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R
ecently, there has been a great interest in the

development of advanced unmanned aerial vehi-

cles (UAVs) capable of missions in complex

dynamic environments. Conventional waypoint-

based navigation systems are typically unable to

sense and avoid obstacles, and, therefore, they are not suit-

able for missions in cluttered urban environments.

Advanced flight control systems for urban navigation

should be able to adjust the flight path dynamically with

the information on the surroundings collected using

onboard sensors in real time. 

Autonomous exploration in an unknown environment

requires a map generation on the surroundings and path

planning for collision-free navigation. These topics have

been intensively covered by the robotics community since

the late 1970s. Based on these efforts, various algorithms

and implementations are currently available for guiding

mobile robots in an unknown or partially known two-

dimensional (2-D) world. In the 1990s, researchers intro-

duced probability theories into map building techniques [1],

enhancing robustness and performance of those algorithms

even with less costly and inaccurate sensors [2]. Although

some of these algorithms can be extended to three-dimen-

sional (3-D) problems, their computational load is prohibi-

tively large and/or they do not scale up well to problems in

3-D space. From a practical perspective, UAVs, due to their

faster speed, tend to pose more challenges than the ground

robots or unmanned underwater vehicles (UUVs) [7] in

terms of speed and accuracy in obstacle sensing and evasion.

In addition to payload limitation, during the development

stage, typical trial-and-error approaches are not usually pos-

sible for UAVs because failures to avoid obstacles can lead to

costly and dangerous outcomes. 

Model predictive control (MPC) has been found effec-

tive to solve control problems on dynamic systems with

input and state constraints [9], [10] in an explicit manner.

The online optimization [3] over a finite horizon allows for

a control system more perceptive to future variations in the

system dynamics and operating environment. In [10], it is

proposed to solve for a plausible trajectory using mixed-

integer linear programming (MILP) with constraints such as

obstacle avoidance. In [8], obstacle-free trajectories in urban

environments are computed using a nonlinear MPC tech-

nique. However, their algorithm requires a priori informa-

tion about environments, and the collision-free air space is

explicitly represented by convex cones between known

urban structures. Alternatively, in [4], it is shown that the

MPC algorithm can be formulated to solve the stabilization

and tracking problem of a nonlinear kinodynamic equation

with control input saturation, state constraints, and some

behavioral constraints such as collision avoidance and pur-

suit-evasion games. In this article, for numerical tractability

and improved reliability, we propose a hierarchical flight

control system that enables conflict-free navigation by track-

ing the trajectories generated by the real-time MPC opti-

mization module for obstacle avoidance. 

Conflict-Free Navigation on the Fly
In this article, we propose an autonomous exploration algo-

rithm suitable for, but not limited to,

urban navigation by combining

the MPC-based obstacle

avoidance algorithm with

local obstacle map

building using an

onboard laser scan-

ner. The MPC

layer solves for a

col l i s ion-free

trajectory by a

real-time gradi-

ent-search-based

optimization. The

tracking control
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layer [6] is responsible for following through the given trajectory.

The proposed framework is validated in simulations and then

successfully tested in a series of experiments using a mock-up

urban environment as shown in Figure 1. 

Formulation
In this section, we present the coordinate systems definitions,

coordinate transformation, and the mathematic formulation

of an obstacle avoidance problem in MPC framework. 

Definitions of Coordinate Systems and Transformations 

The laser scanner used in this research consists of a laser

source, a photoreceptor, and a rotating mirror for planar scan-

ning. An accurate timing device measures the time lapse from

the moment the laser beam is emitted to the moment the

laser beam reflected on an object returns to the receptor. A

rotating mirror reflects the laser beam in a circular plane,

allowing for 2-D scanning.

