
Confirming Design Guidelines for Evolvable Business Processes
Based on the Concept of Entropy

Peter De Bruyn, Dieter Van Nuffel, Philip Huysmans, and Herwig Mannaert

Normalized Systems Institute (NSI)
Department of Management Information Systems

University of Antwerp
Antwerp, Belgium

{peter.debruyn, dieter.vannuffel, philip.huysmans, herwig.mannaert}@uantwerp.be

Abstract—Contemporary organizations need to be agile at both
their IT systems and organizational structures (such as business
processes). Normalized Systems theory has recently proposed an
approach to build evolvable IT systems, based on the systems
theoretic concept of stability. However, its applicability to the
organizational level, including business processes, has proven to
be relevant in the past and resulted among others in a set of 25
guidelines for designing business processes. In subsequent work,
the Normalized Systems theory was confirmed and extended
based on the concept of entropy from thermodynamics. This
perspective allows for the investigation of the observability of
IT systems or —at the organizational level— business processes.
Therefore, this paper explores whether the guidelines which have
been proposed to design business processes from an evolvability
point of view can be confirmed or extended from the entropy
reasoning as well. More specifically, the validity of 25 business
process design guidelines is investigated for this purpose. While
9 of these guidelines were already analyzed in earlier work,
this paper supplements the earlier analysis by including a
discussion of the other 16 guidelines. Our results indicate that
the investigated guidelines are rather consistent among both
approaches: guidelines required to attain evolvability also enable
low entropy (i.e., high observability) and vice versa. Part of one
guideline was found to be not strictly necessary from the entropy
viewpoint. Moreover, several guidelines were able to be refined
to some extent based on our entropy reasoning or were subject
to some additional nuancing.

Keywords–Business Processes; Observability; Entropy; Stability;
Normalized Systems

I. INTRODUCTION

This is a revised and extended version of a paper which
was presented at The Eighth International Conference on
Software Engineering Advances (ICSEA) and published in its
corresponding proceedings [1].

Lack of organizational agility is often attributed to a lack
of IT agility [2] as IT systems ensure the support or even au-
tomation of business processes. Consequently, organizational
changes need to be reflected in both the business processes and
their supporting information systems. This means that, instead
of focusing solely on IT systems, attention for the design and
agility of the business processes is needed as well. The explicit
attention for the design of business processes emerged when
the implicit work practices were automated using ERP systems
[3]. It was recognized that the hard coding of the business

processes in software packages resulted in a lack of adapt-
ability of the processes [4]. As a result, the design of business
processes gained a central role in organizations, separated from
the design of information systems [3]. However, integration of
business processes and information systems still needs to be
achieved, and agility (or “evolvability”) needs to be ensured
on both levels.

Normalized Systems (NS) theory offers a theoretically
founded way to design software systems which exhibit evolv-
ability based on the systems theory’s concept of stability, by
proposing a limited set of design theorems [5], [6]. Applying
the theory’s rationale to the business process level has been
shown feasible and resulted among others in a set of 25
guidelines for designing evolvable business processes, more
specifically on the delineation of business processes and their
constituting tasks [7]. In subsequent work, NS theory was
confirmed and extended based on the concept of entropy from
thermodynamics [8]. Such perspective enables the design of
software systems having a high degree of observability (i.e.,
internal problems within the system are more easily detectable
and traceable to the task generating this problem). At the soft-
ware level, this extension resulted in additional theorems, while
confirming the existing theorems. Moreover, similar entropy
definitions were able to be defined at the business process
level as well [9], [10], [11], [12]. Therefore, it is interesting to
verify whether the guidelines which have been proposed for
business processes (in order to make them more evolvable)
can be confirmed or extended from the entropy reasoning as
well. This paper explores this research area by applying the
entropy reasoning to the considered set of business process
guidelines. While 9 of these guidelines were already analyzed
earlier work [1], this paper supplements the earlier analysis by
including analysis of the remaining 16 guidelines.

Our paper will be structured as follows. First, we provide
some theoretical background on Normalized Systems theory,
its stability and entropy perspective, and their respective appli-
cations at the business process level (Section II). Afterwards,
the analysis of the guidelines of Van Nuffel from an entropy
perspective is presented in Section III. A discussion and our
our conclusions are offered in Section IV and Section V,
respectively.

341

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



II. THEORETICAL BACKGROUND

NS was introduced as a theoretically founded way for
deterministically designing software architectures exhibiting
a proven amount of evolvability. For this end, the systems
theoretic concept of stability is applied [5], [6]. This implies
that a bounded input function (e.g., “add data attribute”) should
result in bounded output values, even as time T → ∞. Stated
otherwise, this means that the required implementation effort
for a particular change is only dependent on the nature of that
change itself and not on the size of the system. It has been
proven that at least four theorems (i.e., separation of concerns,
data version transparency, action version transparency and
separation of states) should be consistently applied in order to
obtain such evolvable software architecture [5], [6]. Violations
against these theorems can be observed at design time [6].

Later on, the theory has been proven to be applicable to
the design of evolvable business processes [7]. Here, business
processes are considered at their most elementary level (i.e.,
the “elementary tasks and elementary sequencing and design
of these tasks” performed on information objects). To obtain
stability, it is required that changes to individual processes or
tasks do not impact other processes or tasks [7]. In order to
achieve such Normalized Business Processes (NSBPs), a set of
25 guidelines was developed, based on the four NS theorems,
interpreted at the business process level [7].

In subsequent research, NS was extended based on the
thermodynamic concept of entropy, initially again focusing on
software architectures [8]. As entropy is generally associated
with concepts as complexity, amount of disorder or available
information, it enables the study of the observability (including
detectability and diagnostability) of a (software) system. In
statistical thermodynamics, entropy is considered proportional
to the number of microstates consistent with one macrostate
(i.e., its multiplicity) [13]. The macrostate refers to the whole
of externally observable and measurable (macroscopic) proper-
ties of a system, corresponding to visible output of a software
system (e.g., loggings). The microstate depicts the whole of
microscopic properties of the constituent parts of the system,
such as binary values representing the correct of erroneous
outcome of a task (which we propose to identify based on the
concept of “information units”, i.e., each unit of processing
of which we are interested in independent information about
whether it has been executed properly or not). The higher
the multiplicity, the more difficult it becomes to identify the
precise origin of an observed error. This approach requires a
run time view of the system, since macrostates and microstates
regard the instantiations of data structures and processing
functions [8]. To design information systems exhibiting low
entropy, two NS theorems (i.e., separation of concerns and
separation of states) have been confirmed, while two additional
theorems (i.e., action version transparency and data version
transparency) were proposed as well [8].

A similar reasoning based on the entropy definition within
statistical thermodynamics, can also be applied to business
processes [10], [9], [12]. Again, a business process is con-
sidered to be a flow (i.e., including sequences, selections and
iterations) of tasks which perform actions on one or more
information objects. Considering their execution allows us
to define macrostates and microstates on this level as well.
The union of values of, for example, the throughput time,

quality, resource consumption, quality and executing actors of
all task instantiations correspond to a microstate. Given our
observability approach, it is proposed to identify a task on
the basis of information unit in an organizational context as
well. The macrostate of a business process is the (aggregated)
information available for an observer (e.g., such as the total
throughput or cycle time regarding a process as a whole or
any combination of some of its tasks). Multiple microstate
configurations consistent with one macrostate (i.e., multiplicity
> 1), makes entropy (and the experienced complexity in terms
of detectability and diagnostability) increase, and typical man-
agement questions more difficult to answer [9]. For instance,
it might become unclear which task (or tasks) in a business
process was (were) responsible for the extremely slow (fast)
completion (of a particular instance) of a business process
in case a problematic macrostate is observed (this results in
a detectability issue). Additionally, as the possibility arises
that both problematic and non-problematic microstates result
in the same macrostate (e.g., no problem is observed), an
diagnostability issue might arise as well: while there might be
an important and relevant problem in the considered system,
it may not catch the attention of the observer. It is clear that
both the detectability issue and the diagnostability issue are
problematic from a management perspective. Therefore, it be-
comes logical that organizations can benefit from reducing the
amount of entropy present in their business process repository.

