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CONFLATIONS OF PROBABILITY DISTRIBUTIONS

THEODORE P. HILL

Abstract. The conflation of a finite number of probability distributions
P1, . . . , Pn is a consolidation of those distributions into a single probabil-
ity distribution Q = Q(P1, . . . , Pn), where intuitively Q is the conditional
distribution of independent random variables X1, . . . , Xn with distributions
P1, . . . , Pn, respectively, given that X1 = · · · = Xn. Thus, in large classes of
distributions the conflation is the distribution determined by the normalized
product of the probability density or probability mass functions. Q is shown
to be the unique probability distribution that minimizes the loss of Shannon
information in consolidating the combined information from P1, . . . , Pn into a
single distribution Q, and also to be the optimal consolidation of the distri-

butions with respect to two minimax likelihood-ratio criteria. In that sense,
conflation may be viewed as an optimal method for combining the results from
several different independent experiments. When P1, . . . , Pn are Gaussian, Q
is Gaussian with mean the classical weighted-mean-squares reciprocal of vari-
ances. A version of the classical convolution theorem holds for conflations of
a large class of a.c. measures.

1. Introduction

Conflation is a method for consolidating a finite number of probability distri-
butions P1, . . . , Pn into a single probability distribution Q = Q(P1, . . . , Pn). The
study of this method was motivated by a basic problem in science, namely, how best
to consolidate the information from several independent experiments, all designed
to measure the same unknown quantity. The experiments may differ in time, geo-
graphical location, methodology and even in underlying theory. Ideally, of course,
all experimental data, past as well as present, should be incorporated into the sci-
entific record, but the result would be of limited practical application. For many
purposes, a concise consolidation of those distributions is more useful.

For example, to obtain the current internationally-recognized values of each of
the fundamental physical constants (Planck’s constant, Avogadro’s number, etc.),
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the U.S. National Institute of Standards and Technology (NIST) collects indepen-
dent distributional data, often assumed to be Gaussian (see Section 6), from various
laboratories. Then, for each fundamental physical constant, NIST combines the rel-
evant input distributions to arrive at a recommended value and estimated standard
deviation for the constant. Since these recommended values are usually interpreted
as being Gaussian, NIST has effectively combined the several input distributions
into a single probability distribution.

The problem of combining probability distributions has been well studied; e.g.,
[7] describes a “plethora of methods” for finding a summary T (P1, . . . , Pn) of n
given (subjective) probability measures P1, . . . , Pn that represent different expert
opinions. Essentially all those methods, however, including the classical convex
combination or weighted average (T (P1, . . . , Pn) =

∑n
i=1 wiPi, with nonnegative

weights {wi} satisfying
∑n

i=1 wi = 1) and its various nonlinear generalizations,
are idempotent, i.e., T (P, . . . , P ) = P . For the purpose of combining probability
distributions that represent expert opinions, idempotency is a natural requirement,
since if all the opinions P1, . . . , Pn agree, the best summary is that distribution.

But for other objectives for combining distributions, such as consolidating the
results of independent experiments, idempotency is not always a desirable prop-
erty. Replications of the same underlying distribution by independent laborato-
ries, for example, should perhaps best be summarized by a distribution with a
smaller variance. In addition to the problem of assigning and justifying the un-
equal weights, another problem with the weighted averages consolidation is that
even with normally-distributed input data, this method generally produces a mul-
timodal distribution, whereas one might desire the consolidated output distribution
to be of the same general form as that of the input data – normal, or at least uni-
modal.

Another natural method of consolidating distributional data – one that does pre-
serve normality, and is not idempotent – is to average the underlying input data. In
this case, the consolidation T (P1, . . . , Pn) is the distribution of (X1+· · ·+Xn)/n (or
a weighted average), where {Xi} are independent with distributions {Pi}, respec-
tively. With this consolidation method, the variance of T (P1, . . . , Pn) is strictly
smaller (unless {Xi} are all constant) than the maximum variance of the {Pi},
since var(P ) = (var(P1) + · · · + var(Pn))/n

2. Input data distributions that dif-
fer significantly, however, may sometimes reflect a higher uncertainty or variance.
More fundamentally, in general this method requires averaging of completely dis-
similar data, such as results from completely different experimental methods (see
Section 6).

The method for consolidating distributional data presented below, called the
conflation of distributions, and designated with the symbol “&” to suggest con-
solidation of P1 and P2, does not require ad hoc weights, and the mean and/or
variance of the conflation may be larger or smaller than the means or variances
of the input distributions. In general, conflation automatically gives more weight
to input distributions arising from more accurate experiments, i.e. distributions
with smaller standard deviations. The conflation of several distributions has sev-
eral other properties that may be desirable for certain consolidation objectives –
conflation minimizes the loss of Shannon information in consolidating the combined
information from P1, . . . , Pn into a single distribution Q, and is both the unique
minimax likelihood ratio consolidation and the unique proportional likelihood ratio
consolidation of the given input distributions.
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In addition, conflations of normal distributions are always normal, and coincide
with the classical weighted least squares method, hence yielding best linear unbiased
and maximum likelihood estimators. Many of the other important classical families
of distributions, including gamma, beta, uniform, exponential, Pareto, LaPlace,
Bernoulli, Zeta and geometric families, are also preserved under conflation. The
conflation of distributions has a natural heuristic and practical interpretation –
gather data (e.g., from independent laboratories) sequentially and simultaneously,
and record the values only when the results (nearly) agree.

In some contexts the basic assumptions, both of the independence of the under-
lying probability distributions (experiments) and of the equal validity of the distri-
butions (uniform prior), may be quite natural. In other contexts, however, where
different experiments may partially share apparatus or methodology, or where there
is reason to believe that some experiments may be intrinsically more likely to be
valid, a generalization of the notion of conflation introduced below will perhaps be
more suitable. Such generalizations, both to distributions that are dependent and
to situations with nonuniform priors, are not developed here, but are left for future
research.

2. Basic definition and properties of conflations

Throughout this article, N will denote the natural numbers, Z the integers, R
the real numbers, (a, b] the half-open interval {x ∈ R : a < x ≤ b}, B the Borel
subsets of R, P the set of all real Borel probability measures, δx the Dirac delta
measure in P at the point x (i.e., δx(B) = 1 if x ∈ B, and = 0 if x /∈ B), ‖μ‖
the total mass of the Borel sub-probability μ, o( ) the standard “little oh” notation
o(an) = bn if and only if limn→∞

an

bn
= 0, a.c. means absolutely continuous, the

p.m.f. of P is the probability mass function (p(k) = P ({k})) if P is discrete and
p.d.f. is the probability density function (Radon-Nikodyn derivative) of P if P is a.c.,
E(X) denotes the expected value of the random variable X, ψP the characteristic
function of P ∈ P (i.e., ψP (t) =

∫∞
−∞ eitxdP (x)), IA is the indicator function of

the set A (i.e. IA(x) = 1 if x ∈ A and = 0 if x /∈ A), g ⊗ h is the convolution
(g ⊗ h)(t) =

∫∞
−∞ g(t− s)h(s)ds of g and h, and Ac is the complement R\A of the

set A. For brevity, μ((a, b]) will be written μ(a, b], μ({x}) as μ(x), etc.

Definition 2.1. For P1, . . . , Pn ∈ P and j ∈ N, μj(P1, . . . , Pn) is the purely-atomic
j-dyadic sub-probability measure

μj(P1, . . . , Pn) =
∑

k∈Z

n∏

i=1

Pi((k − 1)2−j , k2−j ]δk2−j .

Remark. The choice of using half-open dyadic intervals closed on the right and
of placing the mass in every dyadic interval at the right end point is not at all
important — the results which follow also hold if other conventions are used, such
as decimal or ternary half-open intervals closed on the left, with masses placed at
the center.

Example 2.2. If P1 is a Bernoulli distribution with parameter p = 1
3 (i.e. P =

(2δ0+δ1)
3 ) and P2 is Bernoulli with parameter 1

4 , then μj(P1, P2) =
(6δ1/2+δ1)

12 for all
j ∈ N.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3354 THEODORE P. HILL

The next proposition is the basis for the definition of conflation of general distri-
butions below. Recall (e.g. [4, Theorem 4.4.1]) that for real Borel sub-probability
measures {νj} and ν, the following are equivalent:

νj → ν vaguely as j → ∞;(2.1a)

νj(a, b] → ν(a, b] for all a < b in a dense set D ⊂ R;(2.1b)

lim
j→∞

∫

f(x)dνj(x) =

∫

f(x)dν(x)(2.1c)

for all continuous f that vanish at infinity.

