
Journal of Arti�cial Intelligence Research 14 (2001) 53-81 Submitted 8/00; published 3/01

Conict-Directed Backjumping Revisited

Xinguang Chen xinguang@cs.ualberta.ca

Department of Computing Science, University of Alberta

Edmonton, Alberta, Canada T6G 2H1

Peter van Beek vanbeek@uwaterloo.ca

Department of Computer Science, University of Waterloo

Waterloo, Ontario, Canada N2L 3G1

Abstract

In recent years, many improvements to backtracking algorithms for solving constraint
satisfaction problems have been proposed. The techniques for improving backtracking al-
gorithms can be conveniently classi�ed as look-ahead schemes and look-back schemes. Un-
fortunately, look-ahead and look-back schemes are not entirely orthogonal as it has been
observed empirically that the enhancement of look-ahead techniques is sometimes counter-
productive to the e�ects of look-back techniques. In this paper, we focus on the relationship
between the two most important look-ahead techniques|using a variable ordering heuris-
tic and maintaining a level of local consistency during the backtracking search|and the
look-back technique of conict-directed backjumping (CBJ). We show that there exists a
\perfect" dynamic variable ordering such that CBJ becomes redundant. We also show
theoretically that as the level of local consistency that is maintained in the backtracking
search is increased, the less that backjumping will be an improvement. Our theoretical
results partially explain why a backtracking algorithm doing more in the look-ahead phase
cannot bene�t more from the backjumping look-back scheme. Finally, we show empirically
that adding CBJ to a backtracking algorithm that maintains generalized arc consistency
(GAC), an algorithm that we refer to as GAC-CBJ, can still provide orders of magnitude
speedups. Our empirical results contrast with Bessi�ere and R�egin's conclusion (1996) that
CBJ is useless to an algorithm that maintains arc consistency.

1. Introduction

Constraint satisfaction problems (CSPs) are a generic problem solving framework. A con-
straint satisfaction problem consists of a set of variables, each associated with a domain of
values, and a set of constraints. Each of the constraints is expressed as a relation, de�ned
on some subset of the variables, denoting the consistent value assignments that satisfy the
constraint. A solution to a CSP is an assignment of a value to every variable, in such a way
that every constraint is satis�ed.

Constraint satisfaction problems are usually solved by search methods, among which
the backtracking algorithm and its improvements are widely used. The techniques for
improving backtracking algorithms can be conveniently classi�ed as look-ahead schemes
and look-back schemes (Dechter, 1992). Look-ahead schemes are invoked whenever the
algorithm is preparing to extend the current partial solution. Look-ahead schemes include
the functions that choose the next variable to be instantiated, choose the next value to
give to the current variable, and reduce the search space by maintaining a certain level of
local consistency during the search (e.g., Bacchus & van Run, 1995; Bessi�ere & R�egin, 1996;

c2001 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Chen & van Beek

Haralick & Elliott, 1980; McGregor, 1979; Nadel, 1989; Sabin & Freuder, 1994). Look-
back schemes are invoked whenever the algorithm encounters a dead-end and prepares for
the backtracking step. Look-back schemes include the functions that decide how far to
backtrack by analyzing the reasons for the dead-end (backjumping) and decide what new
constraints to record so that the same conicts do not arise again later in the search (e.g.,
Bruynooghe, 1981; Dechter, 1990; Frost & Dechter, 1994; Gaschnig, 1978; Prosser, 1993b;
Schiex & Verfaillie, 1994).

A backtracking algorithm can be a hybrid of both look-ahead and look-back schemes
(Prosser, 1993b). In this paper, we focus on the relationship between the two most impor-
tant look-ahead techniques|using a variable ordering heuristic and maintaining a level of
local consistency during the backtracking search|and the look-back technique of conict-
directed backjumping (CBJ) (Prosser, 1993b). Unfortunately, these look-ahead and look-
back schemes are not entirely orthogonal as it can be observed in previous experimental
work that as the level of consistency that is maintained in the backtracking search is in-
creased and as the variable ordering heuristic is improved, the e�ects of CBJ are diminished
(Bacchus & van Run, 1995; Bessi�ere & R�egin, 1996; Prosser, 1993a, 1993b). For example, it
can be observed in Prosser's (1993b) experiments that, given a static variable ordering, in-
creasing the level of local consistency maintained from none to the level of forward checking,
diminishes the e�ects of CBJ. Bacchus and van Run (1995) observe from their experiments
that adding a dynamic variable ordering (an improvement over a static variable ordering)
to a forward checking algorithm diminishes the e�ects of CBJ. In their experiments the
e�ects are so diminished as to be almost negligible and they present an argument for why
this might hold in general. Bessi�ere and R�egin (1996) observe from their experiments that
simultaneously increasing the level of local consistency even further to arc consistency and
further improving the dynamic variable ordering heuristic diminishes the e�ects of CBJ
so much that, in their implementation, the overhead of maintaining the data structures for
backjumping actually slows down the algorithm. They conjecture that when arc consistency
is maintained and a good variable ordering heuristic is used, \CBJ becomes useless".

In this paper, we present theoretical results that deepen our understanding of the rela-
tionship between look-ahead techniques and the CBJ look-back technique. We show that
there exists a \perfect" dynamic variable ordering for the chronological backtracking algo-
rithm such that CBJ becomes redundant. The more that a variable ordering heuristic is
consistent with the \perfect" heuristic, the less chance CBJ has to reduce the search e�ort.
We also show that CBJ and an algorithm that maintains strong k-consistency in the back-
tracking search are incomparable in that each can be exponentially better than the other.
This result is re�ned by introducing the concept of backjump level in the execution of a
backjumping algorithm and showing that an algorithm that maintains strong k-consistency
never visits more nodes than a backjumping algorithm that is allowed to backjump at most
k levels. Thus, as the level of local consistency that is maintained in the backtracking search
is increased, the less that backjumping will be an improvement. Together, our theoretical
results partially explain why a backtracking algorithm doing more in the look-ahead phase
cannot bene�t more from the backjumping look-back scheme. Our results also extend the
partial ordering of backtracking algorithms presented by Kondrak and van Beek (1997) to
include backtracking algorithms and their CBJ hybrids that maintain levels of local con-

54

Conflict-Directed Backjumping Revisited

sistency beyond forward checking, including the important algorithms that maintain arc
consistency.

We also present empirical results that show that, although the e�ects of CBJ may
be diminished, adding CBJ to a backtracking algorithm that maintains generalized arc
consistency (GAC), an algorithm that we refer to as GAC-CBJ, can still provide orders
of magnitude speedups. Our empirical results contrast with Bessi�ere and R�egin's (1996)
conclusion that CBJ is useless to an algorithm that maintains arc consistency.

2. Background

In this section, we formally de�ne constraint satisfaction problems, and briey review local
consistency and the search tree explored by a backtracking algorithm.

2.1 Constraint Satisfaction Problems

De�nition 1 (CSP) An instance of a constraint satisfaction problem is a tuple P =
(V ;D; C), where1

� V = fx1; : : : ; xng is a �nite set of n variables,

� D = fdom(x1); : : : ; dom(xn)g is a set of domains. Each variable x 2 V is associ-
ated with a �nite domain of possible values, dom(x). The maximum domain size
maxx2V jdom(x)j is denoted by d,

� C = fC1; : : : ; Cmg is a �nite set of m constraints or relations. Each constraint C 2 C
is a pair (vars(C); rel(C)), where

{ vars(C) = fxi1 ; : : : ; xirig is an ordered subset of the variables, called the con-
straint scope or scheme, the size of vars(C) is known as the arity of the con-
straint. If the arity of the constraint is equal to 2, it is called a binary constraint.
A non-binary constraint is a constraint with arity greater than 2. The maximum
arity of the constraints in C, maxC2C jvars(C)j, is denoted by r,

{ rel(C) is a subset of the Cartesian product dom(xi1)�� � ��dom(xiri) that speci�es
the allowed combinations of values for the variables in vars(C). An element of
the Cartesian product dom(xi1) � � � � � dom(xiri) is called a tuple on vars(C).
Thus, rel(C) is often regarded as a set of tuples over vars(C).

In the following, we assume that for any variable x 2 V , there is at least one constraint
C 2 C such that x 2 vars(C). By de�nition, a tuple over a set of variables X = fx1; : : : ; xkg
is an ordered list of values (a1; : : : ; ak) such that ai 2 dom(xi), i = 1; : : : ; k. A tuple over X
can also be regarded as a set of variable-value pairs fx1 a1; : : : ; xk akg. Furthermore,
a tuple over X can be viewed as a function t : X ! [x2Xdom(x) such that for each variable
x 2 X , t[x] 2 dom(x). For a subset of variables X 0 � X , we use t[X 0] to denote a tuple over
X 0 by restricting t over X 0. We also use vars(t) to denote the set of variables for tuple t.

1. Throughout the paper, we use n, d, m, and r to denote the number of variables, the maximum domain
size, the number of constraints, and the maximum arity of the constraints in the CSP, respectively.

55

Chen & van Beek

An assignment to a set of variables X is a tuple over X . We say an assignment t to X

is consistent with a constraint C if either vars(C) 6� X or t[vars(C)] 2 rel(C). A partial
solution to a CSP is an assignment to a subset of variables. We say a partial solution is
consistent if it is consistent with each of the constraints. A solution to a CSP is a consistent
partial solution over all the variables. If no solution exists, the CSP is said to be insoluble.
A CSP is empty if either one of its variables has an empty domain or one of its constraints
has an empty set of tuples. Obviously, an empty CSP is insoluble. Given two CSP instances
P1 and P2, we say P1 = P2 if they have exactly the same set of variables, the same set of
domains and the same set of constraints; i.e., they are syntactically the same.

