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Abstract In confirmatory factor analysis (CFA), the use of
maximum likelihood (ML) assumes that the observed indica-
tors follow a continuous and multivariate normal distribution,
which is not appropriate for ordinal observed variables. Ro-
bust ML (MLR) has been introduced into CFA models when
this normality assumption is slightly or moderately violated.
Diagonally weighted least squares (WLSMV), on the other
hand, is specifically designed for ordinal data. Although
WLSMV makes no distributional assumptions about the
observed variables, a normal latent distribution underlying
each observed categorical variable is instead assumed. A
Monte Carlo simulation was carried out to compare the effects
of different configurations of latent response distributions,
numbers of categories, and sample sizes on model parameter
estimates, standard errors, and chi-square test statistics in a
correlated two-factor model. The results showed that WLSM
V was less biased and more accurate than MLR in estimating
the factor loadings across nearly every condition. However,
WLSMV yielded moderate overestimation of the interfactor
correlations when the sample size was small or/and when the
latent distributions were moderately nonnormal. With respect
to standard error estimates of the factor loadings and the
interfactor correlations, MLR outperformed WLSMV when
the latent distributions were nonnormal with a small sample
size of N = 200. Finally, the proposed model tended to be
over-rejected by chi-square test statistics under both MLR
and WLSMV in the condition of small sample size N = 200.

Keywords Robust estimation . Ordinal data .Monte Carlo
Simulation . Confirmatory factor analysis

In the social and behavioral sciences, researchers often em-
ploy Likert-type scale items to operationalize unobserved con-
structs (e.g., optimism or motivation) by using more manage-
ably observed variables. Confirmatory factor analysis (CFA)
has been widely used as evidence of construct validity in
theory-based instrument construction. A confirmatory factor-
analytic model takes into account the differences between the
true and observed scores by including pertinent error vari-
ances as model parameters in a structural equation modeling
framework. The most common method used to estimate pa-
rameters in CFA models is maximum likelihood (ML), be-
cause of its attractive statistical properties (i.e., asymptotic
unbiasedness, normality, consistency, and maximal efficien-
cy). The use of ML requires the assumption that the observed
variables follow a continuous and multivariate normal distri-
bution given the covariates in the population (Bollen, 1989;
Jöreskog, 1969; Satorra, 1990). As a consequence, each pair
of observed variables is bivariate normally distributed in each
subpopulation with the same values on the covariates (Raykov
& Marcoulides, 2006). When this assumption is considered
tenable, ML maximizes the likelihood of the observed data to
obtain parameter estimates. This is equivalent to minimizing
the discrepancy function FML (Bollen, 1989; Jöreskog, 1969):

FML ¼ ln
X

θð Þ
��� ���þ trace SΣ−1 θð Þ� �

−ln Sj j−p; ð1Þ

where θ is the vector of model parameters,Σ(θ) is the model-
implied covariance matrix, S is the sample covariance matrix,
and p is the total number of observed variables in the model.

However, ML is not, strictly speaking, appropriate for or-
dinal variables. The normality assumption about observed
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variables is severely violated when the analyzed data have
only a few response categories (Lubke & Muthén, 2004).
When the normality assumption is not deemed empirically
tenable, the use of ML may not only reduce the precision
and accuracy of the model parameter estimates, but may also
result in misleading conclusions drawn from empirical data. In
previous simulation studies that have applied ML in cases of
severe nonnormality due to categorization, researchers have
found that chi-square statistics may be inflated, factor loadings
may be downward-biased, and standard errors may be biased
to some degree, as well (Beauducel & Herzberg, 2006;
Kaplan, 2009; Muthén & Kaplan, 1985, 1992).

The existing estimators with statistical corrections to stan-
dard errors and chi-square statistics, such as robust maximum
likelihood (robust ML: MLR in Mplus) and diagonally
weighted least squares (DWLS in LISREL; WLSMV or ro-
bust WLS in Mplus), have been suggested to be superior to
ML when ordinal data are analyzed. Robust ML has been
widely introduced into CFA models when continuous ob-
served variables slightly or moderately deviate from normali-
ty. WLSMV, on the other hand, is specifically designed for
categorical observed data (e.g., binary or ordinal) in which
neither the normality assumption nor the continuity property
is considered plausible. Although WLSMV makes no distri-
butional assumptions about observed variables, a normal
latent distribution underlying each observed categorical vari-
able is instead assumed. Application of the standard WLS
estimator is not investigated in this article, mainly because
(i) empirical research has shown that the performance of stan-
dardWLS is inferior to that of WLSMVwhen the sample size
is small and the number of observed variables is relatively
large, and (ii) standard WLS encounters more computational
problems in the process of estimating model parameters than
does WLSMV (Flora & Curran, 2004; Muthén, du Toit, &
Spisic, 1997; Oranje, 2003).

Robust maximum likelihood

As compared to ML estimation, a robust ML approach is less
dependent on the assumption of multivariate normal distribu-
tion. When the normality assumption about observed vari-
ables does not hold, and robustML is implemented, parameter
estimates are still obtained using the asymptotically unbiased
ML estimator, but standard errors and chi-square test statistics
are statistically corrected to enhance the robustness of ML
against departures from normality (in the forms of skewness,
kurtosis, or both). Specifically, the corrected standard error
estimates are obtained by a sandwich-type estimator, rather
than the inverse Fisher information matrix (Kaplan, 2009;
Muthén & Muthén, 2007). The sandwich estimator imple-
mented in MLR incorporates an observed Fisher information

matrix Δ̂0Ι̂obΔ̂ (approximation to the Fisher information

matrix) into the asymptotic covariance matrix of the estimated

parameter vector θ̂ (Muthén & Muthén, 2007; Satorra &
Bentler, 1994; Savalei, 2010):

aC
d

ov θ̂
� �

MLR
¼ N−1 Δ̂

0
Ι̂obΔ̂

� �−1
Δ̂

0
Ι̂obΓ̂Ι̂obΔ̂ Δ̂

0
Ι̂obΔ̂

� �−1
ð2:1Þ

and

Îob ¼ D0 Σ−1 θ̂
� �

⊗ Σ−1 θ̂
� �

SΣ−1 θ̂
� �

−1
�
2
Σ−1 θ̂

� ��h in o
D; ð2:2Þ

where Γ̂ is the estimated asymptotic covariance matrix of S,

Δ̂ is defined as ∂Σ θ̂
� �

=∂θ̂ [i.e., model first derivatives eval-

uated at parameter estimates θ̂ ], the Bduplication^ matrixD is
of order r2 × ½r(r + 1) [r = the number of observed variables
in Σ(Θ); see Magnus & Neudecker, 1986, p. 172], and ⨂
denotes a Kronecker product. The corrected standard error
estimates are calculated by taking the square roots of the di-
agonal elements of the above estimated asymptotic covariance
matrix. The upward corrected standard error estimates have
been found to be more favorable than those estimated by the
inverse Fisher information matrix when the observed data are
nonnormal (Satorra & Bentler, 1994).

