
Conflict Propagation and Component Recursion for
Canonical Labeling

Tommi Junttila� and Petteri Kaski

Aalto University and Helsinki Institute for Information Technology
Department of Information and Computer Science

PO Box 15400, FI-00076 Aalto, Finland
{Tommi.Junttila,Petteri.Kaski}@tkk.fi

Abstract. The individualize and refine approach for computing automorphism
groups and canonical forms of graphs is studied. Two new search space pruning
techniques, conflict propagation based on recorded failure information and recur-
sion over nonuniformly joined components, are presented. Experimental results
show that the techniques can result in substantial decrease in both search space
sizes and run times.

1 Introduction

Given as input a graph G with vertex set {1, 2, . . . , n}, the canonical labeling problem
asks us to compute a permutation κ(G) : {1, 2, . . . , n} → {1, 2, . . . , n} such that the
graph Gκ(G), obtained by relabeling the vertices of G with κ(G), is independent of the
labeling of the vertices in the input. Put otherwise, for any two isomorphic graphs, G
and H , it is required that Gκ(G) = Hκ(H).

It is currently not known whether the canonical labeling problem admits an algorithm
that runs in time polynomial in n. This observation withstanding, canonical labeling
tasks are recurrent in combinatorial computation, which has warranted the develop-
ment of backtracking algorithms tailored for performance on practical instances, even
if there are crafted instances where the running time scales exponentially in n. (We
refer to [1,2,3] for a further discussion of the theoretical and practical background of
the problem.) Currently the fastest algorithm implementations, such as nauty [4,5] and
bliss [3], are based on the paradigm of recording the state of the search in an ordered
partition of the vertices, whereby two basic operations are applied to drive the search:
(i) individualization of vertices, and (ii) refinement of the ordered partition using iso-
morphism invariants. The standard invariant used in a refinement step is the so-called
color-degree invariant (the invariant value at a vertex lists, for each cell of the ordered
partition, the number of neighbors the vertex has in the cell).

In this paper our objective is to augment the basic paradigm of individualization and
refinement with two further heuristics:

Conflict Propagation based on Recorded Failure Information. Conflict propaga-
tion is a technique encountered in many backtrack algorithms: whenever a conflicting

� Financially supported by the Academy of Finland (project 122399).

A. Marchetti-Spaccamela and M. Segal (Eds.): TAPAS 2011, LNCS 6595, pp. 151–162, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

152 T. Junttila and P. Kaski

search state is encountered, one tries to propagate the conflict upwards in the search
tree beyond the most recent branching point. Our implementation of conflict propaga-
tion occurs in the process of finding symmetries (automorphisms) of the input graph.
In particular, whenever we discover that the current node in the search tree conflicts
with (is not isomorphic to) the corresponding “first-path node” (and thus cannot pro-
duce any automorphisms), we attempt to propagate the conflict to the parent node of
the current node. This propagation is carried out by (iteratively) checking the current
node against recorded invariant values of the child nodes of first-path nodes that also
conflicted; if the node conflicts in a different way, we can deduce that its parent node
cannot be isomorphic to its corresponding first-path node, either.

Component recursion. Component recursion attempts to partition the search state into
“components” that can be searched independently of each other. Here it is important to
note that nontrivial components need not always exist, which sets the technique some-
what apart from the classical divide-and-conquer paradigm. In particular, one needs to
be able to quickly detect the absence of nontrivial components.

An immediate notion of a component in the context of canonical labeling are the
connected components of a graph. Our implementation of component recursion is based
on the following notion of a nontrivial component. An ordered partition is equitable if
its cells cannot be split further using the color-degree invariant. We say that two cells
of an equitable ordered partition are nonuniformly joined if each vertex in one cell
has both neighbors and non-neighbors in the other cell. A nonuniform component is a
connected component in the graph with the cells as vertices, and with edges joining the
cells that are nonuniformly joined. We show that nonuniform components enable a form
of component recursion where canonical labeling reduces to the task of canonically
labeling the nonuniform components. We also note that similar concepts have been
used previously in the design of graph isomorphism algorithm with a vertex-exponential
upper bound on the running time [6].

The main practical motivation for these two heuristics is that they are computation-
ally cheap to incorporate into existing algorithm implementations, such as bliss [3] and
nauty [4,5], because they rely on information that is already computed but not fully
exploited by the implementations. For example, conflict propagation utilizes only in-
formation that is already computed when traversing first-path nodes in the search tree,
so it merely suffices to store the information for later use. Similarly, the nonuniform
components are obtained as a side-effect of executing the heuristic for selecting which
cell to split in an individualization step.

Based on an implementation of the heuristics in the tool bliss, we find that the heuris-
tics significantly improve the performance of bliss on a number of families of bench-
mark graphs, yet the overhead of evaluating the heuristics is negligible for all the bench-
mark graphs.