No specific guidelines on how to reduce entropy on the
level of business processes have been formulated yet. Similar
to the software level, it is hypothesized that guidelines to
achieve stable business processes will reduce entropy as well.
As a first step, we assess in this paper the entropy-reducing
capability of the guidelines as formulated by Van Nuffel [7].
More specifically, we investigate whether a violation of each
guideline increases the multiplicity (and hence, entropy) of
business processes. In case the guidelines for obtaining more
evolvable business processes would equally result in business
processes exhibiting a lower degree of entropy, the guidelines
can obviously be adopted for this latter purpose as well. Also,
to the extent that the guidelines can be confirmed from this
other theoretical perspective, this provides additional validation
of the considered artifact —the set of guidelines— as well. A
similar approach (i.e., comparing the guidelines of Van Nuffel
[7] with the theoretical framework provided by Enterprise
Ontology [14]) was already performed in earlier research ([15],
[16]) and proved to be interesting: most of the guidelines of
Van Nuffel were found to be consistent or complementary with
Enterprise Ontology and only a few of them were considered
conflicting.

III. COMPARISON OF GUIDELINES RATIONALES

In this section, we will systematically investigate the guide-
lines as proposed by the work of Van Nuffel [7]. For each
guideline, we will first provide a brief description. Next, we
explore whether not adhering to this guideline would imply an
increase in entropy as we defined it earlier. Guidelines of which
violations result in additional entropy are then considered to
be suitable for entropy control as well. To discuss and analyze
each of the guideline, we will adopt the same structure as
used in ([7], [15], [16]): first a set of general guidelines
for identifying business processes will be discussed. Next,

342

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



three additional guidelines for specific cases will be analyzed.
Finally, some task and auxiliary guidelines are considered.

A. General Business Process Guidelines

The first set of guidelines focuses on the question how to
identify a set of tasks as a separate business process.

Guideline 1, “Elementary Business Process”, requires
that a business process should be operating on one and
only one life cycle information object1 [7, p. 107]. Not
adhering to this guideline would imply a design in which
a business process could be operating on multiple life cycle
information objects. For instance, consider both invoicing and
manufacturing steps which are mixed up and interacting in
one process, and a problem with the total throughput time of
finishing invoices is present, as represented in Figure 1. At
least two situations in which multiplicity > 1 (and entropy
arises), can now occur. First, as the business process is
concerned with operations on multiple life cycle information
objects, the problematic throughput time of the invoicing
steps can be “compensated” by “normal” throughput times
of the manufacturing steps. Consequently, the problematic
total throughput time of the invoicing activities would not
necessarily raise an “alert”, even after for instance hypothesis
testing on the overall observed mean versus expected mean.
Therefore, multiplicity > 1 (and entropy increases): the status
reflected by the macrostate (e.g., no problems are reported
(“OK”)), is conform to multiple microstates (e.g., both “OK”
or “Not OK” for the throughput time of the invoicing steps).
Further, not demanding that business processes operate on a
single information object, also implies that multiple business
processes can be operating (unconsciously) on identical (not
necessarily recognized) information objects (i.e., duplication
and copy/paste of (parts of) processes might occur). Therefore,
chances that the problematic total throughput time of the
invoicing activities would raise an “alert” become even smaller,
as the information on this concern is not properly separated
or centralized. This situation correlates with our (reduced)
detectability interpretation of entropy as pointed out in Section
II. Second, in case a problem is observed (i.e., the macrostate
signals “Not OK”), multiplicity > 1 as well. The macrostate
now complies to multiple microstates: the “Not OK” result of
the total throughput time might be related to the manufacturing
steps, the invoicing steps or both. In order to diagnose the
problem unambiguously, the process owner should disentangle
all steps in the business process, determine the life cycle
information object they belong to, and analyze to which life
cycle information object the overall problem is actually related.
Further, we already noted that not demanding a business
process to operate on a single information object might result
in multiple business processes operating (unconsciously) on
identical information objects (i.e., duplication and copy/paste
might occur). If the macrostate of multiple business processes
(each implementing (duplicate) invoicing steps) goes to “Not
OK”, chances of identifying “the invoice” as the problematic
concern become even smaller, as the information on this issue

1A life cycle information object in this context is to be considered as “an
information object whose life cycle is represented by (a) business process(es)”
[7, p. 101]. An information object in this context is to be considered as “a
concrete, identifiable, self-describing entity of information” that typically has
an enterprise-wide unique identity, meaningful to a business user and can
contain meta-data that describing its data content [7, p. 100].

is not properly separated. This situation correlates with our
(reduced) diagnostability interpretation of entropy as pointed
out in Section II. Based on these two situations, we can
conclude that not adhering to this guideline implies an in-
creased amount of entropy in the business process instantiation
space. Therefore, we state that the guideline is suitable for
entropy control as well. A small refinement can be formulated
by stating that, in order to ensure instance traceability, the
specific information object instance a business process instance
is operating on, should be stored as an attribute of that business
process instance.

Additionally, we note that limiting a business process to a
task sequence related to only one life cycle information object
also enables entropy reduction in suboptimal cases when the
most fine-grained separation of concerns and states at the task
level is not performed or deemed feasible. In case the first
guideline is adhered but undesirable aggregations at the task
level are still performed, an aggregation and entropy depending
on the number of combined tasks k occurs. On the other hand,
in case multiple life cycle information objects are incorporated
into one business process, the amount of entropy becomes
dependent on i as well.

Guideline 2, “Elementary life cycle information object”,
defines a life cycle information object as an information object
not exhibiting state transparency [7, p. 114]. Combined with
guideline 1 this implies that a business process is related to
one information object not exhibiting state transparency. In this
context, an information object is considered state transparent
if it adheres to the NS Separation of States principle and
the object has no proper state transitions which should be
made explicit [7, p. 118]. Not adhering to this guideline
would imply two possible situations: (1) the identification
of an information object as a life cycle information object
when it already exhibits state transparency, or (2) not rec-
ognizing a non-state transparent information object as a life
cycle information object. Regarding the first situation, the
creation of an additional life cycle information object (and
a corresponding business process) for an information object
of which the states are already fully reflected by another life
cycle information object, does neither increase of decrease
entropy. No additional information regarding the microstate
configuration is retained or lost (the information regarding the
states of one particular life cycle information object instance
is simply duplicated) by identifying this additional life cy-
cle information object. However, as stated in the discussion
regarding the previous guidelines, duplicate process (parts)
should be avoided. Regarding the second situation however,
an information object not exhibiting state transparency which
does not get recognized as a life cycle information object, will
generate an increase in the degree of entropy (i.e., multiplicity
> 1). As in such case no state transparency regarding the
concerning information object is attained, information about
its state transitions (and hence, the microstate configuration) is
lost. Expressed differently, a multiplicity > 1 will arise during
and after execution time as the macroscopic observations
regarding this information object cannot be traced to individual
tasks represented by states (i.e., a myriad of microstates are
possible). This situation relates to both the detectability and
diagnostability issues within an entropy viewpoint as pointed
out in Section II. Consequently, we can remark this guideline
is not strictly necessary to control entropy in the context of

343

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



���
��������

�	
����

�	��������	��

������

�	��������	��

������

��	������

��	��������	��

�	���	
����

��	���	
������	��

��	����������

����

���

Figure 1. A simple business process operating on multiple life cycle information objects.

the first situation: theoretically speaking, a state transparent
information object can be identified as a life cycle information
object without increasing entropy (albeit without any thinkable
benefit). However, the second situation shows that not adhering
to this guideline can imply an increased amount of entropy in
the business process instantiation space when a non-transparent
information object is not recognized as a life cycle information
object. Therefore, we state that the guideline is largely suitable
for entropy control and advice its application for this purpose
as well. We would further like to add that this guideline
actually quite nicely illustrates the core reasoning of designing
business processes based on the entropy rationale: for every
task of which separate information is valuable (constituting
a so-called “information unit”), a separate state should be
defined and related to the information object it is operating
on. Therefore, each information object not exhibiting state
transparency should be considered as a life cycle information
object, thereby storing information of each individual task
performed on it, at its most fine-grained level.