The robust corrections applied to the chi-square statistic
vary slightly across different current software programs. The
Satorra–Bentler scaled chi-square statistic given by the BML,
Robust^ estimator in EQS is equivalent to the mean-adjusted
chi-square statistic obtained by MLM in Mplus. Another
corrected chi-square statistic T2

*, proposed by Yuan and
Bentler (1997, 1998) using the generalized least squares ap-
proach, is asymptotically equivalent to the chi-square test sta-
tistic obtained by MLR (Muthén & Muthén, 2007):

TMLR →
a
T*
2; ð3Þ

where →a denotes asymptotic equivalence. A simulation
study by Yuan and Bentler (1998) has shown that both the
Satorra–Bentler scaledχ2 and the Yuan–Bentler T2

* are robust
against nonnormal distributions of observed data. Note that a
mean- and variance-adjusted chi-square statistic (i.e., MLMV
in Mplus, also known as the Satorra–Bentler adjusted chi-
square statistic) is also available in software programs but is
outside the scope of this study. MLR is much more frequently
used than MLM and MLMV in research practice.

Diagonally weighted least squares

Weighted least squares is generally referred to as the asymp-
totically distribution-free estimator when data are continuous
but nonnormal and a consistent estimate of the asymptotic
covariance matrix of sample-based variances and covariances
is used (Browne, 1984). However, neither the assumption of
normality nor the continuity property is clearly met by
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observed variables that are measured on an ordinal scale.
Muthén (1984) made a substantial breakthrough in analyzing
ordinal observed data in CFA models by using a weighted
least squares approach. In this approach, WLS assumes that
a continuous, normal, latent response distribution x* underlies
an observed ordinal variable x in the population:

x ¼ m; ifτm−1 < x* < τm; ð4Þ
where m (=1, 2, . . . , c) defines the observed value of an
ordinal observed variable x, τ is the threshold (−∞ = τ0 < τ1
< τ2 . . . < τc–1 < τc = +∞), and c is the number of categories.
The thresholds and polychoric correlations are first estimated
using two-step ML estimation through bivariate contingency
tables (Bollen, 1989; Jöreskog, 2005; Olsson, 1979). An esti-
mated polychoric correlation captures the linear relationship
between two normal, latent response variables. Parameter es-
timates and the associated standard errors are then obtained
using the estimated asymptotic covariance matrix of the
polychoric correlation and threshold estimates (denoted Ṽ)
in a weight matrix W to minimize the weighted least squares
fit function FWLS (Muthén 1984):

FWLS ¼ s−σ θð Þ½ �0W−1 s−σ θð Þ½ �; ð5Þ

where θ is the vector of model parameters, W (= Ṽ) is the
weight matrix, σ(θ) is the model-implied vector containing the
nonredundant, vectorized elements ofΣ(θ), and s is the vector
containing the unique elements of sample statistics (i.e.,
threshold and polychoric correlation estimates). When the
weight matrix W is replaced with the identity matrix I, WLS
reduces to unweighted least squares (ULS). In order to address
heteroscedastic disturbances in CFA models, a full weight
matrix W = Ṽ (i.e., the estimated asymptotic covariance ma-
trix of the polychoric correlation and threshold estimates) is
implemented in the WLS fit function above to account for
distributional variability in and interrelationships among the
observed variables (Kaplan, 2009). However, as the number
of observed variables and response categories increases, the
weight matrix grows rapidly in size.

Weighted least squares with means and variances adjusted
in Mplus (WLSMV; Muthén & Muthén, 2007), a mathemat-
ically simple form of the WLS estimator, only incorporates
diagonal elements of the full weight matrix in the fit function.
The diagonal weight matrix WD = diag(Ṽ) is more flexible
(i.e., need not be positive-definite) than the full weight matrix
W = Ṽ (Kaplan, 2009; Kline, 2011; Muthén et al., 1997). The
diagonal weight matrix prevents software programs from en-
gaging in extensive computations and encountering numerical
problems in model estimation. The results of simulation stud-
ies have indicated the relative superiority of WLSMV over
WLS in the analysis of measurement models with ordinal
indicators (Flora & Curran, 2004; Kaplan, 2009; Muthén,
1993; Muthén et al., 1997). TheWLSMVestimation proceeds

by first estimating thresholds and polychoric correlations
using ML. The parameter estimates are then obtained from
the estimated asymptotic variances of the polychoric correla-
tion and threshold estimates used in a diagonal weight matrix
(Muthén et al., 1997; Muthén & Muthén, 2007):

FWLSMV ¼ s−σ θð Þ½ �0W−1
D s−σ θð Þ½ �; ð6Þ

whereWD = diag(Ṽ) is the diagonal weight matrix. Using the
same sandwich-type matrix form as for MLR, the obtained
standard error estimates are given by the square roots of the
diagonals of the estimated asymptotic covariancematrix of the
estimated parameter vector of θ̂ (Muthén et al., 1997):

aC
d

ov θ̂
� �
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¼ N−1 ~Δ

0
W−1

D
~Δ

� �−1
~Δ

0
W−1

D
~VW−1

D
~Δ ~Δ

0
W−1

D
~Δ

� �−1
; ð7Þ

whereṼ is a consistent estimator of the asymptotic covariance
matrix of s, WD [= diag(Ṽ)] contains only diagonal elements
of the estimated asymptotic covariance matrix, and ~Δ is de-
fined as ∂σ(θ̂ )/∂θ̂. In the meantime, Ṽ need not be inverted in
computations of standard error estimates (Muthén, 1993;
Muthén et al., 1997). A mean- and variance-adjusted chi-
square test statistic with the degrees of freedom computed
on the basis of a given model specification is defined as
(Muthén et al., 1997):

TWLSMV ¼ d f 0=trace ~U~V
� �h i

TWLS; ð8Þ

where df' is computed as the integer closest to df* =
{[trace(ŨṼ)]2/trace(ŨṼ)2}, TWLS is the standard WLS chi-
square test statistic, Ṽ is the estimated asymptotic covariance
matrix of s, and ~U ¼ W−1

D −W−1
D

~Δ ~Δ0W−1
D

~Δ
� 	−1 ~Δ0W−1

D . It is
worth noting that the aim of statistical corrections to standard
errors in WLSMV is to compensate for the loss of efficiency
when the full weight matrix is not calculated, and the mean
and variance adjustments for test statistics in WLSMV are
targeted to make the shapes of the test statistics be approxi-
mately close to the reference chi-square distribution with the
associated degrees of freedom.