2 Preliminaries

A graph is an ordered pair G = (V, E), where V is a finite set and E is a set of 2-
element subsets of V . The elements of V are called vertices and the elements of E
edges. We write G(V) for the set of all graphs with vertex set V . Throughout this paper

Conflict Propagation and Component Recursion for Canonical Labeling 153

we assume that V = {1, 2, . . . , n}. We denote by Sym(V) the group of all permutations
of V . The image of x ∈ V under γ ∈ Sym(V) is denoted by xγ . The composition
of permutations γ1, γ2 ∈ Sym(V) is defined for all x ∈ V by x(γ1γ2) = (xγ1)γ2 .
For example, in cycle notation, (1 2)(2 3) = (1 3 2). A permutation acts on a subset
W ⊆ V by W γ = {xγ : x ∈ W} and on a graph G by Gγ = (V γ , Eγ), V γ = V , and
Eγ = {{xγ , yγ} : {x, y} ∈ E}.

A partition of V is a set of nonempty pairwise disjoint subsets of V whose union
is V . An ordered partition of V is a list π = (W1, W2, . . . , Wm) such that the set
{W1, W2, . . . , Wm} is a partition of V . We write Π(V) for the set of all ordered par-
titions of V . Each set Wi is called a cell of the partition. A partition is discrete if all
its cells are singleton sets and unit if it has only one cell (the set V). An ordered par-
tition π associates with each x ∈ V the index π(x) of the cell of π in which x occurs,
that is, π(x) = i if and only if x ∈ Wi. If π is discrete, the mapping π̄ : x �→ π(x)
is a permutation of V . Conversely, a permutation γ ∈ Sym(V) corresponds to the
discrete ordered partition ({1γ−1}, {2γ−1}, . . . , {nγ−1}). We identify discrete ordered
partitions with permutations in this manner. For example, if π = ({3}, {1}, {2}), then
the corresponding permutation is π̄ = (1 2 3). A permutation γ ∈ Sym(V) acts on an
ordered partition π = (W1, W2, . . . , Wm) by πγ = (W γ

1 , W γ
2 , . . . , W γ

m). In particular,
if π is discrete, πγ = γ−1π̄.

For ordered partitions π1, π2 ∈ Π(V), we say that π1 is at least as fine as π2 and
write π1 � π2 if π2 can be obtained from π1 by replacing zero or more times two
consecutive cells with the union of the cells. If π1 � π2 and π1 �= π2, we say that π1

is finer than π2 and write π1 ≺ π2. For π = (W1, ..., Wi−1, Wi, Wi+1, ..., Wm) and
∅ �= S � Wi, let π↓S = (W1, ..., Wi−1, S, Wi \ S, Wi+1, ..., Wm) ≺ π. For S = Wi,
let π↓S = π. Intuitively, π↓S is the ordered partition obtained by “individualizing” the
elements in S. If A is a union of cells of π, we denote by πA the ordered partition of A
obtained by restricting π to A.

Two graphs G1, G2 are isomorphic if there exists a permutation γ ∈ Sym(V) such
that Gγ

1 = G2. Such a permutation γ is called an isomorphism of G1 onto G2. We
write G1

∼= G2 to indicate that G1 and G2 are isomorphic. An isomorphism of a graph
onto itself is an automorphism. The automorphism group Aut(G) of a graph G con-
sists of all automorphisms of G with composition as the group operation. We extend
these notions of isomorphism and automorphism to ordered tuples of objects on which
Sym(V) acts element-wise. For example, for G1, G2 ∈ G(V) and π1, π2 ∈ Π(V), we
have (G1, π1) ∼= (G2, π2) if and only if there exists a permutation γ ∈ Sym(V) with
Gγ

1 = G2 and πγ
1 = π2.

2.1 Colored Graphs, Equitable Colorings, Refinement Functions

A colored graph is an ordered pair (G, π) ∈ G(V) × Π(V), where π associates a
“color” π(x) with every x ∈ V . A colored graph (G, π) is equitable if every two
vertices of the same color have the same number of adjacent vertices of each color. If
G is clear from the context, we say that π is equitable.

Given a colored graph (G, π), one can attempt to refine the coloring in an isomor-
phism preserving way by applying a refinement function to the coloring. Formally, a
function R : G(V) × Π(V) → Π(V) is a refinement function if for all (G, π)

154 T. Junttila and P. Kaski

∈ G(V)×Π(V) and all γ ∈ Sym(V) it holds that (i) R(G, π) � π and (ii) R(G, π)γ =
R(Gγ , πγ). In the rest of the paper, we always assume that R(G, π) is equitable. The
refinement function applied in tools such as nauty [4,5] and bliss [3] is a performance-
wise optimized version of the following classic coarsest equitable refinement function.

1

2

3

4

5

6

7

8

9

10 12

11

W1

W3 W2

W4

Fig. 1. A colored graph with equitable color
classes (W1, W2, W3, W4)

Let (G, π) be a colored graph with
π = (W1, W2, . . . , Wm). Associate with
each vertex x ∈ V the color-degree vector
d(G, π, x) = (|{y ∈ Wi : {x, y} ∈ E}| :
i = 1, 2, . . . , m). Each color-degree vec-
tor is thus a vector of m nonnegative in-
tegers, where the ith component of the
vector gives the number of neighbors of
x that have color i. The coarsest equi-
table refinement is obtained by repeating
the following iteration until termination.
Given (G, π) as input, we consider the
cells W1, W2, . . . , Wm in order. If it holds for all the cells that the vertices in the cell
have identical color-degree vectors, then (G, π) is equitable and we are done. Other-
wise, let Wi be the first cell that contains vertices with differing color-degree vectors.
We partition Wi to maximal cells of vertices with identical color-degree vectors, and
order the cells according to lexicographic ordering of the color-degree vectors. We then
replace Wi in π with the new cells, and iterate the procedure.