Guideline 3, “Aggregated Business Process”, states that
in order to represent an aggregated business process, an
aggregated life cycle information object has to be introduced
(p. 121). This guideline relates to the fact that certain aggre-
gated business processes can be necessary to several reasons.
First, the orchestration of different business processes (each
operating on a single life cycle information object) by a distinct
business process might be necessary. For instance, consider an
Order-to-Cash process in which several sub-processes —such
as “order entry process”, “procurement process”, “production
process”, etcetera— are each individually and successively
called, waiting for completion, upon which the next (set of)
sub-process(es) is called, completed, etcetera. Second, different
(both internal or external) stakeholders might require differ-
ent perspectives (such as aggregations) due to, for instance,
their own functional domain. For instance, in case of very
complex business processes, one can imagine that clients or
certain actors at a higher management level might be primarily
interested in the mere “milestones” (e.g., “order received”,
“order produced”, “order shipped”) of a business process,
instead of the possible hundreds of more fine-grained states
the product might be in during its life cycle. The guideline
under consideration prescribes that such aggregated processes
may only be introduced for orchestrating purposes and in case
the business processes under consideration are not able to be
designed solely based on guidelines 1 and 2. Once more, not
adhering to this guideline would imply two possible situations:
(1) designing an aggregated business process while a redesign
based on guidelines 1 and 2 would be possible, or (2) not rec-
ognizing a business process for orchestrating purposes while
a redesign based on guidelines 1 and 2 is not possible. The
first situation would clearly imply an unnecessary combination
of two concerns and therefore a violation of guidelines 1 and
2 (as a redesign based on them is still possible). Given the
fact that both guidelines were proven to mostly result in an

increase of entropy when not adhered to, this situation would
equally result in an increase of entropy. The second situation
would lead to not recognizing a “combined concern”: while
each of the underlying concerns have their own life cycle
information object and corresponding business process, the
orchestration or “interfacing” between them can constitute a
genuine concern as well. Such orchestration would entail a
relevant information unit and is therefore necessary to keep
track of when one’s aim is to minimize entropy. Imagine an
Order-to-Cash process tracking the Order Entry Process, (pos-
sibly multiple) Procurement Processes, Production Processes,
Delivery Processes, etcetera. While each of these processes
clearly designate their own life cycle information object and
therefore, business process, the orchestration between them is
crucial to be monitored as well. Tracking interfacing issues
in this Order-to-Cash Process constitutes relevant information
(macroscopically) and in case a customer complains about
a lately delivered order (i.e., the macrostate), the specific
business process (instance) which is causing this delay (Order
Entry, Procurement, etcetera) should be identifiable (i.e., the
specific microstate). Not identifying the necessary aggregated
process would therefore lead to multiple microstates consis-
tent with one macrostate. This situation relates to both our
detectability and diagnostability issues within an entropy view-
point as pointed out in Section II. We can therefore conclude
that not adhering to this guideline implies an increased amount
of entropy in the business process instantiation space and state
that the guideline is suitable for entropy control as well.

Guideline 4, ”Aggregation Level”, requires that tasks
performed on a different aggregation level should denote a
separate business process (p. 124). An “aggregation level” in
this particular guideline is mainly to be understood as focusing
on the multiplicities of different information objects (i.e., the
different perceived aggregations). For instance, a typical Order
within a company might be conceived as being associated
with several Product processes, where this Product process
at its turn might then again be associated with multiple Part
processes. Not adhering to this guideline would imply that
it is possible for a business process to execute sequences
of tasks situated at different “aggregation levels”. Suppose
one business process performing a sequence of tasks on a
“parent” information object (e.g., “Product”) and sequences of
tasks on its “child” information objects (e.g., different “Part”
instances). As one could argue that such business process
is operating on multiple life cycle information objects, our
first two arguments are highly parallel to those of guideline
1. First, such business process design would not guarantee
that systematic problems regarding, for instance, the overall
throughput time of the sequence of tasks performed on the
“child” information object are observed. The problematic
throughput times might become “compensated” by “normal”
throughput times of the other tasks, therefore not necessarily
raising an “alert” to the observer. Hence, multiplicity > 1 (and
entropy increases): multiple microstates (“throughput times

344

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



OK” and “throughput times Not OK”) are consistent with
one macrostate (“no problems are reported”). This situation
correlates with our (reduced) detectability interpretation of
entropy as pointed out in Section II. Second, in case a problem
is observed (i.e., the macrostate signals “Not OK”), multiplic-
ity > 1 as well. The macrostate now conforms to multiple
microstates: the “Not OK” result of the overall process might
be related to the sequence of tasks performed on the “parent”
information object, the “child” information object or both.
This situation correlates with our (reduced) diagnostability
interpretation of entropy as pointed out in Section II. Third,
no instance traceability regarding the multiple processed Parts
within the single business process is feasible in such design.
Therefore, the same states regarding the “child” information
object sequence are activated several times during the exe-
cution of the business process, while in reality dealing with
other information object instances. This makes adequate state-
tracking (cf. guideline 2) impossible. As a result, the business
process owner cannot make the distinction between situations
in which the problematic throughput time might be associated
with all Part instances in general (i.e., a “systematic” recurring
problem) or with one Part instance in particular (and in such
case, which specific Product instance). Also in this third
situation, this implies multiplicity > 1: one macrostate (i.e.,
a problem is observed) is consistent with multiple microstate
(i.e., the problem is due to Part instance 1, or 2, . . . , or all
Part instances): certain parts of the microstate configuration
are simply not captured during process execution. Based on
these two situations, we can conclude that not adhering to
this guideline implies an increased amount of entropy in the
business process instantiation space. Therefore, we state that
the guideline is suitable for entropy control as well.

Guideline 5, “Value Chain Phase”, states that the follow-
up of an organizational artifact resulting from a value chain
phase should denote a different business process (p. 132). A
value chain phase refers to the rather generic, often recurring
structure and parts within aggregated business processes in
manufacturing organizations (e.g., Order Entry, Procurement,
Production, etcetera), such as for instance described by the
SCOR reference model. Not adhering to the above described
guideline could lead to the following two situations: (1) the
steps related to these value chains are incorporated into the
aggregated (i.e., orchestrating) business process, or (2) no
more grained steps related to each of these value chain phases
are discerned and no states regarding them is kept. In the
first situation, this would imply a violation of guidelines 1
as multiple life cycle information objects (e.g., Order Entry,
Procurement, Procurement) are combined into one business
process. Further, guideline 4 would be violated as well because
most often, these value chain phases have one-to-many or
many-to-many relations. A Customer Order can typically be
related to multiple Purchase Orders and/or Production Orders.
The second situation would imply violations regarding guide-
lines 2 (i.e., no life cycle information object is identified for
several non-state transparent information objects) and 3 (i.e.,
an aggregated business process is designed when there are
still some opportunities for redesign based on guidelines 1
and 2). A situation in which no relevant states regarding the
tasks constituting a value chain phase should be identified,
is rather unlikely as this would allow to model almost all
necessary activities of a typical manufacturing company within

one business process having 5 to 8 tasks. Consequently, as
we should earlier how violations regarding guidelines 1 to 4
result in multiple microstates consistent with one macrostate,
we can conclude that violating this guideline would generate a
multiplicity > 1 as well. Therefore, we state that the guideline
is suitable for entropy control as well.