Previous simulation studies

Simulation studies have investigated the properties of differ-
ent estimation methods, typically reporting on the relative
performance (e.g., precision and accuracy) of parameter esti-
mates, standard error estimates, and Type I error rates associ-
ated with chi-square statistics. A literature review of Monte
Carlo simulation studies carrying out ordinal confirmatory
factor-analytic models was conducted across several high-
impact journals (e.g., Psychological Methods, Structural
Equation Modeling, Educational and Psychological
Measurement, and Multivariate Behavioral Research) over
20 years (1994–2013). The empirical findings, using ML



and WLS and their statistical corrections, can be briefly
summarized below. Generally, the overall performance of
WLS was inferior to that of WLSMV in the analysis of CFA
models using ordinal variables across almost every condi-
tion investigated by Flora and Curran (2004). Factor load-
ing estimates were less biased by WLS and WLSMV than
by ML, but interfactor correlations were found to be less
overestimated by ML than by WLS and WLSMV
(Beauducel & Herzberg, 2006; DiStefano, 2002). In con-
trast, Yang-Wallentin, Jöreskog, and Luo (2010) gave em-
pirical evidence that the parameter estimates (both factor
loadings and interfactor correlations) obtained by WLS
were substantially biased, whereas those obtained by
WLSMV and ML were essentially unbiased, regardless of
the number of categories (two, five, or seven) and the shape
of the observed distributions (symmetrical vs. asymmetri-
cal). In addition, Lei (2009) found that the relative bias in
parameter estimates was generally negligible for both ML
andWLSMVacross different levels of asymmetric observed
distributions (symmetric, mildly skewed, and moderately
skewed). Oranje (2003) also concluded that both ML and
WLSMV produced equally good parameter estimates
across the numbers of categories (two, three, and five). Note
that ML and MLR yield the same parameter estimates, but
different standard error estimates and chi-square statistics.
In addition, it is worth noting that the simulation studies of
Lei (2009), Oranje (2003), and Yang-Wallentin et al. (2010)
used a polychoric correlation matrix, instead of a sample-
based covariance matrix, in ML with robust corrections to
standard errors and chi-square statistics.

In terms of standard error estimates, ML has been
found to produce much smaller standard errors of factor
loadings than does mean-adjusted ML in LISREL, statis-
tically equivalent to MLM in Mplus, (Yang-Wallentin
et al., 2010) and WLSMV (Beauducel & Herzberg,
2006), indicating that uncorrected ML standard errors
are generally underestimated. On the other hand, simula-
tion studies have shown that standard errors in WLSMV
were generally less biased than those obtained by mean-
adjusted ML, irrespective of the number of categories
(Yang-Wallentin et al., 2010) and the level of asymmetric
observed distributions (Lei, 2009). As for chi-square sta-
tistics, Beauducel and Herzberg (2006) revealed that the
unadjusted chi-square statistics produced by ML were
more likely to over-reject the proposed models than were
the mean- and variance-adjusted chi-square statistics ob-
tained by WLSMV. Additionally, Lei found that WLSMV
was slightly more powerful than mean-adjusted ML in the
evaluation of the overall model fit across different levels
of asymmetric observed distributions, whereas Oranje
(2003) concluded that the mean-adjusted ML provided
the most correct rejection rate than WLSMV across the
numbers of response categories.

Present study

The present study was designed to advance scholarly un-
derstanding of the impact of ordinal observed variables on
parameter estimates, the associated standard errors, and
chi-square statistics for ordinal CFA models. Jackson,
Gillaspy, and Purc-Stephenson (2009) reviewed 194
studies from 1998 to 2006 and found that the most com-
monly tested CFA models were correlated-factor models
(50.5 %), followed by orthogonal (12.0 %), hierarchical
(10.6 %), single-factor (9.5 %), and so on. A correlated
two-factor model was chosen as the representative of the
common/simple CFA model specification that is often-
times examined in simulation studies and is frequently
encountered in practice. The literature in ordinal CFA is
abundant for the joint performance of robust estimators on
both factor loading and interfactor correlation estimates
(e.g., Lei, 2009; Oranje, 2003; Yang-Wallentin et al.,
2010) or the performance of non-robust estimators (e.g.,
DiStefano, 2002; Forero & Maydeu-Olivares, 2009).
However, little is currently known about the performance
of different estimators with statistical corrections when
examining factor loadings and interfactor correlations
separately, along with corrected standard errors and chi-
square test statistics, as well.

Second, MLR is not designed specifically for ordinal data,
but one may assume that observed data are Bapproximately^
continuous if the number of categories is sufficiently large.
Johnson and Creech (1983) have noted that variability in pa-
rameter estimates is quite small with five or more response
categories in the model. In practice, empirical researchers
have suggested using MLR in ordinal CFA or CFA-based
models (e.g., multiple-indicator multiple-cause models, or
measurement invariance) when the number of response cate-
gories for each item was equal to or greater than five (e.g.,
Raykov, 2012; Rigdon, 1998, and the references therein). Yet,
unlike other robust corrections implemented in ML estima-
tion, MLR implemented in Mplus has not been systematically
evaluated by means of a Monte Carlo study in previous stud-
ies, although its robust correction is similar, but not always
equivalent, to other robust ML corrections (e.g., MLM or
MLMVinMplus; ML, ROBUST in EQS). On the other hand,
WLSMV has been specifically proposed to deal with ordinal
data (the default setting inMplus), mainly because it makes no
distributional assumptions about the observed variables.
When it comes to a CFA model with ordinal data, applied
researchers tend to choose one or another estimator to perform
data analysis in Mplus. Some researchers prefer treating ordi-
nal variables with more than five alternatives as if they were
approximately continuous variables, and in turn they perform
MLR in data analysis to adjust the violation of nonnormality,
whereas others highly recommend using WLSMVas long as
the observed variables are ordinally scaled. An examination of
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the two estimators under varying empirical conditions is need-
ed, since they are frequently used in research practice.

Third, several simulation studies have compared WLSMV
to other estimators (e.g., ML, WLS, and ULS) across different
numbers of categories: When the number of categories was
five, six, or seven, (1) the performance of WLSMVestimation
was slightly superior to the performance of ML (Beauducel &
Herzberg, 2006); (2) WLSMV outperformed WLS across
most conditions (Flora & Curran, 2004); and (3) ULS was
found to produce more accurate and precise factor loadings
than did WLSMV, but it encountered a higher rate of model
nonconvergence (Forero, Maydeu-Olivares, & Gallardo-
Pujol, 2009). However, the impact of the number of categories
on parameter variability and adjusted standard error estimates
has not yet been examined using MLR and WLSMV with
larger numbers of categories (e.g., eight or ten). The number
of categories affects not only the distribution of the observed
ordinal variables, but also the possibility of treating ordinal
variables as approximately continuous. This extension can
help validate whether MLR is equally as good as WLSMV
in a CFA model when ordinal observed variables have more
than five response categories, and/or it can explore whether
the superiority of MLR over WSLMV can be reached with a
larger number of categories.