As an example, consider the graph G shown in Fig. 1 (solid lines only). If we apply
the coarsest equitable refinement function to (G, {1, ..., 12}), we obtain the equitable
coloring ({1, 2, 3, 4}, {11, 12}, {9, 10}, {5, 6, 7, 8}) shown in the figure (dashed lines).

2.2 Individualize and Refine Depth-First Search

We now review basics of the “individualize and refine” approach for automorphism
group finding and canonical labeling; for further details, see e.g. [4,5,3].

First, we need an additional concept of a cell selector function; it is a function S
that, given a graph G ∈ G(V) and a non-discrete π ∈ Π(V), returns a non-singleton
cell in π in an isomorphism-respecting way; that is, for all γ ∈ Sym(V) it holds that
S(G, π)γ = S(Gγ , πγ). Two examples of cell selector functions are (a) the first cell
selector: relative to the ordering of the cells, take the first non-singleton cell of π; and
(b) the maximum nonuniformly joined cell selector: take the first non-singleton cell of
π that is nonuniformly joined in (G, π) to the maximum number of cells.

In what follows we assume a fixed refinement function R and a fixed cell selector
function S. The search tree of a graph G ∈ G(V) is the tree T (G) defined inductively
as follows.

1. The root node of the tree is the coloring R(G, (V)).
2. If ρ is a node in the tree and ρ is discrete, then ρ is a leaf node.
3. If ρ = (W1, W2, . . . , Wm) is a node in the tree and ρ is not discrete, then it has at

least two children defined as follows. Assume S(G, ρ) = Wj = {v1, v2, . . . , vk};
note that k ≥ 2 by definition. Now ρ has exactly k children, the ith child being the

Conflict Propagation and Component Recursion for Canonical Labeling 155

node ρi = R(G, ρ↓{vi}). The fact that ρi is the child of ρ obtained by individualiz-
ing vi and refining is denoted with ρ[vi〉ρi.

As an example, a part of the search tree for the graph in Fig. 1 is shown in Fig. 2 (for
each node, please ignore the ω component for now): individualizing the vertex 1 in the
root node π0 = ({1, 2, 3, 4}, {11, 12}, {9, 10}, {5, 6, 7, 8}) and refining gives the child
node π1 = ({1}, {2, 4}, {3}, {11, 12}, {9, 10}, {7, 8}, {5, 6}).

The fundamental property of search trees is that isomorphic graphs have isomor-
phic search trees. In particular, for all γ ∈ Sym(V) it holds that if π1[x〉π2 in T (G),
then πγ

1 [xγ〉πγ
2 in T (Gγ). As a consequence, for each γ ∈ Sym(V), (a) if p =

ρ0[x1〉ρ1 . . . [xk〉ρk is a path in T (G), then pγ = ργ
0 [xγ

1 〉ρ
γ
1 . . . [xγ

k〉ρ
γ
k is a path in

T (Gγ), (b) if ρ is a node in T (G), then ργ is a node in T (Gγ). We say that a node π in
T (G) is isomorphic to the node ρ in T (H) if (G, π) ∼= (H, ρ).

To find automorphisms and canonical labelings, the nodes in a tree are labeled with
invariant values. A function I with domain G(V) × Π(V) × Π(V) is an invariant if
for all γ ∈ Sym(V), G ∈ G(V), and π1, π2 ∈ Π(V) with π1 � π2 it holds that
I(G, π1, π2) = I(Gγ , πγ

1 , πγ
2). For a path p = ρ0[x1〉ρ1 . . . [xk〉ρk starting at the root

of T (G), let I(G, ρk) = I(G, p) = (I(G, (V), ρ0), I(G, ρ0, ρ1), . . . , I(G, ρk−1, ρk)).
An invariant I is a leaf certificate if for all graphs G, H ∈ G(V) and all leaf nodes π ∈
T (G) and ρ ∈ T (H) it holds that I(G, π) = I(H, ρ) if and only if (G, π) ∼= (H, ρ). As
an example of a leaf certificate, recall the following from [3]. Let S ⊆ V be the set of
vertices that occur in singleton cells in a coloring π2 � π1 but not in π1 and let λ � π2

be any discrete coloring. Now C(G, π1, π2) =
{
{uλ̄, vλ̄} : u ∈ S, {u, v} ∈ E

}
is a leaf

certificate whenever π1 and π2 are equitable (which is the case in our search trees as the
refinement function always returns an equitable partition). As an example, for the search
tree in Fig. 2, C(G, π0, π1) = C(G, π0, π2) = {{1, 11}, {1, 12}, {4, 9}, {4, 10}}; for
intuition, observe that C(G, π0, π1) includes a subset of the edges in Gλ̄ for any leaf
node λ that is descendant of π1. The leaf certificate in bliss is a combination of a leaf
certificate of this type and an invariant value derived when evaluating the refinement
function.

