Finally, the third alternative model was obtained by reducing the learning rate as a

function of the outcome event being confirmatory (positive obtained or negative forgone) or dis-

confirmatory (negative obtained or positive forgone). This ‘Confirmation’ model has only two

learning rates (one for confirmatory outcomes (αCON) and another for the disconfirmatory out-

comes (αDIS)) and should win according to the “confirmation bias” hypothesis.

Bayesian Information Criterion (BIC) analysis indicated that the ‘Full’ model better

accounted for the data compared to both the ‘Information’ and the ‘Valence’ models (both

comparisons: T(19)>4.2; P<0.0005; Table 1). However the ‘Confirmation’ model better

accounted for the data compared to the ‘Full’ model (T(19) = 9.9; P = 6.4e-9). The posterior

probability (PP) of belonging to each model, calculated for each subject, (i.e., the averaged

individual model attributions) of the ‘Confirmation’ model was higher than chance (.0.25 for a

model space including 4 models; T(19) = 13.5; P = 3.3e-11) and higher than the posterior prob-

ability all the other models (all comparisons: T(19)>9.0; P<2.1e-8) (Fig 3B). The learning rate

for confirmatory outcomes was significantly higher than that for disconfirmatory outcomes

(αCON>αDIS; T(19) = 11.7; P = 3.9e-10) (Fig 3C). These results support the “confirmation

bias” hypothesis and further indicate that, at least at the behavioural level, chosen and uncho-

sen outcomes may be processed by the same learning systems.

Comparison between the learning curves and the model estimates

To evaluate the capacity of our models to reproduce the learning curves, we plotted and ana-

lysed the trial-by-trial model estimates of choice probabilities (Fig 4) [23]. The model estimates
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were generated using the best fitting set of parameters for each individual and model. In the

Symmetric condition (where there is no correct response), we considered the preferred option

choice rate (i.e., the option/symbol that was chosen more than>50%). In the Asymmetric

Fig 3. Dimensionality reduction with model comparison. (A) Model space. The figure represents how the number of parameters (learning rates) are
reducedmoving from the ‘Full’ model to more simple ones. (B) Model comparison. The panel represents the posterior probability (PP) of the models, the
calculation of which is based on the BIC, which penalisses model complexity. The dashed line represents random posterior probability (0.25). (C) Model
parameters. The panel represents the learning rate for the best fitting model (i.e., the ‘Confirmation’) model. αCON: learning rate for positive obtained and
negative forgone outcomes; αDIS: learning rate for negative obtained and positive forgone outcomes. ***P<0.001, two-tailed paired t-test.

https://doi.org/10.1371/journal.pcbi.1005684.g003

Table 1. Model comparison. The “winning” model is the “Confirmation” model for which the learning rates are displayed in Fig 3C. The second best model
is the Full model, for which the learning rates are displayed in Fig 2B.

Model Full (5df) Information (3df) Valence (3df) Confirmation (3df) Perseveration (4df) One (2df)

BIC 162.0±13.4 178.2±13.0 180.7±11.8 155.0±13.2 165.2±13.6 179.1±11.8
PP 0.02±0.02 0.00±0.00 0.05±0.05 0.89±0.06 0.01±0.01 0.04±0.03
XP 0.00 0.0 0.0 1.0 0.0 0.0

BIC: Bayesian Information Criterion; PP: posterior probability; XP: exceedance probability; df: degrees of freedom.

https://doi.org/10.1371/journal.pcbi.1005684.t001
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Fig 4. Learning curves andmodel estimates. (A) Task conditions. (B) and (C) Learning curves as a function of the task conditions in Experiment 1 and
Experiment 2, respectively. Each panel displays the result of the corresponding condition presented in (A). The black dots and the error bars represent
the actual data ± s.e.m. The green lines represent the model estimates of the biased models (Experiment 1: aþc 6¼ a�

c ; Experiment 2:αCON6¼αDIS), the grey
lines represent the model estimates of the unbiased models (Experiment 1: aþc ¼ a�c ; Experiment 2: αCON = αDIS).

https://doi.org/10.1371/journal.pcbi.1005684.g004

Confirmation bias in human reinforcement learning

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005684 August 11, 2017 8 / 22

https://doi.org/10.1371/journal.pcbi.1005684.g004
https://doi.org/10.1371/journal.pcbi.1005684


condition we considered the correct choice rate. In the Reversal condition (where the correct

response is reversed after the first half of the trials) we considered the choice rate of the initially

more advantageous option (i.e., the correct option during the first half). Qualitative observa-

tion of the learning curves indicated that the biased models (Experiment 1: aþc 6¼ a�c ; Experi-

ment 2: αCON 6¼αDIS) tended to reproduce the learning curves more closely. To quantify this,

we compared the average square distance between the biased and the unbiased models (Exper-

iment 1: aþc ¼ a�c ; Experiment 2: αCON = αDIS). We found that the square distance was shorter

for the biased models compared to the unbiased models in both experiments (Experiment 1:

0.074 vs. 0.085, T(19) = 3.5 P = 0.0022; Experiment 2: 0.056 vs. 0.064, T(19) = 3.5 P = 0.0016).

Parameter correlation and parameter recovery

We calculated the Pearson correlation between the parameters (Fig 5A) and found no signifi-

cant correlation when correcting for multiple comparisons (corrected P value = 0.05�6 =

0.008; lowest uncorrected P value = 0.01, highest P2 = 0.30). The correlation between αCON

and αDIS was weak, but positive, which rules out the possibility that the significant difference

between these two learning rates was driven by an anti-correlation induced by the model fit-

ting procedure.

We then applied the same model fitting procedure to the synthetic datasets and calculated

the correlation between the true and the retrieved parameters (Fig 5B). We found that, on

average, all parameters in both experiments were well recovered (0.70� R� 0.89) and that

our model fitting procedure introduced no spurious correlations between the other parameters

(|R|� 0.5).

We also checked the parameter recovery for discrete sets of parameter values (S2 & S3

Figs). For Experiment 1, we simulated unbiased (aþ
c ¼ a�c ) and biased (aþ

c > a�
c ) participants.

For Experiment 2, we simulated unbiased (aþc ¼ a�
c and aþu ¼ a�u ), semi-biased (aþ

c > a�c and

aþu ¼ a�u ) and biased (aþ
c > a�

c and aþu > a�u ) participants. We simulated N = 100 virtual par-

ticipants per set of parameters. The results of these analyses are presented in the supplemen-

tary materials and confirm the capacity of our parameter optimisation procedure to correctly

recover the true parameters, regardless of the presence (or absence) of learning rate biases.