De�nition 2 (projection) Given a constraint C and a subset of variables S � vars(C),
the projection �SC is a constraint, where vars(�SC) = S and rel(�SC) = ft[S] j t 2
rel(C)g.

De�nition 3 (selection) Given a constraint C and an assignment t to a subset of vari-
ables X � vars(C), the selection �tC is a constraint, where vars(�tC) = vars(C) and
rel(�tC) = fs j s[X] = t and s 2 rel(C)g.

2.2 Local Consistency

An inconsistency is a consistent partial solution over some of the variables that cannot be
extended to additional variables and so cannot be part of any global solution. If we are
using a backtracking search to �nd a solution, such an inconsistency can lead to a dead end
in the search. This insight has led to the de�nition of properties that characterize the level
of consistency of a CSP and to the development of algorithms for achieving these levels
of consistency by removing inconsistencies (e.g., Mackworth, 1977a; Montanari, 1974), and
to e�ective backtracking algorithms for �nding solutions to CSPs that maintain a level of
consistency during the search (e.g., Gaschnig, 1978; Haralick & Elliott, 1980; McGregor,
1979; Sabin & Freuder, 1994).

Mackworth (1977a) de�nes three properties of binary CSPs that characterize local con-
sistencies: node, arc, and path consistency. Mackworth (1977b) generalizes arc consistency
to non-binary CSPs.

De�nition 4 (arc consistency) Given a constraint C and a variable x 2 vars(C), a
value a 2 dom(x) is supported in C if there is a tuple t 2 rel(C), such that t[x] = a. t

is then called a support for fx ag in C. C is arc consistent if for each of the variables
x 2 vars(C), and each of the values a 2 dom(x), fx ag is supported in C. A CSP is arc
consistent if each of its constraints is arc consistent.

Freuder (1978) generalizes node, arc, and path consistency, to k-consistency.

De�nition 5 (k-consistency) A CSP is k-consistent if and only if given any consistent
partial solution over k�1 distinct variables, there exists an instantiation of any kth variable
such that the partial solution plus that instantiation is consistent. A CSP is strongly k-
consistent if it is j-consistent for all 1 � j � k.

56

Conflict-Directed Backjumping Revisited

For binary CSPs, node, arc and path consistency correspond to one-, two- and three-
consistency, respectively. However, the de�nition of k-consistency does not require the CSP
to be binary and arc consistency is not the same as two-consistency for non-binary CSPs.
A strongly n-consistent CSP has the property that any consistent partial solution can be
successively extended to a full solution of the CSP without backtracking.

2.3 Search Tree and Backtracking Algorithms

The idea of a backtracking algorithm is to extend partial solutions. At each stage, an unin-
stantiated variable is selected and assigned a value from its domain to extend the current
partial solution2. Constraints are used to check whether such an extension may lead to a
possible solution of the CSP and to prune subtrees containing no solutions based on the
current partial solution. During a backtracking search, the variables can be divided into
three sets: past variables (already instantiated), current variable (now being instantiated),
and future variables (not yet instantiated). A dead-end occurs when all values of the cur-
rent variable are rejected as not leading to a full solution. In such a case, some instantiated
variables become uninstantiated ; i.e., they are removed from the current partial solution.
This process is called backtracking. If only the most recently instantiated variable becomes
uninstantiated then it is called chronological backtracking ; otherwise, it is called backjump-
ing. A backtracking algorithm terminates when all possible assignments have been tested
or a certain number of solutions have been found.

A backtracking search may be seen as a search tree traversal. In this approach we
identify tuples (assignments of values to variables) with nodes: the empty tuple is the root
of the tree, the �rst level nodes are 1-tuples (representing an assignment of a value to a
single variable), the second level nodes are 2-tuples, and so on. The levels closer to the
root are called shallower levels and the levels farther from the root are called deeper levels.
Similarly, the variables corresponding to these levels are called shallower and deeper. We
say that a backtracking algorithm visits a node in the search tree if at some stage of the
algorithm's execution the current partial solution identi�es the node. The nodes visited
by a backtracking algorithm form a subset of all the nodes belonging to the search tree.
We call this subset, together with the connecting edges, the backtrack tree generated by a
backtracking algorithm.

The backtracking algorithm conict-directed backjumping (CBJ) (Prosser, 1993b) main-
tains a conict set for every variable. Every time an instantiation of the current variable
xi is in conict with an instantiation of some past variable xh, the variable xh is added to
the conict set of xi. When there are no more values to be tried for the current variable xi,
CBJ backtracks to the deepest variable xh in the conict set of xi. At the same time, the
variables in the conict set of xi, with the exception of xh, are added to the conict set of
xh, so that no information about conicts is lost.

Throughout the paper we refer to the following backtracking algorithms (see Kondrak
& van Beek, 1997; Prosser, 1993b for detailed explanations and examples of most of these
algorithms): chronological backtracking (BT), backjumping (BJ) (Gaschnig, 1978), conict-
directed backjumping (CBJ) (Prosser, 1993b), forward checking (FC) (Haralick & Elliott,
1980; McGregor, 1979), forward checking and conict-directed backjumping (FC-CBJ)

2. Throughout this paper, we assume that a static value ordering is used in the backtracking search.

57

Chen & van Beek

(Prosser, 1993b), maintaining arc consistency (MAC) (Gaschnig, 1978; Sabin & Freuder,
1994), and maintaining arc consistency and conicted-directed backjumping (MAC-CBJ)
(Prosser, 1995).

3. Variable Ordering Heuristics and Backjumping

In this section, we present theoretical results that deepen our understanding of the rela-
tionship between the look-ahead technique of using a variable ordering heuristic and the
look-back technique of CBJ.

In previous work, Kondrak and van Beek (1997) show that, given the same deterministic
static or dynamic variable ordering heuristic, CBJ never visits more nodes than BT. Bacchus
and van Run (1995) show that BJ, a restricted version of CBJ, visits exactly the same nodes
as BT if the fail-�rst dynamic variable ordering heuristic is used. Previous empirical work
shows that the number of nodes that CBJ saves depends on the variable ordering heuristic
used (Bacchus & van Run, 1995; Bessi�ere & R�egin, 1996; Prosser, 1993b).

We show that, given a CSP and a variable ordering for CBJ, there exists a \perfect"
variable ordering for the chronological backtracking algorithm (BT) such that BT never
visits more nodes than CBJ. The more that a variable ordering heuristic is consistent with
the \perfect" heuristic, the less chance CBJ has to reduce the search e�ort.

We �rst consider the case of insoluble CSPs. When CBJ is applied to an insoluble CSP,
it always backjumps from a dead-end state; i.e., it does not terminate or backjump from a
situation in which a solution of the CSP was found.

Lemma 1 Given an insoluble CSP and a variable ordering for CBJ, there exists a variable
ordering for BT such that BT never visits more nodes than CBJ to show that no solution
exists.

Proof In the backtrack tree generated by CBJ under the variable ordering, let the last
backjump that terminates the execution of CBJ be from variable xj to the root of the
backtrack tree. We choose xj to be the �rst variable for BT. For each value a in the domain
of xj , if the current node in the backtrack tree for CBJ is consistent (not a leaf node), the
next variable chosen to be instantiated after assigning a to xj is the variable that backjumps
to xj and causes the assignment xj a to be revoked. The entire variable ordering for
BT can be worked out in a similar, recursive manner. For this variable ordering for BT to
be well-de�ned, it remains to show that if the current node in the backtrack tree for CBJ
is inconsistent (a leaf node), the corresponding node in the backtrack tree for BT is also
inconsistent (and therefore no next variable needs to be chosen). We show that the variables
skipped in the variable ordering constructed for BT are irrelevant to the dead-end states
encountered by CBJ. Suppose at a stage we have ordered the variables to be instantiated
for BT as xj1 ; : : : ; xjk , and for value a 2 dom(xjk) we choose the next variable xjk+1 as
the variable which backjumps to the current variable xjk in the CBJ backtrack tree. We
prove by induction that the conict set of xjk+1 used in the backjumping is subsumed by
fxj1 ; : : : ; xjkg. k = 1 is the case of the last backjump that terminates the execution of CBJ.
The hypothesis is true because the conict set of xj1 is an empty set. Suppose it is true for
the case of k > 1. Because xjk+1 backjumps to xjk , the conict set of xjk+1 is merged in the
conict set of xjk . From the inductive assumption, the conict set of xjk is subsumed by

58

Conflict-Directed Backjumping Revisited

fxj1 ; : : : ; xjk�1g, and thus the conict set of xjk+1 is subsumed by fxj1 ; : : : ; xjkg. Therefore,
the hypothesis holds for the case of k + 1. If CBJ �nds out that instantiation xjk a is
inconsistent with the assignments of some past variables which are added to the conict
set of xjk , BT is also able to �nd out the inconsistency because the conict set of xjk is
subsumed by fxj1 ; : : : ; xjk�1g. Thus, the variable ordering for BT is well-de�ned.

For soluble CSPs, we further distinguish the problem between �nding one solution and
�nding all solutions.