The search tree in nauty and bliss is traversed using two interleaved depth-first
searches. (a) The “automorphism search” looks for leaf nodes ρ that have the same

(π1,1,2, ω1,1,2) =
([1|2|4|3|12|11|9|10|8|7|5|6],
[2 4 5 6 7 8|1 3|9 10 11 12])

(π1,1,1, ω1,1,1) =
([1|2|4|3|11|12|10|9|8|7|5|6],
[2 4 5 6 7 8|1 3|9 10 11 12])

11 12

(π1,1, ω1,1) =
([1|2|4|3|11 12|9 10|8|7|5|6],
[2 4 5 6 7 8|1 3|9 10 11 12])

(π1, ω1) =
([1|2 4|3|11 12|9 10|7 8|5 6],
[1 2 3 4 5 6 7 8|9 10 11 12])

(π0, ω0) =
([1 2 3 4|11 12|9 10|5 6 7 8],
[1 2 3 4 5 6 7 8 9 10 11 12])

... ...

(π1,2, ω1,2) =
([1|4|2|3|11 12|9 10|7|8|6|5],
[2 4 5 6 7 8|1 3|9 10 11 12])

42

(π2,1, ω2,1) =
([2|1|3|4|11 12|9 10|8|5|7|6],
[1 2 3 4 5 6 7 8|9 10 11 12])

11 12 11 12

... ...

2
......(π2, ω2) =

([2|1 3|4|11 12|9 10|5 8|6 7],
[1 2 3 4 5 6 7 8|9 10 11 12])

1

...
3

3
41

Fig. 2. A part of the search tree for the graph in Fig. 1 under the coarsest equitable refinement
function and a cell selector function

156 T. Junttila and P. Kaski

certificate value as the leaf node π in the first full path (that is, a path from the root to
a leaf) traversed by the search. Whenever such a leaf node ρ is found, we have discov-
ered the automorphism π̄ρ̄−1. Indeed, I(G, π) = I(G, ρ) implies (G, π) ∼= (G, ρ) and
thus Gπ̄ρ̄−1

= G. For example, in the search tree in Fig. 2 we have C(G, π1,1,2) =
C(G, π1,1,1) and thus the automorphism (9, 10)(11, 12) is discovered at π1,1,2. (b)
The “canonical labeling search” looks for a leaf node ρ that has the lexicographi-
cally largest certificate value I(G, ρ); the canonical labeling is then the permutation
ρ̄ (if γ ∈ Sym(V), then T (Gγ) has the node (Gγ , ργ) with I(Gγ , ργ) = I(G, ρ) and
Gγργ = Gγγ−1ρ̄ = Gρ̄). Both searches are pruned by the automorphisms discovered
during the search and various other techniques [3,4].

3 Pruning with Recorded First-Path Failures

We now present our first new pruning technique that aims at reducing the search space
traversed by the “automorphism search”. The idea is to record some information about
the children of each first-path node ν that are not isomorphic to the first-path child of
ν; that is, those children that did not result in the discovery of an automorphism. This
information can in some cases be used to infer that a node is not isomorphic to the
corresponding first-path node and thus can be skipped together with its subtree.

Let us fix a graph G ∈ G(V) and consider the search tree T (G). Let I be an in-
variant and assume that p = ν0[x1〉ν1 . . . [xl〉νl is the first full path in T (G) traversed
by the depth-first search. For each node νi on p, define the failing set by fail(νi) =
{I(G, ρ) : νi[x〉ρ and (G, ρ) �∼= (G, νi+1)}. In other words, fail (νi) consists of the in-
variant values of the children of νi that are not isomorphic to the first-path child νi+1 of
νi. We compute the sets incrementally during the depth-first search so that if the search
has backtracked above the first-path node νi, then fail (νi) has been fully computed.
Note that it is possible to have I(G, νi+1) ∈ fail (νi) as there can be another child ρ of
νi such that (G, ρ) �∼= (G, νi+1) but I(G, ρ) = I(G, νi+1).

Consider the situation when the search is traversing a path q = ρ0[y1〉ρ1 . . . [yk〉ρk

with (a) j + 2 ≤ k ≤ l, (b) νi = ρi and xi = yi for all i ≤ j, (c) I(G, ρi) = I(G, νi)
for all j + 1 ≤ i ≤ k − 1, and (d) I(G, ρk) �= I(G, νk). It thus follows from (d) that q
cannot be, or be extended into, a full path isomorphic to p.

Now, if it also holds that I(G, ρk) /∈ fail (νk−1), then we can infer that (G, ρk−1) is
not isomorphic to (G, νk−1) as, by the definition of fail , (G, νk−1) does not have any
(failing) child with an I-value equal to I(G, ρk). Therefore, we can skip the other chil-
dren of ρk−1 and backtrack to ρk−2. If ρk−2 is on the first path, then we add I(G, ρk−1)
to fail (ρk−2); note that I(G, ρk−1) = I(G, νk−1) in this case. If ρk−2 is not on the first
path and I(G, ρk−1) = I(G, νk−1) /∈ fail (νk−2), we can again infer that (G, ρk−2) is
not isomorphic to (G, νk−2) and can thus backtrack to ρk−3. This procedure is repeated
until we either (i) backtrack to a node ρi with i > j and I(G, ρi+1) ∈ fail (νi) or (ii)
backtrack to the node νj , in which case we add I(G, ρj+1) to fail (νj).