Behavioural signatures of learning biases

To investigate the behavioural consequences of the learning biases, we median-split the partici-

pants from each experiment into two groups according to their normalised learning rate dif-

ferences. We reasoned that the effects of learning biases on behavioural performance could be

highlighted by comparing participants who differed in the extent they expressed the bias itself.

Experiment 1 participants were split according to their normalised factual learning rate bias:

ðaþc � a�c Þ=ða
þ
c þ a�

c Þ, from which we obtained a high (M = 0.76±0.05) and a low bias (M = 0.11±

0.14) group. Experiment 2 participants were split according their normalised confirmation bias:

½ðaþ
c
� a�

c
Þ � ðaþ

u
þ a�

u
Þ�=ðaþ

c
þ a�

c
þ aþ

u
þ a�

u
Þ, from which we also obtained a high bias group

(M = 0.72±0.04) and a low bias group (M = 0.36±0.04).

From the Symmetric condition we extracted preferred choice rate as a dependent variable,

which was the choice rate of the most frequently chosen option (i.e. the option that was chosen

on>50% of trials) (Fig 6A). We hypothesised that higher biases were associated with an

increased tendency to develop a preferred choice, even in the absence of a “correct” option,

which naturally emerges from overweighting positive factual (and/or negative counterfactual)

outcomes, as observed in our previous study [10]. We submitted the preferred choice rate to

an ANOVA with experiment (1 vs. 2) and bias level (high vs. low) as between-subjects factors.

The ANOVA showed a significant main effect of bias level (F(1,36) = 8.8, P = 0.006). There
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was no significant main effect of experiment (F(1,36) = 0.6, P>0.6) and no significant interac-

tion between experiment and bias level (F(1,36) = 0.3, P>0.5). Replicating previous findings,

the main effect of bias level was driven by higher preferred choice rate in the high, compared

to the low bias group in both Experiment 1 (T(18) = 1.8 P = 0.08) and Experiment 2 (T(18) =

2.3 P = 0.03) (Fig 6B & 6C).

From the remaining conditions we extracted the correct choice rate, which was the choice

rate of the most frequently rewarded option. In the Reversal condition, correct choice rate was

split across the first half of the trial (i.e., before the reversal of the contingencies) and second

half (i.e., after the reversal of the contingencies) (Fig 6A). We hypothesised that in the second

half of the Reversal condition, where correct choice rate depends on un-learning previous

associations based on negative factual prediction errors (and positive counterfactual prediction

errors, in Experiment 2), high bias subjects will display reduced performance. We submitted

the correct choice rate to a mixed ANOVA with experiment (1 vs. 2) and bias group (high vs.

low) as between-subjects factors, and condition (Asymmetric, Reversal: first half, and Reversal:

second half) as a within-subjects factor. There was a main effect of experiment (F(1,36) = 4.1,

P = 0.05), indicating that correct choice rate was higher in Experiment 2 than Experiment 1,

which is consistent with previous studies showing that counterfactual feedback enhances

learning[20,24]. We also found a significant effect of bias level (F(1,36) = 10.8, P = 0.002), a sig-

nificant effect of condition (F(2,72) = 99.5, P = 2.0e-16), and a significant bias level by condi-

tion interaction (F(2,72) = 9.6, P = 0.0002). Indeed, in both experiments, the correct choice

rate in the second half of the Reversal condition was lower in the high bias compared to the

low bias group (Experiment 1: T(18) = 3.9 P = 0.0003; Experiment 2: T(18) = 2.5 P = 0.02) (Fig

6B & 6C).

Importantly, we found that the temperature did not differ between low and high bias sub-

jects in Experiment 1 (low vs. high: 3.38±0.82 vs. 3.78±0.67; T(18) = 0.4, P = 0.7078) or in

Experiment 2 (low vs. high. 3.29±0.56 vs. 2.13±0.36; T(18) = 1.7, P = 0.0973). Of note, the dif-

ference in temperature goes in two different directions in the two experiments, whereas the

behavioural effects (i.e., increased preferred response rate in the Symmetric condition and

decreased performance in the second half of the Reversal condition) go in the same direction.

Finally, we used Pearson’s correlations to verify that the relevant results remained significant

when assessed as continuous variables. As predicted, the normalised learning biases were sig-

nificantly and positively correlated with the preferred choice rate in the Symmetric condition

in both experiments (Experiment 1: R = 0.54, P = 0.013; Experiment 2: R = 0.46, P = 0.040).

Similarly, the normalised learning biases were significantly and negatively correlated with the

correct choice rate in the second half of the Reversal condition (Experiment 1: R = -0.66,

P = 0.0015; Experiment 2: R = -0.47, P = 0.033).

Discussion

Two groups of healthy adult participants performed two variants of an instrumental learning

task, involving factual (Experiment 1) and counterfactual (Experiments 1 & 2) reinforcement

learning. We found that prediction error valence biased factual and counterfactual learning in

opposite directions. Replicating previous findings, we found that, when learning from obtained

outcomes (factual learning), the learning rate for positive prediction errors was higher than the

Fig 5. Parameter correlation and recovery. (A) Correlation matrix of the free parameters for Experiment 1 (left) and Experiment 2
(right). Dark blue or dark red values of R indicate a strong correlation and therefore a problem in parameter identifiability. (B) Correlation
matrix of the free parameters used to generate the simulated data (‘Fitted on real data’) and obtained by applying the parameter
estimation procedure on the simulated data (‘Fitted on simulated data’). Dark red values of R indicate a strong correlation between the
true and the retrieved parameter value and therefore a good parameter recovery.

https://doi.org/10.1371/journal.pcbi.1005684.g005
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Fig 6. Behavioural signatures distinguishing “low” and “high” bias participants. (A) Task conditions. The ‘Symmetric’ condition was characterised
by a stable reward contingency and no correct option, because the two options had equal reward probabilities. The ‘Asymmetric conditions’ were also
characterised by a stable reward contingency but had a correct option, since one option had a higher reward probability than the other. The ‘Reversal’
condition was characterised by an unstable reward contingency: after 12 trials the reward probability reversed across symbols, so that the former correct
option became the incorrect one, and vice versa. Note that the number of trials refers to one session and participants performed two sessions, each
involving new pairs of stimuli (192 trials in total). (B) and (C) Behavioural results as a function of the task conditions in Experiment 1 and Experiment 2,
respectively. Each column presents the result of the corresponding condition presented in (A). In the Symmetric condition, where there was no correct
option, we calculated the “preferred choice rate”, which was the choice rate of the most frequently chosen option (by definition, this was always greater
than 0.5). In the Asymmetric and the Reversal conditions we calculated the correct choice rate. In the Reversal condition the correct choice rate was split
between the two learning phases. ***P<0.001 and *P<0.05, two-tailed paired t-test.