At each scan, the sensor reports a set of measurements that

supplies the following measurement set:

YL = {(dn, βn), n = 1, . . . , Nmeas}, (1)

where dn , βn , and Nmeas represent the distance from an

object, the angle in the scanning plane, and the total number

of measurements per scan, respectively. Each measurement,

i.e., the relative distance from the laser scanner to a scanned

point in the laser-scanner coordinate system, can be written

into a vector form such that

XL
D/L |n = dn(cos βni

L + sin βn jL ), (2)

where iL and jL are orthonormal unit vectors in X L and Y L

directions on the scanning plane, respectively. D, L, B, and S

represent the scanned data, laser scanner, vehicle body coordi-

nate system, and spatial coordinate system,

respectively (Figure 2). 

The calculation of the spatial coordinates of

detected points involves a series of coordinate

transformations among three coordinate sys-

tems: body coordinate systems attached to the

laser scanner and to the host vehicle and the

spatial coordinate system, to which the vehicle

location and attitude are referred. 

Each measurement vector in the laser-scan-

ner-attached coordinates is first transformed

into the vehicle body coordinates and then the

spatial coordinate system as following:

XS
D/L = RS/L XL

D/L

= RS/BRB/L (α)XL
D/L . (3)

RB/L (α) is the transformation matrix from

the laser body coordinate L to vehicle body

coordinate B, where α is the tilt angle with

respect to the vehicle body coordinate system. RS/B denotes

the transformation matrix from vehicle body coordinates to

spatial coordinates.

Finally, the spatial coordinate of the obstacle is found by

XS
D = XS

D/L + XS
L /B + XS

B

= RS/BRB/L (α)XL
D/L + RS/BXB

L /B + XS
B . (4)

Using (4), one can find the spatial coordinate of sampled

points on obstacles by combining the raw measurement vector

with the position, heading, and attitude of the vehicle, which

are available from the onboard navigation system of the UAV.

It should be noted that the detection accuracy in the spatial

coordinate system not only depends on the laser scanner’s

accuracy itself but also on the accuracy of the vehicle states. 

Figure 1. A Berkeley UAV flying autonomously in a mock-up
urban environment.

Figure 2. Coordinate transformations for laser scan data.
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To ensure conflict-free navigation in an airspace filled with

obstacles, the laser scanner should scan the surroundings wide

enough to find conflict-free trajectories. For example, if the laser

scanner is installed to scan the area horizontally, an actuation in

the pitch axis is necessary so that the scanner can cover the frontal

area sufficiently higher than the rotor disc plane and lower than

the landing gear. Figure 3 shows actuated laser scanner mount-

ings on Berkeley UAVs. The scanner is mounted on a tilt actua-

tor with an encoder, which provides the tilt angle α in RB/L (α).

System Dynamics and Trajectory Generation Using MPC

A mathematic model for a given dynamic system can be writ-

ten as a discrete-time dynamic equation such that [4]

x(k + 1) = f(x(k)) + g(x(k))u(k). (5)

We are interested in solving a discrete-time optimal control

problem for the system in (5) to find the control input

sequence such that

{u∗(k)}T
k=1 = arg min

T∑

k=1

q(x(k),u(k)) + q f (u(T + 1)).

(6)

subject to the dynamic equation (5). In (6), q(x,u) is the cost

function over the finite horizon, and q f (x) is the terminal cost.

The nonlinear model predictive control (NMPC) problem

solves for the optimal control sequence {u∗(k)}T
k=1 with the

nonlinear dynamic equation in (5) and implements the opti-

mal input {u∗(k)}τk=1 for 1 ≤ τ ≤ T and then repeats these

steps from the state x(τ + 1) at k = τ + 1. 

The path planning strategy in this article combines, as

originally proposed in [4], the concept of a potential field

with the NMPC-based online optimization. The cost func-

tion in (6) includes the potential function terms responsible

for path planning in the presence of stationary or moving

obstacles. This allows the trajectory generation and vehicle

stabilization to be combined into a single optimization prob-

lem, and the look-ahead nature of the MPC framework

makes this approach less vulnerable to local minima [4]. 