For example, consider the search tree in Fig. 3, where we use the symbols a, b, . . . , h
following the colon to denote invariant values at the nodes. Suppose that (G, π1,1,1,1) ∼=
(G, π1,1,1,2) holds. Then fail (π1,1,1) = ∅. Because I(G, π1,1,2)=c �=b= I(G, π1,1,1)

Conflict Propagation and Component Recursion for Canonical Labeling 157

... ...
...

...

π0 : g

π1 : f

π1,1,1 : b π1,1,2 : c π1,2,1 : b

π1,2 : d

π1,2,1,1 : eπ1,1,1,1 : a π1,1,1,2 : a

π1,1 : d

π2,1,1 : h

π2,1 : d

π2 : f

Fig. 3. An example for pruning with recorded first-path failures

it follows that (G, π1,1,2) �∼= (G, π1,1,1) and thus fail (G, π1,1) = {c}. Suppose we are
visiting the node π1,2,1,1 and observe that I(G, π1,2,1,1) = e /∈ fail(π1,1,1). It follows
that π1,2,1 is not isomorphic to π1,1,1. Furthermore, from I(G, π1,2,1) = b /∈ fail(π1,1)
it follows that π1,2 is not isomorphic to π1,1. We can thus backtrack directly to π1 and
add d to fail (π1). When we are visiting π2,1,1, we can backtrack past π2,1 as h /∈
fail (π1,1) but not past π2 as d ∈ fail (π1). Indeed, it may be the case that (G, π2,1) ∼=
(G, π1,2) and thus we have to check whether there is a child of π2 isomorphic to π1,1

leading to a leaf node isomorphic to π1,1,1,1.
In the current implementation of bliss, the invariant I is a hash value of the leaf

certificate. Thus, as fail (G, νi) for each first-path node νi has at most n elements, this
pruning technique requires a quadratic amount of memory in n in the worst-case. How-
ever, in practise we have not found a family of benchmark graphs where the memory
consumption would be significant.

4 Pruning with Nonuniform Component Recursion

Let (G, π) be a colored graph with π = (W1, W2, . . . , Wm). For 1 ≤ i �= j ≤ m
we say that Wi is uniformly joined to Wj if either (i) every vertex in Wi is adjacent to
all the vertices in Wj , or (ii) no vertex in Wi is adjacent to any vertex in Wj . Observe
that this is a symmetric relation. Furthermore, observe that any two singleton cells are
uniformly joined. As an example, consider the colored graph in Fig. 1. The color class
W1 is uniformly joined to all the other color classes except W4. The color class W3 is
uniformly joined to all the other color classes except W2.

Define an undirected graph with vertex set W1, W2, . . . , Wm and edges joining
nonuniformly joined cells. This graph is called the nonuniformity graph of (G, π), and
its connected components are called nonuniform components. In what follows we will
identify a nonuniform component in the nonuniformity graph with the corresponding set
of vertices in (G, π). That is, we say that C ⊆ V is a nonuniform component of (G, π)
if C = ∪j∈JWj where {Wj : j ∈ J} is the set of vertices of a connected component
in the nonuniformity graph of (G, π). Observe that if C is a nonuniform component of
(G, π), then Cγ is a nonuniform component in (Gγ , πγ) for each γ ∈ Sym(V).

Consider again the colored graph in Fig. 1. The associated nonuniformity graph con-
sists of the vertices {W1, W2, W3, W4} and the edges {{W1, W4}, {W2, W3}}. The
nonuniform components of the colored graph are thus W1 ∪ W4 and W2 ∪ W3.

158 T. Junttila and P. Kaski

The uniform join relation is hereditary, that is, any cells obtained by splitting uni-
formly joined cells remain uniformly joined. As a consequence, nonuniform compo-
nents are monotone. Formally:

Lemma 1. Let (G, π) be a colored graph and let σ � π. If W and Z are uniformly
joined cells in (G, π), then for all cells X ⊆ W and Y ⊆ Z in σ it holds that X and Y
are uniformly joined in (G, σ). Furthermore, every nonuniform component of (G, σ) is
a subset of a nonuniform component of (G, π).

A central property of nonuniform components is that the automorphism group of a
colored graph is the direct product of the automorphism groups of the colored sub-
graphs induced by the nonuniform components.

Lemma 2. Let C be a nonuniform component of a colored graph (G, π). If α is an
automorphism of (G, π), then so is β defined by (i) β(v) = α(v) when v ∈ C, and (ii)
β(v) = v when v ∈ V \ C.

We now show how to exploit the nonuniform components to prune the search space.
The idea is to traverse the components one by one and recursively; this allows us to use
the component boundaries for earlier detection of automorphisms and improvements in
the canonical labeling.