Guideline 6, “Attribute Update Request”, states that a
task sequence to update an attribute of a particular life cycle
information object that is not part of its business process sce-
narios, is represented by an Attribute Update Request business
process (p. 135). This guideline is subject to two specific con-
ditions. First, it has to concern an update operation for which
one single functional task is not sufficient to complete the up-
date request, but rather a sequence (i.e., “process”) of activities
is required. Second, it concerns update requests which are not
part of a branch within the regular business process scenarios.
Consequently such procedures can be instantiated several times
and during several different “states” of the life cycle of
the information object regarding which the update request is
actually aimed at. Additionally, such process (verifying for
instance the validity of updating a certain information object
attribute with a certain new value) will typically differ for each
individual attribute. Not adhering to this guideline would imply
that tasks for handling an attribute update request, not part of
the regular business process scenario, becomes incorporated
into the flow of the life cycle information object of which the
attribute is requested to be update. Again, such situation can
be seen as a violation regarding several of the above men-
tioned guidelines. Not separating such task sequences would
lead to a business process operating on multiple life cycle
information objects and —at the same time— one concern
being dispersed over several places within one business process
(i.e., all the life cycle states in which the update request is
allowed), thereby violating guideline 1. Second, the design
would make the proper tracking of states impossible as at any
point of the business process execution for each time an update
request is initiated, the state of the regular business process
is suddenly (possibly repeatedly) changed to states regarding
this update request (thereby indirectly violating guideline 2).
Third, as attribute update requests can be performed several
times during one instance of the “parent” business process,
both concerns relate in a one-to-many multiplicity, thereby
violating guideline 4. Consequently, as we showed earlier how
violations regarding guidelines 1, 2 and 4 result in multiple
microstates consistent with one macrostate, we can conclude
that violating this guideline would generate a multiplicity > 1
as well. Therefore, we state that the guideline is suitable for
entropy control as well. From an organizational observability
(i.e., entropy) viewpoint, it clearly makes sense to separate
such sequence of tasks for future reference. For instance, the
calculation of certain measures and the solution for certain
managerial questions such as: “how often are such requests
accepted/denied and for which reason” or “can we see any
relation between the outcome of the update requests and its
input values” are only able to be solved in an efficient way
when this task sequence is properly separated in its own
business process module and not unconsciously repeated in
other places throughout the business process repository.

Guideline 7, Actor Business Process Responsibility,
states that tasks, of which the task allocation genuinely belongs
to a different business process owner, should be designed into a

345

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



separate business process (p. 139). This guideline only applies
in very stringent cases. For example, in case legislation or
internal audit rules prescribe that different owners should be
responsible for other (parts of) task sequences, this guideline
applies. Mostly, the guideline is applicable when different parts
of a task sequence are performed by different organizations.
In such cases, the respective task allocations are logically
situated at one of these different organizations as well. From
an entropy viewpoint, let us consider the case in which the
mentioned guideline is not adhered to. In such case, a business
process could consist of a combination tasks which belong to
genuinely different business process owners. Each task still
has an attribute regarding which actor is allowed or required
to perform the task. However, no information is available
regarding who is doing the task allocation (e.g., the manager
of organization who determines who is doing what). If such
information should be retained, the appropriate level is the
business process level, as it concerns a sequence of multiple
tasks. In case this information is relevant but however no
distinct business process would be designed, a multiplicity
> 1 (and hence, entropy) arises as one macrostate (e.g., a
problem regarding the overall process) complies with multiple
microstates (was the task allocation responsibility situated
at person A, B, or C?). This situation correlates with our
(reduced) diagnostability interpretation of entropy as pointed
out in Section II. Therefore, in case the information regarding
task allocation responsibility is relevant, a different business
process should be identified from an entropy viewpoint to
allow for this task allocation responsibility to be traceable.
This guideline calls to create an additional level of “process
responsibility” (i.e., who allocates tasks among different actors
and takes responsibility that they are carried out adequately), in
addition to the responsibility for one or multiple tasks. There-
fore, we state that the guideline is suitable for entropy control
as well. However, in line with the work of Van Nuffel [7] we
remark that it should be stressed that identifying additional
business processes based on this guideline should be done with
extreme precaution to avoid unnecessary additional business
processes and, hence, only in cases where a different task
allocation responsibility is relevant for observability purposes.

Guidelines 8 and 9 as proposed by Van Nuffel [7], propose
two specific business process types to be identified. Guideline
8, “Notifying Stakeholders” states that the communication of
a message to stakeholders (in the correct format, incorporating
fault handling, etcetera) constitutes a distinct business process
(p. 143). Guideline 9, “Payment” states that the payment of a
particular amount of money to a particular beneficiary should
equally constitute a distinct business process (p. 146). Not
recognizing these two concerns as distinct business processes
could again create two possible situations: (1) integrating
the tasks for the notification and payment in other business
processes or (2) not specifying their constituting tasks at all.
It is clear that the first situation would violate guideline 1
(multiple life cycle information objects operating within one
business process) and 4 (for example, multiple notifications
can be sent within the scope of one “parent” business process
instantiation). The second situation would violate guideline 2
as a non-state transparent information object is not identified
as a separate life cycle information object. Consequently, as we
showed earlier how violations regarding guidelines 1, 2 and 4
result in multiple microstates consistent with one macrostate,

we can conclude that violating this guideline would generate
a multiplicity > 1 as well. Therefore, we state that guideline
8 and 9 are suitable for entropy control as well. Designing
these task sequences as separate business processes is useful
from an organizational observability (i.e., entropy) viewpoint
as well. Both the payment of a particular amount in a particular
format to a particular beneficiary at the right time, as well as
communicating a certain message in a particular format at the
right time while maintaining integrity, are often recurring func-
tionalities within typical business processes. As a consequence,
due to their frequently occurring nature, a business process
owner would typically be interested in certain characteristics
of each of these separately recurring tasks sequences: how
long do they take to execute, how many times do they result
in an error, etcetera. Focusing on these aspects can generate
considerable efficiency gains as, for instance, improving the
quality metrics or throughput time of the payment process with
5% might entail huge organizational effects as the changes
are “expanded” throughout the whole organization. However,
these analyses and improvements can only be performed when
“payments” and “notifications” are designed into separate
business processes. Otherwise, systematic problems regarding
one of the concerns might not be noticed (cf. the detectability
issue of Section II) or might not be unambiguously traced to
the right concern (cf. the diagnostability issue of Section II).

B. Additional Business Process Guidelines

The three additional business process guidelines address
decisions on how to identify business process guidelines which
are particularly influenced by domain-specific issues.

Guideline 10, “Product Type” identifies a Product Type
as denoting a separate business process because “a different
type of product / service denotes a main concern” (p. 149). In
this context, a Product Type is considered as an organizational
artifact (product, service) sharing a collection of important
characterizing properties. Not adhering to this guideline would
imply that one business process could combine two or more
Product Types. Firstly, this would clearly generate cluttered
and poorly organized processes including a large set of
branches. However, this could also be considered harmful
from our adopted entropy perspective. Imagine a company
producing only instances of two Product Types (A and B),
but combining all the significantly differing production steps of
these two production types into one business process. Suppose
that the observed total production costs (i.e., the macrostate)
were considered by the manager as too high (i.e., reducing
profitability). If in such case the tasks and sequences of tasks to
produce both Product Types have been combined and mingled
up into one process, it would become difficult to diagnose to
which product (A, B or both) the cost problem is related. As
a consequence, multiplicity > 1 and entropy increases. This
is obviously highly problematic in the context of decisions
which need to be taken regarding the product portfolio: which
products should the company retain and which products should
the company place out of production due to too high costs?
Therefore, we state that the guideline is suitable for entropy
control as well.

Allocating costs to cost objects such as individual Product
Types and their instances is considered key in cost-accounting
methods. As an example, the Activity-Based Costing (ABC)

346

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



method was designed to more accurately assign indirect costs
to individual Product Types using a multi-stage cost allocation
procedure involving the identification of activities responsible
for the generation of costs [17]. These tasks are identified
at multiple levels such as facility, batch, product or unit
level. This reasoning is highly related to the identification
of business processes at the level of Products, their Parts,
etcetera in this paper. However, in [18] we indicated that new
ABC iterations does not exhibit the lowest possible degree
of entropy. We therefore hypothesize that cost-accounting
approaches can benefit from analyzing their proposed methods
using an entropy perspective. Additionally, the idea that the
modular structure or patterns within organizations should or
may reflect the (technical) modular structure of products is
not new. For instance, the mirroring hypothesis states that in
case of the design of complex systems (such as products), the
organizational structure (such as division of labor and division
of knowledge) will mirror one another [19]. Considering
products as a basis for modularizing cost objects is therefore
considered as logical design decision, supporting a low entropy
design.