Fourth, MLR was developed to permit the parameter esti-
mation from nonnormality of continuous observed variables,
whereas WLSMV has been implemented in CFAmodels with
nonnormal observed data due to the categorical nature of mea-
surement (i.e., ordinal data), conditional on the assumption of
a continuous, normal underlying distribution in the popula-
tion. Although polychoric correlation estimates have shown
robustness against violation of the latent-normality assump-
tion (Coenders, Satorra, & Saris, 1997; Flora & Curran, 2004;
Micceri, 1989; Quiroga, 1992), what is not clearly known
from the current literature is the extent to which the precision
of WLSMV in estimating factor loadings, standard errors, and
chi-square statistics would be sustained. Therefore, the latent
distribution was manipulated by varying skewness and
kurtosis in the study. It could be expected that the effect of
the latent normality distribution violation would more likely
be salient for the performance of WLSMV than for that of
MLR, holding other experimental conditions equal.
Moreover, nonnormality, in the form of asymmetry observed
in psychometric measurements, has not been uncommon in
applied studies. Micceri (1989) found that only about 3 % of
the 125 observed distributions that he investigated were close
to normal or near symmetric, and over 80 % displayed at least
slight or moderate asymmetry. Therefore, in order to be more
realistic from an applied standpoint, this study also included
asymmetric observed distributions of ordinal variables in the
simulation design.

Finally, this study was designed to examine the effect of
sample size on the parameter estimates produced while

utilizing the two estimators, because researchers have noted
that a desirable sample size is known to be an important factor
in CFA models. A small sample may cause inaccurate param-
eter estimates and unstable standard errors, and may result in
nonconvergence and improper solutions, as well.

Method

Model specification

A Monte Carlo simulation study was carried out to com-
pare the effects of different configurations of latent re-
sponse distributions, numbers of categories, and sample
sizes on model parameter estimates, standard errors, and
chi-square test statistics in a correlated two-factor model.
Marsh, Hau, Balla, and Grayson (1998) concluded that
the accuracy of parameter estimates appeared to be opti-
mal when the number of observed variables per factor was
four, and marginally improved as the number of observed
variables increased. Therefore, each factor was measured
by five ordinal observed indicators in the study. Two es-
timation procedures that are given by MLR and WLSMV
in Mplus were used. For the first estimation procedure,
ordinal observed indicators were treated as if they were
approximately continuous variables in the data analysis.
The parameter estimates, standard errors, and chi-square
statistics were obtained using MLR. The data analysis for
MLR was based on a sample-based covariance matrix.
Regarding the second estimation procedure, ordinal ob-
served indicators were specified as categorical variables
in the data analysis. A polychoric correlation matrix and
the asymptotic covariance matrix of the polychoric corre-
lation and threshold estimates were used in WLSMV to
obtain the parameter estimates, standard errors, and chi-
square statistics.

Population model

Reported standardized factor loadings range from .4 to .9 in
the majority of empirical research and simulation studies
(DiStefano, 2002; Hoogland & Boomsma, 1998; Li, 2012;
Paxton, Curran, Bollen, Kirby, & Chen, 2001). For the sake
of facilitating interpretation, each factor loading was therefore
held constant at .7, with its corresponding uniqueness auto-
matically set to .51 under a standardized solution in the pop-
ulation model. The interfactor correlation was set to .3 in the
population, reflecting a reasonable and empirical interfactor
correlation value that has ranged from .2 to .4 in the applied
literature and in simulation studies. The factor variances were
all set equal to 1 in the population.
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Latent response distributions

Two latent distributions that varied in skewness and kurtosis
were used: (1) a slightly nonnormal latent distributionwith skew-
ness = 0.5 and kurtosis = 1.5, and (2) a moderately nonnormal
latent distribution with skewness = 1.5 and kurtosis = 3.0. The
desired levels of skewness and kurtosis for the two latent distri-
butions were simply specified in the EQS program. For the
slightly nonnormal latent distribution, the asymmetric distribu-
tions of observed variables with skewness ranged from .38 to
.64, and for the moderately nonnormal latent distribution, the
asymmetric distributions of observed variables with skewness
ranged from 1.01 to 1.31. The response probabilities of the or-
dinal observed indicators used in the study are displayed in
Fig. 1. Note that Fig. 1a to d represent slightly asymmetric ob-
served distributions generated from a slightly nonnormal latent
distribution; and Fig. 1e to h represent moderately asymmetric
observed distributions generated from a moderately nonnormal
latent distribution. In the slight-asymmetry condition, the re-
sponse probabilities were 3 %, 58 %, 33 %, and 6 % for four
categories; 4 %, 17 %, 47 %, 17 %, 8 %, and 7 % for six
categories; 3 %, 6 %, 14 %, 36 %, 21 %, 10 %, 5 %, and 5 %
for eight categories; and 3%, 3 %, 7%, 18%, 30%, 18%, 7%,
6%, 4%, and 4% for ten categories. In themoderate-asymmetry
condition, the response probabilities were 0 %, 67 %, 26 %, and
7% for four categories; 0%, 26%, 46%, 12%, 7%, and 9% for
six categories; 0 %, 0 %, 29 %, 36 %, 15 %, 8 %, 4 %, and 8 %
for eight categories; and 0%, 0 %, 9%, 30%, 28%, 13%, 5%,
4 %, 3 %, and 8 % for ten categories.

Number of categories

In order to explore the impact of categorization, this study
extended previous research by introducing two larger numbers

of categories (i.e., eight and ten). Four, six, eight, and ten
categories were generated for each ordinal indicator within
both the slightly and moderately nonnormal latent distribu-
tions. The chief goal here was to examine whether the general
recommendation Bmore than five categories^ is empirically
tenable when using MLR and/or whether MLR can outper-
form WLSMV when a larger number of categories is used.

Sample size

A sufficient sample size is highly associated with the
amount of model complexity (e.g., the number of ob-
served variables). In order to estimate asymptotic covari-
ance matrices, Jöreskog and Sörbom (1996, p. 171) rec-
ommended a minimum sample size requirement of (p +
1)(p + 2)/2, where p is the number of observed variables.
A correlated two-factor CFA model with ten observed
indicators in this study required a minimum sample size
of 66. However, some researchers have suggested a large
sample size of 150 for a simple CFA model with normal
observed variables, and an even larger sample size of 265
for a CFA model with nonnormal observed variables
(Muthén & Muthén, 2002). Jackson, Gillaspy, and Purc-
Stephenson (2009) systematically reviewed 101 studies in
CFA from 1998 to 2006 and reported that the median
sample size was 389. Three different sample sizes com-
monly encountered in empirical investigations were
employed in this study: N = 200, 500, and 1,000. In the
case of a correlated two-factor model with ten observed
indicators, a sample size of N = 200 is considered small
(typically a benchmark in structural equation models), a
sample size of N = 500 as medium, and a sample size
of N = 1,000 as large.