For obstacle avoidance, the following potential function

term is included in the cost function q(x(k),u(k))

qobst(x(k)) =

N∑

i=1

K i

a i(x s(k) − x i(k))2 + b i(y s(k) − y, (k))2 + c i(zs(k) − z, (k))2 + ε
,

(7)

where (x s, y s, z s) denotes the position of the vehicle, and

(x i, y i, z i) denotes the position of the ith obstacle in the spatial

coordinate system. Equation (7) introduces a potential field near

N obstacle points into the MPC framework: (a i, b i, c i) is a set

of scaling factors in X S, Y S, and Z S directions, respectively,

and ǫ is a positive constant to prevent (7) from being singular

when (x s, y s, z s) = (x i, y i, z i). In the following, we will

present an obstacle avoidance algorithm using the MPC frame-

work shown above for urban exploration problems.

Autonomous Exploration
Using MPC with a Local Map
In this section, we present MPC-based trajectory generation

for autonomous exploration in unknown environments with

obstacles. Particularly, we are interested in addressing the safe

navigation of UAVs in urban environments with no prior

information available on the obstacles. We begin with the fol-

lowing statement:

Problem Statement

Find a trajectory that allows the vehicle to navigate from

the given starting Point A to the destination Point B with a

safe distance from obstacles in the environment. 

We address the problem with an integral approach of an

MPC-based trajectory planner with local obstacle map gener-

ation using onboard sensors.

Trajectory Replanning Using MPC
The MPC-based trajectory replanning begins with a reference

trajectory from Point A to Point B, given by a higher-level

strategic layer. Without loss of generality, the initial reference

trajectory is assumed to be a straight line. The MPC approach

presented above can be formulated as a tracking control prob-

lem with a cost function term in (6) such that

qtrk(x(k)) =
1

2
(y re f (k) − x(k))TQ(y re f (k) − x(k)), (8)

where q(x(k)) = qtrk(x(k)) + qobst(x(k)).

In [4], for selecting qobst, it was shown that the cost term (7)

with N = 1 is sufficient to find the solution, although (7) with

N > 1 is expected to result in an optimization surface more

favorable to the gradient-search-based optimization. In order to

lower the computation load, however, we leave N = 1 so that

Figure 3. A laser scanning device mounted on an actuated
mounting platform.
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only the nearest point is considered in the optimization (Figure

4). It is noted, however, that the “nearest point” is not fixed at

one point, as the state variables, including the vehicle position,

evolve over the hypothetic finite horizons during the optimiza-

tion. We will present practical issues for finding the nearest

point using the sensor-based local map in the following.

Setting N = 1 and letting the cost function decay uni-

formly in all directions, the cost term in (7) for urban naviga-

tion is set to 

Kobs is a tuning parameter to balance the tendency to stay on

the original given path and to break away from the given path

to go around obstacles. 

In [4], (5) is chosen to be the full vehicle dynamic model so

that the stabilizing control input u(k) also minimizes other

penalties for tracking, obstacle avoidance, or aerial pursuit-eva-

sion games. In this article, to keep the computation load lower,

we choose a simplified dynamic model as shown in (10) for (5):

x(k + 1) = x(k) + Tsu(k), (10)

where x△

=
[x s y s z s]T , u△

=
[v s

x v s
y v s

z]T , and Ts is the sampling

time of the discretized model. In this setup, the optimization

result is the reference velocity in the spatial coordinates. The

final trajectory is obtained by solving the forward difference

(10) with the reference velocity. The vehicle trajectory of the

simplified model driven by the optimal control sequence is

sent to the tracking control layer [6]. By separating the trajec-

tory layer from the stabilization layer, any failure of the opti-

mization routine to converge to a solution can be beneficially

isolated from the overall stability of the vehicle. However, due

to the tracking error between the reference position and the

physical position, an algorithm is conceived to find the near-

est point during the optimization process based on the col-

lected obstacle points, as discussed in the following section.