Finally, it should be mentioned that this guideline does
not imply that potential Product Types having sequences of
tasks in common should repeat these identical sequences in all
of their respective business processes. For instance, Product
Parts should be modeled in separate business processes and
can then potentially be re-used for several other Products
(in conformance with guideline 4). Also, variants of one
product may be modeled by using gateways and branching
options within the process: in such situation the differing tasks
should clearly be separated in different tasks and the life cycle
information object object data should enable the unambiguous
tracing of the variant which was produced (and hence, the
business process path which was taken).

Guideline 11, “Stakeholder Type” states that a “stake-
holder type should principally be considered a cross-functional
concern, except for those business processes where the stake-
holder type denotes the life cycle information object, e.g.,
different HR business processes to deal with different types of
employees”. As stated in the guideline, in case each different
stakeholder type would be associated with another genuine
life cycle information object, another business process type
should be identified (in conformance with guideline 1). In
such case, the task sequences of the regarding the information
object for each stakeholder type significantly differ and distinct
information should be kept on this matter. Therefore, not
adhering to this part of the guideline would violate guideline
1 and increase entropy. However, in case the stakeholder
type merely denotes variants of the product or service to be
delivered, the stakeholder type can and should be used as an
attribute of the considered life cycle information object. In such
case, information is gathered at the level of the information
object (e.g., “credit grant”) but can be categorized according
to the stakeholder type (e.g., “golden type”, “normal type”)
based on this attribute. That way, the identical task sequences
are not dispersed throughout the business process repository,
thereby avoiding the generation of a higher amount of entropy.
In case a particular common sequence of tasks within the
business process would be related in a one-to-many or many-
to-many relationship to the business processes, this sequence
should be separated in its own business process (cf. guideline

4). Likewise, when a particular sequence would be of use
within other types of business processes (e.g., a procedure
for verifying customer details which is used both in online
and desk assisted order entry) or when the stakeholder types
are “completely differently processed” [7, p. 155], a separate
business process should be identified. Indeed, in such cases,
separate information regarding these information objects is
relevant from an entropy perspective. Therefore, we state that
this guideline is generally suitable for entropy control as well.
This reasoning is similar to our reasoning regarding guideline
10 on Product Type variants.

Guideline 12, “Access Channel” states that the access
channels typically denote “a cross-functional concern”, mean-
ing that no separate business process should be identified
(p. 159). In case of small variants within the life cycle it
is equally advised from an entropy reasoning to identify one
business process regarding, for instance, an Order, in which the
branching for the respective access channels can be performed
based on an attribute of the life cycle information object.
Under the assumption that the differing tasks are clearly
separated from the common tasks regarding each considered
access channel, this reasoning would be similar as the one
mentioned in guideline 10, allowing common task sequences
to be properly separated into one process (and therefore not
be dispersed throughout the process repository).

However, in some cases, a separate access channel can
imply a totally different process in a particular part of a value
chain. Different access channels can have different results in
terms of throughput time, costs, etcetera. Therefore, it can be
interesting to separate business processes based on this concern
in certain situations. For instance, consider the application for
a business school which can be done online (fill in resume,
submit TOEFL, recommendation letters and example paper) or
via attendance on site (interview and business game): for both
access channels, separate business processes are preferable. If
one process would mingle all steps for both access channels
(without branching based on an attribute), entropy can occur.
Suppose that a supervisor observes that the throughput time
of the applications is too lengthy. Now, there is no clear
indication whether it is due to the online application channel,
the on site application channel, or both. Consequently, multiple
microstates are consistent with one macrostate. Therefore,
in similar way as cited for guideline 12, we state that the
considered guideline is suitable for entropy control in cases
when the access channel is used for separating access channel
specific tasks among a sequence of common tasks, and for
which a selection according to the access channel can be made
based on an attribute of the information object (pointing to
the access channel used for each instance). The guideline can
be further nuanced or refined by stating that, in case totally
separate access channels are associated with totally different
task sequences (i.e., they are “completely differently processed”
[7, p. 155]), and of which separate information needs to be
available, the creation of a separate business process for each
access channel is advised.

C. Task Guidelines

These guidelines focus on the question on how to identify
individual tasks within a business process.

347

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Guideline 13, “A Single Functional Task - Overview”
identifies a task as “a functional entity of work that either
results in a single state transition of a single information
object type, or refers to an Update or Read task on a single
information object type” (p. 161). As this guideline provides
a general definition of tasks, it should inform us about the
conceptualization of “concerns” at the level of individual
tasks, regarding which we need to keep track of independent
information. This guideline is difficult to be analyzed based on
“violations” towards it as it mainly describes how a task is con-
ceptualized, i.e., being a “portion of work” resulting in a single
state transition or performing a read/update action. However,
we can notice that this conceptualization is rather similar to the
definition of a task we adopt in our entropy reasoning (here and
in previous publications), although some refinements from the
entropy perspective can be made. Remember from Section II
that the identification of tasks in an organizational context was
equally based on information units, or every part within the
life cycle of an information object of which we want to keep
independent information. Typically, this information can be
expected to be multidimensional in an organizational context:
costs, resource consumption, executing actor, consumed time,
quality, etcetera. As a consequence, from an entropy point of
view, we state that the guideline is suitable for entropy control
as well and propose to refine the considered guideline based
on these dimensions. This information should be retained in
relation to the corresponding state of the considered task. All
other guidelines in relation to the identification of tasks are
then to be considered as special cases of this guideline.

Guideline 14, “CRUD Task” states that “each of the Create
- Read/Retrieve - Update - Delete (CRUD) operations consti-
tutes a single task” (p. 164). Not adhering to this guideline
would imply that CRUD tasks are combined with non-CRUD
tasks. Suppose that an error or lacking quality within such
flow is observed (i.e., the macrostate) and the observer wants
to diagnose the reason for it. In such case, it would not be
able to distinguish between situations in which the undesired
output of the combined task is due to, for instance, information
which was faulty received (i.e., the “Read” action) or due
to the action taken based on this information. Consequently,
multiple microstates are consistent with one macrostate. From
an entropy perspective, it is also interesting to know, for
example, who adapted a particular attribute of an information
object at which time. Therefore, we state that the guideline is
suitable for entropy control as well. In order to ensure instance
traceability, we further refine the guideline by stating that the
information created, read, updated or deleted should be stored
in relation to the state of the considered task instance.

Guideline 15, “Manual Task” states that “every manual
task of which the initiation and completion has to be known,
has to be designed as a separate task” (p. 167). Suppose
that two or more manual tasks of which the initiation and
completion has to be known are combined into one task. This
means that only one state regarding this combined task is
known. Therefore, the observed macrostate (e.g., the combined
task has been completed erroneously) is consistent with a
myriad of microstates (e.g., manual task 1, manual task 2 or
a combination of both have resulted in this erroneous com-
pletion). Therefore, we state that the guideline is suitable for
entropy control as well. This guideline should be interpreted in
combination with guideline 21, requesting that a task cannot

consist of parts that are performed by different actor(s) (roles).

Guideline 16, “Managing Time Constraint Task” states
that “the management of a time constraint denotes a separate
task because it represents the individual concern of managing
a particular time constraint” (p. 169). Remember that we
proposed to refine guideline 13 by requiring that the relevant
costs, throughput time, resource consumption, quality criteria
and executing actors should be persisted in the state related to
each identified task. Since we defined the throughput time of
a particular task as a relevant part of information for defining
the microstate, this guideline needs to be adhered to from
an entropy perspective as well. Consider a particular task
for which, after it has been completed, the next task in the
sequence is only allowed to proceed in the next morning at
7AM. In case this timing constraint is not properly separated
(by a waiting condition or “timer”) from the first task, entropy
increases as it is not known how long it took to complete
the task (and hence, when the actual “waiting” started). In
such situation, when for instance trying to reduce the observed
occupation time of the production line (i.e., the macrostate), no
clear information is available regarding how long the product
was actually “occupying” the production line and how long it
was waiting for further processing (i.e., multiple microstates).
This is clearly associated with an increased amount of entropy.
Therefore, we state that the guideline is suitable for entropy
control as well.