https://doi.org/10.1371/journal.pcbi.1005684.g006
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learning rate for negative prediction errors. In contrast, when learning from forgone outcomes

(counterfactual learning), the learning rate for positive prediction errors was lower than that of

negative prediction errors. This result proved stable across different reward contingency condi-

tions and was further supported by model comparison analyses, which indicated that the most

parsimonious model was a model with different learning rates for confirmatory and disconfir-

matory events, regardless of outcome type (factual or counterfactual) and valence (positive or

negative). Finally, behavioural analyses showed that participants with a higher valence-induced

learning bias displayed poorer learning performance, specifically when it was necessary to adjust

their behaviour in response to a reversal of reward contingencies. These learning biases were

therefore significantly associated with reduced learning performance and can be considered

maladaptive in the context or our experimental tasks.

Our results demonstrated a factual learning bias, which replicates previous findings by

showing that, in simple instrumental learning tasks, participants preferentially learn from posi-

tive compared to negative prediction errors [11–13]. However, in contrast to previous studies,

in which this learning bias had no negative impact on behavioural performance (i.e., correct

choice rate and therefore final payoff), here we demonstrated that this learning bias is still pres-

ent in situations in which it has a negative impact on performance. In fact, whereas low and

high bias participants performed equally well in conditions with stable reward contingencies,

in conditions with unstable reward contingencies we found that high bias participants showed

a relatively reduced correct choice rate. When reward contingencies were changed, learning to

successfully reverse the response in the second half of the trials was mainly driven by negative

factual (and positive counterfactual) prediction errors. Thus in this case, participants display-

ing higher biases exhibited a lower correct choice rate. In other words, these learning biases

significantly undermined participants’ capacity to flexibly adapt their behaviour in changing,

uncertain environments.

In addition to reduced reversal learning, and in accordance with a previous study [10],

another behavioural feature that distinguished higher and lower bias participants was the pre-

ferred response rate in the Symmetric condition. In the Symmetric condition, both cues had

the same reward probabilities (50%), such that there was no intrinsic “correct” response. This

allowed us to calculate the preferred response rate for each participant (defined as the choice

rate of the option most frequently selected by a given participant, i.e. the option selected

in> 50% of trials). The preferred response rate can therefore be taken as a measure of the ten-

dency to overestimate the value of one cue compared to the other, in the absence of actual out-

come-based evidence. In both experiments, higher bias participants showed higher preferred

response rates, a behavioural pattern that is consistent with an increased tendency to discount

negative factual (and positive counterfactual) prediction errors. This can result in one consid-

ering a previously rewarded chosen option as better than it really is and an increased prefer-

ence for this choice. Thus, these results illustrate that the higher the learning bias for a given

participant, the higher his/her behavioural perseveration (the tendency to repeat a previous

choice), despite the possible acquisition of new evidence in the form of negative feedback.

Previous studies have been unable to distinguish whether this valence-induced factual

learning bias is a “positivity bias” or a “confirmation bias”. In other words, do participants

preferentially learn from positive prediction errors because they are positively valenced or

because the outcome confirms the choice they have just made? To address this question we

designed Experiment 2 in which, by including counterfactual feedback, we were able to sepa-

rate the influence of prediction error valence (positive vs. negative) from the influence of pre-

diction error type (chosen vs. unchosen outcome). Crucially, whereas the two competing

hypotheses (“positivity bias” vs. “confirmation bias”) predicted the same result concerning fac-

tual learning rates, they predicted opposite effects of valence on counterfactual learning rates.
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The results from Experiment 2 support the confirmation bias hypothesis: participants prefer-

entially took into account the outcomes that confirmed their current behavioural policy (posi-

tive chosen and negative unchosen outcomes) and discounted the outcomes that contradicted

it (negative chosen and positive unchosen outcomes). Our results therefore support the idea

that confirmation biases are pervasive in human cognition [25].

It should be noted that, from an orthodox Bayesian perspective, a confirmation bias would

involve reinforcing one’s own initial beliefs or preferences. Previous studies have investigated

how prior information—in the form of explicit task instructions or advice—influences the

learning of reinforcement statistics and have provided evidence of a confirmation bias [26–

28]. However, consistent with our study, their computational and neural results suggest that

this instruction-induced confirmation bias operates at the level of outcome processing and not

at the level of initial preferences or at the level of the decision-making process [29,30]. Here,

we take a slightly different perspective by extending the notion of confirmation bias to the

implicit reinforcement of one’s own current choice, by preferentially learning from desirable

outcomes, independently from explicit prior information.

We performed a learning rate analysis separately for each task condition and the results

proved robust and were not driven by any particular reward contingency condition. Our

results contrast with previous studies that have found learning rates adapt as a function of task

contingencies, showing increases when task contingencies were unstable [31,32]. Several dif-

ferences between these tasks and ours may explain this discrepancy. First, in previous studies,

the stable and unstable phases were clearly separated, whereas in our design, participants were

simultaneously tested in the three reward contingency conditions. Second, we did not explic-

itly tell participants to monitor the stability of the reward contingency. Finally, since in our

task the Reversal condition represented only one quarter of the trials, participants may not

have explicitly realised that changing learning rates were adaptive in some cases.

To date, two different views of counterfactual learning have been proposed. According to

one view, factual and counterfactual learning are underpinned by different systems that could

be computationally and anatomically mapped onto subcortical, model-free modules, and pre-

frontal, model-based modules [17,18,33]. In contrast, according to another view, factual and

counterfactual outcomes are processed by the same learning system, involving the dopaminer-

gic nuclei and their projections [34–36]. Our dimensionality reduction model comparison

result sheds new light on this debate. If the first view was correct, and factual and counterfac-

tual learning are based on different systems, different learning rates for positive and negative

prediction errors would have better accounted for the data (the ‘Information’ model). In con-

trast, our results showed that the winning model was one in which the learning process was

assumed to be different across desirable and undesirable outcomes, but shared across obtained

and forgone outcomes (as in the “Confirmation” model), This supports the second view that

factual and counterfactual learning are different facets of the same system.