Lemma 2 Given a CSP and a variable ordering for CBJ to �nd the �rst solution, there
exists a variable ordering for BT such that BT never visits more nodes than CBJ to �nd
the �rst solution.

Proof Without loss of generality, let fx1 a1; : : : ; xn ang be the �rst solution found. A
variable ordering for BT can be constructed in the following way. The �rst variable chosen
for BT is x1 as it is the �rst variable in the path from the root to the solution in the CBJ
backtrack tree. Because we assume a static value ordering in the backtracking search, all
values in the domain of x1 that precede value a1 must be rejected by CBJ and BT before
value a1 is used to instantiate x1. Furthermore, because fx1 a1; : : : ; xn ang is the
�rst solution encountered by CBJ under the above variable ordering and value ordering,
the instantiation of x1 with a value preceding a1 leads to an insoluble subproblem and
eventually CBJ backjumps from a deeper variable to x1 to revoke that assignment. Note
that x1 cannot be skipped by a backjump from a deeper variable because x1 is on the �rst
level of the search tree and there is a solution for the CSP. Assigning x1 with each of the
values that precede a1 in its domain leads to insoluble subproblems and the instantiation
order for BT can be arranged as in Lemma 1. Whenever xk is instantiated with value ak,
xk+1 is chosen to be the next variable, as it follows xk in the path from the root to the
solution in the CBJ backtrack tree. Again, all values in the domain of xk+1 that precede
ak+1 in the value ordering must be rejected by CBJ and BT before ak+1 is assigned to
xk+1. The instantiation of xk+1 with each of these values leads to an insoluble subproblem
and eventually CBJ backjumps from a deeper variable to xk+1. Similarly, xk+1 cannot
be skipped by a backjump from a deeper variable because otherwise at least one of the
assignments to x1; : : : ; xk must be changed so that fx1 a1; : : : ; xn ang is not the
�rst solution encountered by CBJ. In each of these insoluble subproblems, the instantiation
order for BT can be arranged as in Lemma 1. Finally, xn is instantiated with an and BT
�nds the solution.

When CBJ is used to �nd all solutions, special steps must be taken to handle the con-
ict sets. The problem here is that the conict sets of CBJ are meant to indicate which
instantiations are responsible for some previously discovered inconsistency. However, after
a solution is found, conict sets cannot always be interpreted in this way. It is the search
for other solutions, rather than an inconsistency, that causes the algorithm to backtrack.
We need to di�erentiate between two causes of CBJ backtracks: (1) detecting an incon-
sistency, and (2) searching for other solutions. In the latter case, the backtrack must be
always chronological; that is, to the immediately preceding variable. A simple solution is to
remember the number of solutions found so far when a variable is chosen to be instantiated,

59

Chen & van Beek

and later when a dead-end state is encountered at this level, we compare the recorded num-
ber with the current number of solutions. A di�erence indicates that some solutions have
been found in this interval of search, and forces the algorithm to backtrack chronologically.
Otherwise the algorithm performs a normal backjumping by analyzing the conict set of
the current variable.

Lemma 3 Given a CSP and a variable ordering for CBJ to �nd all solutions, there exists
a variable ordering for BT such that BT never visits more nodes than CBJ to �nd all
solutions.

Proof Let the �rst solution found by CBJ be fx1 a1; : : : ; xn ang in the order of
x1; : : : ; xn. We �rst construct the variable ordering for BT as it is applied to �nd the �rst
solution. However, because BT follows a strict chronological backtracking, it will inevitably
visit all the nodes fx1 a1; : : : ; xj�1 aj�1; xj a0jg, where 1 � j � n and a0j comes
after aj in the domain of xj . If CBJ skips any of these nodes, for example, from a deeper
level variable xh to xj�1, while the instantiations of x1; : : : ; xj have not been changed, BT
will possibly visit more nodes than CBJ. We will show this cannot happen by induction
on the distance between the current level j and the deepest level n. After CBJ has found
the solution at level n, it will try other values for xn and eventually backtrack to xn�1. So
the nodes at level n cannot be skipped. Suppose it is true for the case of level j + 1 and
now we consider the case of level j. Because xj aj was not skipped in the backjumping,
if aj is the last value in its domain, CBJ will backtrack to xj�1 because the number of
solutions has been changed. So it is true for the case of j. Otherwise CBJ will change
the instantiation of xj to the next value in its domain. Let the current partial solution be
t = fx1 a1; : : : ; xj�1 aj�1; xj a0jg. If the subtree rooted by t contains solutions,
from the inductive hypothesis, CBJ will not skip this node because it is on level j. If
the subtree rooted by t contains no solution, there exists a backjump from a deeper level
variable xh to escape this subtree. Could it jump beyond xj such that t is skipped? In that
case, the conict set of xh is subsumed in fx1; : : : ; xj�1g. From the de�nition of conict
set, we know that the current instantiations of the variables in the conict set cannot lead
to a solution. However the current instantiations of fx1; : : : ; xj�1g do lead to a solution,
fx1 a1; : : : ; xn ang. That is a contradiction. So the conict set of xh must contain
xj and thus the node t at level j cannot be skipped. After all the values in the domain
of xj have been tried, CBJ will chronologically backtrack to xj�1 because the number of
solutions has changed. Thus, xj�1 aj�1 will not be skipped. The hypothesis is true for
the case of any level j. Then we construct the variable ordering for BT in the following way:
If the current partial solution t = fx1 a1; : : : ; xj�1 aj�1; xj a0jg cannot be extended
to a solution, we construct a variable ordering for the insoluble subproblem. If t can be
extended to a solution, we construct a variable ordering for BT as the case of �nding the
�rst solution in this subproblem, and recursively apply the above steps until a backjump
to level xj changes the instantiation xj a0j . Under the above variable ordering, BT will
never visit more nodes than CBJ.

Theorem 4 Given a CSP and a variable ordering for CBJ, there exists a variable ordering
for BT such that BT never visits more nodes than CBJ in solving the CSP.

60

Conflict-Directed Backjumping Revisited

x1 0

x3

x5x4x4 x4

x2

x5

x3

x5

x5 x5 x4

x3

x4x5

BT backtrack tree

x3 x3

x5

x3

x5 x5 x5 x5 x5

x4 x4 x4

x1 0

CBJ backtrack tree

x4

x2

2

3

4

5

ppppp

2

3

4

5

ppppp

p

p

x1 + x2 � x3

x1 + x3 > x5 + 1

x2 � x4 � x5

x1; : : : ; x5 2 f0;1;2g

Figure 1: An illustration of the variable ordering constructed for BT from a CBJ backtrack
tree (for the CSP shown upper left).

Proof Follows from Lemmas 1, 2, and 3.

Example 1 Figure 1 shows the BT backtrack tree based on the variable ordering constructed
from the execution of CBJ to solve a CSP under a (hypothetical) dynamic variable ordering.
The �rst solution found by CBJ is fx1 0; x2 0; x3 2; x5 0; x4 0g. Thus, BT
�rst instantiates x1 and x2 to 0. The node fx1 0; x2 0; x3 0g and fx1 0; x2
0; x2 1g in the CBJ backtrack tree lead to insoluble subproblems. The variable ordering
for BT at each of these nodes is constructed as in the case of insoluble CSPs. For example,
in the CBJ backtrack tree, the last backjump to revoke the node fx1 0; x2 0; x3 0g

61

Chen & van Beek

is from x5 to x3, so the next variable instantiated in BT at this node is x5. Under such an
ordering, BT avoids instantiating x4 and visits fewer nodes than CBJ. Then BT instantiates
x3 to 2, x5 to 0, and x4 to 0, and �nds the �rst solution.

We have shown that there exists a \perfect" variable ordering such that CBJ becomes
redundant. Of course, the \perfect" ordering would not be known a priori, and in practice,
the primary goal in designing variable ordering heuristics is not to simulate the execution of
CBJ, but to reduce the size of the overall backtrack tree. As an example, the popular fail-
�rst heuristic selects as the next variable to be instantiated the variable with the minimal
remaining domain size (the size of the domain after removing values that are in conict
with past instantiations) as this can be shown to minimize the size of the overall tree under
certain assumptions. A secondary e�ect, however, is that variables that have conicts with
past instantiations are likely to be instantiated sooner, thus approximating the \perfect"
ordering and diminishing the e�ects of backjumping.

4. Maintaining Consistency and Backjumping

In this section, we present theoretical results that deepen our understanding of the relation-
ship between the look-ahead technique of maintaining a level of local consistency during
the backtracking search and the look-back technique of CBJ.

In previous work, Kondrak and van Beek (1997) show that, given the same deterministic
static or dynamic variable ordering heuristic, CBJ never visits more nodes than BT and
FC-CBJ never visits more nodes than FC. Prosser (1993a) shows that the removal of an
inconsistent value from the domain of a variable can diminish the e�ects of CBJ and that
CBJ can visit fewer nodes than an algorithm that combines CBJ with the discovery and
removal of some inconsistent values. Previous empirical work shows that the number of
nodes that CBJ saves depends on the level of local consistency maintained (Bacchus & van
Run, 1995; Bessi�ere & R�egin, 1996; Prosser, 1993b).