Slightly Asymmetric Observed Distribution 

Moderately Asymmetric Observed Distribution 

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1 Response probabilities of ordinal observed indicators
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Data generation and analysis

A total of 2 (latent distributions) × 4 (number of categories) ×
3 (sample size) = 24 experimental conditions were created in
the study. Five hundred data sets were generated per experi-
mental condition using EQS 6 (Bentler, 2006), resulting in a
total of 12,000 data sets. The choice of 500 replications was
made with consideration to sampling variance reduction, ad-
equate power, and practical manageability (Muthén, 2002).
Model parameters, standard errors, and the chi-square statis-
tics were estimated for each replication using both MLR and
WLSMV in Mplus 5.2 (Muthén & Muthén, 2007).

Outcome variables

Four outcome variables were examined in this study: rates of
improper solutions or nonconvergence, parameter estimates
(i.e., factor loadings and interfactor correlations, respectively),
standard errors, and chi-square test statistics. The rate of im-
proper solutions or nonconvergence for each experimental con-
dition was defined as the proportions of replications for which
the proposed model had a nonconverged solution or a solution
that converged but had estimated interfactor correlations great-
er than 1 or negative residual variances under theMplus default
setting. For parameter estimates, the average relative bias
(ARB), the average root mean squared error (ARMSE), and
the coverage of 95 % confidence intervals were studied across
experimental conditions. Standard error estimates obtained by
the two estimators were compared using ARB and ARMSE.
The model rejection rates associated with the chi-square test
statistic were calculated at an alpha level of .05.

The difference between the estimated and true values of
each parameter (i.e., the bias) was used to evaluate the perfor-
mance of the two different estimators. Since bias is highly
dependent on the magnitude of the true parameter value, and
a great number of parameter estimates and standard errors
were involved in each experimental condition, ARB and
ARMSE were calculated. An ARB value less than 5 % was
interpreted as a trivial bias, between 5 % and 10 % as a
moderate bias, and greater than 10 % as a substantial bias
(Curran, West, & Finch, 1996). Note that ARB was
interpreted with caution, since it is used to describe an
Boverall^ picture of average bias—that is, summing up bias
in a positive and a negative direction together. A smaller ab-
solute value of ARB indicates more accurate parameter esti-
mates Bon average.^

The root mean squared error can be regarded as a measure
of the overall estimation quality, since it accounts for both the
amount of bias and the sampling variability of estimates; this
value was also averaged across 500 replications (i.e., ARMS
E). A smaller ARMSE value is suggested as being favorable,
reflecting better overall quality of the estimates. The 95 %

confidence intervals were formed for each replication using
parameter estimates and the associated standard errors.

Confidence interval coverage was determined as the per-
centage of confidence intervals containing the true parameter.
A lower rate of coverage (i.e., below 95 %) would indicate
poor recovery of the true parameters, mainly due to a higher
degree of bias in parameter estimates, the underestimation of
standard errors, or a combination of both. The rate of rejection
of the proposed model should approximate 5 %, because a
nominal alpha level of .05 was specified in the population
model. A higher rate of rejection (i.e., over 5 %) suggests
inflated Type I error rates, reflecting that the chi-square test
statistics may have been underestimated; a lower rate of rejec-
tion indicates that the chi-square statistics may have been
overadjusted.

Results

Rates of improper solutions or nonconvergence

The rates of improper solutions and nonconvergence across
the 24 experimental conditions were 0 % for both MLR and
WLSMV, irrespective of the number of categories (four, six,
eight, and ten), level of latent distribution violations (slightly
and moderately nonnormal), and sample sizes (N = 200, 500,
and 1,000). In summary, the problems of improper solutions
or nonconvergence did not occur for MLR or WLSMV, even
when ordinal asymmetric data generated from a moderately
nonnormal latent distribution and a small sample size of N =
200 were analyzed in a correlated two-factor model.

Parameter estimates

Factor loadings The ARB and ARMSE values for factor
loadings are presented in Table 1. Inspecting Table 1, the
factor loadings were, on average, underestimated by MLR.
In particular, they were substantially underestimated when
the ordinal data had only four response categories. The nega-
tive bias was an inverse function of the number of categories.
Conversely, the factor loadings were overestimated, although
trivially, on average by WLSMV. Thus, the factor loadings in
WLSMV can be considered essentially unbiased, especially
when the latent distribution is only slightly nonnormal. The
positive bias did not vary as a function of the number of
categories. It is worth noting that the ARB for factor loadings
in WLSMV increased as the degree of latent normality viola-
tion increased. However, the shape of the observed/latent dis-
tribution did not seem to have a remarkable effect on the ARB
for factor loadings in MLR. Most importantly, regardless of
the number of categories, WLSMV was consistently superior
to MLR for factor loading estimates. Generally, WLSMV
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yielded more accurate factor loading estimates than MLR, as
evidenced by its relatively small amount of ARB.

Regarding the overall quality of the estimated factor load-
ings, ARMSE varied as an inverse function of the sample size
and the number of categories for both estimation methods.
ARMSE was most pronounced in the conditions in which
ARB was appreciable. ARMSE was, for instance, noticeably
larger for MLR than for WLSMV when the observed indica-
tors had only four response categories. Moreover, this discrep-
ancy in overall performance between WLSMVand MLR be-
came larger as the sample size increased. It is of particular
interest that WLSMV was better than MLR in the overall
quality of factor loading estimates from four to ten categories
across different sample sizes, evenwhen ordinal observed data
were generated from a moderately nonnormal latent distribu-
tion. Uniformly, WLSMV can be considered better thanMLR
on the performance of factor loading estimates.

Interfactor correlations The ARB and ARMSE for
interfactor correlations are provided in Table 2. Interfactor cor-
relations were, on average, trivially biased (either positively or
negatively) for both estimators. However, WLSMV introduced
amarked bias into the estimates of interfactor correlations when
the observed data were generated from amoderately nonnormal
latent distribution, particularly in the sample of N = 200.
Roughly speaking, the ARB for interfactor correlations was
comparably smaller for MLR than for WLSMVacross almost
all conditions, indicating that WLSMV is inferior to MLR due
to its higher degree of bias in interfactor correlation estimates.

With respect to the overall quality of the estimated
interfactor correlations, ARMSE varied as an inverse function
of the sample size and number of categories for both

estimation methods. The ARMSEs were similar for both esti-
mators with slightly nonnormal latent distributions; however,
ARMSE appeared to be smaller in MLR than in WLSMV
with moderately nonnormal latent distributions. This implies
that for a moderately nonnormal latent distribution, MLR
demonstrates better performance thanWLSMV for estimating
the interfactor correlations.