Overall, we found that correct choice rate was higher in Experiment 2 than in Experiment

1, indicating that the presence of complete feedback information improved performance. Pre-

vious literature in psychology and economics suggest that this beneficial effect of counterfac-

tual information is conditional on the payoff structure of the task. Specifically, studies have

shown that the presence of rare positive outcomes could impair performance in the presence

of complete feedback [37–40]. Further research is needed to assess whether or not the learning

biases we identified extend to these payoff schemes and how they relate to the observed perfor-

mance impairment.

Another series of studies in psychology and economics have used paradigms that dissociate

information sampling (i.e., choosing an option to discover its value without getting the out-

come) from actual choice (i.e., choosing an option in order to obtain the associated outcome)
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[3]. Other paradigms have been used to investigate learning from outcomes derived from

choices performed by either a computer or another player (i.e., observational learning)

[41,42]. Future research should assess whether or not information sampling and observational

learning present similar valence-induced learning biases.

Why do these learning biases exist? One possibility is that these learning biases arise from

neurobiological constraints, which limit human learning capacity. However, we believe this

interpretation is unlikely because we see no clear reason why such limits would differentially

affect learning from positive and negative prediction errors. In other words, we would predict

that neurobiological constraints on learning rate would limit all learning rates in a similar way

and therefore not produce valence-induced learning asymmetries. A second possibility is that

these learning biases are not maladaptive. For instance, it has been shown that in certain

reward conditions agents displaying valence-induced learning biases may outperform unbi-

ased agents [9]. Thus, a possible explanation for these learning biases is that they have been

positively selected because they can be adaptive in the context of the natural environment in

which the learning system evolved [43]. A third, intermediate possibility is that these learning

biases can be maladaptive in the context of learning performance, but due to their adaptive

effects in other domains of cognition, overall they have a net adaptive value. For example,

these biases may also manifest as “self-serving”, choice-supportive biases, which result in indi-

viduals tending to ascribe success to their own abilities and efforts, but relatively tending to

neglect their own failures [44]. Accordingly, we could speculate that these learning biases may

help promote self-esteem and confidence, both of which have been associated with overall

favourable real life outcomes [45].

In summary, by investigating both factual and counterfactual learning, the current experi-

ments demonstrate that, when presented with new evidence, people tend to discard informa-

tion that suggests they have made a mistake. This selective neglect of useful information may

have adaptive value, by increasing self-confidence and self-esteem. However, this low level

reinforcement-learning bias may represent a computational building block for higher level

cognitive biases such as belief perseverance, that is, the phenomenon that beliefs are remark-

ably resilient in the face of empirical challenges that logically contradict them [46,47].

Methods

Participants

The study included two experiments. Each experiment involved N = 20 participants (Experi-

ment 1: 7 males, mean age 23.9 ± 0.7; Experiment 2: 4 males, mean age 22.8 ± 0.7). The local

ethics committee approved the study. All participants gave written informed consent before

inclusion in the study, which was carried out in accordance with the declaration of Helsinki

(1964, revised 2013). The inclusion criteria were being older than 18 years and reporting no

history of neurological or psychiatric disorders.

Behavioural tasks

Participants performed a probabilistic instrumental learning task based on previous studies

[19,20] (Fig 1A). Briefly, the task involved choosing between two cues that were presented in

fixed pairs and therefore represented fixed choice contexts. Cues were associated with station-

ary outcome probabilities in three out of four contexts. In the remaining context the outcome

probability was non-stationary. The possible outcomes were either winning or losing a point.

To allow learning, each context was presented in 24 trials. Each session comprised the four

learning contexts and therefore included 96 trials. The whole experiment involved two ses-

sions, each including the same number of contexts and conditions, but a different set of
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stimuli. Thus, the total experiment included 192 trials. The four learning contexts (i.e. fixed

pairs of cues) were divided in three conditions (S1 Fig). In the “Symmetric” condition each cue

was associated with a .50 probability of winning one point. In the “Asymmetric” condition one

cue was associated with a .75 probability of winning a point and the other cue was associated

with a .25 probability of winning a point. The Asymmetric condition was implemented in two

choice contexts in each session. Finally, in the “Reversal” condition one cue was associated with

a .83 probability of winning a point and the other cue was associated with a .17 probability of

winning a point during the first 12 trials, and these contingencies were reversed thereafter. We

chose a bigger probability difference in the Reversal compared to the Asymmetric condition in

order to ensure that participants were able to reach a plateau within the first 12 trials. Partici-

pants were encouraged to accumulate as many points as possible and were informed that some

cues would result in winning more often than others. Participants were given no explicit infor-

mation regarding reward probabilities, which they had to learn through trial and error.

At each trial, after a fixation cross, the choice context was presented. Participants made

their choice by pressing left or right arrow keys with their right hand (the choice time was self-

paced). The two experiments differed in the fact that in the Experiment 1 participants were

only informed about the outcome of their own choice (chosen outcome), whereas in the

Experiment 2 participants were informed about both the obtained and the forgone outcome

(i.e. counterfactual feedback). In Experiment 1 positive outcomes were presented at the top

and negative outcomes at the bottom of the screen. The participant was required to press the

key corresponding to the position of the outcome on the screen (top/bottom) in order to move

to the subsequent trial. In Experiment 2 the obtained outcomes were presented in the same

place as the chosen cues and the forgone outcomes in the same place as the unchosen cues. To

move to the subsequent trial, participants had to match the position of the outcome with a key

press (right/left). Importantly for our computational analyses, outcome probabilities (although

on average anti-correlated in the Asymmetric and Reversal conditions) were truly independent

across cues, so that in the Symmetric condition, in a given trial, the obtained and forgone out-

comes were the same in 50% of trials; in the Asymmetric condition this was the case in 37.5%

of trials; finally, in the Reversal condition this was the case in 28.2% of trials.

Behavioural variables

We extracted the correct response rate, that is, the rate of the trials in which the participants

chose the most rewarding response, from the Asymmetric and the Reversal conditions. The

correct response rate in the Reversal condition was calculated separately for the two phases:

before (“first half”) and after (“second half”) the contingency reversal. In the Symmetric condi-

tion, we calculated the so-called “preferred” response rate. The preferred response was defined

as the most frequently chosen option, i.e. that chosen by the participant on more than 50% of

the trials. This quantity was therefore, by definition, greater than 0.5. To investigate the beha-

vioural consequences of learning biases on performance, we median-split the participants

from each experiment into two groups according to their normalised learning rate difference

(Experiment 1: ðaþc � a�c Þ=ða
þ
c þ a�

c Þ; Experiment 2: ½ðaþ
c � a�c Þ � ðaþ

u þ a�u Þ�=ða
þ
c þ a�c þ

aþu þ a�u Þ), from which we obtained ‘low’ and ‘high’ bias participants[48]. The preferred

response rate in the Symmetric condition was submitted to an ANOVA with experiment (1 vs.