We extend the partial ordering of backtracking algorithms presented by Kondrak and
van Beek (1997) to include backtracking algorithms and their CBJ hybrids that maintain
levels of local consistency beyond forward checking, including the important algorithms that
maintain arc consistency. We show that CBJ and an algorithm that maintains strong k-
consistency in the backtracking search are incomparable in that each can be exponentially
better than the other. This result is re�ned by using the concept of backjump level in
the execution of a backjumping algorithm and showing that an algorithm that maintains
strong k-consistency never visits more nodes than a backjumping algorithm that is allowed
to backjump at most k levels. Thus, as the level of local consistency that is maintained in
the backtracking search is increased, the less that backjumping will be an improvement.

In Section 4.1, we consider the backjumping algorithms and de�ne the series of algo-
rithms BJk . In Section 4.2, we consider the look-ahead algorithms that maintain a level of
local consistency and de�ne the series of algorithms MCk. Finally, in Section 4.3, we con-
sider the relationships between the backjumping and the look-ahead algorithms and their
hybrids. The reader who is not interested in the technical proofs of the results should jump
directly to this section.

62

Conflict-Directed Backjumping Revisited

x1 + x2 � x3

x1 + x3 > x5 + 1

x2 � x4 � x5

x1; : : : ; x5 2 f0; 1; 2g
x2 1

d = 1

d = 3

x4

d = 1

d = 2

p p

x5

x4x5

x1 0

2

3

4

5

x3

Figure 2: An illustration of backjump levels in a CBJ backtrack tree (for the CSP shown
upper right).

4.1 Backjump Level and BJk

To analyze the inuence of the level of consistency on the backjumping, we need the notion of
backjump level. Informally, the level of a backjump is the distance, measured in backjumps,
from the backjump destination to the \farthest" dead-end.

De�nition 6 (backjump level, Kondrak & van Beek, 1997) The de�nition of back-
jump level is recursive:
1. A backjump from variable xi to variable xh is of level 1 if it is performed directly from a
dead-end state in which every value of xi fails a consistency check.
2. A backjump from variable xi to variable xh is of level d � 2, if all backjumps performed
to variable xi are of level less than d, and at least one of them is of level d� 1.

Example 2 Figure 2 shows the backjump levels in an example CBJ backtrack tree. There is
a one-level backjump from x5 to x3 because every value in the domain of x5 fails a consistency
check. Then CBJ �nds two solutions for the problem and thus it chronologically backtracks
from x4 to x5, and later to x3. The backjumps are of level one and two respectively. At last
there is a three-level backjump from x3 to x2.

By classifying the backjumps performed by a backjumping algorithm into di�erent levels,
we can now weaken CBJ into a series of backjumping algorithms which perform limited
levels of backjumps. BJk is a backjumping algorithm which is allowed to perform at most
k-level backjumps and it chronologically backtracks when a j-level backjump for j > k is
encountered3. BJn is equivalent to CBJ, which performs unlimited backjumps, and BJ1 is

3. BJk is only of theoretical interest since in practice one would use CBJ rather than arti�cially prevent
backjumping; i.e., one has to actually add code to prevent backjumping.

63

Chen & van Beek

equivalent to Gaschnig's (1978) BJ, which only does the �rst level backjumps or backjumps
from dead-ends.

One may immediately conclude that BJk+1 is always better than BJk because it does one
more level of backjumps. However, to be more precise, we need to justify that a situation
where BJk may skip a node visited by BJk+1 does not exist. Similar to a result by Kondrak
and van Beek (Theorem 11, 1997), we can show that:

Theorem 5 BJk visits all the nodes that BJk+1 visits.

4.2 Maintaining Strong k-consistency (MCk)

Although backtracking algorithms that maintain arc consistency (or a truncated form of arc
consistency called forward checking) during the search have been well-studied, a backtrack-
ing algorithm that maintains strong k-consistency (MCk) has never been fully addressed in
the literature. In order to study the relationship between BJk and MCk, we need to specify
precisely the MCk algorithms.

A generic scheme to maintain a level of local consistency in a backtracking search is to
perform at each node in the search tree one full cycle of consistency achievement. A consis-
tency achievement algorithm is applied to the CSP which is induced by the current partial
solution. If, as a result, the induced CSP becomes empty after applying the consistency
algorithm, the instantiation of the current variable is a dead-end and should be rejected.
If the resulting CSP is not empty, the instantiation of the current variable is accepted and
the search continues to the next level.

The simplest form of an induced CSP is to restrict the domains of the instantiated
variables to have only one value and leave the set of constraints unchanged. This idea can
be traced back to Gaschnig's (1978) implementation of MAC, referred to as DEEB; i.e.,
Domain Element Elimination with Backtracking. However, in order to establish a relation
between BJk and MCk, we need a more restricted de�nition of the induced CSP, where the
constraints in the induced CSP are the selections and projections of the constraints in the
original CSP with respect to a partial solution.

De�nition 7 (induced CSP) Given a consistent partial solution t of a CSP P , the CSP
induced by t, denoted by P jt, has all the variables in P except those instantiated by t,
the domain of each variable is the same as in P , and for each constraint C in P where
vars(C) 6� vars(t), there is a constraint C0 = �vars(C)�vars(t)(�t[vars(C)\vars(t)](C)) in P jt.

Example 3 Consider the graph coloring problem and the corresponding CSP shown in
Figure 3. The original CSP has four variables, x1; : : : ; x4, where x1; x2; x3 2 fr; g; bg and
x4 2 frg, and �ve binary constraints, x1 6= x2, x1 6= x3, x2 6= x3, x2 6= x4 and x3 6= x4.
Given a partial solution t = fx1 g; x2 bg, the CSP induced by t, P jt, has two variables,
x3 and x4, and the unary and binary constraints shown in Figure 4.

The maintaining strong k-consistency algorithm (MCk) at each node in the backtrack
tree applies a strong k-consistency achievement algorithm to the CSP induced by the
current partial solution. Under such an architecture, FC can be viewed as maintaining
one-consistency, and for binary CSPs, MAC can be viewed as maintaining strong two-
consistency.

64

Conflict-Directed Backjumping Revisited

An algorithm enforcing strong k-consistency on a CSP instance should detect and remove
all those inconsistencies t = fx1 a1; : : : ; xj aj�1g where 1 � j � k and t is consistent
but cannot be consistently extended to some jth variable xj . To remove an inconsistency,
we make it inconsistent in the resulting CSP by removing values from domains, removing
inconsistent tuples from existing constraints, or adding new constraints to the CSP.

We use the concept of a k-proof-tree in characterizing the tuples that are removed by a
strong k-consistency achievement algorithm.

De�nition 8 (k-proof-tree) A k-proof-tree for a partial solution t over at most k vari-
ables in a CSP is a tree in which each node is associated with a partial solution over at most
k variables in the CSP, where (1) the root of the k-proof-tree is associated with t, and (2)
each leaf node of the k-proof-tree is inconsistent in the CSP, and (3) each non-leaf node s

of the k-proof-tree is consistent in the CSP, and the children of s at the next level are nodes
s0 [fx a1g; : : : ; s

0 [fx alg such that s0 � s, x 62 vars(s), and dom(x) = fa1; : : : ; alg.

Example 4 Figure 3 shows a three-proof-tree (more than one is possible) for t = fx1 gg
in the given graph coloring problem. Each non-leaf node, including the root t, is consistent,
and each leaf node is inconsistent in the CSP. Since we have constructed a three-proof-
tree for the tuple t it cannot be part of a solution to the CSP and a strong 3-consistency
achievement algorithm would remove it.

In general, if a k-proof-tree for an inconsistency in a CSP can be constructed, an al-
gorithm achieving strong k-consistency would deduce and remove the inconsistency. After
applying a strong k-consistency achievement algorithm on the CSP, if all the children of
a node in the k-proof-tree are inconsistent in the resulting CSP, that node is also incon-
sistent in the resulting CSP because one of its subtuples cannot be consistently extended
to an additional variable. Because all the leaf nodes in the k-proof-tree are inconsistent in
the original CSP, in a bottom-up manner the inconsistency of the root of the tree can be
deduced and removed from the resulting CSP. As a special case, if a k-proof-tree for the
empty inconsistency in a CSP can be constructed, the CSP will be empty after enforcing
strong k-consistency since every way to extend a variable has been shown to lead to an
inconsistency (and therefore, each value would be removed from the domain resulting in the
empty domain). On the other hand, after a CSP has been made strongly k-consistent, if a
partial solution t over at most k variables is inconsistent in the resulting CSP, a k-proof-tree
for t in the original CSP can be constructed. If t is inconsistent in the original CSP, the
k-proof-tree contains the single node t. Otherwise, t or a subtuple t0 of t cannot be extended
to an additional variable x; i.e., all the partial solutions t0 [fx a1g; : : : ; t

0 [fx alg,
where dom(x) = fa1; : : : ; alg, are inconsistent in the resulting CSP. Then we can construct
the k-proof-tree recursively for each of those inconsistencies. As a special case, if a CSP
is empty after enforcing strong k-consistency, a k-proof-tree for the empty inconsistency in
the original CSP can be constructed.

The following lemmas (Lemma 6 to Lemma 8) reveal some basic properties about in-
duced CSPs and strong k-consistency enforcement on induced CSPs, which are used in the
proofs of Theorem 10 and Theorem 14.