Standard errors

Standard errors of factor loadings Table 3 presents the
ARB and ARMSE values for standard errors of the factor
loadings. The standard errors exhibited, on average, a slight
bias (either positive or negative) for both estimators. It is note-
worthy that a moderately negative bias was produced by
WLSMV when the sample size was small (i.e., N = 200),
reflecting that standard errors seem to be underestimated by
WLSMV in the case of sample size N = 200. However, ARB
in WLSMV reduced with increasing sample size. Generally,
the performance of MLR surpasses that of WLSMV for esti-
mating standard errors when the sample size is small and
latent distributions are nonnormal. Regarding the overall qual-
ity of the estimated standard errors of factor loadings, ARMSE
was an inverse function of sample size for both estimation
methods. The ARMSEs were not very different for MLR
and WLSMVacross the conditions investigated here.

Standard errors of interfactor correlations Table 4 displays
the ARB and ARMSE values for standard errors of the
interfactor correlations. The standard errors demonstrated, on
average, a slight bias (in either a positive or a negative direc-
t ion) with MLR, whereas they were moderately

Table 1 Average relative bias (ARB) and average root mean squared error (ARMSE) for factor loadings

MLR WLSMV

Slightly Nonnormal Moderately Nonnormal Slightly Nonnormal Moderately Nonnormal

N Categories ARB (%) ARMSE ARB (%) ARMSE ARB (%) ARMSE ARB (%) ARMSE

200 4 –10.61 .1333 –10.73 .1426 0.96 .0887 3.82 .1036

6 –5.47 .0915 –4.49 .0895 0.63 .0757 3.06 .0801

8 –2.80 .0737 –3.29 .0843 0.62 .0705 3.24 .0786

10 –2.46 .0724 –2.83 .0820 0.58 .0687 1.82 .0709

500 4 –10.73 .1185 –10.73 .1217 0.55 .0554 3.56 .0691

6 –4.86 .0659 –4.48 .0657 0.57 .0406 2.95 .0543

8 –2.84 .0508 –3.29 .0578 0.48 .0433 3.10 .0535

10 –2.48 .0488 –2.85 .0552 0.47 .0425 1.70 .0455

1,000 4 –10.56 .1113 –10.58 .1133 0.63 .0393 3.64 .0553

6 –4.79 .0574 –4.35 .0552 0.52 .0329 2.95 .0438

8 –2.70 .0401 –3.14 .0462 0.56 .0311 3.15 .0444

10 –2.34 .0381 –2.66 .0429 0.54 .0306 1.80 .0347
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underestimated by that WLSMV estimator on average for a
sample smaller than 500. It is noteworthy that ARB became
trivial for WLSMV with a sample size of N = 1,000. In gen-
eral, the performance of WLSMV is only considered reliable
for estimating the standard errors of interfactor correlations, in
terms of bias, when N = 1,000, but otherwise MLR outper-
forms WLSMV across most conditions. With respect to the
overall quality of the estimated standard errors of interfactor
correlations, ARMSE was an inverse function of sample size
for both estimation methods. In examining the ARMSEs at
each sample size, it is of particular interest that MLR was
consistently smaller than WLSMV when the sample size

wasN = 200 or 500; in contrast,WLSMVwas steadily smaller
than MLR for a sample size of N = 1,000. This reveals that
WLSMVis better thanMLR for estimating the standard errors
of interfactor correlations when the sample size is relatively
large—that is, N = 1,000—whereasMLR has some advantage
with smaller sample sizes of N = 200 or 500.

Coverage of confidence intervals

Factor loadings Table 5 shows the average coverage of 95 %
confidence intervals for the parameter estimates. The average
coverage for factor loadings withMLRwas adversely affected

Table 2 Average relative bias (ARB) and average root mean squared error (ARMSE) for interfactor correlations

MLR WLSMV

Slightly Nonnormal Moderately Nonnormal Slightly Nonnormal Moderately Nonnormal

N Categories ARB (%) ARMSE ARB (%) ARMSE ARB (%) ARMSE ARB (%) ARMSE

200 4 –0.20 .2083 –3.81 .2216 3.19 .2097 8.37 .2396

6 0.15 .1949 1.59 .2006 2.53 .1966 7.00 .2087

8 0.82 .1935 1.09 .2001 2.36 .1961 7.17 .2044

10 0.28 .1936 1.48 .1971 2.14 .1948 6.45 .1980

500 4 –1.79 .1397 –5.43 .1565 2.70 .1414 5.04 .1604

6 –1.37 .1277 0.38 .1316 2.18 .1289 4.72 .1312

8 –0.74 .1230 –0.53 .1320 2.25 .1305 4.91 .1323

10 –0.59 .1225 –0.14 .1316 1.98 .1258 4.18 .1297

1,000 4 –0.98 .0928 –4.34 .1055 0.99 .0932 5.56 .1170

6 –0.38 .0877 0.79 .0896 0.80 .0876 4.59 .0949

8 0.08 .0849 0.18 .0883 0.66 .0854 4.85 .0960

10 –0.02 .0845 0.58 .0882 0.66 .0852 4.22 .0917

Table 3 Average relative bias (ARB) and average root mean squared error (ARMSE) for standard errors of the factor loadings

MLR WLSMV

Slightly Nonnormal Moderately Nonnormal Slightly Nonnormal Moderately Nonnormal

N Categories ARB (%) ARMSE ARB (%) ARMSE ARB (%) ARMSE ARB (%) ARMSE

200 4 –0.52 .1220 –1.16 .1337 –5.80 .1349 –5.09 .1474

6 –1.35 .1214 –1.07 .1238 –6.44 .1307 –3.83 .1215

8 –1.46 .1209 –1.55 .1280 –7.92 .1298 –4.76 .1216

10 –1.18 .1215 –1.65 .1269 –8.30 .1310 –4.83 .1183

500 4 0.35 .0824 1.32 .0893 –1.37 .0919 –0.72 .0945

6 0.72 .0776 0.10 .0807 –1.22 .0800 –0.38 .0812

8 0.73 .0797 0.85 .0841 –1.46 .0805 0.05 .0779

10 0.87 .0816 0.52 .0826 –1.92 .0803 0.17 .0772

1,000 4 –0.42 .0598 –0.06 .0678 –0.76 .0660 –0.03 .0760

6 –1.10 .0610 –1.13 .0601 –0.94 .0628 –0.49 .0628

8 –0.68 .0632 –0.83 .0624 –1.10 .0624 –0.98 .0632

10 –1.53 .0616 –0.57 .0612 –1.82 .0613 1.08 .0656
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by the size of ARB, in particular for those indictors with four
response categories. It is noteworthy that an increase in sam-
ple size appeared to exacerbate the problem of lower average
coverage, partly because of the comparably smaller standard
error estimates in larger sample sizes. Furthermore, as the
level of latent nonnormality increased, the average coverage
decreased in theWLSMVestimation. This is thought to be due
mainly to the relatively large bias with moderately nonnormal
latent distributions. Moreover, the lower rate of coverage in-
dicated lower power to capture the true factor loadings using
MLR. In general, 95 % confidence intervals constructed using
WLSMVestimates appear to be more reliable than those using

MLR estimates, in line with the true factor loadings when
latent distributions are only slightly nonnormal. With moder-
ately nonnormal latent distributions,WLSMV, however, is not
superior toMLR in the recovery of true factor loadings, except
for the conditions with four response categories.