2) and bias level (high vs. low) as between-subjects factors. The correct choice rate in the

remaining conditions was submitted to an ANOVA with experiment (1 vs. 2) and bias level

(high vs. low) as between-subjects factors and condition (Asymmetric, Reversal first half and

Reversal second half) as within-subject factors. The effects of interest identified by the ANO-

VAs were also confirmed using Pearson’s correlations.
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Computational models

We fitted the data with a standard Q-learning model, including different learning rates follow-

ing positive and negative prediction errors and containing two different modules (Fig 1C): a

factual learning module to learn from chosen outcomes (Rc) and a counterfactual learning

module to learn from unchosen outcomes (Ru) (note that counterfactual learning applies only

to Experiment 2). For each pair of cues (choice context), the model estimates the expected val-

ues of the two options (Q-values). These Q-values essentially represent the expected reward

obtained by choosing a particular option in a given context. In both experiments, Q-values

were set at 0 before learning, corresponding to the a priori expectation of a 50% chance of win-

ning 1 point, plus a 50% chance of losing 1 point. After every trial t, the value of the chosen

option is updated according to the following rule (factual learning module):

Qc t þ 1ð Þ ¼ Qc tð Þ þ
aþ
c :PEcðtÞ if PEcðtÞ > 0

a�
c :PEcðtÞ if PEcðtÞ < 0

ð1Þ

In this first equation, PEc(t) is the prediction error of the chosen option, calculated as:

PEcðtÞ ¼ RcðtÞ � QcðtÞ; ð2Þ

where Rc(t) is the reward obtained as an outcome of choosing c at trial t. In other words, the

prediction error PEc(t) is the difference between the expected outcome Qc(t) and the actual

outcome Rc(t).

In Experiment 2 the unchosen option value is also updated according to the following rule

(counterfactual learning module):

Qu t þ 1ð Þ ¼ Qu tð Þ þ
aþ
u :PEuðtÞ if PEuðtÞ > 0

a�
u :PEuðtÞ if PEuðtÞ < 0

ð3Þ

In this second equation, PEu(t) is the prediction error of the unchosen option, calculated as:

PEuðtÞ ¼ RuðtÞ � QuðtÞ; ð4Þ

where Ru(t) is the reward that could have been obtained as an outcome of having chosen u at

trial t. In other words, the prediction error PEu(t) is the difference between the expected out-

come Qu(t) and the actual outcome Ru(t) of the unchosen option.

The learning rates aþ
c and aþu are scaling parameters that adjust the amplitude of value

changes from one trial to the next when prediction errors of chosen and unchosen options,

respectively, are positive (when the actual reward R(t) is better than the expected reward Q(t)).

The learning rates a�c and a�
u do the same when prediction errors are negative. Thus, our

model allows for the amplitude of value updates to be different following positive and negative

prediction errors, and for both chosen and unchosen options. It therefore allows for the exis-

tence of valence-dependent learning biases.

Finally, the probability (or likelihood) of selecting the chosen option was estimated with a

soft-max rule as follows:

PcðtÞ ¼ eðQcðtÞ�bÞ=ðeðQcðtÞ�bÞ þ eðQuðtÞ�bÞÞ: ð5Þ

This is a standard stochastic decision rule that calculates the probability of selecting one of a

set of options according to their associated values. The temperature, β, is another scaling
parameter that adjusts the stochasticity of decision-making.

In addition to this ‘Full’ model, we also considered alternative versions with a reduced

number of learning rates (Fig 3A): the ‘Information’ model, where aþc ¼ a�c and aþu ¼ a�u ; the
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‘Valence’ model, where aþc ¼ aþu and a�
c ¼ a�u ; and the ‘Confirmation’ model, where aþ

c ¼ a�u
and a�c ¼ aþu . For the model comparison, we also considered a very simple model (the ‘One’)

model, with only one learning rate (aþ
c ¼ a�c ¼ aþu ¼ a�

u ), and a ‘Perseveration’ model where

an additional parameter (–Inf< π< +Inf) biases the decision-making process by increasing

(positive values) or decreasing (negative values) the likelihood of repeating the same choice,

regardless of the previous outcome (Table 1).

Parameter optimisation and model comparison

In a first analysis, we optimised model parameters by minimising the negative log-likelihood

of the data, given different parameter settings, using Matlab’s fmincon function (ranges:

0<β<Infinite, and 0< αn<1):

LL ¼ logðPðDatajModelÞÞ ð6Þ

Negative log-likelihoods (LL) were used to compute the Bayesian information criterion

(BIC) at the individual level (random effects) for each model, as follows:

BIC ¼ logðntrialsÞ � df þ 2 � LL ð7Þ

BIC were compared between biased and unbiased models to verify that the utilisation of the

biased model was justified, even accounting for its extra-complexity. As an approximation of the

model evidence, individual BICs were fed into the mbb-vb-toolbox [49], a procedure that esti-

mates the exceedance probability and the model attributions for each model within a set of mod-

els, given the data gathered from all participants. Exceedance probability (denoted XP) is the

probability that a given model fits the data better than all other models in the set, i.e. has the high-

est XP (Table 1). The toolbox also allows the estimation of the individual model attributions, i.e.

the posterior probability (PP), for each subject, of belonging to each model. The individual

model attributions can be compared to chance (defined as 1/the total number of models), com-

pared to each other, and can also be averaged to obtain the model frequency for the population.

In a second analysis, we optimised model parameters by minimising the logarithm of the

Laplace approximation to the model evidence (or log posterior probability: LPP):

LPP ¼ logðPðDatajModel; ParametersÞÞ ð8Þ

Because LPP maximisation includes priors over the parameters (temperature: gamma(1.2,5);

learning rates beta(1.1,1.1)) [50], it avoids degenerate parameter estimates. Therefore, learning

rate analyses have been performed on the values retrieved with this procedure. To avoid bias in

learning rate comparisons, the same priors were used for all learning rates. In the main analysis, a

single set of parameters was used to fit all conditions. In a control analysis, different sets of param-

eters were used to fit each condition (“Symmetric”, “Asymmetric” and “Reversal”).