Theorem 2.3. For all P, P1, . . . , Pn ∈ P,

(i) μj+1

(
a
2m , b

2m

]
≤ μj

(
a
2m , b

2m

]
for all j,m ∈ N, j > m; and all a ≤ b,

a, b ∈ Z;
(ii) μj(P1, . . . ,Pn)converges vaguely to a sub-probability measure μ∞(P1, . . . ,Pn);
(iii) limj→∞ ‖μj(P1, . . . , Pn)‖ = ‖μ∞(P1, . . . , Pn)‖; and
(iv) μ∞(P ) = P , and μj(P ) converges vaguely to P as j → ∞.

The following simple observation — that the square of the sums of nonnegative
numbers is always at least as large as the sum of the squares — will be used in the
proof of the theorem and several times in the sequel, and is recorded here for ease
of reference.

Lemma 2.4. For all n ∈ N, all ai,k ≥ 0, and all J ⊂ N,
∏n

i=1

∑
k∈J ai,k ≥

∑
k∈J

∏n
i=1 ai,k.

Proof of Theorem 2.3. For (i), note that for j > m

μj

(
a

2m
,
b

2m

]

=
b2j−m−1−1∑

k=a2j−m−1

μj

(
k

2j−1
,
k + 1

2j−1

]

(2.2a)

=

b2j−m−1∑

k=a2j−m

μj

(
k

2j
,
k + 1

2j

]

and

(2.2b) μj+1

(
a

2m
,
b

2m

]

=
b2j−m−1∑

k=a2j−m

μj+1

(
k

2j
,
k + 1

2j

]

.

By the definition of μj ,

μj

(
k

2j
,
k + 1

2j

]

=
n∏

i=1

Pi

(
k

2j
,
k + 1

2j

]

(2.3a)

=

n∏

i=1

(

Pi

(
2k

2j+1
,
2k + 1

2j+1

]

+ Pi

(
2k + 1

2j+1
,
2k + 2

2j+1

])

and

μj+1

(
k

2j
,
k + 1

2j

]

=
n∏

i=1

Pi

(
2k

2j+1
,
2k + 1

2j+1

]

(2.3b)

+

n∏

i=1

Pi

(
2k + 1

2j+1
,
2k + 2

2j+1

]

.
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By Lemma 2.4, (2.3a) and (2.3b) imply that

(2.4) μj+1

(
k

2j
,
k + 1

2j

]

≤ μj

(
k

2j
,
k + 1

2j

]

for all j > m, j,m ∈ N, k ∈ Z.

By (2.2a) and (2.2b), this implies (i).
For (ii), note that since every sequence of sub-probability measures contains a

subsequence that converges vaguely to a sub-probability measure (e.g. [4, Theo-
rem 4.3.3]), there exists a subsequence {μjk(P1, . . . , Pn)} of {μj(P1, . . . , Pj)} and a
sub-probability measure μ∞(P1, . . . , Pn) so that μjk(P1, . . . , Pn) converges vaguely
to μ∞(P1, . . . , Pn) as k → ∞. Hence by the uniqueness of vague limits (i.e. con-
vergence on intervals from different dense sets results in the same limit measure [4,
corollary to Theorem 4.3.1, p. 86]), (i) implies that

lim
j→∞

μj

(
a

2m
,
b

2m

]

= μ∞

(
a

2m
,
b

2m

]

,

which proves that μj(P1, . . . , Pn) converges vaguely to μ∞(P1, . . . , Pn).
For (iii), note that

lim
j→∞

‖μj‖ = lim
j→∞

∞∑

k=−∞
μj(k, k + 1]

=

∞∑

k=−∞
lim
j→∞

μj(k, k + 1] =

∞∑

k=−∞
μ∞(k, k + 1] = ‖μ∞‖,

where the second equality follows by the dominated convergence theorem, and the
third by the definition of μ∞. The special case n = 1 of (iv) is immediate. �
Definition 2.5. P1, . . . , Pn ∈ P are (mutually) compatible if ‖μj‖ > 0 for all j ∈ N.

Clearly every normal distribution is compatible with every probability distribu-
tion, every exponential distribution is compatible with every distribution with sup-
port in the positive reals, and every geometric distribution is compatible with every
discrete distribution having any atoms in N. Even though Theorem 2.3 guarantees
that μj(P1, . . . , Pn) converges vaguely to a sub-probability measure μ∞(P1, . . . , Pn)
and that limj→∞ ‖μj(P1, . . . , Pn)‖ = ‖μ∞(P1, . . . , Pn)‖, and compatibility implies

that
μj(P1,...,Pn)

‖μj(P1,...,Pn)‖ is a probability measure for all j ∈ N, limj→∞
μj(P1,...,Pn)

‖μj(P1,...,Pn)‖ may

not be a probability measure, as the next example shows.

Example 2.6. Let P1 =
∑

k∈N 2−kδk and P2 =
∑

k∈N
2−kδk+2−k . Then P1 and P2

are easily seen to be compatible, but limj→∞
μj(P1,...,Pn)

‖μj(P1,...,Pn)‖ is the zero measure, since

for each j ∈ N, the support of the probability measure
μj(P1,...,Pn)

‖μj(P1,...,Pn)‖ is contained

in [j,∞).

The next definition is the main definition in this paper.

Definition 2.7. If
μj(P1,...,Pn)

‖μj(P1,...,Pn)‖ converges vaguely to a Borel probability measureQ

as j → ∞, this limit Q is called the conflation of P1, . . . , Pn, written &(P1, . . . , Pn).

Theorem 2.8. The operation & is commutative and associative, that is,
&(P1, P2) = &(P2, P1) and &(P1,&(P2, P3)) = &(&(P1, P2), P3) = &(P1, P2, P3).

Proof. Immediate from the definition of μ∞ since multiplication of real numbers is
commutative and associative. �
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Example 2.9. Let P1 be a Bernoulli distribution with parameter p = 1
3 and P2 be

Bernoulli with parameter 1
4 , as in Example 2.2. Then &(P1, P2) =

(6δ0+δ1)
7 .

Example 2.10. Let P1 be N(0, 1) and P2 be Bernoulli with parameter p = 1
3 .

Then it can easily be seen that
μj(P1,P2)

‖μj(P1,P2)‖ converges vaguely to &(P1, P2) =

δ0

(
2

(2+e−1/2)

)
+δ1

(
e−1/2

(2+e−1/2)

)
, that is, to the probability measure having the same

atoms as the discrete measure, weighted according to the product of the atom
masses of P2 and the magnitude of the density of P1 at 0 and 1.

3. Conflations of discrete and of absolutely

continuous distributions

In general, explicit representations of conflations are not known in closed form.
For large natural classes of distributions, however, such as collections of discrete
distributions with common atoms and collections of a.c. distributions with over-
lapping densities, explicit forms of the conflations are easy to obtain. The next
two theorems give simple and powerful characterizations of conflations in those two
cases. Since in practice input data can easily be approximated extremely closely
by discrete distributions with common atoms (e.g., by replacing each Pi by the
dyadic approximation μj(Pi) above) or can be smoothed (e.g., by convolution with
a U(−ε, ε) or an N(0, ε2) variable), these two cases are of practical interest. The
third conclusion in the next two theorems also yields the heuristic and useful inter-
pretation of conflation described in the introduction.

Theorem 3.1. Let P1, . . . , Pn be discrete with p.m.f.’s p1, . . . , pn, respectively, and
common atoms A, where ∅ �= A ⊂ R. Then &(P1, . . . , Pn) exists, and the following
are equivalent:

(i) Q = &(P1, . . . , Pn),

(ii) Q =
∑

x∈A δx
∏n

i=1 pi(x)∑
y∈A

∏n
i=1 pi(y)

,

(iii) Q is the conditional distribution of X1 given that X1 = X2 = · · · = Xn,
where X1, . . . , Xn are independent r.v.’s with distributions P1, . . . , Pn, re-
spectively.

Proof. Fix P1, . . . , Pn and note that by definition of atom, pi(x) > 0 for all i =
1, . . . , n and all x ∈ A. Fix k0 ∈ Z and j0 ∈ N, and let D =

(
k0

2j0
, k0+1

2j0

]
. First it

will be shown that

(3.1) μ∞(D) =
∑

x∈A∩D

n∏

i=1

pi(x).

For all x ∈ R, j ∈ N, let Dx,j denote the unique dyadic interval
(

k
2j ,

k+1
2j

]
containing

x. Note that Dx,j ↘ {x} as j → ∞, so Pi(Dx,j) ↘ pi(x) as j → ∞ for all i and all
x ∈ R.