Guideline 17, “Business Rule Task” states that “a single
business rule should be separated as a single task” (p. 171).
In this context, mainly business rules defined as “derivation
rules” or “reaction rules” are considered (i.e., deriving a
decision —mostly for branching— from other knowledge or
based on a particular business event or state). These decisions
are clearly something else than the execution of a particular
“production task” contributing to the actual product or service
(e.g., assembly) realization. Therefore, separate information is
required about the executor, time and resource consumption,
as well as the final outcome. Suppose the considered guideline
is not adhered to and a production activity and business rule
activity are combined into one task. In such case, entropy
arises due to several reasons. Firstly, unclarity about the typical
microstate information dimensions such as time and executor
might arise. For instance, “calculating the stock” and “deciding
which branch to choose” based on the available stock (e.g.,
“order” vs. “not order”) might be executed by different actor
(roles) and therefore have different relevant information. In
case this task is executed erroneously or took too long (i.e.,
the macrostate), it is not clear which actor was responsible or
which information unit caused the lengthy throughput time.
Clearly, this situation can be avoided by adhering to the some
of the other proposed guidelines (such as guidelines 13 and
21). Secondly however, not adhering to this guideline would
imply that the eventually chosen branch (i.e., again belonging
to the macrostate) is not uniquely traceable to the non-business
rule task (e.g., the calculation of the stock) or business rule task
(e.g., deciding whether or not to order based on the calculated
stock), hence being consistent with multiple microstates (and
as a consequence, generating entropy). Therefore, we state
that the guideline is suitable for entropy control as well: in
some situations, the business rule task will not be separated
automatically due to one of the other proposed guidelines,
giving the considered guideline its own right to exist.

348

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Guideline 18, “Bridge Task” states that “when a business
process instance operating on an instance of life cycle informa-
tion object type I has to create a business process instance of
another life cycle information object type L, this functionality
is designed as a bridge task that initiates the creation of the
instance of the life cycle information object L, and represents
a state transition on the instance of I” (p. 173). The actor
initiating a new instance of a life cycle information object can
be different than the actor doing the preceding or following
tasks and might send specific configuration data to the instance
being created. Therefore, based on guideline 21 (cf. infra), we
state that the guideline is suitable for entropy control as well.
Potentially, also the time needed to initiate an instance might
be time or resource consuming and might therefore require
the design of a separate task. Further, based on the need for
instance traceability, we propose a refinement of the guideline
by stating that the reference to the business process instance
operating on the instance of life cycle information object
type L should be stored in relation to the state of the bridge
task instance. Additionally, the reference to business process
instance operation on the instance of life cycle information
object type I, as well as the specific configuration data which
was used during initiation, should be stored in relation to the
instance of life cycle information object L.

Guideline 19, “Synchronization Task”, states that “when
a business process instance operating on a life cycle infor-
mation object I has to inform a business process instance of
another life cycle information object L, a synchronization task,
representing a state transition on the instance of I, alters the
state of the business process instance of L” (p. 176). Whether
a Synchronization Task is performed by a Bridge Task to a
Notification (see guideline 18) or by an Update Task regarding
the state of a particular target life cycle information object
(see guideline 14), they both can be considered to be special
cases of the respective guidelines. As both of these guidelines
have been suggested to be suitable for entropy control, also
this guideline should be. Nevertheless, we make two additional
remarks on this regard. First, the need for proper state tracking
should raise some caution regarding the second option to
implement the guideline, i.e., by simply using an update task
to alter the state of another life cycle information object. As
it should not be allowed to alter the state of a process while
another task on the same life cycle information object is been
carried out and only valid state transitions are allowed, this
implementation should only be chosen with care. Second, to
ensure diagnostability, the guideline can be refined by stating
that the reference to the business process instance operating
on life cycle information object L should be stored in relation
to the state of the synchronization task instance. Additionally,
the reference to the business process instance operating on life
cycle information object I should be stored in relation to the
altered state within the business process instance of L.

Guideline 20, “Synchronizing Task” calls for identifying
separate tasks which receive “information from another busi-
ness process’s execution, in order to continue the business
process control flow” (p. 178). Whether a Synchronizing Task
is performed actively (systematically checking the state of
another life cycle information object) or passively (waiting
until a Notification is received), this guideline denotes a special
case of a waiting condition and therefore of guideline 16.
Therefore, we state that also this guideline is suitable for

entropy control: non-adherence would imply that the infor-
mation regarding for example throughput time of other tasks
can become misrepresented, thereby generating entropy. A
refinement can be formulated by stating that the reference to
the business process instance from which the information is
received as well as the the incoming information itself, should
be stored in relation to the state of the synchronizing task
instance.

Guideline 21, “Actor Task Responsibility”, states that
“a task cannot consist of parts that are performed by differ-
ent actor(s) (roles)” (p. 180). Remember that we proposed
to refine guideline 13 by requiring that the relevant costs,
throughput time, resource consumption, quality criteria and
executing actors should be persisted in the state related to each
identified task. Therefore, as we defined the actor performing
a particular task as a relevant part of information for defining
the microstate, it makes sense to support this guideline from
an entropy perspective as well. Suppose a task is combining
parts A and B which are executed by two different actor(s)
(roles). In case a problem regarding the produced product or
delivered service is observed afterwards (i.e., the macrostate)
and the main problem is traced to the task combining these two
parts, it still remains unclear which actor is actually responsible
for the lacking quality (the actor performing part A or the
actor performing part B), and multiple microstates arise for this
single macrostate (thereby increasing entropy). As a result, we
state that the guideline is suitable for entropy control as well
and can even be refined and formulated more strictly as “A task
cannot consist of parts that are performed by different actor(s)
(roles) and the specific actor performing the task should be
persisted in its associated state” in order to ensure instance
traceability.

D. Auxiliary Guidelines

Auxiliary guidelines do not specifically focus on identi-
fying tasks or business processes, but try to formulate a set
of generally applicable guidelines to design business process
repositories.

Guideline 22, “Unique State Labeling”, states that “each
state of a life cycle information object has to be unique”
(p. 181). This guideline follows directly from the NS Sepa-
ration of Concerns and Separation of States principles. In case
this guideline would not be adhered to, multiple states could
be attributed the same identifier and would obviously defy the
benefit of introducing states in order to reduce the amount of
entropy. Consider for instance a process in which the results
of two distinct consecutive manufacturing steps (on which
separate information is relevant) are persisted in the same state.
In case for instance the quality of the resulting product is
insufficient (i.e., the observed macrostate), it is uncertain which
of the considered manufacturing steps is responsible for this
failure (i.e., meaning that at least two microstates are consistent
with the observed macrostate, thereby generating entropy).
Therefore, this guideline is consistent with efforts to reduce
the entropy generated by executed business processes. We refer
again to the refinement of guideline 13 which indicates the
different information dimensions which should be related to
such states.

Guideline 23, “Unique State Property”, states that “a
life cycle information instance can only be in a single state

349

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



at any time” (p. 182). Also this guideline follows directly
from the NS Separation of Concerns and Separation of States
principles. When business processes are conceived similarly as
“production lines” operating on life cycle information objects,
each instantiation should obviously be in one state at the time.
In case this guideline would not be adhered to, this would mean
that a business process can be in two states at one point in
time. For instance, this would allow an instance of a payment
life cycle information object to be in the state “initiated” and
“finished” at the same time. This would make any traceability
of observed macrostates in terms of microstates impossible
as, for example, no clear information can be retrieved on how
long it took to complete one particular invoice (i.e., going from
the state “initiated” to the state “finished”). Clearly, abundant
entropy would arise and the guideline should be adhered to in
order to avoid this.