Parameter correlation and parameter recovery

To validate our results, and more specifically to verify that valence-induced differences in

learning rates reflected true differences in learning, as opposed to an artefact of the parameter

optimisation procedure, we checked the correlations between the free parameters (Experiment

1: β, aþc ; a
�
c ; Experiment 2: β, αCON, αDIS) and the capacity of recovering the correct parame-

ters using simulated datasets. To check the capacity of recovering the correct parameters using

simulated datasets, we simulated performance on our behavioural task using virtual partici-

pants with parameters values corresponding to those retrieved from our experimental partici-

pants [23]. We simulated N = 100 virtual experiments.
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Supporting information

S1 Fig. Stability of learning biases across task conditions. (A) Task conditions. The ‘Sym-

metric’ condition was characterised by a stable reward contingency and no correct option,

because the two options had equal reward probabilities. The ‘Asymmetric condition’ was also

characterised by a stable reward contingency and a correct option, since one option had a

higher reward probability than the other. The ‘Reversal’ condition was characterised by an

instable reward contingency: after 12 trials the reward probability reversed across symbols, so

that the former correct option became the incorrect one, and vice versa. Note that the number

of trials refers to one session and participants performed two sessions, each involving new

pairs of stimuli (192 trials in total). (B) and (C) Computational results as a function of the task

conditions in Experiment 1 and Experiment 2, respectively. Each column presents the result of

the corresponding condition presented in (A).

(EPS)

S2 Fig. Parameter recovery in Experiment 1. “True values”: learning rates used to simulate

the data. “Recovered values”: learning rates obtained from the simulations once the same

parameter optimisation was applied as for the experimental data. “Case: unbiased”: no learning

rate bias. “Case: biased”: positivity learning rate bias.

(EPS)

S3 Fig. Parameter recovery in Experiment 2. “True values”: learning rates used to simulate

the data. “Recovered values”: learning rates obtained from the simulations once the same

parameter optimisation was applied as for the experimental data. “Case: unbiased”: no learning

rate bias. “Case: semi-biased”: learning rate bias only concerning factual learning. “Case

biased”: confirmation bias involving both factual and counterfactual learning.

(EPS)
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9. Cazé RD, van der Meer MAA. Adaptive properties of differential learning rates for positive and negative
outcomes. Biol Cybern. 2013; 107: 711–719. https://doi.org/10.1007/s00422-013-0571-5 PMID:
24085507

10. Lefebvre G, Lebreton M, Meyniel F, Bourgeois-Gironde S, Palminteri S. Behavioural and neural charac-
terization of optimistic reinforcement learning. Nat Hum Behav. Macmillan Publishers Limited, part of
Springer Nature.; 2017; 67: 1–9. https://doi.org/10.1038/s41562-017-0067

11. den Ouden HEM, Daw ND, Fernandez G, Elshout J a, RijpkemaM, HoogmanM, et al. Dissociable
effects of dopamine and serotonin on reversal learning. Neuron. 2013; 80: 1090–100. https://doi.org/10.
1016/j.neuron.2013.08.030 PMID: 24267657

12. Frank MJ, Moustafa AA, Haughey HM, Curran T, Hutchison KE. Genetic triple dissociation reveals mul-
tiple roles for dopamine in reinforcement learning. Proc Natl Acad Sci U S A. 2007; 104: 16311–16316.
https://doi.org/10.1073/pnas.0706111104 PMID: 17913879

13. van den BosW, CohenMX, Kahnt T, Crone E a. Striatum-medial prefrontal cortex connectivity predicts
developmental changes in reinforcement learning. Cereb Cortex. Oxford University Press; 2012; 22:
1247–55. https://doi.org/10.1093/cercor/bhr198 PMID: 21817091

14. Aberg KC, Doell KC, Schwartz S. Linking individual learning styles to approach-avoidance motivational
traits and computational aspects of reinforcement learning. PLoS One. 2016; 11: 1–16. https://doi.org/
10.1371/journal.pone.0166675 PMID: 27851807

15. Sharot T, Garrett N. Forming Beliefs: Why Valence Matters. Trends Cogn Sci. Elsevier Ltd; 2016; 20:
25–33. https://doi.org/10.1016/j.tics.2015.11.002 PMID: 26704856

16. O’Doherty JP, Lee SW, McNamee D. The structure of reinforcement-learning mechanisms in the
human brain. Curr Opin Behav Sci. Elsevier Ltd; 2015; 1: 94–100. https://doi.org/10.1016/j.cobeha.
2014.10.004

17. Boorman ED, Behrens TE, Rushworth MF. Counterfactual Choice and Learning in a Neural Network
Centered on Human Lateral Frontopolar Cortex. PLoS Biol. 2011; 9. https://doi.org/10.1371/journal.
pbio.1001093 PMID: 21738446

18. Fischer AG, Ullsperger M. Real and fictive outcomes are processed differently but converge on a com-
mon adaptive mechanism. Neuron. Elsevier Inc.; 2013; 79: 1243–55. https://doi.org/10.1016/j.neuron.
2013.07.006 PMID: 24050408

19. Palminteri S, Boraud T, Lafargue G, Dubois B, Pessiglione M. Brain hemispheres selectively track the
expected value of contralateral options. J Neurosci. 2009; 29: 13465–13472. https://doi.org/10.1523/
JNEUROSCI.1500-09.2009 PMID: 19864559

Confirmation bias in human reinforcement learning

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005684 August 11, 2017 20 / 22

https://doi.org/10.1038/nrn2357
http://www.ncbi.nlm.nih.gov/pubmed/18545266
https://doi.org/10.1257/jel.47.2.315
https://doi.org/10.1016/j.tics.2009.09.004
http://www.ncbi.nlm.nih.gov/pubmed/19836292
https://doi.org/10.1038/nn.2723
http://www.ncbi.nlm.nih.gov/pubmed/21270784
https://doi.org/10.1126/science.1232491
https://doi.org/10.1126/science.1232491
http://www.ncbi.nlm.nih.gov/pubmed/24855262
http://www.ncbi.nlm.nih.gov/pubmed/12371507
http://www.ncbi.nlm.nih.gov/pubmed/12371507
http://www.ncbi.nlm.nih.gov/pubmed/12371507
https://doi.org/10.1109/TNN.1998.712192
https://doi.org/10.1109/TNN.1998.712192
https://doi.org/10.1371/journal.pone.0006421
http://www.ncbi.nlm.nih.gov/pubmed/19641614
https://doi.org/10.1007/s00422-013-0571-5
http://www.ncbi.nlm.nih.gov/pubmed/24085507
https://doi.org/10.1038/s41562-017-0067
https://doi.org/10.1016/j.neuron.2013.08.030
https://doi.org/10.1016/j.neuron.2013.08.030
http://www.ncbi.nlm.nih.gov/pubmed/24267657
https://doi.org/10.1073/pnas.0706111104
http://www.ncbi.nlm.nih.gov/pubmed/17913879
https://doi.org/10.1093/cercor/bhr198
http://www.ncbi.nlm.nih.gov/pubmed/21817091
https://doi.org/10.1371/journal.pone.0166675
https://doi.org/10.1371/journal.pone.0166675
http://www.ncbi.nlm.nih.gov/pubmed/27851807
https://doi.org/10.1016/j.tics.2015.11.002
http://www.ncbi.nlm.nih.gov/pubmed/26704856
https://doi.org/10.1016/j.cobeha.2014.10.004
https://doi.org/10.1016/j.cobeha.2014.10.004
https://doi.org/10.1371/journal.pbio.1001093
https://doi.org/10.1371/journal.pbio.1001093
http://www.ncbi.nlm.nih.gov/pubmed/21738446
https://doi.org/10.1016/j.neuron.2013.07.006
https://doi.org/10.1016/j.neuron.2013.07.006
http://www.ncbi.nlm.nih.gov/pubmed/24050408
https://doi.org/10.1523/JNEUROSCI.1500-09.2009
https://doi.org/10.1523/JNEUROSCI.1500-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19864559
https://doi.org/10.1371/journal.pcbi.1005684