This implies

(3.2) lim
j→∞

n∏

i=1

Pi(Dx,j) =

n∏

i=1

pi(x) for all x ∈ R.

Fix ε > 0. Since {Pi} are discrete, there exists a finite set A0 ⊂ R such that

(3.3) Pi(D ∩ Ac
0) < ε for all i ∈ {1, . . . , n}.
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Since
∏n

i=1 pi(x) = 0 for all x ∈ Ac, (3.3) implies

∣
∣
∣
∑

x∈A∩D

n∏

i=1

pi(x)−
∑

x∈A0∩D

n∏

i=1

pi(x)
∣
∣
∣ =

∑

x∈A∩Ac
0∩D

n∏

i=1

pi(x)(3.4)

≤
∑

x∈A∩Ac
0∩D

p1(x) ≤ P1(D ∩ Ac
0) < ε.

For each j ∈ N, let Sj =
⋃

x∈A0
Dx,j . Then since x ∈ Dx,j for all x and j, (3.3)

implies Pi(D ∩ Sc
j ) < ε for all i ∈ {1, . . . , n}. Thus by definition of {μj} and

Lemma 2.4,

(3.5) μj(D ∩ Sc
j ) ≤

n∏

i=1

Pi(D ∩ Sc
j ) < εn for all j ∈ N.

This implies that

μj(D) = μj(D ∩ Sj) + μj(D ∩ Sc
j )(3.6)

=
∑

x∈D∩A0

μj(Dx,j) + μj(D ∩ Sc
j )

=
∑

x∈D∩A0

n∏

i=1

Pi(Dx,j) + μj(D ∩ Sc
j ),

where the second equality follows from the definitions of Sj and Dx,j . Since x ∈
Dx,j , (3.6) implies

(3.7) μj(D) ≥
∑

x∈D∩A0

n∏

i=1

Pi(Dx,j) ≥
∑

x∈D∩A0

n∏

i=1

pi(x).

By (3.6), (3.2) and (3.5),

(3.8) μj(D) ≤
∑

x∈A0∩D

n∏

i=1

pi(x) + εn + ε for sufficiently large j.

By (3.7) and (3.8), |μj(D) =
∑

x∈A0∩D

∏n
i=1 pi(x)| ≤ ε+ εn, so by (3.4),

|μj(D)−
∑

x∈A∩D

n∏

i=1

pi(x)| < 2ε+ εn.

Since ε > 0 was arbitrary and since μj → μ∞, this implies (3.1). Since D
was arbitrary, (3.1) implies that ‖μ∞(P1, . . . , Pn)‖ =

∑
x∈A

∏n
i=1 pi(x), which

proves that &(P1, . . . , Pn) exists. The equivalence of (i) and (ii) follows since
&(P1, . . . , Pn) = μ∞

‖μ∞‖ and since the measures of dyadic intervals D determine

μ∞. The equivalence of (ii) and (iii) follows immediately from the definition of
conditional probability. �

Example 3.2. If P1 is binomial with parameters n = 2 and p = 1
3 and P2 is

Poisson with parameter λ = 5, then &(P1, P2) is discrete with atoms only at 0, 1
and 2 — specifically, &(P1, P2) =

8δ0
73 + 40δ1

73 + 25δ2
73 .

Remark. It should be noted that if the input distributions are discrete and have
no common atoms, then the conflation does not exist. This could happen if, for
example, the underlying experiments were designed to estimate Avogadro’s number
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(theoretically a 24-digit integer), and the results were given as exact integers. In
practice, however, Avogadro’s number is known only to seven decimal places, and
if the results of the experiments were reported or recorded to eight or nine decimal
places of accuracy, then there would almost certainly be common values, and the
conflation would be well defined and meaningful. (Restriction to the desired decimal
accuracy could be done by the experimenter, or afterwards, e.g., converting each
input Pi to μ20(Pi) as mentioned above.)

The analog of Theorem 3.1 for probability distributions with densities requires
an additional hypothesis on the density functions, for the simple reason that the
product of a finite number of p.m.f.’s is always the mass function of a discrete sub-
probability measure (i.e., is always summable), but the product of a finite number
of p.d.f.’s may not be the density function of a finite a.c. measure (i.e., may not be
integrable), as will be seen in Example 3.6 below.

The algebraic and Hilbert space properties of normalized products of density
functions have been studied for special classes of a.c. distributions with p.d.f.’s
with compact support that are bounded from above and bounded from below away
from zero [1], [5]; products of p.m.f.’s and p.d.f.’s have been used in certain pattern-
recognition problems [8]; and the “log opinion poll” method for combining proba-
bility distributions [7] is an a.c. distribution with normalized density

∏
fwi
i , which

is similar in structure, but is idempotent since the weights sum to one.

Theorem 3.3. Let P1, P2, . . . , Pn be absolutely continuous with densities f1, . . . , fn
satisfying 0 <

∫∞
−∞

∏n
i=1 fi(x)dx < ∞. Then &(P1, . . . , Pn) exists and the following

are equivalent:

(i) Q = &(P1, . . . , Pn);

(ii) Q is absolutely continuous with density f(x) =
∏n

i=1 fi(x)dx∫∞
−∞

∏n
i=1 fi(y)dy

;

(iii) Q is the (vague) limit, as ε ↘ 0, of the conditional distribution of X1

given that |Xi − Xj | < ε for all i, j ∈ {1, . . . , n}, where X1, . . . , Xn are
independent r.v.’s with distributions P1, . . . , Pn, respectively.

Proof. First suppose that the densities {fi} are nonnegative simple functions on
half-open dyadic intervals (a, b], a, b ∈ { k

2j : k ∈ Z, j ∈ N}. Without loss of
generality (splitting the intervals if necessary), there exists j0 ∈ N and a finite set
K ⊂ N such that

(3.9) fi =
∑

k∈K

cj,kIDk
for all i = 1, . . . , n,

where ci,k ≥ 0 for all i, k; and Dk are disjoint intervals
(
ak, ak +

1
2j0

]
, ak = k

2j0
,

k ∈ K. Let πk =
∏n

i=1 ci,k for all k ∈ K, and note that the compatibility of
P1, . . . , Pn implies that

∑
k∈K πk > 0. It will now be shown that &(P1, . . . , Pn) is

absolutely continuous with density f , where

(3.10) f(x) =

∏n
i=1 fi(x)∫∞

−∞
∏n

i=1 fi(s)ds
=

2j0
∑

k∈K πkIDk∑
k∈K πk

a.s.
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Fix m ∈ N, and let ak,s = ak +
s

2j0+m . First note that since fi = ci,k a.s. on Dk for
each i and k,

πk = (2j0+m)n
n∏

i=1

Pi(ak,s−1, ak,s](3.11)

for all s = 1, . . . , 2m, m ∈ N, and k ∈ K.

By (3.11) and the definitions of {Dk} and {μj},

μj0+m =
∑

k∈K

2m∑

s=1

n∏

i=1

Pi(ak,s−1, ak,s]δak,s
(3.12)

=
∑

k∈K

2m∑

s=1

πk

2(j0+m)n
δak,s

=
1

2(j0+m)n

∑

k∈K

πk

2m∑

s=1

δak,s
.

Since m, j0 and n are fixed, and since ‖
∑2m

s=1 δak,s
‖ = 2m, (3.12) implies that

(3.13)
μj0+m

‖μj0+m‖ =

∑
k∈K πk

∑2m

s=1 δak,s

2m
∑

k∈K πk
=

∑
k∈K πk

1
2m

∑2m

s=1 δak,s∑
k∈K πk

.

But since 1
2m

∑2m

s=1 δak,s
converges vaguely to the probability measure uniformly

distributed on Dk for each k ∈ K, and
μj0+m

‖μj0+m‖ converges vaguely to &(P1, . . . , Pn)

as m → ∞, (3.13) implies (3.10). This completes the proof that &(P1, . . . , Pn)
exists and (i) and (ii) are equivalent when the densities are simple functions on
dyadic intervals. For the general case, use the standard method to extend this
result to general simple functions, and then, since densities are a.s. nonnegative,
extend this to finite collections of densities whose product is integrable, via the stan-
dard argument of approximating below by simple functions, and using monotone
convergence.