Local Obstacle Map Building
For the MPC-based trajectory generation with obstacle

avoidance, we need to find Xmin
O , the vector from the reference

position to the nearest point on an obstacle such that 

Xmin
O (X re f ) = arg min ‖XO − X re f ‖2,

XO∈Sob s

(11)

where ‖ · ‖2 is Euclidian norm in 3-D space, and Sobs is the

set of all points on the obstacles in the surrounding 3-D

space. 

Theoretically, (11) demands a perfect knowledge of all obsta-

cles in the surrounding environment, which assumes an ideal

sensor capable of omnidirectional scanning with infinite

detection range. Also, during the optimization, a hypotheti-

cal sensor should be moving along the trajectory of the state

propagation over a finite horizon at each iteration step. Obvi-

ously, a real-world sensor would not satisfy such requirements.

Finally, if the MPC algorithm is used as a reference trajectory

generator, due to the inevitable tracking error, the range data is

measured at the physical location of the vehicle and not on the

reference trajectory. Therefore, in order to provide Xmin
O to the

MPC-based trajectory generator during the optimization, it is

mandatory to maintain a local obstacle map caching recent mea-

surements from onboard sensors. 

At each scan, the sensor provides Nmeas measurements of

the scan points from the nearby obstacles. Due to the imper-

fect coverage of the surroundings with possible measurement

errors, each measurement set X i
O is first filtered, transformed

into local Cartesian coordinates, and cached in the local obsta-

cle map. A first-in first-out (FIFO) buffer is chosen as the data

structure for the local map, whose buffer size is determined by

the types of obstacles nearby. If the surrounding is known to

be static, the buffer size can be as large as the memory and

Figure 4. Nearest-point method.
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Figure 5. Local map building method for the nearest-point
approach.
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qobst(x(k)) =Kobs((x
s(k) − xmin(k))2

+ (y s(k) − ymin(k))2

+ (zs(k) − zmin(k))2
+ ε)−1. (9)
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processing overheads permit. On the other hand, a more

dynamic environment would require a smaller buffer to reduce

the chance of detecting obstacles that may not exist any more. 

In order to solve (11), the measurement set in the FIFO is

sorted in ascending order of ‖X i
O − Xref‖2 for all X i

O in the

local obstacle map, where 1 ≤ i ≤ NC .

Before being registered in the database, any

anomalies such as “salt-and-pepper” noise

should be discarded. Also, the measurements

are examined for any small debris such as grass

blades or leaves blown by the downwash of

the rotor. Such small-size objects, not being

serious threats for safety, are ignored. In order

to eliminate these anomalies, we first discard

measurements out of minimum and maxi-

mum detection range. Then we apply an

algorithm that computes a bounding box that

contains a series of subsequent points in the

FIFO where the distance between the adja-

cent points in the sorted sequence is less than

a predefined length. Then, if the volume of

the bounding box is larger than a threshold of

becoming a threat, the coordinates of the

nearest point in the bounding box are found

and used for computing (9). The procedure of

the local obstacle map building method pro-

posed above is illustrated in Figure 5. 

Experiment Results
In this section, we present the simulation and experiment results

of autonomous exploration in an urban environment. The

experiment design is carefully scrutinized for the safety regula-

tions; it is performed in a field with portable canopies simulating

buildings, not with real ones. The canopies, measuring 3 m × 3

m × 3 m each, are arranged as shown in Figure 6. The distance

between one side to the next adjacent side of canopies is set to

10 m in the north-south direction and 12 m in the east-west

direction so that the UAV with a 3.5-m-long fuselage can pass

Figure 6. An aerial view of an urban navigation experiment (dashed line:
given straight path; solid line: actual flight path of UAV during experiment).