65

Chen & van Beek

x1; x2; x3 2 fr; g; bg; x4 2 frg
C(x1; x2) : x1 6= x2

C(x1; x3) : x1 6= x3

C(x2; x3) : x2 6= x3

C(x2; x4) : x2 6= x4

C(x3; x4) : x3 6= x4

r; g; b

r; g; b

r; g; b

rx1

x3

x4

x2

6=

6=

6=

6=

6=

x1 g

x1 g

x2 b

x3 r

x1 g

x2 b

x3 g

x1 g

x2 b

x3 b

x3 r

x4 r

x2 r

x4 r

x1 g

x2 r

x1 g

x2 g

x1 g

x2 b

Figure 3: A three-proof-tree for fx1 gg in the graph coloring problem. All leaf nodes in
the proof-tree are inconsistent in the CSP.

Lemma 6 Given a CSP P and two partial solutions t and t0 of P , if t � t0, then P jt0 =
(P jt)jt0�t.

Proof Clearly P jt0 and (P jt)jt0�t have the same set of variables and the same set of domains.
Because �vars(C)�vars(t0)�t0C = �vars(C)�vars(t0)�t0�t(�vars(C)�vars(t)�tC), for each constraint
C in P , the same selection and projection are made in P jt0 and (P jt)jt0�t. Therefore, P jt0
and (P jt)jt0�t have the same set of constraints.

Lemma 7 Given a CSP P and a consistent partial solution t of P , if (i) P is empty after
achieving strong k-consistency, or (ii) there exists a variable x 2 vars(t) such that the value
t[x] is removed from the domain of x when achieving strong k-consistency on P , then P jt
is empty after achieving strong k-consistency,

Proof We �rst show that, given a consistent partial solution t of a CSP P , and a k-proof-
tree T for an inconsistency s in P , there is a corresponding well-de�ned k-proof-tree Tt for
the inconsistency s0 = s[vars(s) � vars(t)], in the induced CSP P jt, provided s does not

66

Conflict-Directed Backjumping Revisited

x3 r

x3 r
x4 r

�

x3 g x3 b

x3 2 fr; g; bg; x4 2 frg

C(x3) : f(r); (b)g

C(x3) : f(r); (g)g

C(x4) : f(r)g

C(x3; x4) : x3 6= x4

Figure 4: Proof-tree for the empty inconsistency in the CSP P jt induced by t = fx1
g; x2 bg constructed from the proof-tree for fx1 gg in the CSP P shown in
Figure 3.

contain any assignments that are inconsistent with the assignments in t. Tt is constructed
from T in three steps (see Figure 4 for an example): (Step 1) Remove from T all nodes and
their descendants which contain assignments that are inconsistent with the assignments in
t. (Step 2) Replace each remaining node t0 in T with the node t00 = t0[vars(t0) � vars(t)];
i.e., remove those variables which occur in t and thus do not occur in P jt. If t0 is not a
leaf node in T , then by de�nition t0 is consistent in P . It is possible that the corresponding
node t00 in Tt is inconsistent in P jt. Should this be the case, we make t00 into a leaf node by
removing all of its descendants. If t0 is a leaf node in T , then by de�nition t0 is inconsistent
in P ; i.e., there exists a constraint C in P such that t0 does not satisfy C. It must be
the case that vars(C) 6� vars(t) (since vars(C) � vars(t) contradicts the fact that t0 is
inconsistent with C and t is consistent and therefore consistent with C, but t0 and t agree on
their assignments by Step 1). Hence, there is a corresponding constraint C0 in P jt which is
the selection and projection of C in P . Now, it is easy to verify that the corresponding node
t00 is also inconsistent with C0 and is therefore a well-de�ned leaf node. (Step 3) Remove all
subsumed nodes from T , where node t2 is subsumed by node t1 if t2 is a (necessarily only)
child of t1 and vars(t2) � vars(t1). All children of a subsumed node t2 are made children
of the parent of t2.

Now, suppose P is empty after achieving strong k-consistency. Then there is a k-proof-
tree for the empty inconsistency in P and we can construct a k-proof-tree for the empty
inconsistency in P jt. Therefore, P jt is empty after achieving strong k-consistency. Suppose
there exists a variable x 2 vars(t), such that the value t[x] is removed from the domain of
x when achieving strong k-consistency on P . Then there is a k-proof-tree for fx t[x]g in
P and we can construct a k-proof-tree for the empty inconsistency in P jt. Therefore P jt is
empty after achieving strong k-consistency.

67

Chen & van Beek

Lemma 8 Given a CSP P and an assignment fx ag, a 2 dom(x), if the induced CSP
P jfx ag is empty after achieving strong (k � 1)-consistency, then the value a is removed
from the domain of x when achieving strong k-consistency on P .

Proof Suppose P jfx ag is empty after achieving strong (k� 1)-consistency. Thus, there is
a (k � 1)-proof-tree for the empty inconsistency in P jfx ag. We now convert the (k � 1)-
proof-tree to a k-proof-tree for fx ag in P . Each node t in the original (k� 1)-proof-tree
is replaced by t [fx ag. Thus, the root of the tree becomes fx ag. Furthermore,
if t is not a leaf node in the original (k � 1)-proof-tree; i.e., t is consistent in P jfx ag, it
is easy to verify that t [fx ag is consistent in P . If t is a leaf node in the original
(k� 1)-proof-tree; i.e., t is inconsistent in P jfx ag, there is a constraint C0 in P jfx ag such
that t does not satisfy C 0. Let C0 be the selection and projection of the constraint C in P .
Thus, t[fx ag does not satisfy the constraint C in P and is therefore inconsistent in P .
Hence, we have constructed a k-proof-tree for fx ag in P and thus a would be removed
from the domain of x when achieving strong k-consistency on P .

MCk extends the current node if the CSP induced by the current partial solution is not
empty after achieving strong k-consistency. The node is thus called a k-consistent node.

De�nition 9 (k-consistent node) A node t in the search tree is a k-consistent node if
the CSP induced by t is not empty after enforcing strong k-consistency. A node which is
not k-consistent is called k-inconsistent.

Lemma 9 If node t is k-consistent, its ancestors are also k-consistent.

Proof Let t0 be one of t's ancestors. Because t0 � t, from Lemma 6, P jt = (P jt0)jt�t0 . Thus,
P jt is an induced subproblem of P jt0 . From Lemma 7, if P jt is not empty after achieving
strong k-consistency, P jt0 is not empty either after achieving strong k-consistency. Thus, t0

is k-consistent.

The following theorem applies to the case of �nding all solutions.

Theorem 10 If MCk visits a node, then its parent is k-consistent. If a node is k-consistent,
then MCk visits the node.

Proof The �rst part is true because MCk would not branch on this node if its parent was
found k-inconsistent. We prove the second part by induction on the depth of the search tree.
The hypothesis is trivial for j = 1. Suppose it is true for j > 1 and we have a k-consistent
node t at level j + 1. Let the current variable be x. From Lemma 9, t's parent t0 at level
j is k-consistent. Thus, MCk will visit t0. From Lemma 6, P jt = (P jt0)jfx t[x]g. Because
(P jt0)jfx t[x]g is not empty after achieving strong k-consistency, from Lemma 7, value t[x]
will not be removed from the domain of x when achieving strong k-consistency in P jt0 . As
a consequence, MCk will visit t.

A necessary and su�cient condition for MCk to visit a node t is that t's parent is k-
consistent and the value assigned to the current variable by t has not been removed from
its domain when enforcing strong k-consistency on t's parent.

68

Conflict-Directed Backjumping Revisited

Theorem 11 Given a CSP and a variable ordering, MCk visits all the nodes that MCk+1

visits.

Proof Follows from Theorem 10 and Lemma 7.

4.3 Relationship Between BJk and MCk

Kondrak and van Beek (1997) have shown that for binary CSPs, BJ (BJ1) visits all the
nodes that FC (MC1) visits, and FC-CBJ (MC1-CBJ) and CBJ are incomparable. We
extend their partial ordering of backtracking algorithms to include the relationship between
MCk, BJk , and MCk-CBJ, 1 � k � n. All of our results are for the case of general CSPs;
i.e., they are not restricted to binary CSPs.

We begin by characterizing an important property of the CBJ algorithm.

Lemma 12 If CBJ performs a one-level backjump from a deeper variable xi to a shallower
variable xh, the node th at the level of xh is one-inconsistent.

Proof Let Si be the conict set of xi used in the backjumping in which xh is the deep-
est variable. We show that xi will experience a domain wipe out when enforcing one-
consistency on the induced CSP P jth[Si]. Each node ti at the level of xi is a leaf node;
i.e., ti is inconsistent in P . Suppose ti does not satisfy constraint C where xi 2 vars(C)
and vars(C) � Si [fxig. The selection of C in P jth[Si], which constrains only one variable
fxig, should prohibit value ti[xi] of xi. Thus, xi will experience a domain wipe out when
enforcing one-consistency on P jth[Si]. Note that P jth is an induced subproblem of P jth[Si].
From Lemma 7, P jth is empty after enforcing one-consistency. Thus, th at the level of xh
is one-inconsistent.

Lemma 13 If CBJ performs a k-level backjump from a deeper variable xi to a shallower
variable xh, the current node th at the level of xh is k-inconsistent.