For the equivalence of (ii) and (iii), for every ε > 0 let P1,ε denote the conditional
distribution of X1 given {|Xi − Xj | < ε for all i, j ∈ {1, . . . , n}}. That is, for all
Borel sets A,

P1,ε(A) =
P (X1 ∈ A and |Xi −Xj | < ε for all i, j ∈ {1, . . . , n})

P (|Xi −Xj | < ε for all i, j ∈ {1, . . . , n}) ,

where the denominator is always strictly positive since by hypothesis
∫ ∏n

i=1 fi(x)dx
> 0. Clearly, P1,ε is absolutely continuous with conditional density f1,ε, where the
independence of the {Xi} implies that

(3.14) f1,ε(x) =
f1(x)

(∏n
i=2

∫ x+ε

x−ε
fi(z)dz

)

∫∞
−∞ f1(y)

(∏n
i=2

∫ y+ε

y−ε
fi(z)dz

)
dy

.

Next note that by the definition of derivative and integral,

(3.15) lim
ε→0

f1(x)

n∏

i=2

(2ε)−1

∫ x+ε

x−ε

fi(z)dz =

n∏

i=1

fi(x).
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Letting fM
i = min{fi,M} for all M ∈ N, and all i ∈ {1, . . . , n}, calculate

lim
ε→0

∫

f1(y)

(
n∏

i=2

(2ε)−1

∫ y+ε

y−ε

fi(z)dz

)

dy(3.16)

= lim
ε→0

lim
M→∞

∫

fM
1 (y)

(

(2ε)−1
n∏

i=2

∫ y+ε

y−ε

fM
i (z)dz

)

dy

= lim
M→∞

lim
ε→0

∫

fM
1 (y)

(
n∏

i=2

(2ε)−1

∫ y+ε

y−ε

fM
i (z)dz

)

dy

= lim
M→∞

∫ n∏

i=1

fM
i (y)dy =

∫ n∏

i=1

fi(y)dy,

where the first equality follows from the monotone convergence theorem, the second

since the convergence of limε→0

∫
fM
1 (y)

(∏n
i=2(2ε)

−1
∫ y+ε

y−ε
fM
i (z)dz

)
dy is uniform

in M , the third by (3.15) and the bounded convergence theorem since the integrand
is bounded by Mn, and the last by the dominated convergence theorem since by
hypothesis,

∫ ∞

−∞

n∏

i=1

fi(x)dx < ∞.

Thus by (3.14), (3.15), and (3.16),

lim
ε→0

f1,ε(x) =

∏n
i=1 fi(x)∫ ∏n
i=1 fi(y)dy

,

proving the equivalence of (ii) and (iii). �

Example 3.4. Suppose P1 is N(0, 1) and P2 is exponentially distributed with

mean 1. Then &(P1, P2) is a.c. with p.d.f. f(x) proportional to e−x2/2e−x =

e1/2e−(x+1)2/2 for x > 0, which is simply the standard normal shifted to the left
one unit, and conditioned to be nonnegative.

Example 3.5. Suppose P1 and P2 are both standard Cauchy distributions. Then
neither P1 nor P2 have finite means, but by Theorem 3.3, &(P1, P2) is a.c. with
density f(x) = c(1 + x2)−2 for some c > 0, and since

∫∞
−∞ x2(1 + x2)−2dx < ∞,

&(P1, P2) has both finite mean and variance. In particular, the conflation of Cauchy
distributions is not Cauchy, in contrast to the closure of many classical families
under conflation (Theorem 7.1 below). This example also shows that the classes of
stable and infinitely divisible distributions are not closed under conflation.

In general, the conflation of a.c. distributions, even an a.c. distribution with
itself, may not be a.c., let alone have a density proportional to the product of the
densities.

Example 3.6. Let P1 = P2 be a.c. with p.d.f. f(x) = (4x)−1/2 for 0 < x <
1 (and zero elsewhere). Then f1(x)f1(x) = 1

4x is not integrable, and no scalar
multiple is a p.d.f. However, the conflation &(P1, P2) does exist, and by showing
that the normalized mass of μj is moving to the left as j → ∞, it can be seen that
&(P1, P2) = δ0, the Dirac delta measure at zero (in particular, the conflation is not
even a.c.).
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The characterization of the conflation of a.c. distributions as the normalized
product of the density functions yields another characterization of conflations of
a.c. distributions, an analog of the classical convolution theorem in Fourier analysis
[3].

Recall that g ⊗ h is the convolution of g and h.

Theorem 3.7 (Convolution theorem for conflations). Let P1, P2, . . . , Pn be com-
patible and a.c. with densities {fi} and characteristic functions {ψi}. If 0 <∫∞
−∞

∏n
i=1 fi(x)dx < ∞ and {ψi} are L1, then &(P1, . . . , Pn) exists and is the

unique a.c. probability distribution with characteristic function ψ&(P1,...,Pn)

= ψ1⊗ψ2⊗···⊗ψn

(2π)n−1
∫∞
−∞

∏n
i=1 fi(x)dx

.

Proof. The proof will be given only for the case n = 2; the general case fol-
lows easily by induction and Theorem 2.8. Suppose ψ1 and ψ2 are L1 and 0 <∫∞
−∞ f1(x)f2(x)dx < ∞. Then

(ψ1 ⊗ ψ2)(t) =

∫ ∞

−∞
ψ2(s)ψ1(t− s)ds =

∫ ∞

−∞
ψ2(s)

[∫ ∞

−∞
ei(t−s)xf1(x)dx

]

ds

=

∫ ∞

−∞
f1(x)e

itx

[∫ ∞

−∞
ψ2(s)e

−isxds

]

dx

=

∫ ∞

−∞
2πf1(x)f2(x)e

itxdx = 2πψ&(P1,P2)(t)

∫ ∞

−∞
f1(x)f2(x)dx,

where the first equality follows from the definition of convolution; the second
by definition of ψ1; the third by Fubini’s theorem since ψ1 and ψ2 are abso-
lutely integrable; the fourth by the inverse characteristic function theorem (e.g.
[4, Theorem 6.2.3]) since ψ2 is L1; and the last equality by Theorem 3.3 since
0 <

∫∞
−∞ f1(x)f2(x)dx < ∞. �

The next example is an application of Theorem 3.7, and shows that the conflation
of two standard normal distributions is mean-zero normal with half the variance of
the standard normal. An intuitive interpretation of this fact is that if the two stan-
dard normals reflect the results of two independent experiments, then combining
these results effectively doubles the number of trials, thereby halving the variance
of the (sample) means. Normality is always preserved under conflation, as will be
seen in Theorem 7.1 below.

Example 3.8. Let P1 = P2 be N(0, 1), so ψ1(t) = ψ2(t) = e−t2/2. Then (ψ1 ⊗
ψ2)(t) =

∫∞
−∞ e−(t−s)2/2e−s2/2ds = e−t2/4

∫∞
−∞ e−(s−

t
2 )

2

ds = e−t2/4
√
π, so since

∫
f1(x)f2(x)dx =

∫∞
−∞

e−x2/2
√
2π

e−x2/2
√
2π

dx = 1
2
√
π
, Theorem 3.7 implies that &(P1, P2)

is a.c. with characteristic function ψ(t) =
√
πe−t2/4

2π/2
√
π

= e−t2/4, so &(P1, P2) is

N(0, 1
2 ).

In general, the convolution of characteristic functions of discrete measures may
not even exist.

Example 3.9. Let P = P1 = P2 = δ0. Then it is easy to see that &(P1, P2) = δ0,
and ψP (t) ≡ 1, so ψP1

⊗ ψP2
does not even exist.
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4. Minimal loss of Shannon information

Replacing several distributions by a single distribution will clearly result in some
loss of information, however that is defined. A classical measure of information in
a stochastic setting is the Shannon information.

Recall that the Shannon information SP (A) (also called the surprisal, or self-
information) of a probability P for the event A ∈ B is SP (A) = − log2 P (A)
(so the smaller the value of P (A), the greater the information or surprise). The
information entropy, which will not be addressed here, is simply the expected value
of the Shannon information.

Example 4.1. If P is uniformly distributed on (0, 1), and A = (0, 1
4 )∪ ( 12 ,

3
4 ), then

P (A) = 1
2 , so SP (A) = − log2(P (A)) = 1. Thus exactly one bit of information is

obtained by observing A, namely, that the value of the second binary digit is 0.

Definition 4.2. The (joint) Shannon information of P1, P2, . . . , Pn for the event
A ∈ B is

S{P1,...,Pn}(A) = SP (X1 ∈ A, . . . , Xn ∈ A) =

n∑

i=1

SPi
(A) = − log2

n∏

i=1

Pi(A),

where {Xi} are independent random variables with distributions {Pi}, respectively,
and the loss between the Shannon information of Q ∈ P and P1, . . . , Pn for the event
A ∈ B is S{P1,...,Pn}(A)−SQ(A) if

∏n
i=1 Pi(A) > 0, and is 0 if Q(A) =

∏n
i=1 Pi(A) =

0.