200 400 600 800 1,000 1,200

100

200

300

400

500

600

700

800

900

Figure 7. A simulation of MPC-based path planning in the
proposed urban experiment setup.
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Base platform Yamaha R-50 Industrial Helicopter

Dimensions (width, 0.7 m × 3.5 m  × 1.08 m 

length, height)

Rotor Diameter 3.070 m

Weight 44 kg (dry weight)

20 kg (payload including avionics)

Engine 2-cycle gasoline engine

12 hp

Operation time Fuel: 40 min

Avionics: 200 min

Onboard system CPU: AMD K6 400 MHz PC104

Boeing DQI-NP INS

NovAtel GPS MillenRT-2

IEEE 802.11b Wireless Ethernet

Ultrasonic altimeters

SICK laser range finder (LMS-200)

Capabilities Preloaded waypoint navigation

Interactive waypoint navigation

Position tracking mode

Table 1. Specification of a Berkeley UAV:
Ursa Magna 2.
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between the canopies with minimal safe clearance, about 3 m

from the rotor tip to the nearby canopy when staying on course. 

For validation, the MPC engine developed in [4] is applied

to the proposed urban experiment setup. A simulation model

is constructed in MATLAB/Simulink, where the local map

built using a laser scanner is substituted with a prebuilt map.

The MPC with the local map building algorithm is imple-

mented in C language for speed and portability. As shown in

Figure 7, the MPC path planner demonstrated its capability to

generate a collision-free trajectory based on the original trajec-

tory with intentional overlapping with buildings. The lines

pointing to the buildings represent Xmin
O computed at each

sampling time. For experiments, the Simulink model is modi-

fied to function as the online trajectory generator; although

Simulink was not designed for a real-time controller in the

loop, it can be tweaked to run for soft real-time control by

adding a real-time enforcing block. Using the blocking behav-

ior of TCP/IP communication, a custom TCP/IP transport

block is configured to enforce soft real-time operation of the

Simulink model at 10 Hz in this case. 

A series of experiments for urban exploration was performed

using a Berkeley UAV (Figure 1), whose detailed specification is

given in Table 1. For obstacle detection, the vehicle is equipped

with an LMS-200 from Sick AG (Figure 3), a 2-D laser range

finder. It has 80 m of detection range with 10-mm resolution.

The scanner’s measurement is sent to the flight computer via

RS-232 and then relayed to the ground station running the

MPC-based trajectory generator in Simulink. The trajectory

generation module on MATLAB/Simulink and the ground

monitoring/commanding software were executed simultaneous-

ly on a computer with Pentium 4, 2.4 GHz with 512

MB RAM running Microsoft Windows XP. The laser

scanner data is processed following the procedure

described above. In Figure 8, a 3-D rendering from

the ground station software is presented. The display

shows the location of the UAV, the reference point

marker, Xmin
O/B to a point in the local obstacle map at

that moment, and laser-scanned points as dots. During

the experiments, the laser scanner was able to detect

the canopies in the line of sight with outstanding accu-

racy as well as other natural and artificial objects,

including buildings, trees, and power lines. 

The processed laser scanned data in the form of a

local obstacle map is used in the optimization (6). The

trajectory is then sent via IEEE 802.11b to the

onboard flight management system at 10 Hz. The

overall system structure used in the experiments is

shown in Figure 9. The tracking layer controls the

host vehicle to follow the revised trajectory. In the

repeated experiments, the vehicle was able to fly

around the obstacles with sufficient accuracy for

tracking the obstacle-free trajectory, as shown in Fig-

ure 6 (solid line). 

Conclusions
This article presented an autonomous explo-

ration method in an unknown environment

using MPC-based obstacle avoidance with

local map building by onboard sensing. An

onboard laser scanner is used to build an

online map of obstacles around the vehicle

with outstanding accuracy. This local map is

combined with a real-time MPC algorithm

that generates a safe vehicle path, using a cost

function that penalizes the proximity to the

nearest obstacle. The adjusted trajectory is

then sent to a position tracking layer in the

hierarchical UAV avionics architecture. In a

series of experiments using a Berkeley UAV,

the proposed approach successfully guided the

vehicle safely through the urban canyon.

Figure 8. A snapshot of the 3-D rendering during an urban exploration
experiment. 
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