Proof Let Si be the current conict set of xi in which xh is the deepest variable. We show
that if there is a k-level backjump from xi to xh, then P jth[Si] is empty after enforcing strong
k-consistency and thus th is k-inconsistent. The proof is by induction on k. k = 1 is true
from Lemma 12. Suppose the hypothesis is true for the case of k � 1 but it is not true for
the case of k; i.e., there is a k-level backjump from xi to xh, but the induced CSP P jth[Si]
is not empty after enforcing strong k-consistency. So there is at least one value a left in the
domain of xi after enforcing strong k-consistency on P jth[Si]. We know that the node ti at
the level of xi instantiating xi with a is either incompatible with th (i.e., it is a leaf node)
or is l-level backjumped from some deeper variable xj , for some 1 � l < k (see Figure 5).
However, ti cannot be a leaf node as otherwise a would be removed from the domain of xi
when enforcing strong k-consistency. Let Sj be the conict set of xj . From the hypothesis,
the induced CSP P jti[Sj] is empty after achieving strong l-consistency. Because value a is
not removed from the resulting CSP, from Lemma 8, the induced CSP P jth[Si][fxi ag is not
empty after achieving strong (k � 1)-consistency. Because ti[Sj] � th[Si] [fxi ag, the
induced CSP P jti[Sj] is not empty after achieving strong (k� 1)-consistency. That leads to
a contradiction. Thus P jth[Si] is empty after achieving strong k-consistency and th at the
level of xh is k-inconsistent.

69

Chen & van Beek

k-level backjumping

l-level backjumping, l < k: : :

conict set Si

conict set Sj

th

xj

xi

xh

: : :

ti

Figure 5: A scenario in the CBJ backtrack tree used in the proof of Lemma 13.

Theorem 14 Given a CSP and a variable ordering, BJk visits all the nodes that MCk

visits.

Proof The proof is by induction on the level of the search tree. If MCk visits a node at
level j in the search tree, BJk visits the same node. j = 1 is trivial. Suppose that it is true
for the case of j > 1 and we have a node t visited by MCk at level j + 1. We know both
MCk and BJk visit t's parent at level j. The only chance that t may be skipped by BJk is
that BJk backjumps from some deeper variable xi at level i to a shallower variable xh at
level h, such that h < j+1 < i. Thus, the node at level h is k-inconsistent (by Lemma 13).
Since the node at level h is an ancestor of t and we know t's parent is k-consistent from
Lemma 9, the node at level h is k-consistent. That is the contradiction. Therefore, BJk
visits t at level j + 1.

MCk can be combined with backjumping, namely MCk-CBJ, provided the conict sets
are computed correctly after achieving strong k-consistency on the induced CSPs.

Theorem 15 Given a CSP and a variable ordering, MCk visits all the nodes that MCk-CBJ
visits.

Proof Because MCk-CBJ behaves exactly the same as MCk in the forward phase of a
backtracking search, it is easy to verify that MCk-CBJ visits a node t only if t's parent
is k-consistent and the value assigned to the current variable by t was not removed from
its domain when achieving strong k-consistency on t's parent. Therefore, MCk-CBJ never
visits more nodes than MCk does.

In Figure 6, we present a hierarchy in terms of the size of the backtrack tree for BJk ,
MCk, and MCk-CBJ. If there is a path from algorithm A to algorithm B in the �gure,
we know that A never visits more nodes than B does. For example, MCk never visits
more nodes than BJj , for all j � k. Otherwise, there are instances to show A may be
exponentially better than B, and vice versa.

70

Conflict-Directed Backjumping Revisited

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(FC)

MCn(CBJ)
MCn-CBJ

MCk+1-CBJ

MCk-CBJ

(FC-CBJ)

MC1-CBJMC1

MCk

MCk+1

BJn

BJk+1

BJk

BJ1

(BJ)

Figure 6: A hierarchy for BJk , MCk, and MCk-CBJ in terms of the size of the backtrack
tree.

As the following example shows, for any �xed integer k < n, there exists a CSP instance
such that CBJ visits exponentially fewer nodes than an algorithm that maintains strong
k-consistency in the backtracking search4.

Example 5 Given a �xed integer k, we can construct a binary CSP with n+k+2 variables,
x1; : : : ; xn�k+1; y1; : : : ; yk+1; xn�k+2; : : : ; xn+1, where dom(xi) = f1; : : : ; ng for 1 � i � n+1
and dom(yj) = f1; : : : ; kg for 1 � j � k + 1. The constraints are: xi 6= xj , for i 6= j, and
yi 6= yj , for i 6= j. The problem consists of two separate pigeon-hole subproblems, one over
variables x1; : : : ; xn+1 and the other over variables y1; : : : ; yk+1, and is insoluble. As we can
see, the pigeon-hole problem is highly locally consistent. The �rst subproblem is strongly n-
consistent and the second is strongly k-consistent. Under the above static variable ordering,

4. Independently, Bacchus and Grove (1999) present a similar example to show that given a �xed k, CBJ
may be exponentially better than an algorithm called MIkC, which essentially maintains k-consistency
in the backtracking search.

71

Chen & van Beek

a backtracking algorithm maintaining strong k-consistency would not encounter a dead-end
until xn�k+1 is instantiated. Then it would �nd that the subproblem of xn�k+2; : : : ; xn+1

is not strongly k-consistent. Thus, the algorithm will backtrack before it reaches the second
pigeon-hole subproblem. It will explore n!

k! nodes at level n � k + 1 of the search tree and
thus take an exponential number of steps to �nd the problem is insoluble. CBJ does not
encounter a dead-end at the level of xn�k+1 and it continues to the second pigeon-hole
problem. Eventually it will �nd the second-pigeon hole problem is insoluble and backjump
to the root of the search tree. The total number of nodes explored is bounded by a constant,
O((k + 1)k), for a �xed k. Therefore, CBJ can be exponentially better than an algorithm
maintaining strong k-consistency.

Example 5 also shows that, although MCk visits fewer nodes than BJk by Theorem 14,
BJk+1 can be exponentially better than MCk. However, BJk+1 can be better than MCk

only if there is a (k + 1)-level backjump that is not also a chronological backtrack. To see
that this is true, suppose that on a particular instance all (k + 1)-level backjumps are also
chronological backtracks (i.e., the backjump is to the immediately preceding variable in the
variable ordering and only that single variable becomes uninstantiated and is removed from
the current partial solution). In this case, the freedom to backjump one additional level
rather than chronologically backtrack does not make a di�erence and BJk+1 is e�ectively
BJk and thus cannot be better than MCk. Thus, BJk+1 can be better than MCk only
if there is a (k + 1)-level non-chronological backjump. We note, however, that since the
number of backjumps of level k+1 is less than or equal to the number of backjumps of level
k, as k increases this gets more and more unlikely. Thus, as the level of local consistency
that is maintained in the backtracking search is increased, the less that backjumping will
be an improvement.

Consider Example 5 again. At each level of the backtrack tree for MCk, the instantiation
of each of the past variables removes one distinct value from the domain of the current
variable (recall that MCk never instantiates the variable y1 as it reaches a dead-end at
xn�k+1). If we were to maintain conict sets for the variables, the conict set for the current
variable would include all of its past variables and thus when a dead-end is encountered
by the algorithm, any backjump computed from the conict sets would also necessarily be
a chronologically backtrack. Thus, as this example shows, MCk-CBJ and MCk can visit
exactly the same nodes and consequently BJk+1 can be exponentially better than MCk-
CBJ. Furthermore, because MCk�1-CBJ can reach the second pigeon-hole problem without
encountering a dead-end, it can �nally retreat from the second pigeon-hole problem to the
root of the search tree by backjumps. Thus, MCk�1-CBJ may be exponentially better
than MCk-CBJ. In particular, this shows the surprising result that MAC-CBJ can visit
exponentially more nodes than FC-CBJ.

Finally, as the following example shows, for any �xed integer k < n, there exists a CSP
instance such that an algorithm that maintains strong k-consistency in the backtracking
search visits exponentially fewer nodes than CBJ.

Example 6 Consider the CSP as de�ned in Example 5, but searched with the static variable
ordering y1; : : : ; yk; x1; : : : ; xn+1; yk+1.

72

Conflict-Directed Backjumping Revisited

5. Empirical Evaluation of Adding CBJ to GAC

In this section, we report on experiments that examined the e�ect of adding CBJ to a
backtracking algorithm that maintains generalized arc consistency (GAC), an algorithm
that we refer to as GAC-CBJ. Previous work has shown the importance of algorithms that
maintain arc consistency (e.g., Sabin & Freuder, 1994; Bessi�ere & R�egin, 1996). We show
that adding CBJ to a backtracking algorithm that maintains generalized arc consistency
can speed up the algorithm by several orders of magnitude on hard, structured problems.

Previous empirical studies of adding CBJ to a backtracking algorithm that maintains a
level of local consistency have led to mixed conclusions. Adding CBJ to forward checking,
a truncated form of arc consistency, has been shown to give improvements but not always
signi�cant ones. Prosser (1993b) observes that with a static variable ordering, FC-CBJ is
about three times faster than FC on the Zebra problem. Smith and Grant (1995) observe
that with a dynamic variable ordering, adding CBJ to FC led to signi�cant savings but
only on hard random problems that occur in the easy region. Bacchus and van Run (1995)
observe that with a dynamic variable ordering, adding CBJ to FC only led to at most a
5% improvement on the Zebra problem, n-Queens problems, and random binary problems.
Bayardo and Schrag (1996, 1997) show that adding CBJ to the well-known Davis-Putnam
algorithm, the SAT version of forward checking, can be a signi�cant improvement on hard
random and real-world 3-SAT problems.