Note that the maximum loss is always nonnegative (taking A = Ω).
The next theorem characterizes conflation as the minimizer of loss of Shannon

information.

Theorem 4.3. If P1, . . . , Pn ∈ P satisfies ‖μ∞(P1, P2, . . . , Pn)‖ > 0, then

(i) the conflation &(P1, P2, . . . , Pn) exists;
(ii) for every Q ∈ P, the maximum loss between the Shannon information of Q

and P1, . . . , Pn is at least log2(‖μ∞(P1, P2, . . . , Pn)‖−1); and
(iii) the bound in (ii) is attained if and only if Q = &(P1, P2, . . . , Pn).

Proof. Fix P1, . . . , Pn ∈ P, and for brevity, let μj = μj(P1, P2, . . . , Pn) for all j ∈ N,
and μ∞ = μ∞(P1, P2, . . . , Pn). For (i), note that by Theorem 2.3, μj converges
vaguely to μ∞, and limj→∞ ‖μj‖ = ‖μ∞‖ > 0, so μj‖μj‖−1 converges vaguely to
the probability measure μ∞‖μ∞‖−1, which implies that &(P1, P2, . . . , Pn) exists.

For (ii) and (iii), fix Q ∈ P, and let & = &(P1, P2, . . . , Pn). It must be shown
that

S{P1,...,Pn}(A)− SQ(A) ≥ log2(‖μ∞‖−1) for some Borel A,(4.1a)

S{P1,...,Pn}(A)− SQ(A) > log2(‖μ∞‖−1) for some Borel A if Q �= &,(4.1b)

and

S{P1,...,Pn}(A)− SQ(A) ≤ log2(‖μ∞‖−1) for all Borel A if Q = &.(4.1c)
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By definition of Shannon information and since log2(x) is increasing, (4.1a)–(4.1c)
are equivalent to

Q(A)
∏n

i=1 Pi(A)
≥ ‖μ∞‖−1 for some Borel A,(4.2a)

Q(A)
∏n

i=1 Pi(A)
> ‖μ∞‖−1 for some Borel A if Q �= &,(4.2b)

Q(A)
∏n

i=1 Pi(A)
≤ ‖μ∞‖−1 for all Borel A if Q = &.(4.2c)

To establish (4.2a), fix ε, ‖μ∞‖−1 > ε > 0. By Theorem 2.3, ‖μj‖ → ‖μ∞‖ as
j → ∞, so there exists j∗ ∈ N such that

(4.3) ‖μj∗‖−1 > ‖μ∞‖−1 − ε > 0.

For each k ∈ Z, let qk = Q
(

k
2j∗

, k+1
2j∗
]
, and pk =

∏n
i=1 Pi

(
k

2j∗
, k+1
2j∗
]
. Note that by

the definition of {μj},

(4.4) ‖μj∗‖ =
∑

k∈Z

pk.

By (4.3), since Q is a probability, (4.4) implies that 1=
∑

k∈Z
qk=

∑
k∈Z

pk‖μj∗‖−1,
so there exists k∗ ∈ Z such that

(4.5) qk∗ ≥ pk∗‖μj∗‖−1 > 0.

Hence, by (4.3) and (4.5) and the definition of {pk} and {qk},

(4.6)
Q
(

k∗

2j∗
, k∗+1

2j∗

]

∏n
i=1 Pi

(
k∗

2j∗
, k∗+1

2j∗
] ≥ ‖μ∞‖−1 − ε.

By Lyapounov’s theorem, the range of a finite-dimensional vector measure is closed
(e.g. [9] or [6, Theorem 1.1]), so since ε was arbitrarily small, this proves (4.2a).

To prove (4.2b), suppose Q �= &. Then there exists a c > 0, k∗ ∈ Z and j∗ ∈ N,

such that for D =
(

k∗

2j∗
, k

∗+1
2j∗

]
, &(D) > 0 and Q(D) > &(D) + cμ∞(D). Since

& = μ∞
‖μ∞‖ , this implies that

(4.7)
Q(D)

μ∞(D)
> ‖μ∞‖−1 + c.

Since μj(D) → μ∞(D) as j → ∞ by Theorem 2.3(ii), (4.7) implies there exists an
m ∈ N so that

(4.8)
Q(D)

μj∗+m(D)
> ‖μ∞‖−1 +

c

2
.

Note that D =
⋃

k∈J Dk, where Dk =
(

k
2j∗+m , k+1

2j∗+m

]
and J = {k∗2m, k∗2m +

1, . . . , k∗2m + 2m − 1}. Next, note that since
∑

ak∑
bk

≤ maxk

{
ak

bk

}
for nonnegative

{ak, bk}, there exists M ∈ J such that

(4.9)

∑
k∈J Q(Dk)

∑
k∈J

∏n
i=1 Pi(Dk)

≤ max
k∈J

Q(Dk)∏n
i=1 Pi(Dk)

=
Q(DM )

∏n
i=1 Pi(DM )

.

Then

(4.10)
Q(DM )

∏n
i=1 Pi(DM )

≥ Q(D)

μj∗+m(D)
> ‖μ∞‖−1,
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where the first inequality in (4.10) follows by (4.9) and since

μj∗+m(D) =
∑

k∈J

n∏

i=1

Pi(Dk),

and the second follows by (4.8). This proves (4.2b). Finally, suppose that & = Q.
Since the class of sets

{(
k
2j ,

k+1
2j

]
: j ∈ N, k ∈ Z

}
generates the Borel sigma algebra

on R, and since Q = & = μ∞‖μ∞‖−1, to prove (4.2c) it is enough to show that for
all j ∈ N, all finite sets J ⊂ N and all D =

⋃
k∈J

(
k
2j ,

k+1
2j

]
,

(4.11) μ∞(D) ≤
n∏

i=1

Pi(D).

However, since limj→∞ μj(D) = μ∞(D) and μj∗(D) =
∏n

i=1 Pi(D), (4.11) follows
by Theorem 2.3(i). �

Corollary 4.4. If P1, . . . , Pn ∈ P are discrete with common atoms A �= ∅, then
&(P1, . . . , Pn) is the unique Borel probability distribution that minimizes the maxi-
mum loss of Shannon information between single Borel probability distributions and
P1, P2, . . . , Pn.

Proof. It is easy to check that for discrete distributions P1, . . . , Pn with common
atoms A, ‖μ∞(P1, . . . , Pn)‖ =

∑
x∈A

∏n
i=1 Pi(x), which by the definition of A is

strictly positive. The conclusion then follows immediately from Theorems 3.1 and
4.3. �

Theorem 4.5. If P1, P2, . . . , Pn are a.c. with densities f1, . . . , fn, satisfying

0 <

∫ ∞

−∞

n∏

i=1

fi(x)dx < ∞,

then there are Borel probability distributions {Pi,j : i ∈ {1, . . . , n}, j ∈ N} such that

(i) for all i, Pi,j converges vaguely to Pi as j → ∞,
(ii) &(P1,j , . . . , Pn,j) is the unique minimizer of loss of Shannon information

from P1,j , . . . , Pn,j, and
(iii) &(P1, . . . , Pn) is the vague limit of &(P1,j , . . . , Pn,j) as j → ∞.