Interfactor correlations As is shown in Table 5, the average
coverage for interfactor correlations in MLR seemed to be
stable and satisfactory across experimental conditions. On
the other hand, the average coverage for interfactor correla-
tions in WLSMV seemed, to some degree, to deviate from
95 % with moderately nonnormal latent distributions, mainly

Table 4 Average relative bias (ARB) and average root mean squared error (ARMSE) for standard errors of the interfactor correlations

MLR WLSMV

Slightly Nonnormal Moderately Nonnormal Slightly Nonnormal Moderately Nonnormal

N Categories ARB (%) ARMSE ARB (%) ARMSE ARB (%) ARMSE ARB (%) ARMSE

200 4 3.45 .0804 4.12 .0866 –7.76 .0873 –4.48 .0701

6 3.13 .0768 1.99 .0668 –8.59 .0906 –8.70 .0920

8 0.45 .0742 2.31 .0678 –13.68 .1374 –9.12 .0943

10 0.59 .0750 3.66 .0724 –15.86 .1588 –10.71 .1086

500 4 –1.94 .0449 –2.53 .0466 –5.31 .0572 –6.18 .0652

6 –1.23 .0451 –1.37 .0405 –4.55 .0514 –4.65 .0509

8 –0.21 .0456 –1.64 .0414 –5.13 .0550 –5.84 .0600

10 0.76 .0455 –1.36 .0415 –5.82 .0604 –6.40 .0651

1,000 4 0.83 .0304 0.90 .0285 –0.95 .0272 –1.13 .0268

6 1.36 .0336 2.93 .0374 –1.14 .0251 0.40 .0227

8 2.20 .0370 2.81 .0365 –0.84 .0241 –0.36 .0219

10 2.98 .0408 3.45 .0408 –0.58 .0233 –0.02 .0227

Table 5 Average coverage of 95 % confidence intervals for the factor loadings and interfactor correlations

MLR WLSMV

Slightly Nonnormal Moderately Nonnormal Slightly Nonnormal Moderately Nonnormal

N Categories Loadings Correlations Loadings Correlations Loadings Correlations Loadings Correlations

200 4 79.58 % 95.60 % 85.00 % 95.20 % 91.96 % 92.80 % 88.38 % 91.60 %

6 91.60 % 94.80 % 93.28 % 95.20 % 91.76 % 91.60 % 89.60 % 89.80 %

8 94.54 % 94.40 % 93.86 % 95.60 % 91.66 % 89.60 % 88.62 % 89.60 %

10 94.56 % 94.20 % 94.06 % 94.60 % 91.34 % 88.80 % 90.78 % 91.00 %

500 4 48.50 % 94.80 % 60.98 % 93.40 % 94.20 % 93.00 % 87.96 % 90.80 %

6 85.32 % 94.40 % 87.38 % 94.60 % 93.94 % 94.00 % 87.64 % 91.00 %

8 91.78 % 95.00 % 91.26 % 93.20 % 93.40 % 95.00 % 86.92 % 90.40 %

10 93.04 % 95.00 % 92.44 % 94.40 % 93.84 % 94.40 % 91.72 % 91.40 %

1,000 4 17.76 % 94.60 % 30.96 % 94.80 % 93.96 % 95.00 % 84.68 % 92.40 %

6 71.28 % 96.00 % 78.48 % 95.80 % 93.92 % 95.40 % 83.40 % 93.00 %

8 88.24 % 95.80 % 86.86 % 96.00 % 93.50 % 95.80 % 81.20 % 92.00 %

10 89.80 % 96.00 % 89.74 % 96.20 % 93.54 % 95.20 % 90.06 % 92.80 %
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because of a higher degree of bias and the underestimation of
standard errors. Generally, it is evident that MLR is superior to
WLSMV in the recovery of the true interfactor correlations
across all conditions; however, WLSMV appears to be de-
pendable when a latent distribution is slightly nonnormal in
larger sample sizes of N = 500 or 1,000.

Chi-square test statistics

Table 6 gives the chi-square rejection rates for the two estima-
tors. The boldface numbers in the table indicate unacceptable
rejection rates, implying that acceptable difference rates in the
table are within the range [2.5 %, 7.5 %] (Bradley, 1978). It
was found that both MLR and WLSMV performed well,
yielding an approximately 5 % rejection rate across most con-
ditions, with some exceptions in the smallest sample size, N =
200, condition. In these exceptional conditions, the proposed
model seemed to be over-rejected, producing slightly inflated
Type I error rates. Generally speaking, both the corrected chi-
square test statistics performed well in controlling for Type I
error rates when the sample size was greater than 500.

Discussion

This study was designed to compare the performance of MLR
and WLSMV with regard to parameter estimates, standard
errors, and chi-square test statistics in a correlated two-factor
model with ordinal observed indicators under different exper-
imental configurations of latent response distributions, num-
bers of categories, and sample sizes. Several general findings

are discussed, as follows. First, both estimators were not sub-
ject to the problems of improper solutions or nonconvergence
with a small sample (N = 200) in a correlated two-factor mod-
el, consistent with previous simulation studies (Flora &
Curran, 2004; Herzog, Boomsma, & Reinecke, 2007). Prior
scholarship, however, has observed nonconvergence or im-
proper solutions, in particular, when data were analyzed in
quite small samples N = 100 or 150 (Rhemtulla, Brosseau-
Liard, & Savalei, 2012; Yang-Wallentin et al., 2010).

Second, this study replicated previous results that factor
loadings are typically underestimated by MLR but are essen-
tially unbiased with WLSMV (Beauducel & Herzberg, 2006;
DiStefano, 2002; Flora & Curran, 2004). Interestingly, a clear
superiority of WLSMVover MLR in factor loading estimates
was found in this study, irrespective of the number of catego-
ries. This study also revealed that the factor loadings obtained
by WLSMV were more precise and accurate than those ob-
tained by MLR when the latent normality assumption was
moderately violated. Generally speaking, WLSMV was pref-
erable to MLR across most of the conditions observed in this
study, given its properties of being less biased and having
small sampling variation in estimating factor loadings.