Adding CBJ to an algorithm that maintains full arc consistency has received less at-
tention in the literature. In the one study that we are aware of, Bessi�ere and R�egin (1996)
observe that adding CBJ to MAC (the binary version of GAC) actually slows down the
algorithm on random binary problems due to the overhead of maintaining the conict sets.
They conjecture that \when MAC and a good variable ordering heuristic are used, CBJ
becomes useless".

Our empirical results lead us to di�er with Bessi�ere and R�egin's conclusion about the
usefulness of adding CBJ to an algorithm that maintains full arc consistency. In our imple-
mentation we were able to signi�cantly reduce the overhead of maintaining the conict sets
through the use of additional data structures5. On problems where adding CBJ does not
lead to many savings in nodes visited, our implementation of CBJ also does not degrade per-
formance by any signi�cant factor. We demonstrate the improvement by re-doing Bessi�ere
and R�egin's (1996) experiments on random binary problems. We then show through exper-
iments in two structured domains that GAC-CBJ can sometimes improve GAC by several
orders of magnitude on hard instances.

In our experiments, we ran both GAC and GAC-CBJ on each instance of a problem
and recorded the CPU times. Comparing CPU times is appropriate as the underlying code
for GAC and GAC-CBJ is identical, with GAC-CBJ containing only additional code to
maintain the conict sets and to determine how far to jump back. Two dynamic variable
orderings were used: the popular dom+deg heuristic which chooses the next variable with
the minimal domain size and breaks ties by choosing the variable with the maximum degree
(the number of the constraints that constrain that variable) and the dom/deg heuristic
proposed by Bessi�ere and R�egin (1996) which chooses the next variable with the minimal

5. See the online appendix for the source code and a description of the key data structures in our imple-
mentations of GAC and GAC-CBJ.

73

Chen & van Beek

value of the domain size divided by its degree. All experiments were run on 400 MHz
Pentium II's with 256 Megabytes of memory.

5.1 Random Problems

The run time performance of GAC and GAC-CBJ were compared on sets of randomly
generated binary CSPs. A set of random problems is de�ned by a 5-tuple (n; d; r;m; t),
where n is the number of the variables, d is the uniform domain size, r is the uniform arity
of the constraints, m is the number of randomly generated constraints, and t is the uniform
tightness or number of tuples in each constraint. In each case, the constraint tightness t
was chosen so that approximately half of the instances in the population were insoluble;
i.e., the instances were from the phase transition region.

Table 1: E�ect of domain size on average time (seconds) to solve random instances from
(50; d; 2; 95; t). Each set contained 100 random instances. Both GAC-CBJ and
GAC used the dom/deg variable ordering.

d GAC-CBJ GAC ratio

5 0:0027 0:0030 0:90
10 0:026 0:027 0:96
15 0:10 0:10 1:00
20 0:41 0:41 1:00
25 0:79 0:78 1:01
30 2:46 2:47 1:00
35 3:82 3:80 1:01
40 10:98 10:75 1:02

Bessi�ere and R�egin (1996) examine the e�ect of domain size on the average time to
solve random instances from (50; d; 2; 95; t) (see Figure 5 (right) in Bessi�ere & R�egin, 1996).
With their implementation of CBJ, adding CBJ steadily worsens performance as domain
size increases until at d = 40MAC-CBJ is about 1.7 times slower than MAC alone. With our
implementation, the di�erence in performance between GAC-CBJ and GAC was negligible
on these problems (see Table 1).

The remaining sets of random problems that Bessi�ere and R�egin used in their experi-
ments to compare the performance of MAC-CBJ and MAC are now too simple to provide
a meaningful comparison as they can be solved in less than 0.01 seconds on a 400 MHz
Pentium II computer. Thus, we chose harder sets of random binary problems. On each
instance we ran both GAC and GAC-CBJ and recorded the CPU times. Here we report
the average ratio of the CPU times (GAC over GAC-CBJ). Each set contained 100 random
instances. On the �rst set of problems, (150; 5; 2; 750; 19), the average ratio for the dom+deg
variable ordering was 0.90 and the average ratio for the dom/deg variable ordering was 0.88.
On the second set of problems, (150; 5; 2; 1500; 21), the average ratios for both the dom+deg

74

Conflict-Directed Backjumping Revisited

and dom/deg variable orderings was 0.93. In other words, on average GAC was a little over
10% faster than GAC-CBJ on these problems.

5.2 Planning Problems

Planning, where one is required to �nd a sequence of actions from an initial state to a goal
state, can be formulated as a CSP. In the formulation we used in our experiments, each
state is modeled by a collection of variables and the constraints enforce the assignments of
variables to represent a consistent state or a valid transition between states. (See Kautz &
Selman, 1992; van Beek & Chen, 1999 for more details on the formulation of planning as a
CSP.)

Table 2: Time (seconds) to solve instances of the grid planning problem. The absence of an
entry indicates that the problem was not solved within 72000 seconds (20 hours)
of CPU time.

dom+deg dom/deg

GAC GAC-CBJ GAC GAC-CBJ

1 0.66 0.68 1.58 0.86
2 762.47 33.33 3965.10 321.17

3
4 . 1753.13 . .
5

In the experiments we used all 130 instances used in the First AI Planning Systems
Competition, June 6{9, 1998. The instances come from �ve di�erent domains: gripper,
mystery, mprime, logistics, and grid. In the experiments we report, both GAC and GAC-
CBJ were based on AC3 (Mackworth, 1977a) as this was found to give the best performance.

For the gripper, mystery, and mprime domains, each of the instances could be solved
in under 25 seconds by both GAC and GAC-CBJ. On these easy problems, the increased
overhead of CBJ rarely led to savings, and overall GAC was 10-15% faster than GAC-CBJ.

Table 2 shows the comparison between GAC and GAC-CBJ in solving the 5 instances
of the grid problems. GAC-CBJ showed improvement on the grid problems. For example,
it solved problem 4 in about half an hour, but GAC failed to �nd a solution in 20 hours.

Table 3 shows the comparison between GAC and GAC-CBJ in solving the 30 instances
of the logistics problem. On about one third of the instances, GAC-CBJ improved on GAC.
For example, on instances 18, 20 and 27, GAC-CBJ ran several orders of magnitude faster
than GAC, and on instance 15, GAC exhausted the 20 hours time limit but GAC-CBJ found
a solution within 3 minutes. GAC-CBJ and GAC performed similarly on easier instances
and sometimes GAC-CBJ was about 10% slower than GAC.

75

Chen & van Beek

Table 3: Time (seconds) to solve instances of the logistics planning problem. The absence
of an entry indicates that the problem was not solved within 72000 seconds (20
hours) of CPU time.

dom+deg dom/deg

GAC GAC-CBJ GAC GAC-CBJ

1 0.03 0.03 0.03 0.03
2 0.03 0.05 0.03 0.06
3 10.91 0.86 9.63 0.81
4 0.16 0.17 0.14 0.18
5 1.51 1.54 1.54 1.57
6 36.49 16.86 35.77 16.76
7 0.08 0.08 0.08 0.09
8 0.15 0.15 0.14 0.16
9 0.30 0.33 0.32 0.33
10
11 0.04 0.05 0.05 0.05
12 0.11 0.13 0.11 0.11
13 0.54 0.57 0.54 0.56
14 0.63 0.64 0.64 0.68
15 . 182.51 . 8540.58
16 12.49 0.42 12.32 0.41

17 264.46 0.32 261.33 0.32
18 15382.82 1165.54 15157.71 1184.67

19 1.29 1.37 1.33 1.31
20 6268.16 27.66 6125.87 28.55

21 0.66 0.70 0.68 0.74
22
23
24 0.08 0.09 0.08 0.09
25 34.03 13.03 11.58 12.10
26
27 12239.26 47.06 12105.62 47.76

28
29
30

76

Conflict-Directed Backjumping Revisited

5.3 Crossword Puzzle Problems

Crossword puzzle generation, where one is required to �ll in a grid with words from a
dictionary, can be formulated as a CSP. In the formulation we used in our experiments, each
of the unknown words is represented by a variable which takes values from the dictionary.
Binary constraints enforce that intersecting words agree on their intersecting letter and
that a word from the dictionary appears at most once in a solution. Figure 7 shows an
example 5 � 5 crossword puzzle grid. A CSP model of this grid has 10 variables, 21 binary
\intersection" constraints, and 13 \not equals" constraints.

1

8

131211

14

2119

2 3

9 10

20

7654

1615 17 18

Figure 7: A crossword puzzle.

In the experiments we used 50 grids and two dictionaries for a total of 100 instances of
the problem that ranged from easy to very hard. For the grids, we used 10 instances at each
of the following sizes: 5�5, 15�15, 19�19, 21�21, and 23�23. For the dictionaries we used
the UK dictionary, which collects about 220,000 words and in which the largest domain for a
word variable contains about 30,000 values, and the Linux dictionary, which collects 45,000
words and in which the largest domain for a word variable has about 5,000 values. In the
experiments we report, both GAC and GAC-CBJ were based on AC7 (Bessi�ere & R�egin,
1997) as this was found to give the best performance (see Sillito, 2000 for a discussion of
integrating AC7 into backtracking search).