20. Palminteri S, Khamassi M, Joffily M, Coricelli G. Contextual modulation of value signals in reward and
punishment learning. Nat Commun. Nature Publishing Group; 2015; 6: 8096. https://doi.org/10.1038/
ncomms9096 PMID: 26302782

21. Rescorla RA,Wagner AR. A Theory of Pavlovian Conditioning: Variations in the Effectiveness of Rein-
forcement and Nonreinforcement. In: Black AH, ProkasyWF, editors. Classical conditioning II: current
research and theory. New York: Applenton-Century-Crofts; 1972. pp. 64–99.

22. Watkins CJCH, Dayan P. Q-learning. Mach Learn. 1992; 8: 279–292. https://doi.org/10.1007/
BF00992698

23. Palminteri S, Wyart V, Koechlin E. The Importance of Falsification in Computational Cognitive Modeling.
Trends Cogn Sci. 2017; 21: 425–433. https://doi.org/10.1016/j.tics.2017.03.011 PMID: 28476348

24. Palminteri S, Kilford EJ, Coricelli G, Blakemore S- J. The computational development of reinforcement
learning during adolescence. PLoS Comput Biol. 2016;

25. Nickerson R. Confirmation bias: a ubiquitous phenomenon in many guises. Rev Gen Psychol. 1998; 2:
175–220.

26. Staudinger MR, Buchel C. How initial confirmatory experience potentiates the detrimental influence of
bad advice. Neuroimage. 2013; 76: 125–133. https://doi.org/10.1016/j.neuroimage.2013.02.074 PMID:
23507392

27. Doll BB, JacobsWJ, Sanfey AG, Frank MJ. Instructional control of reinforcement learning: a behavioral
and neurocomputational investigation. Brain Res. Elsevier B.V.; 2009; 1299: 74–94. https://doi.org/10.
1016/j.brainres.2009.07.007 PMID: 19595993

28. Biele G, Rieskamp J, Gonzalez R. Computational models for the combination of advice and individual
learning. Cogn Sci. 2009; 33: 206–242. https://doi.org/10.1111/j.1551-6709.2009.01010.x PMID:
21585468

29. Doll BB, Hutchison KE, Frank MJ. Dopaminergic Genes Predict Individual Differences in Susceptibility
to Confirmation Bias. 2011; 31: 6188–6198. https://doi.org/10.1523/JNEUROSCI.6486-10.2011 PMID:
21508242

30. Biele G, Rieskamp J, Krugel LK, Heekeren HR. The Neural basis of following advice. PLoS Biol. 2011;
9. https://doi.org/10.1371/journal.pbio.1001089 PMID: 21713027

31. Behrens TEJ, Woolrich MW,Walton ME, Rushworth MFS. Learning the value of information in an
uncertain world. Nat Neurosci. 2007; 10: 1214–21. https://doi.org/10.1038/nn1954 PMID: 17676057

32. Browning M, Behrens TE, JochamG, Reilly JXO, Bishop SJ. Anxious individuals have difficulty learning
the causal statistics of aversive environments Michael Browning. Nat Neurosci. Nature Publishing
Group; 2015; 18: 1–50. https://doi.org/10.1038/nn.3916 PMID: 25547471

33. Boorman ED, Behrens TEJ, Woolrich MW, Rushworth MFS. HowGreen Is the Grass on the Other
Side? Frontopolar Cortex and the Evidence in Favor of Alternative Courses of Action. Neuron. Elsevier
Ltd; 2009; 62: 733–743. https://doi.org/10.1016/j.neuron.2009.05.014 PMID: 19524531

34. Kishida KT, Saez I, Lohrenz T, Witcher MR, Laxton AW, Tatter SB, et al. Subsecond dopamine fluctua-
tions in human striatum encode superposed error signals about actual and counterfactual reward. Proc
Natl Acad Sci U S A. 2015; 1513619112-. https://doi.org/10.1073/pnas.1513619112 PMID: 26598677

35. Lohrenz T, McCabe K, Camerer CF, Montague PR. Neural signature of fictive learning signals in a
sequential investment task. Proc Natl Acad Sci U S A. 2007; 104: 9493–8. https://doi.org/10.1073/pnas.
0608842104 PMID: 17519340

36. Li J, Daw ND. Signals in Human Striatum Are Appropriate for Policy Update Rather than Value Predic-
tion. J Neurosci. 2011; 31: 5504–5511. https://doi.org/10.1523/JNEUROSCI.6316-10.2011 PMID:
21471387

37. Ross Otto A, Love B. You don’t want to know what you’re missing: When information about forgone
rewards impedes dynamic decision making. JudgmDecis Mak, 5 pp 1–10. 2010; Available: http://
discovery.ucl.ac.uk/1361909/

38. Ert E, Erev I. Replicated alternatives and the role of confusion, chasing, and regret in decisions from
experience. J Behav Decis Mak. JohnWiley & Sons, Ltd.; 2007; 20: 305–322. https://doi.org/10.1002/
bdm.556

39. Grosskopf B, Erev I, Yechiam E. Foregone with theWind: Indirect Payoff Information and its Implica-
tions for Choice. Int J Game Theory. Springer-Verlag; 2006; 34: 285–302. https://doi.org/10.1007/
s00182-006-0015-8

40. Yechiam E, Busemeyer JR. The effect of foregone payoffs on underweighting small probability events.
J Behav Decis Mak. JohnWiley & Sons, Ltd.; 2006; 19: 1–16. https://doi.org/10.1002/bdm.509