First, we have to redefine cell selector functions to be component sensitive. In what
follows, a cell selector function is a function S that, given a graph G ∈ G(V), an ordered
partition π of V , and a union U of some non-trivial nonuniform components of (G, π),
returns a non-singleton cell in π that is a subset of U in a way that S(G, π, U)γ =
S(Gγ , πγ , Uγ) for each γ ∈ Sym(V). A cell selector function S factors over non-
uniform components if in addition it holds that S(G, π, U) = S(G, σ, U) for all σ � π
such that σU = πU . That is, the components outside of U do not influence the cell
selection. Two examples of cell selector functions are (a) the first cell selector: relative
to the ordering of the cells, we take the first non-singleton cell of π in U ; and (b) the
maximum nonuniformly joined cell selector: we take the first non-singleton cell of π in
U that is nonuniformly joined in (G, π) to the maximum number of cells. Both of these
selectors factor over nonuniform components.

We now redefine search trees so that the nodes carry additional information on the
components. A node in the tree will now be a pair (π, ω), where π ∈ Π(V) is a coloring
as earlier and ω ∈ Π(V) is a component stack; it is required that each nonuniform
component of (G, π) is a subset of a cell in ω. The search tree T (G) of G is now
redefined inductively as follows:

1. The root node of the tree is the pair (R(G, (V)), (V)).
2. If (π, ω) is a node in the tree and π is discrete, then (π, ω) is a leaf node.
3. If N = (π, ω) is a node in the tree and π is not discrete, then N has at least

two children defined as follows. Let Vj be the first cell in ω such that the induced
coloring πVj is not discrete. Assume S(G, π, Vj) = W = {v1, v2, . . . , vk} and
let C ⊆ Vj be the nonuniform component of (G, π) that contains W . We say
that C is opened at (π, ω). Now N has exactly k children, the ith child being the
node Ni = (R(G, π↓{vi}), ω↓C). The fact that Ni is the child of N obtained by
individualizing vi is denoted with N [vi〉Ni.

Conflict Propagation and Component Recursion for Canonical Labeling 159

The fact that the tree is well-defined, that is, the requirements on component stacks are
fulfilled, follows quite directly by recalling the monotonicity property of nonuniform
components (Lemma 1). Symmetry properties similar to those on the basic search trees
hold because (π1, ω1)[x〉(π2, ω2) in T (G) if and only if (πγ

1 , ωγ
1)[xγ〉(π2

γ , ω2
γ) in

T (Gγ) for each γ ∈ Sym(V).
As an example, consider the search tree shown in Fig. 2 for the graph in Fig. 1 but

now including the ω partitions. The vertex 1 belongs to the nonuniform component
C0 = {1, 2, . . . , 8} of (G, π0) and thus ω1 includes it before the other component
{9, . . . , 12}. Now the vertex 2 belongs to the component C1 = {2, 4, 5, 6, 7, 8} ⊆ C0

of (G, π1) and thus (π1, ω1)[2〉(π1,1, ω1,1) with ω1,1 further refining the component C1

into {2, 4, 5, 6, 7, 8}. In (π1,1, ω1,1) the component C0 is discrete and the search then
focuses on the other component {9, . . . , 12} of (G, π0).

We say that a refinement function R is closed if R(G, π) = R(G, R(G, π)) holds
for all colored graphs (G, π). Note that an arbitrary refinement function can be trans-
formed into a closed function by iterating the function at most n− 1 times until a fixed
point is reached. A colored graph (G, π) is R-stable if R(G, π) = π. Observe that if
R is closed, then (G, R(G, π)) is always R-stable. A refinement function R factors
over uniform components if for all R-stable colored graphs (G, π), for all nonuni-
form components C of (G, π), and for all σ, τ � π it holds that σC = τC im-
plies R(G, σ)C = R(G, τ)C . Observe that if R factors over uniform components,
(G, π) is R-stable, C is a nonuniform component in (G, π), and σ � π with σC =
πC , then R(G, σ)C = R(G, π)C = πC . That is, if we split some cells of an
R-stable coloring and then refine the obtained partition, then only the nonuniform com-
ponents with splits get refined and the refinement does not depend on the other compo-
nents. The coarsest equitable refinement function is closed and factors over nonuniform
components.

In what follows we assume a fixed cell selector function S and a fixed, closed refine-
ment function R, both of which factor over nonuniform components.

Let (π, ω)[x1〉(π1, ω1) . . . [xk〉(πk, ωk) be a full path in T (G) and let C be the com-
ponent opened at (G, π). We say that C is closed at the first node (πi, ωi) in which πC

i

is discrete. As an example, the component {1, 2, . . . , 8} opened at π0 and the compo-
nent {2, 4, 5, 6, 7, 8} opened at π1 are both closed at π1,2 in the search tree in Fig. 2.
Furthermore, starting from any non-leaf node in the tree, the nonuniform component
opened at the node is closed before any other components are refined at all:

Lemma 3 (Localization). Let (π, ω)[x1〉(π1, ω1) . . . [xk〉(πk, ωk) be a path in T (G)
and let C be the nonuniform component opened at (π, ω). Then, for all 1 ≤ i ≤ k it
holds that either (i) πC

i is discrete (in which case πC
j is discrete and xj /∈ C for all

i < j ≤ k), or (ii) xi ∈ C, π
V \C
i = πV \C , and ω

V \C
i = ω

V \C
1 .