Figure 8 shows approximate cumulative frequency curves for the empirical results, where
we are plotting the ratio of the time taken to solve an instance by GAC over the time
taken to solve the instance by GAC-CBJ. Thus, for example, we can read from the curve
representing the dom+deg variable ordering that for approximately 85% of the tests adding
CBJ had little e�ect and that for the remaining 15% of the tests it led to orders of magnitude
improvements. We can also read from the curves the 0, 10, . . . , 100 percentiles of the data
sets (where the value of the median is the 50th percentile or the value of the 50th test). The
crossover point, where GAC-CBJ starts to perform as well as or better than GAC occurs
around the 35th percentile. Tables 4 and 5 examine the data more closely by showing the

77

Chen & van Beek

0.1

1

10

100

1000

10 20 30 40 50 60 70 80 90 100

r
a
t
i
o

(
G
A
C

/

G
A
C
-
C
B
J
)

test

dom+degree
dom/degree

Figure 8: E�ect on execution time of GAC of adding conict-directed backjumping (GAC-
CBJ). A curve represents 100 tests on instances of the crossword puzzle problem
where the tests are ordered by the ratio of time taken to solve the instance by
GAC over time taken to solve the instance by GAC-CBJ.

actual times to solve the instances where GAC performed best and the instances where
GAC-CBJ performed best.

Table 4: GAC versus GAC-CBJ on instances of the crossword puzzle problem. The ten
best improvements in time (seconds) of GAC over GAC-CBJ to solve an instance
are presented.

dom+deg dom/deg

rank GAC GAC-CBJ GAC GAC-CBJ

1 1.21 1.35 1.11 1.23
2 1.10 1.20 0.95 1.02
3 6.12 6.53 1.16 1.24
4 0.78 0.81 56.66 60.36
5 110.23 114.52 1.30 1.37
6 68.67 71.28 4.86 5.11
7 47.16 48.42 0.22 0.23
8 32.69 33.63 14.23 14.76
9 25.17 26.08 74.38 77.52
10 20.73 21.37 7.43 7.67

78

Conflict-Directed Backjumping Revisited

Table 5: GAC versus GAC-CBJ on instances of the crossword puzzle problem. The ten
best improvements in time (seconds) of GAC-CBJ over GAC to solve an instance
are presented. The absence of an entry indicates that the problem was not solved
within 36000 seconds (10 hours) of CPU time.

dom+deg dom/deg

rank GAC GAC-CBJ GAC GAC-CBJ

1 . 37.85 . 54.60
2 . 41.43 10311.32 33.43
3 . 67.07 . 225.92
4 . 82.58 . 244.81
5 . 276.00 . 308.04
6 . 542.80 . 374.72
7 . 939.71 . 832.68
8 2716.86 115.87 . 1486.43
9 390.91 34.90 . 1890.24
10 . 3336.37 . 3411.83

In summary, on some of the smaller, easier crossword puzzle instances GAC was slightly
faster than GAC-CBJ, on many of the puzzles there was no noticeable di�erence, and on
some of the larger, harder puzzles GAC-CBJ was orders of magnitude faster than GAC.

6. Conclusion

In this paper, we presented three main results. First, we showed that the choice of dynamic
variable ordering heuristic can weaken the e�ects of the backjumping technique. Second,
we showed that as the level of local consistency that is maintained in the backtracking
search is increased, the less that backjumping will be an improvement. Together these
results partially explain why a backtracking algorithm doing more in the look-ahead phase
cannot bene�t more from the backjumping look-back scheme and they extend the partial
ordering of backtracking algorithms presented by Kondrak and van Beek (1997) to include
backtracking algorithms and their CBJ hybrids that maintain levels of local consistency
beyond forward checking. Third, and �nally, we showed that adding CBJ to a backtracking
algorithm that maintains generalized arc consistency can (still) speed up the algorithm by
several orders of magnitude on hard, structured problems. Throughout the paper, we did
not restrict ourselves to binary CSPs.

Acknowledgements

The authors wish to thank the referees for their careful reading of a previous version of
the paper and their helpful comments. The �nancial support of the Canadian Government
through their NSERC program is gratefully acknowledged.

79

Chen & van Beek

References

Bacchus, F., & Grove, A. (1999). Looking forward in constraint satisfaction algorithms.
Unpublished manuscript.

Bacchus, F., & van Run, P. (1995). Dynamic variable ordering in CSPs. In Proceedings of the
First International Conference on Principles and Practice of Constraint Programming,
pp. 258{275, Cassis, France. Available as: Springer Lecture Notes in Computer Science
976.

Bayardo Jr., R. J., & Schrag, R. (1996). Using CSP look-back techniques to solve excep-
tionally hard SAT instances. In Proceedings of the Second International Conference
on Principles and Practice of Constraint Programming, pp. 46{60, Cambridge, Mass.
Available as: Springer Lecture Notes in Computer Science 1118.

Bayardo Jr, R. J., & Schrag, R. C. (1997). Using CSP look-back techniques to solve real-
world SAT instances. In Proceedings of the Fourteenth National Conference on Arti-
�cial Intelligence, pp. 203{208, Providence, RI.

Bessi�ere, C., & R�egin, J.-C. (1996). MAC and combined heuristics: Two reasons to forsake
FC (and CBJ?) on hard problems. In Proceedings of the Second International Confer-
ence on Principles and Practice of Constraint Programming, pp. 61{75, Cambridge,
Mass.

Bessi�ere, C., & R�egin, J.-C. (1997). Arc consistency for general constraint networks: Pre-
liminary results. In Proceedings of the Sixteenth International Joint Conference on
Arti�cial Intelligence, pp. 398{404, Nagoya, Japan.

Bruynooghe, M. (1981). Solving combinatorial search problems by intelligent backtracking.
Information Processing Letters, 12, 36{39.

Chen, X. (2000). A Theoretical Comparison of Selected CSP Solving and Modeling Tech-
niques. Ph.D. thesis, University of Alberta.

Dechter, R. (1990). Enhancement schemes for constraint processing: Backjumping, learning,
and cutset decomposition. Arti�cial Intelligence, 41, 273{312.

Dechter, R. (1992). Constraint networks. In Shapiro, S. C. (Ed.), Encyclopedia of Arti�cial
Intelligence, 2nd Edition, pp. 276{285. John Wiley & Sons.

Freuder, E. C. (1978). Synthesizing constraint expressions. Comm. ACM, 21, 958{966.

Frost, D., & Dechter, R. (1994). Dead-end driven learning. In Proceedings of the Twelfth
National Conference on Arti�cial Intelligence, pp. 294{300, Seattle, Wash.

Gaschnig, J. (1978). Experimental case studies of backtrack vs. Waltz-type vs. new algo-
rithms for satis�cing assignment problems. In Proceedings of the Second Canadian
Conference on Arti�cial Intelligence, pp. 268{277, Toronto, Ont.

Haralick, R. M., & Elliott, G. L. (1980). Increasing tree search e�ciency for constraint
satisfaction problems. Arti�cial Intelligence, 14, 263{313.

Kautz, H., & Selman, B. (1992). Planning as satis�ability. In Proceedings of the 10th
European Conference on Arti�cial Intelligence, pp. 359{363, Vienna.

80

Conflict-Directed Backjumping Revisited

Kondrak, G., & van Beek, P. (1997). A theoretical evaluation of selected backtracking
algorithms. Arti�cial Intelligence, 89, 365{387.

Mackworth, A. K. (1977a). Consistency in networks of relations. Arti�cial Intelligence, 8,
99{118.

Mackworth, A. K. (1977b). On reading sketch maps. In Proceedings of the Fifth Interna-
tional Joint Conference on Arti�cial Intelligence, pp. 598{606, Cambridge, Mass.

McGregor, J. J. (1979). Relational consistency algorithms and their application in �nding
subgraph and graph isomorphisms. Inform. Sci., 19, 229{250.

Montanari, U. (1974). Networks of constraints: Fundamental properties and applications to
picture processing. Inform. Sci., 7, 95{132.

Nadel, B. A. (1989). Constraint satisfaction algorithms. Computational Intelligence, 5,
188{224.

Prosser, P. (1993a). Domain �ltering can degrade intelligent backtracking search. In Pro-
ceedings of the Thirteenth International Joint Conference on Arti�cial Intelligence,
pp. 262{267, Chamb�ery, France.

Prosser, P. (1993b). Hybrid algorithms for the constraint satisfaction problem. Computa-
tional Intelligence, 9, 268{299.

Prosser, P. (1995). MAC-CBJ: Maintaining arc consistency with conict-directed back-
jumping. Research report 177, University of Strathclyde.

Sabin, D., & Freuder, E. C. (1994). Contradicting conventional wisdom in constraint sat-
isfaction. In Proceedings of the 11th European Conference on Arti�cial Intelligence,
pp. 125{129, Amsterdam.

Schiex, T., & Verfaillie, G. (1994). Nogood recording for static and dynamic constraint
satisfaction problems. International Journal on Arti�cial Intelligence Tools, 3, 1{15.

Sillito, J. (2000). Improving and Estimating the Cost of Backtracking Algorithms for CSPs..
MSc thesis, University of Alberta, 2000.

Smith, B. M., & Grant, S. A. (1995). Sparse constraint graphs and exceptionally hard prob-
lems. In Proceedings of the Fourteenth International Joint Conference on Arti�cial
Intelligence, pp. 646{651, Montreal.

van Beek, P., & Chen, X. (1999). CPlan: A constraint programming approach to planning.
In Proceedings of the Sixteenth National Conference on Arti�cial Intelligence, pp.
585{590, Orlando, Florida.

81