Proof. For each i ∈ {1, . . . , n} and j ∈ N, let Pi,j = μj(Pi), and note that μj(Pi)
is a discrete p.m. for all i and j, and by Theorem 2.3(iv), μj(Pi) → Pi vaguely
as j → ∞, which proves (i). Since {Pi,j : i ∈ {1, . . . , n}} are compatible for all
j ∈ N, μj(P1), . . . , μj(Pn) are discrete with at least one common atom, so by The-
orem 3.1 and Corollary 4.4, &(P1,j , . . . , Pn,j) =

∑
k∈Z

∏n
i=1 Pi((k − 1)2−j , k2−j ]

is the unique minimizer of the maximum loss of Shannon information between
single Borel p.m.’s and {Pi,j : i ∈ {1, . . . , n}}, which proves (ii). Finally, note
that for all j ∈ N,

∏n
i=1 Pi((k − 1)2−j , k2−j ] =

∏n
i=1 μj(k2

−j), so by the defini-
tion of {μj}, μj(P1, . . . , Pn) =

∑
k∈Z

∏n
i=1 μj(k2

−j)δk2−j , and ‖μj(P1, . . . , Pn)‖ =
∑

k∈Z

∏n
i=1 μj(k2

−j) > 0. Hence, by Theorem 3.3,

&(P1,j , . . . , Pn,j) =

∑
k∈Z

∏n
i=1 μj(k2

−j)δk2−j

∑
k∈Z

∏n
i=1 μj(k2−j)

=
μj(P1, . . . , Pn)

‖μj(P1, . . . , Pn)‖
converges vaguely to &(P1, . . . , Pn), proving (iii). �
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5. Minimax likelihood ratio consolidations

and proportional consolidations

In classical hypotheses testing, a standard technique to decide from which of
n known distributions the given data actually came is to maximize the likelihood
ratios, that is, the ratios of the p.m.f.’s or p.d.f.’s. Analogously, when the objective
is not to decide from which of n known distributions P1, . . . , Pn the data came,
but rather to decide how best to consolidate data from those input distributions
into a single (output) distribution P , one natural criterion is to choose P so as
to make the ratios of the likelihood of observing x under P to the likelihood of
observing x under all of the (independent) distributions {Pi} as close as possible.
This motivates the notion of a minimax likelihood ratio.

Definition 5.1. A discrete probability distribution P ∗ ∈ P (with p.m.f. p∗) is the
minimax likelihood ratio (MLR) consolidation of discrete distributions P1, . . . , Pn

(with p.m.f.’s {pi}) if

min
p.m.f.’s p

{

max
x∈R

p(x)
∏n

i=1 pi(x)
−min

x∈R

p(x)
∏n

i=1 pi(x)

}

is attained by p = p∗ (where 0/0 := 1). Similarly, an a.c. distribution P ∗ ∈ P (with
p.d.f. f∗) is the MLR consolidation of a.c. distributions P1, . . . , Pn (with p.d.f.’s
f1, . . . , fn) if

min
p.d.f.’s f

{

ess supx∈R

f(x)
∏n

i=1 fi(x)
− ess infx∈R

f(x)
∏n

i=1 fi(x)

}

is attained by f∗.

The min-max terms in (5.1) and (5.2) are similar to the min-max criterion for
loss of Shannon information (Theorem 4.3), whereas the others are dual max-min
criteria. Just as conflation was shown to minimize the loss of Shannon information,
conflation will now be shown to also be the MLR consolidation of the given input
distributions.

Theorem 5.2. If P1, . . . , Pn ∈ P are discrete with at least one common atom, or
are a.c. with p.d.f.’s {fi} satisfying 0 <

∫ ∏n
i=1 fi(x)dx < ∞, then &(P1, . . . , Pn)

is the unique MLR consolidation of P1, . . . , Pn.

Proof. First consider the discrete case, let {pi} denote the p.m.f.’s of {Pi}, re-
spectively, and let ∅ �= A ⊂ R denote the common atoms of {Pi}, i.e. A =
{x ∈ R :

∏n
i=1 pi(x)} > 0. By Theorem 3.1, &(P1, . . . , Pn) is discrete with p.m.f.

p∗(x) =
∏n

i=1 pi(x)∑
y∈A

∏n
i=1 pi(y)

. For each p.m.f. p, let

Δ(p) = sup
x∈R

p(x)
∏n

i=1 pi(x)
− inf

x∈R

p(x)
∏n

i=1 pi(x)
.

Then, since p∗(x) = 0 for every x ∈ Ac, it follows from the definition of p∗ (and

the convention 0/0 := 1) that Δ(p∗) =
(∑

y∈A

∏n
i=1 pi(y)

)−1

− 1 ≥ 0. Thus, to

establish the theorem for P1, . . . , Pn discrete, it suffices to show that for all p.m.f.’s
p

(5.1) Δ(p) ≥

⎛

⎝
∑

y∈A

n∏

i=1

pi(y)

⎞

⎠

−1

− 1, with equality if and only if p = p∗.
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If
∑

y∈A p(y) < 1, then there exists an x0 ∈ Ac with p(x0) > 0, so p(x0)∏n
i=1 pi(x0)

= ∞
and Δ(p) = ∞, so (5.1) is trivial. On the other hand if

∑
y∈A p(y) = 1, then

minx∈R

p(x)∏n
i=1 pi(x)

≤ 1, which implies that Δ(p) ≥ maxx∈R

p(x)∏n
i=1 pi(x)

− 1 for all p,

and the argument in the proof of Theorem 4.3 shows equality holds if and only if
p(x)∏n

i=1 pi(x)
is constant, i.e. if and only if p = p∗. This proves (5.1) and completes

the argument when {Pi} are discrete.
For the a.c. conclusion, fix {Pi} a.c. with p.d.f.’s satisfying 0<

∫ ∏n
i=1 fi(x)dx <

∞. By Theorem 3.3 &(P1, . . . , Pn) is a.c. with p.d.f. f∗(x) =
∏n

i=1 fi(x)∫ ∏n
i=1 fi(y)dy

. For

each p.d.f. f , let

Δ(f) = ess supx∈R

f(x)
∏n

i=1 fi(x)
− ess infx∈R

f(x)
∏n

i=1 fi(x)
.

Case 1.
∫ ∏n

i=1 fi(x)dx ∈ (0, 1],
∏n

i=1 fi(x) > 0 a.s. (e.g., {Pi} arbitrary normal

distributions). Then since
∏n

i=1 fi(x) > 0, f∗(x)∏n
i=1 fi(x)

= 1∫ ∏n
i=1 fi(y)dy

, a.s., which is

constant, so Δ(f∗) = 0. Thus it suffices to show that for all f as in Case 1,

(5.2) Δf(x) ≥ 0 with equality if and only if f = f∗.

If f is not positive a.s., then ess inf f∏n
i=1 fi

= 0 since
∏n

i=1 fi(x) > 0 a.s., so Δ(f) =

ess sup f∏n
i=1 fi

> 0, and the inequality in (5.2) is satisfied. On the other hand,

if f > 0 a.s., then Δ(f) = ess supx∈R

f(x)∏n
i=1 fi(x)

− ess infx∈R

f(x)∏n
i=1 fi(x)

≥ 0, with

equality if and only if f(x)∏n
i=1 fi(x)

is constant a.s.; i.e. if and only if f = f∗ a.s., which

completes the argument for Case 1.
The three other cases

{∫ n∏

i=1

fi(x)dx ∈ (0, 1],

n∏

i=1

fi(x) not > 0 a.s.

}

,

{∫ n∏

i=1

fi(x)dx ∈ (1,∞),
n∏

i=1

fi(x) > 0 a.s.

}

,

{∫ n∏

i=1

fi(x)dx ∈ (1,∞),

n∏

i=1

fi(x) not > 0 a.s.

}

follow similarly. �

If the {Pi} are a.c. but do not satisfy the integrability condition in the hypotheses
of Theorem 5.2, both parts of the conclusion of Theorem 5.2 may fail: the conflation
may not be MLR; and MLR distributions may not be unique.

Example 5.3. Let n = 2, and P1 = P2 be as in Example 3.6, so the conflation
&(P1, P2) exists and is δ0, which is not MLR for P1, P2 since it is not even a.c.
However, every a.c. distribution with p.d.f. fα(x) = αxα−1 for x ∈ (0, 1) (and = 0
otherwise), 0 < α ≤ 1

4 , is MLR for P1, P2. To see this, recall that
∏n

i=1 fi(x) =

(4x)−1 for x ∈ (0, 1), and = 0 otherwise. Thus fα(x)∏n
i=1 fi(x)

= 4xfα(x) = 4αxα for

x ∈ (0, 1), so ess supx∈R

fα(x)∏n
i=1 fi(x)

= 1, since off (0, 1), fα(x)∏n
i=1 fi(x)

= 1, and on (0, 1),

ess supx∈R

fα(x)∏
n
i=1 fi(x)

= 4α ≤ 1. Next, ess infx∈R

fα(x)∏
n
i=1 fi(x)

= 0 since fα(x)∏
n
i=1 fi(x)

=

4αxα for x ∈ (0, 1). Thus Δ(fα) = 1, so to show fα is MLR, requires showing
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that Δ(f) ≥ 1 for all p.d.f.’s f . Fix f , and note that if ess infx∈R

f(x)∏n
i=1 fi(x)

=

δ > 0, then on (0, 1), f(x)∏n
i=1 fi(x)

= 4xf(x) ≥ δ a.s., so f(x) ≥ δ
4x a.s., which

cannot be a density since it is not integrable. Hence, ess infx∈R

f(x)∏n
i=1 fi(x)

= 0. But

ess supx∈R

f(x)∏n
i=1 fi(x)

≥ 1, since f is a.s. nonnegative and
∏n

i=1 fi(x) = 0 for all x

not in (0, 1). Thus Δ(f) ≥ 1, so fα is MLR.