As occurred in previous simulation studies, a mixture of
positive and negative bias in interfactor correlations was
found with MLR, and the interfactor correlation was essen-
tially unbiased by WLSMV under the latent normality as-
sumption (Beauducel & Herzberg, 2006). In this study, the
increased bias of interfactor correlation estimates made
WLSMV inferior to MLR in overall performance, particularly
for a sample size of N = 200 or under a moderate violation of
latent normality. That is, WLSMV may overestimate the

Table 6 Rejection rates for the null model at a probability of Type I error α = .05

MLR WLSMV

Slightly
Nonnormal

Moderately
Nonnormal

Slightly
Nonnormal

Moderately
Nonnormal

N Categories Rejection (%) Rejection (%) Rejection (%) Rejection (%)

200 4 10.6 % 10.4 % 8.0 % 6.4 %

6 8.0 % 8.4 % 7.8 % 6.4 %

8 9.4 % 8.8 % 10.2 % 6.4 %

10 7.0 % 9.0 % 11.6 % 8.2 %

500 4 7.4 % 5.0 % 8.2 % 6.6 %

6 8.0 % 7.8 % 7.6 % 4.0 %

8 6.8 % 7.2 % 7.0 % 5.8 %

10 6.2 % 8.0 % 6.8 % 5.2 %

1,000 4 5.0 % 6.6 % 5.8 % 4.0 %

6 4.8 % 5.6 % 5.8 % 4.8 %

8 5.8 % 6.8 % 6.0 % 5.4 %

10 7.2 % 5.6 % 5.8 % 6.0 %

The boldface numbers indicate unacceptable rejection rates, i.e., outside the range [2.5 %, 7.5 %]
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association between factors when the sample size is relatively
small and/or when a latent distribution is moderately
nonnormal. These findings suggest that the quality of the factor
loading estimates is better for WLSMV than for MLR, but that
WLSMVmay lead to more biased interfactor correlations than
MLR because the latent normality assumption is moderately
violated. This implies that the polychoric correlation estimates
may demonstrate robustness against violations of the latent
normality assumption in estimating factor loadings rather than
in interfactor correlations. This observation is consistent with
that of Coenders, Satorra, and Saris (1997), who concluded
that Pearson product-moment correlations between ordinal ob-
served indicators using ML perform badly in factor loading
estimates due to the categorical nature of measurement. How-
ever, such lower measurement quality estimates of ordinal var-
iables can lead to relatively unbiased point estimates of factor
relationships. The overall quality of parameter estimates (i.e.,
ARMSE) varied positively as a function of the number of
categories and sample size, suggesting that increasing sample
size and the number of categories can advance the overall
quality of factor loading and interfactor correlation estimates.

Third, with respect to the standard errors of factor loadings
in the present study, it was observed that MLR outperformed
WLSMVwhen the sample size wasN = 200 or when the latent
distributions were slightly nonnormal. In addition, less biased
standard errors of interfactor correlations led to overall perfor-
mance of MLR that was superior to that of WLSMVwhen the
sample size was N = 200 or 500; however, this advantage was
not observed when N = 1,000. It is interesting that the overall
quality of the standard error estimates was quite sensitive to
sample size, regardless of the number of categories and the
level of the latent normality assumption violation.

Fourth, the substantially negative bias in parameter esti-
mates, coupled with small standard errors, led to a lower rate
of coverage for factor loadings with four categories using
MLR, which resonates with previous research (Rhemtulla,
Brosseau-Liard, & Savalei, 2012). Thus, researchers have to
pay attention to comparably poor MLR coverage rates with
few categories, because bias in MLR’s parameter estimates is
highly pronounced. On the whole, the WLSMV coverage rates
of factor loadings are higher than those of MLR when a latent
distribution is slightly nonnormal, whereasMLR’s coverage for
interfactor correlations is uniformly better than that ofWLSMV
across all experimental conditions examined in this study.

Fifth, in a few conditions, models were rejected more often
than expected using adjusted chi-square test statistics for both
estimators when the sample size was N = 200. Researchers
need to exercise caution in the evaluation of model fits under a
small sample size, and they should take into account the sup-
plemental fit indices (e.g., RMSEA) usually provided by sta-
tistical software programs. An assessment of supplemental fit
indices was not included in the present study, mainly because
(1) these fit indices, unlike chi-square statistics, do not follow

a known sampling distribution and (2) they do not have co-
herent cutoff values for fit indices in applications, to use to
evaluate their performance. However, one can expect that
RMSEA, for example, would exhibit adequate power in the
model evaluation when a model had no specification error
(like the CFA model in this study). Future research assessing
the effects of various fit indices is still suggested, specifically
addressing the question of which fit indices are reliable and
robust to detect model misspecification.

Finally, as we may be aware, there are multitudinous com-
binations to manipulate in a simulation study, but researchers
can only focus on some factors of particular interest to make
the research design feasible. Therefore, this study shares the
same limitation as all simulation studies, in that the results
cannot be generalized beyond the experimental conditions
investigated in the study. Although previous simulation stud-
ies have suggested that the estimation of ordinal CFA models
is robust to slight model misspecification, a natural extension
of this study would consider different levels of misspecified
models (e.g., cross-factor loadings) using MLR andWLSMV.
In addition, given that a simple/common two-factor CFA
model was specified in this study, an interesting avenue of
further investigation would consider complex/advanced
models (e.g., multiple-group CFA models or structural equa-
tion models) in order to examine other scenarios in empirical
research.

Summary and conclusions

In closing, the conclusions of this study can be summarized as
follows: (1) regardless of the number of categories, the factor
loading estimates under WLSMV are less biased than those
under MLR; (2) WLSMVappears to yield moderate overesti-
mation of the interfactor correlations when the sample size is
relatively small and/or when a latent distribution is moderately
nonnormal; (3) the estimates of standard errors under WLSM
V demonstrate much larger sampling variability than those
under MLR when the sample size is small and the latent dis-
tribution is nonnormal; (4) the substantial underestimation of
factor loadings using MLR may result in a lower rate of con-
fidence interval coverage for factor loadings; (5) the MLR
coverage rates of interfactor correlations are uniformly better
than the WLSMV coverage rates across all experimental con-
ditions; and (6) the proposed model tends to be over-rejected
by corrected chi-square test statistics under both MLR and
WLSMV in the case of a small sample size of N = 200.

It is worthwhile to point out that each estimator has its
advantages and disadvantages, as was discussed above. This
study does provide conclusive evidence that WLSMV per-
forms uniformly better than MLR in factor loading estimates
across all experimental conditions (i.e., regardless of sample
size, the number of categories, and the degree of latent
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normality violation). However, WLSMV, for instance, also
has its own weaknesses of interfactor correlations and stan-
dard errors in estimation when the sample size is small and/or
when a latent distribution is moderately nonnormal. Likewise,
MLR has its unique strengths—for instance, generally less
biased standard error estimates and good recovery of the pop-
ulation interfactor correlations. Thus, further research will be
needed to help applied researchers better understand the pros
and cons of different estimators under certain circumstances in
order to select an Bappropriate^ estimator for the factor-
analytic model with ordinal data.
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