Furthermore, paths operating on different components are switchable as follows:

Lemma 4 (Switching). Let p = (π, ω)[xp,1〉(πp,1, ωp,1) . . . [xp,k〉(πp,k, ωp,k) and q =
(π, ω)[xq,1〉(πq,1, ωq,1) . . . [xq,m〉(πq,m, ωq,m) be two paths in T (G) such that the non-
uniform component C opened at (π, ω) is closed at both (πp,k, ωp,k) and (πq,m, ωq,m).
Then p[y1〉(πr,1, ωr,1) . . . [yh〉(πr,h, ωr,h) is a path in T (G) if and only if q[y1〉(πs,1,ωs,1)

160 T. Junttila and P. Kaski

. . . [yh〉(πs,h, ωs,h) is a path in T (G) with π
V \C
r,i = π

V \C
s,i and ω

V \C
r,i = ω

V \C
s,i for all

1 ≤ i ≤ h.

For compactness in what follows we will omit the recursion stack components from
the notation. In what follows let p = π0[x1〉 . . . [xi〉πi[xi+1〉πi+1 . . . [xk〉πk and q =
π0[x1〉 . . . [xi〉πi[yi+1〉ρi+1 . . . [ym〉ρm be rooted paths in T (G) such that the nonuni-
form component C of (G, πi) opened at πi is closed both at πk and ρm.

An invariant I factors over nonuniform components if, informally, its value depends
only on the refined components. Formally, we require that for all R-stable colored
graphs (G, π), all nonuniform components C of (G, π), all ρ � π with ρC = πC ,
and all R-stable σ � π with σV \C = πV \C , it must hold that I(G, π, ρ) = I(G, σ, τ)
for the coloring τ � π with τC = σC and τV \C = ρV \C . The leaf certificate C de-
fined in Sect. 2.2 factors over nonuniform components. If I is a also a leaf certificate,
from Lemmas 3 and 4 it follows that I(G, p) = I(G, q) if and only if (G, πk) ∼=
(G, ρm). (To establish the “only if” direction, consider any extension of p to a full
path, and apply Lemma 4 to obtain a full path extending q. Suppose κ and λ are
the leaf nodes at the ends of these paths. Then α = κ̄λ̄−1 ∈ Aut(G, πi) satisfies
πα

k = ρm. Below we assume that I is a leaf certificate that factors over nonuniform
components.

Early automorphism detection. We can apply the previous observation as follows. (a)
If p is a prefix of the first path and q is the current path traversed in the “automorphism
search” with I(G, p) = I(G, q), then we have found the automorphism α = κ̄λ̄−1. We
can now report α, skip the sub-tree rooted at ρm, backtrack the “automorphism search”
to πi, and consider the next sibling of the child ρi+1. (b) Similarly, if p is a prefix of the
current best path and q is the current path traversed in the “canonical labeling search”
with I(G, p) = I(G, q), we can skip the subtree rooted at ρm, backtrack the search to
πi, and consider the next sibling of ρi+1.

For example, in the search tree in Fig. 2 we have that (G, π1,1) ∼= (G, π1,2). There-
fore, the “automorphism search” can skip the subtree rooted at π1,2 and report the found
the automorphism (2, 4)(5, 6)(7, 8) of G.

Early best path improvement detection. When the applied leaf certificate function I
factors over nonuniform components, we can use Lemma 4 to get further pruning. If p
is a prefix of the current best path p[z1〉κ1 . . . [zl〉κl, q is the current path traversed in
the “canonical labeling search”, and I(G, q) > I(G, p), then, by applying Lemma 4,

r = q[z1〉ν1 . . . [zl〉νl with ν
V \C
i = κ

V \C
i for all 1 ≤ i ≤ l and I(G, νl) > I(G, κl)

is the best path in T (G) visiting the node ρm and that I(G, νi−1, νi) = I(G, κi−1, κi)
(define ν0 = κ0 = πk) for all 1 ≤ i ≤ l. Therefore, the “canonical labeling search”
does not have to traverse the sub-tree rooted at ρm but can set r as the new best
path and νl as the new candidate for the canonical labeling, backtrack one level, and
consider the next sibling of ρm. As an example, if the first path in the search tree
in Fig. 2 is the best path found so far, the “canonical labeling search” is traversing
the node π2,1, and C(G, π0[1〉π1[2〉π1,1) < C(G, π0[2〉π2[1〉π2,1), then the search can
skip the sub-tree rooted at π2,1 and set the canonical labeling candidate to ν̄, where
ν = ({2}, {1}, {3}, {4}, {11}, {12}, {10}, {9}, {8}, {5}, {7}, {6}), and the best path
certificate to (C(G, [V], π0), C(G, π0, π2), C(G, π2, π2,1), C(G, π1,1, π1,1,1)).