In the underlying problem of consolidating the independent distributions P1, . . . ,
Pn into a single distribution Q, a criterion similar to MLR is to require thatQ reflect
the relative likelihoods of identical individual outcomes under the {Pi}. For exam-
ple, if the likelihood of all the experiments {Pi} observing the identical outcome x
is twice that of the likelihood of all the experiments {Pi} observing y, then Q(x)
should also be twice as large as Q(y). This motivates the notion of proportional
consolidation.

Definition 5.4. For discrete P1, . . . , Pn ∈ P with p.m.f.’s p1, . . . , pn, respectively,
the discrete distribution Q ∈ P is a proportional consolidation of P1, . . . , Pn if its
p.m.f. q satisfies

q(x)

q(y)
=

∏n
i=1 pi(x)∏n
i=1 pi(y)

for all x, y ∈ R.

Similarly, for a.c. P1, . . . , Pn ∈ P with p.d.f.’s f1, . . . , fn, respectively, the a.c.
distribution Q ∈ P is a proportional consolidation of P1, . . . , Pn if its p.d.f. g
satisfies

g(x)

g(y)
=

∏n
i=1 fi(x)∏n
i=1 fi(y

for Lebesgue-almost-all x, y ∈ R.

Theorem 5.5. If P1, . . . , Pn ∈ P are discrete with at least one common atom, or
are a.c. with p.d.f.’s {fi} satisfying 0 <

∫ ∏n
i=1 fi(x)dx < ∞, then the conflation

&(P1, . . . , Pn) is the unique proportional consolidation of P1, . . . , Pn.

Proof. First consider the case where {Pi} are discrete, and let {pi} be the p.m.f.’s
for {Pi}, respectively. By Theorem 3.1 again, &(P1, . . . , Pn) is discrete with p.m.f.

p∗(x) =
∏n

i=1 pi(x)∑
y∈R

∏n
i=1 pi(y)

for all x ∈ R. Thus p∗(x)
p∗(y) =

∏n
i=1 pi(x)∏n
i=1 pi(y)

, so &(P1, . . . , Pn) is

a proportional consolidation of P1, . . . , Pn. To see that &(P1, . . . , Pn) is the unique
proportional consolidation, suppose Q �= &(P1, . . . , Pn), and set q(x) = Q(x) for all
x ∈ R. Since, Q �= &(P1, . . . , Pn), it follows from Theorem 3.1 that there exist x, y ∈
R so that q(x) >

∏n
i=1 pi(x)∑

z∈R

∏n
i=1 pi(z)

and q(y) <
∏n

i=1 pi(y)∑
z∈R

∏n
i=1 pi(z)

, so q(x)
q(y) >

∏n
i=1 pi(x)∏n
i=1 pi(y)

,

and Q is not a proportional consolidation of P1, . . . , Pn. The case where P1, . . . , Pn

are a.c. follows similarly, again using Theorem 3.3 in place of Theorem 3.1. �
Here, too, the conclusion for a.c. distributions may fail if the integrability hy-

pothesis condition is not satisfied.

Example 5.6. Let n = 2, and P1 = P2 be as in Example 3.5, so again
∏n

i=1 fi(x) =

(4x)−1 for x ∈ (0, 1), and = 0 otherwise. This implies that
∏n

i=1 fi(x)∏n
i=1 fi(y)

= y
x for

Lebesgue almost all x, y ∈ (0, 1). But there are no p.d.f.’s f with support on (0, 1)

such that f(x)
f(y) = y

x a.s., since then for fixed y, f(x) = yf(y)
x for almost all x ∈ (0, 1),

and
∫ 1

0
cx−1dx = 0 if c = 0 and = ∞ if c > 0. Thus, there is no proportional

consolidation of this P1, P2 (in contrast to the conclusion of Example 5.3 for these
same distributions, where it was seen that there are many MLR consolidations).
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6. Conflations of normal distributions

In describing the method used to obtain values for the fundamental physical con-
stants from the input data, NIST explains that certain data “are the means of tens
of individual values, with each value being the average of about ten data points”
([13, p. 679]), and predicates interpretation of some of their conclusions on the con-
dition “If the probability distribution associated with each input datum is assumed
to be normal” ([11, p. 483]). After comparing the most recent (2006) results from
electrical watt-balance and from silicon-lattice sphere experiments used to estimate
Planck’s constant, however, NIST determined that the means and standard devia-
tions of several distributions of input data were not sufficiently close, and reported
that their “data analysis uncovered two major inconsistencies with the input data”,
conceding that the resulting official NIST 2006 set of recommended values for the
fundamental physical constants “does not rest on as solid a foundation as one might
wish” ([12, p. 54]). In order to eliminate this perceived inconsistency, the NIST
task group “ultimately decided that . . . the a priori assigned uncertainties of the
input data involved in the two discrepancies would be weighted by the multiplica-
tive factor 1.5”, which “reduced the discrepancies to a level comfortably between
two standard deviations” ([12, p. 54]).

But if the various input distributions are all normal, for example, as in the
NIST assumption, then every interval centered at the unknown positive true value
of Planck’s constant has a positive probability of occurring in every one of the
independent experiments. If the input data distributions happen to have different
means and variances, that does not imply the input is “inconsistent”. Thus in
consolidating data from several independent sources, special attention should be
paid to the normal case.

The conflation of normal distributions has several important properties – it is
itself normal (hence unimodal), and in addition to minimizing the loss of Shannon
information (Theorem 4.3) and being the unique MLR consolidation (Theorem 5.2)
and the unique proportional consolidation (Theorem 5.5), the conflation of normal
distributions also yields the classical weighted mean squares and best linear unbi-
ased estimators for general unbiased data, and the maximum likelihood estimators
for normally-distributed unbiased input data.

Theorem 6.1. If Pi is N(μi, σ
2
i ), i = 1, . . . , n, then

&(P1, . . . , Pn) = N

(∑n
i=1

μi

σ2
i∑n

i=1
1
σ2
i

,
1

∑n
i=1 σ

−2
i

)

.

Proof. By Theorem 3.3, &(P1, . . . , Pn) is a.c. with density proportional to the prod-
uct of the densities for each distribution, and the conclusion then follows immedi-
ately from the definition of normal densities and a routine calculation by completing
the square. �

Example 6.2. If P1 is N(1, 1) and P2 is N(2, 4), then &(P1, P2) is N( 65 ,
4
5 ).

The mean of the conflations of normals which was given in Theorem 6.1,
∑n

i=1 μiσ
−2
i

(∑n
i=1 σ

−2
i

)−1
, is precisely the value of the weighted least squares es-

timate given by Aitken’s generalization of the Gauss-Markov Theorem, and this
simple observation will next be exploited to obtain several conclusions relating con-
flation and statistical estimators.
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First, however, it must be remarked that the mean of the conflation is not in gen-
eral the same as the weighted least squares estimate. Conflation disregards outlier
or “inconsistent” data values, whereas weighted least squares gives full weight to all
values. For instance, if one of the input distributions includes negative entries (e.g.,
is reported as a true Gaussian), and the others do not, then conflation eliminates
the negative values. The following example for the uniform distribution illustrates
this, and the same argument can easily be applied to other distributions such as
truncated normals (Theorem 7.2 below).

Example 6.3. Let P1 be U(0, 1) and P2 be U(−0.1, 1). By Theorem 3.3, the
conflation of P1 and P2 is &(P1, P2) = U(0, 1), which ignores the negative values of
P2 and has mean 1

2 . The weighted least squares estimate, however, is easily seen

to be
(
12
1 + 12

1.12

)−1 ( 12
2 +

(
9
20

) (
12
1.12

))
< .48.

To establish the link between conflation and statistical estimators, recall that a
random variable X is an unbiased estimator of an unknown parameter θ if EX = θ,
and note that if X is a r.v., then N(X, σ2) is a random normal distribution with
variable mean X and fixed variance σ2.

Theorem 6.4. If X1, . . . , Xn are independent unbiased estimators of θ with finite
variances σ2

1 , . . . , σ
2
n, respectively, then Θ = mean(&(N1, . . . , Nn)) is the best linear

unbiased estimator for θ, where {Ni} are the random normal distributions Ni =
N(Xi, σ

2
i ), i = 1, . . . , n.