Guideline 24, “Explicit Business Process End Points”,
states that “if a business process type has multiple possible
outcomes, each of these scenarios should have its dedicated
end point reflecting the respective end state of a business
process instance” (p. 183). This guideline equally follows
directly from the NS Separation of Concerns principle. In
fact, it could be considered as a special case of guideline 22.
Consider two different outcomes (e.g., due to two different
microstates by different branches) resulting in the same state
(i.e., the observed macrostate), e.g., “process finished”. In
such situation, two microstates would —by definition— be
consistent with one macrostate and entropy occurs. Also, it
would become impossible to analyze how many times, in case
of claim handling for instance, the process results in “claim
successfully handled” and “claim not successfully handled”,
or how these states have come into being. Therefore, also
this guideline is consistent with the aim of reducing entropy
generation.

Guideline 25, “Single Routing Logic”, states that “a
split/join element in a business process’s control flow should
only represent a single split or join routing expression”
(p. 184). Not adhering to this guideline would imply that mul-
tiple elements could be combined into one module, i.e., both
joint and split conditions. However, given the convention that
states can only be related to tasks (not gateways), not adhering
to this guideline could generate entropy. Combining split/joint
elements into one module would prohibit the creation of an
intermediate task between the join and split, thereby assuming
that the logic or business rule for deciding which branch to take
in the split element is incorporated in the gateway (for which
it is not intended as it will also not result in a persisted state).
Therefore, no information regarding this branching decision
(e.g., evaluate number of parts in stock) is persisted in a state.
In such situations one macrostate (the observed outcome and
chosen branch) is consistent with multiple microstates (it is
unclear who has taken this decision, based on which informa-
tion, requiring how many resources, needing which amount of
time, etcetera), thereby generating entropy. Therefore we state
that also this guideline is consistent with the aim of reducing
entropy generation during the execution of business processes.

IV. DISCUSSION, LIMITATIONS AND FUTURE RESEARCH

This paper aims to contribute to our research line on how
to prescriptively design business processes regarding certain

criteria (such as low complexity and high evolvability). In
earlier work, a set of prescriptive guidelines has been proposed
from the stability perspective [7], and the applicability of
the entropy concept to study the observability of business
processes has been reported [9], [10]. The main focus in this
paper was to verify whether the already existing guidelines to
optimize the business process design from a stability viewpoint
align with the perspective to minimize entropy. We found that
most of the investigated guidelines are rather consistent among
both approaches: guidelines required to attain evolvability
enable observability and vice versa. This is illustrated in
Table I. Regarding the general business process guidelines,
some small exceptions were noticed for guidelines 1, 2 and 7.
For guideline 1, it was stated that instance traceability required
that the specific information object instance a business process
instance is operating on, should be stored as an attribute of the
latter. For guideline 2, it was observed that —theoretically—
entropy does not increase when a state transparent information
object is identified as a life cycle information object. For
guideline 7, it was argued that the application of the specific
guideline should be performed even more thoughtfully and
exceptionally when one is adopting the entropy viewpoint
as its necessity in many situation is not really compelling.
Regarding the additional business process guidelines, we made
an additional nuance regarding the possible identification of
a separate business process based on its access channel (cf.
guideline 12). While we in general advise to follow the
guideline, we added some additional remark and clarification
on possible cases in which different access channels could still
depict another separate business process. Regarding the task
guidelines, we concluded that the guidelines of Van Nuffel
were consistent with our proposed entropy reasoning, although
we were able to propose some additional refinements of the
guidelines based on this new perspective. For guideline 13, we
stressed the multidimensional nature of the information to be
stored in relation to a state. For guidelines 14, 18, 19, 20 and
21 we proposed some small refinements each related to the
need for instance traceability. Finally, all auxiliary guidelines
were deemed consistent with our entropy reasoning.

The conclusion that the guidelines from the stability point
of view correlate with these from the entropy viewpoint is
encouraging for business process designers and researchers,
as this might indicate that a unified set of business process
design guidelines might be conceivable, optimizing multiple
important design characteristics concurrently. Nevertheless, to
a certain extent, this conclusion might come as a surprise as
well, given the different assumptions and analysis viewpoints
of both approaches. First, while both approaches do not only
take a different perspective towards business process analysis
(i.e., search for evolvability vs. observability), they take a
fundamentally different perspective for obtaining their goal as
well. The evolvability analysis focuses on the mere design time
of business processes, which means that the harmful effects
its aims to resolve (the so-called “combinatorial effects”) are
situated on this perspective: a functional change that causes
N changes in the business process design. In contrast, the
observability analysis focuses on avoiding harmful effects
during execution time: a multiplicity > 1 (which we could
coin as an “uncertainty effect”) only manifests itself when
the business processes are executed. Clearly, these effects
are caused by choices made at design time. However, as

350

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE I. AN OVERVIEW OF THE ANALYSIS OF THE GUIDELINES OF
VAN NUFFEL [7] FROM THE ENTROPY VIEWPOINT

Guideline C
on

tr
ad

ic
tin

g

C
om

pl
ia

nt

R
efi

ne
d

1 Elementary Business Process •
2 Elementary Life Cycle Information Object •
3 Aggregated Business Process •
4 Aggregation Level •
5 Value Chain Phase •
6 Attribute Update Request •
7 Actor Business Process Responsibility •
8 Notifying Stakeholders •
9 Payment •
10 Product Type •
11 Stakeholder Type •
12 Access Channel •
13 A Single Functional Task - Overview •
14 CRUD Task •
15 Manual Task •
16 Managing Time Constraint •
17 Business Rule Task •
18 Bridge Task •
19 Synchronization Task •
20 Synchronizing Task •
21 Actor Task Responsibility •
22 Unique State Labeling •
23 Unique State Property •
24 Explicit Business Process End Point •
25 Single Routing Logic •

the harmful effects are only visible at execution time, this
perspective has to taken into account for this particular analysis
as well. It is therefore important to note that, to the best
of our knowledge, few modeling languages in the business
process modeling domain are currently available to pursue this
goal. While many business process modeling notations (e.g.,
BPMN) allow for a design time analysis of business processes,
execution time analysis and visualization of executed business
processes in terms of the data they generate is under explored
and few starting points are available. We therefore encourage
the business process research community to elaborate further
on this issue.

Second, the criteria both approaches use to delineate and
identify the different business processes and their constituting
tasks, differ. The evolvability approach employs the concept
of “change drivers” (i.e., parts within the business process
design which are assumed to change independently) to iden-
tify and isolate concerns, whereas the complexity approach
employs the concept of “information units” (i.e., these parts
within the business process design of which independently
traceable information is assumed to be needed later on). In
our view, it makes sense to state that change drivers are
information units and vice versa. In many organizational fields,
it it generally accepted that those things you want to change
(“change drivers”), have to be measured first (i.e., in order
to detect whether a problem in fact exists, and to obtain a
reference point to evaluate afterwards whether the changes
resulted in improvements) and should hence be recognized
as “information units”. On the other hand, one could argue
that measuring parts of business processes on which you
track independently traceable information (i.e., “information
units”) only makes sense if you are able to potentially change
(hence, ameliorate) them later on (i.e., they need to be “change
drivers” as well). It is therefore hypothesized that in general,
the concerns which should be used to delineate and identify

business processes or tasks are determined by the union of
“change drivers” and “information units”. This hypothesis also
allows that, while most of the concerns are expected to be
mutual for both perspectives, some of them can actually be
derived from only one perspective, but not contradicting the
reasoning of the other one. This was for example the case for
guideline 2 which was proposed from the stability point of
view but is only necessary in a refined way from the entropy
point of view. Given the additional, more in-depth analysis
of the entropy approach by incorporating the execution time
perspective (e.g., the importance of observability), additional
concerns which do not seem necessary from the evolvability
perspective, might be potentially identified in future research.
For instance, the entropy point of reasoning at the software
level of NS, proved to suggest additional principles [8].