41. BellebaumC. Dissociation between Active and Observational Learning from Positive and Negative
Feedback in Parkinsonism. 2012; 7: 1–8. https://doi.org/10.1371/journal.pone.0050250 PMID:
23185586

Confirmation bias in human reinforcement learning

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005684 August 11, 2017 21 / 22

https://doi.org/10.1038/ncomms9096
https://doi.org/10.1038/ncomms9096
http://www.ncbi.nlm.nih.gov/pubmed/26302782
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1016/j.tics.2017.03.011
http://www.ncbi.nlm.nih.gov/pubmed/28476348
https://doi.org/10.1016/j.neuroimage.2013.02.074
http://www.ncbi.nlm.nih.gov/pubmed/23507392
https://doi.org/10.1016/j.brainres.2009.07.007
https://doi.org/10.1016/j.brainres.2009.07.007
http://www.ncbi.nlm.nih.gov/pubmed/19595993
https://doi.org/10.1111/j.1551-6709.2009.01010.x
http://www.ncbi.nlm.nih.gov/pubmed/21585468
https://doi.org/10.1523/JNEUROSCI.6486-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21508242
https://doi.org/10.1371/journal.pbio.1001089
http://www.ncbi.nlm.nih.gov/pubmed/21713027
https://doi.org/10.1038/nn1954
http://www.ncbi.nlm.nih.gov/pubmed/17676057
https://doi.org/10.1038/nn.3916
http://www.ncbi.nlm.nih.gov/pubmed/25547471
https://doi.org/10.1016/j.neuron.2009.05.014
http://www.ncbi.nlm.nih.gov/pubmed/19524531
https://doi.org/10.1073/pnas.1513619112
http://www.ncbi.nlm.nih.gov/pubmed/26598677
https://doi.org/10.1073/pnas.0608842104
https://doi.org/10.1073/pnas.0608842104
http://www.ncbi.nlm.nih.gov/pubmed/17519340
https://doi.org/10.1523/JNEUROSCI.6316-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21471387
http://discovery.ucl.ac.uk/1361909/
http://discovery.ucl.ac.uk/1361909/
https://doi.org/10.1002/bdm.556
https://doi.org/10.1002/bdm.556
https://doi.org/10.1007/s00182-006-0015-8
https://doi.org/10.1007/s00182-006-0015-8
https://doi.org/10.1002/bdm.509
https://doi.org/10.1371/journal.pone.0050250
http://www.ncbi.nlm.nih.gov/pubmed/23185586
https://doi.org/10.1371/journal.pcbi.1005684


42. Burke CJ, Tobler PN, Baddeley M, Schultz W. Neural mechanisms of observational learning. Proc Natl
Acad Sci U S A. 2010; 107: 14431–14436. https://doi.org/10.1073/pnas.1003111107 PMID: 20660717

43. Fawcett TW, Fallenstein B, Higginson AD, Houston AI, Mallpress DEW, Trimmer PC, et al. The evolu-
tion of decision rules in complex environments. Trends Cogn Sci. Elsevier Ltd; 2014; 18: 153–161.
https://doi.org/10.1016/j.tics.2013.12.012 PMID: 24467913

44. Blaine B, Crocker J. Self-Esteem and Self-Serving Biases in Reactions to Positive and Negative Events:
An Integrative Review. In: Baumeister RF, editor. Self-Esteem. The Springer Series in Social Clinical
Psychology; 1993. p. pp 55–85.

45. Weinstein ND. Unrealistic Optimism About Future Life events. J Pers Soc Psychol. 1980; 39: 806–820.
https://doi.org/10.1037/a0020997 PMID: 21058872

46. Kuhn D, Lao J. Effects of Evidence on Attitudes: Is Polarization the Norm? Psychol Sci. 1996; 7: 115–
120. https://doi.org/10.1111/j.1467-9280.1996.tb00340.x

47. Ross L, Lepper MR, Hubbard M. Perseverance in self-perception and social perception: biased attribu-
tional processes in the debriefing paradigm. J Pers Soc Psychol. 1975; 32: 880–92. Available: http://
www.ncbi.nlm.nih.gov/pubmed/1185517 PMID: 1185517

48. Niv Y, Edlund JJ a, Dayan P, O’Doherty JJP, Doherty JPO. Neural prediction errors reveal a risk-sensi-
tive reinforcement-learning process in the human brain. J Neurosci. 2012; 32: 551–562. https://doi.org/
10.1523/JNEUROSCI.5498-10.2012 PMID: 22238090

49. Daunizeau J, Adam V, Rigoux L. VBA: A Probabilistic Treatment of Nonlinear Models for Neurobiologi-
cal and Behavioural Data. PLoS Comput Biol. 2014; 10: e1003441. https://doi.org/10.1371/journal.pcbi.
1003441 PMID: 24465198

50. Daw NDD, Gershman SJJ, Seymour B, Dayan P, Dolan RJJ. Model-based influences on humans’
choices and striatal prediction errors. Neuron. Elsevier; 2011; 69: 1204–1215. https://doi.org/10.1016/j.
neuron.2011.02.027 PMID: 21435563

Confirmation bias in human reinforcement learning

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005684 August 11, 2017 22 / 22

https://doi.org/10.1073/pnas.1003111107
http://www.ncbi.nlm.nih.gov/pubmed/20660717
https://doi.org/10.1016/j.tics.2013.12.012
http://www.ncbi.nlm.nih.gov/pubmed/24467913
https://doi.org/10.1037/a0020997
http://www.ncbi.nlm.nih.gov/pubmed/21058872
https://doi.org/10.1111/j.1467-9280.1996.tb00340.x
http://www.ncbi.nlm.nih.gov/pubmed/1185517
http://www.ncbi.nlm.nih.gov/pubmed/1185517
http://www.ncbi.nlm.nih.gov/pubmed/1185517
https://doi.org/10.1523/JNEUROSCI.5498-10.2012
https://doi.org/10.1523/JNEUROSCI.5498-10.2012
http://www.ncbi.nlm.nih.gov/pubmed/22238090
https://doi.org/10.1371/journal.pcbi.1003441
https://doi.org/10.1371/journal.pcbi.1003441
http://www.ncbi.nlm.nih.gov/pubmed/24465198
https://doi.org/10.1016/j.neuron.2011.02.027
https://doi.org/10.1016/j.neuron.2011.02.027
http://www.ncbi.nlm.nih.gov/pubmed/21435563
https://doi.org/10.1371/journal.pcbi.1005684