Conflict Propagation and Component Recursion for Canonical Labeling 161

5 Experimental Evaluation of the Pruning Techniques

As the benchmark set of graphs we use the collection of graphs downloadable at the
bliss web site 〈http://www.tcs.hut.fi/Software/bliss〉. The experimen-
tal version 0.65 of bliss used here, as well as some more detailed result graphs, are avail-
able at 〈http://users.ics.tkk.fi/tjunttil/experiments/TAPAS2011〉. To
see that our base line (bliss version 0.65 without the new pruning techniques but with
the ones in [3]) is comparable to state-of-the-art, consult Fig. 4 showing a compari-
son to nauty version 2.4 〈http://cs.anu.edu.au/˜bdm/nauty/〉 on the same
benchmark set of graphs. In all experiments, we permute and run each benchmark twice
and use time limit of ten minutes; the timed-out runs are plotted on the lines at 700 sec-
onds (time plots) and 108 nodes (search space plots). Due to space limits and to the fact
that our purpose is to evaluate the proposed pruning techniques, we omit the comparison
to a similar tool saucy [7] (no canonical labeling, only automorphism group computa-
tion) and to traces [8] (which uses a mixed depth-first/breadth-first search instead of
depth-first and also considers a computationally more intensive refinement function).

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

bl
is

s
0.

65

nauty 2.4

time

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

bl
is

s
0.

65

nauty 2.4

search space

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

bl
is

s
0.

65
 c

an
on

nauty 2.4 canon

time

(a) automorphism group
computation only

(b) automorphism group
computation only

(c) canonical labeling and
automorphism group

Fig. 4. Base comparison to nauty version 2.4 (using sparse representation of graphs)

Fig. 5 shows the results of activating the proposed pruning techniques one-by-one.
Here we consider only automorphism group computation, i.e. the “canonical labeling
search” is not run. We see that the failure recording technique provides up to one order
of magnitude run-time and search space size improvement on some families (including
Hadamard matrix and Steiner triple system graphs). The component recursion technique
only produces pruning on some graph families but when it does, the reduction in search
space and run time is substantial. Fig. 6 shows the results when canonical labeling
computation is enabled as well. As failure recording can only deduce non-isomorphism,
not that a subtree contains only paths that provide worse canonical labelings, it does
not help in pruning the “canonical labeling search”. The effect of of the component
recursion is as before; when it helps, the reduction is substantial.

To sum up, the proposed search space pruning techniques can provide substantial
reduction in both search spaces and in run times. And, equally importantly, the proposed
techniques do not significantly increase run time when they cannot produce any search
space pruning.

http://www.tcs.hut.fi/Software/bliss
http://users.ics.tkk.fi/tjunttil/experiments/TAPAS2011
http://cs.anu.edu.au/~bdm/nauty/

162 T. Junttila and P. Kaski

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

bl
is

s
0.

65
 +

fr

bliss 0.65

time

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

bl
is

s
0.

65
 +

cr

bliss 0.65

time

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

bl
is

s
0.

65
 +

fr
 +

cr

bliss 0.65

time

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

bl
is

s
0.

65
 +

fr

bliss 0.65

search space

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

bl
is

s
0.

65
 +

cr

bliss 0.65

search space

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

bl
is

s
0.

65
 +

fr
 +

cr

bliss 0.65

search space

(a) with failure recording (b) with component recursion (c) with both.

Fig. 5. Effect of the proposed techniques on automorphism group computation

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

bl
is

s
0.

65
 c

an
on

 +
fr

bliss 0.65 canon

time

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

bl
is

s
0.

65
 c

an
on

 +
cr

bliss 0.65 canon

time

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

bl
is

s
0.

65
 c

an
on

 +
fr

 +
cr

bliss 0.65 canon

time

(a) with failure recording (b) with component recursion (c) with both.

Fig. 6. Effect of the proposed techniques on canonical labeling

References

1. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proc. STOC 1983, pp. 171–183.
ACM, New York (1983)

2. Babai, L., Codenotti, P.: Isomorhism of hypergraphs of low rank in moderately exponential
time. In: Proc. FOCS 2008, pp. 667–676. IEEE, Los Alamitos (2008)

3. Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and sparse
graphs. In: Proc. ALENEX 2007. SIAM, Philadelphia (2007)

4. McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)
5. McKay, B.D.: Nauty user’s guide (version 2.4). Technical report, Department of Computer

Science, Australian National University (2009)
6. Goldberg, M.K.: A nonfactorial algorithm for testing isomorphism of two graphs. Discrete

Applied Mathematics 6, 229–236 (1983)
7. Darga, P.T., Sakallah, K.A., Markov, I.L.: Faster symmetry discovery using sparsity of sym-

metries. In: Proc. DAC 2008, pp. 149–154. ACM, New York (2008)
8. Piperno, A.: Search space contraction in canonical labeling of graphs (preliminary version).

CoRR report abs/0804.4881, arXiv.org (2008), http://arxiv.org/abs/0804.4881

http://arxiv.org/abs/0804.4881

	Conflict Propagation and Component Recursion for Canonical Labeling
	Introduction
	Preliminaries
	Colored Graphs, Equitable Colorings, Refinement Functions
	Individualize and Refine Depth-First Search

	Pruning with Recorded First-Path Failures
	Pruning with Nonuniform Component Recursion
	Experimental Evaluation of the Pruning Techniques
	References