Notwithstanding the limitations and need for future re-
search, this paper can claim a number of contributions. First,
we further contributed to the enterprise and business process
engineering field by elaborating on the usefulness to take an
entropy perspective for studying the complexity of business
processes. Second, we validated the suitability of a set of
(already existing) business process design guidelines in this
context as a first step towards a Design Theory [20]. In
literature, it is generally acknowledged and even encouraged
that such design efforts are guided by principles from related
scientific fields (i.e., “kernel theories”) [21], such as the
concept of entropy from thermodynamics. Third, we adopted
logical reasoning as our evaluation method, which is one of the
suitable validation methods proposed within Design Science
research and adopted by several authors [22]. While one can
argue that this validation method is not necessarily the most
powerful one, we believe that many other validation methods
are less suitable for the artefact under consideration. For
instance, comparing the results of applying entropy reducing
business process design guidelines with other approaches is
difficult as few or no prescriptive guidelines for business
processes are available, certainly if one is looking for entropy
reducing methods.

In future research, we could focus on attempts to verify
whether guidelines can be found are necessary from the
entropy viewpoint, but are not required from the stability
point of view (e.g., related to detectability and diagnostability
issues at execution time). Further, although an initial case
study (i.e., simulation) has already been performed earlier to
show the relevance and applicability of the entropy viewpoint
to analyze business processes [12] and six case studies have
been documented regarding the design of business processes
from the evolvability viewpoint [7], additional cases might be
beneficial to specifically illustrate the differences between both
approaches and the grounding for their respective business
process design guidelines. Additionally, this way of work-
ing can further complement our currently adopted evaluation
method of logical reasoning. Finally, similar to NS reasoning
[6], the ultimate goal of the research stream is to look for
organizational “elements” [23], [24]: groupings or patterns
of frequently occurring, rather general business processes
exhibiting both a high degree of evolvability and observability
(i.e., high detectability and diagnostability of business process
problems and outcomes).

351

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



V. CONCLUSION

Contemporary organizations need to be agile regarding
both their IT systems and organizational structures (such as
business processes). Normalized Systems theory has recently
proposed an approach to build evolvable IT systems, based on
the systems theoretic concept of stability. However, its applica-
bility to the organizational level, including business processes,
has proven to be relevant in the past and resulted among
others in a set of 25 guidelines for designing business pro-
cesses. This paper investigated the validity of these guidelines
from another theoretical perspective, more specifically, entropy
as defined in statistical thermodynamics. We concluded that
most of the investigated guidelines are consistent among both
approaches: guidelines required to attain evolvability also
enable observability (i.e., low entropy) and vice versa. Part
of one guideline was found to be not strictly necessary from
an entropy viewpoint (only from the evolvability viewpoint),
but not contradicting entropy minimization either. Several
guidelines were able to be refined to some extent based on
our entropy reasoning or were subject to some additional
nuancing. Future research should be directed towards entropy
specific guidelines, additional case studies and patterns at the
organizational level.

ACKNOWLEDGMENT

P.D.B. is supported by a Research Grant of the Agency for
Innovation by Science and Technology in Flanders (IWT).

REFERENCES

[1] P. De Bruyn, D. Van Nuffel, P. Huysmans, and H. Mannaert, “Con-
firming design guidelines for evolvable business processes based on
the concept of entropy,” in Proceedings of the Eighth International
Conference on Software Engineering Advances (ICSEA), 2013, pp.
420–425.

[2] E. Overby, A. Bharadwaj, and V. Sambamurthy, “Enterprise agility
and the enabling role of information technology,” European Journal
of Information Systems, vol. 15, no. 2, 2006, pp. 120–131. [Online].
Available: http://dx.doi.org/10.1057/palgrave.ejis.3000600

[3] J. Mendling, H. A. Reijers, and W. M. P. van der Aalst,
“Seven process modeling guidelines (7pmg),” Inf. Softw. Technol.,
vol. 52, no. 2, Feb. 2010, pp. 127–136. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2009.08.004

[4] L. Brehm, A. Heinzl, and M. Markus, “Tailoring erp systems: a
spectrum of choices and their implications,” in Proceedings of the 34th
Annual Hawaii International Conference on System Sciences, 2001.

[5] H. Mannaert, J. Verelst, and K. Ven, “The transformation of require-
ments into software primitives: Studying evolvability based on systems
theoretic stability,” Science of Computer Programming, vol. 76, no. 12,
2011, pp. 1210–1222, pdf.

[6] ——, “Towards evolvable software architectures based on systems
theoretic stability,” Software: Practice and Experience, vol. 42, no. 1,
January 2012, pp. 89–116, pdf.

[7] D. Van Nuffel, “Towards designing modular and evolvable business
processes,” Ph.D. dissertation, University of Antwerp, 2011.

[8] H. Mannaert, P. De Bruyn, and J. Verelst, “Exploring entropy in
software systems : towards a precise definition and design rules,” in The
Seventh International Conference of Software Engineering Advances
(ICSEA), 2012, pp. 84–89.

[9] P. De Bruyn, P. Huysmans, G. Oorts, and H. Mannaert, “On the
applicability of the notion of entropy for business process analysis,”
in Proceedings of the Second International Symposium on Business
Modeling and Software Design (BMSD), 2012, pp. 128–137.

[10] P. De Bruyn, P. Huysmans, H. Mannaert, and J. Verelst, “Understanding
entropy generation during the execution of business process instantia-
tions: An illustration from cost accounting,” in Advances in Enterprise
Engineering VII, ser. Lecture Notes in Business Information Processing,
H. Proper, D. Aveiro, and K. Gaaloul, Eds. Springer Berlin Heidelberg,
2013, vol. 146, pp. 103–117.

[11] P. De Bruyn and H. Mannaert, “On the generalization of normalized
systems concepts to the analysis and design of modules in systems and
enterprise engineering,” International journal on advances in systems
and measurements, vol. 5, 2012, p. 3/4.

[12] P. De Bruyn, P. Huysmans, and H. Mannaert, “A case study on entropy
generation during business process execution: a monte carlo simulation
of the custom bikes case,” in Proceedings of the Third International
Symposium on Business Modeling and Software Design (BMSD), 2013.

[13] L. Boltzmann, Lectures on gas theory. Dover Publications, 1995.

[14] J. Dietz, Enterprise Ontology: Theory and Methodology. Springer-
Verlag Berlin Heidelberg, 2006.

[15] P. Huysmans, D. Van Nuffel, and P. De Bruyn, “Consistency, com-
plementalness, or conflictation of enterprise ontology and normalized
systems business process guidelines,” in Proceedings of the Third
International Symposium on Business Modeling and Software Design
(BMSD), 2013.

[16] D. Van Nuffel, P. Huysmans, and P. De Bruyn, “Engineering business
processes: comparing prescriptive guidelines from eo and nsbp,” Lecture
Notes in Business Information Processing (LNBIP), 2014, in press.

[17] C. Drury, Management and Cost Accounting. Sout-Western, 2007.

[18] P. Huysmans and P. De Bruyn, “Activity-based coscost as a design
science artifact,” in Proceedings of the 47th Hawaii International
Conference of Systems Sciences (HICSS), 2014, pp. 3667–3676.

[19] L. Colfer and C. Baldwin, “The mirroring hypothesis: Theory, evidence
and exceptions,” Harvard Business School Working Paper, 2010.

[20] S. Gregor and D. Jones, “The anatomy of a design theory,” Journal
of the Association for Information Systems, vol. 8, no. 5, 2007, pp.
312–335.

[21] J. Walls, G. Widmeyer, and O. El Saway, “Building an information
system design theory for vigilant eis,” Information Systems Research,
vol. 3, no. 1, 1992, pp. 36–59.

[22] V. Vaishnavi and W. Keuchler, Design Science Research Methods
and Patterns: Innovating Information and Communication Technology.
Auerbach Publications, 2008.

[23] P. De Bruyn, “Towards designing enterprises for evolvability based on
fundamental engineering concepts,” in On the Move to Meaningful In-
ternet Systems: OTM 2011 Workshops, ser. Lecture Notes in Computer
Science, R. Meersman, T. Dillon, and P. Herrero, Eds. Springer Berlin
Heidelberg, 2011, vol. 7046, pp. 11–20.

[24] P. De Bruyn, H. Mannaert, and J. Verelst, “Towards organizational mod-
ules and patterns based on normalized systems theory,” in Proceedings
of the Ninth International Conference on Systems (ICONS), 2014, pp.
106–115.

352

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