Proof. By Theorem 6.1, where {μi} and {σ2
i } are the means and variances of {Ni},

&(N1, . . . , Nn) is N
(∑n

i=1 μiσ
−2
i

(∑n
i=1 σ

−2
i

)−1
,
(∑n

i=1 σ
−2
i

)−1
)
, respectively.

Since Ni is N(Xi, σ
2
i ) for each i = 1, . . . , n, where the {Xi} are r.v.’s, this implies

that &(N1, . . . , Nn) is the random distribution N
(∑n

i=1 Xiσ
−2
i

(∑n
i=1 σ

−2
i

)−1
,

(∑n
i=1 σ

−2
i

)−1
)
, so

(6.1) mean(&(N1, . . . , Nn)) =

(
n∑

i=1

σ−2
i

)−1 n∑

i=1

Xiσ
−2
i .

Since the right hand side of (6.1) is the classical weighted least squares estimator
for θ, Aitken’s generalization of the Gauss-Markov Theorem (e.g. [1], [14, Theo-
rem 7.8a]) implies that it is the best linear unbiased estimator for θ. �

Note that normality of the distributions is in the conclusion, not the hypotheses,
of Theorem 6.4. If, in addition, the underlying data distributions are normal, this
estimator is even a maximum likelihood estimator.

Theorem 6.5. If X1, . . . , Xn are independent normally-distributed unbiased esti-
mators of θ with finite variances σ2

1 , . . . , σ
2
n, respectively, then

Θ = mean(&(N1, . . . , Nn))

is a maximum likelihood estimator for θ, where {Ni} are the random normal dis-
tributions Ni = N(Xi, σ

2
i ), i = 1, . . . , n.

Proof. Analogous to proof of Theorem 6.4, using [14, Theorem 7.8b]. �
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7. Closure and truncation properties of conflation

If input data distributions are of a particular form, it is often desirable that
consolidation of the input also have that same form. Theorem 6.1 showed that the
conflation of normal distributions is always normal, and the next theorem shows
that many other classical families of distributions are closed under conflation.

Recall that a discrete probability distribution is Bernoulli with parameter p ∈
[0, 1] if its p.m.f. is p(1) = 1 − p(0) = p, is geometric with parameter p ∈ [0, 1] if
its p.m.f. is p(k) = (1 − p)k−1p for all k ∈ N, is discrete uniform on {1, 2, . . . , n}
if its p.m.f. is p(k) = n−1 for all k ∈ {1, 2, . . . , n}, is Zipf with parameters α > 0
and n ∈ N if its p.m.f. is proportional to k−α for all k ∈ {1, 2, . . . , n}, and is Zeta
with parameter α > 1 if its p.m.f. is proportional to k−α for all k ∈ N. Also recall
that an a.c. probability distribution is gamma with parameters α ∈ N and β > 0
if its p.d.f. is proportional to xα−1e−x/β for x > 0, is beta with parameters α > 1
and β > 1 if its p.d.f. is proportional to xα−1(1 − x)β−1 for 0 < x < 1, is uniform
on (a, b) for a < b if its p.d.f. is constant (b − a)−1 for a < x < b, is standard
LaPlace (or double-exponential) with parameter α > 0 if its p.d.f. is proportional
to e−|x|/β , −∞ < x < ∞, is Pareto with parameters α > 0 and β > 0 if its p.d.f. is
proportional to x−(α+1) for β < x < ∞, and is exponential with mean a > 0 if its
p.d.f. is proportional to e−x/α for x > 0.

Theorem 7.1. Let P1, P2, . . . , Pn be compatible.

(i) If {Pi} are Bernoulli with parameters {pi}, respectively, then
&(P1, . . . , Pn) is Bernoulli with parameter p =

∏n
i=1 pi

(
∏

n
i=1 pi+

∏
n
i=1(1−pi))

.

(ii) If {Pi} are geometric with parameters {pi}, respectively,
then &(P1, . . . , Pn) is geometric with parameter p = 1−

∏n
i=1(1− pi).

(iii) If {Pi} are discrete uniform on {1, . . . , ni}, respectively,
then &(P1, . . . , Pn) is uniform on {1, . . . ,mini{ni}}.

(iv) If {Pi} are Zipf with parameters {αi} and {ni}, respectively, then
&(P1, . . . , Pn) is Zipf with parameters α =

∑n
i=1 αi and n = mini{ni}.

(v) If {Pi} are Zeta with parameters {αi}, respectively, then &(P1, . . . , Pn) is
Zeta with parameter α =

∑n
i=1 αi.

(vi) If {Pi} are gamma with parameters {αi, βi}, respectively,
then &(P1, . . . , Pn) is gamma with parameters α =

∑n
i=1 αi − (n − 1),

β =
(∑n

i=1(βi)
−1
)−1

.
(vii) If {Pi} are beta with parameters {αi, βi}, respectively, then &(P1, . . . , Pn)

is beta with parameters α =
∑n

i=1 αi − (n− 1), β =
∑n

i=1 βi − (n− 1).
(viii) If {Pi} are continuous uniform on intervals {(ai, bi)}, respectively, then

&(P1, . . . , Pn) is uniform on (maxi ai,mini bi).
(ix) If {Pi} are LaPlace with parameters {αi}, respectively, then

&(P1, . . . , Pn) is LaPlace with parameter α =
(∑n

i=1(αi)
−1
)−1

.
(x) If {Pi} are Pareto with parameters {αi, βi}, respectively, then

&(P1, . . . , Pn) is Pareto with parameters α =
∑n

i=1 αi + n − 1 and β =
maxi βi.

(xi) If {Pi} are exponential with means {αi}, respectively, then &(P1, . . . , Pn)

is exponential with mean α =
(∑n

i=1 α
−1
i

)−1
.

Proof. Conclusions (i)–(v) follow from Theorem 3.1 and routine calculations, and
(vi)–(xi) follow from Theorem 3.3 and calculations. �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONFLATIONS OF PROBABILITY DISTRIBUTIONS 3371

Note that for smaller values of the parameters of beta distributions, the con-
flation may not be beta simply because the product of the densities may not be
integrable. The families of distributions identified in Theorem 7.1 that are closed
under conflation are by no means exhaustive. For example, the conflation of n Pois-
son distributions is not classical Poisson, but is a discrete Conway-Maxwell-Poisson

(CMP) distribution with p.m.f. proportional to λk

(k!)n , k = 0, 1, . . . , and clearly the

CMP family is closed under conflation.
Recall that the conflation of Cauchy distributions is not Cauchy, as was shown in

Example 3.5. It is easy to see that the families of binomial distributions and of chi-
square distributions are not closed under conflation, but chi-square comes very close
in the following sense: if X is a random variable with distribution &(P1, . . . , Pn)
where {Pi} are chi-square with {ki} degrees of freedom, respectively, then X/n is
chi-square with

∑n
i=1 ki − 2n+ 2 degrees of freedom.

In practice, assumptions are often made about the form of the input distribu-
tions, such as NIST’s essential assumption that underlying data is often normally
distributed. But the true and estimated values for Planck’s constant clearly are
never negative, so the underlying distribution is certainly not truly normally dis-
tributed – more likely it is truncated normal. The additional assumption of exact
normality, in addition to their use of linearizing the observational equations and
then applying generalized least squares ([11, p. 481]), introduces further errors into
the NIST estimates.

Using conflations, however, the problem of truncation essentially disappears – it
is automatically taken into account. The reason is that another important feature
of conflations is that it preserves many classes of truncated distributions, where a
distribution of a certain type is called truncated if it is the conditional distribution of
that type conditioned to be in a (finite or infinite) interval. For example, truncated
normal distributions include normal distributions conditioned to be positive (that

is, a.c. distributions with density function proportional to e−(x−μ)2/2σ2

, x > 0 (and
zero elsewhere)), as is often the case in experimental data involving estimates of
many of the fundamental physical constants.

Theorem 7.2. If P1, P2, . . . , Pn are compatible truncated normal (exponential,
gamma, LaPlace, Pareto) distributions, then &(P1, P2, . . . , Pn) is also a truncated
normal (exponential, gamma, LaPlace, Pareto, respectively) distribution.

Proof. Immediate from Theorem 3.3. �

The above example of determination of the values of the fundamental physical
constants is only one among many scientific situations where consolidation of dis-
similar data is problematic. Some government agencies, such as the Methods and
Data Comparability Board of the National Water Quality Monitoring Council [10],
have even established special programs to address this issue. Perhaps the method of
conflating input data will provide a practical and simple, yet optimal and rigorous
method to address this problem.
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