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Abstract 

Temperature data for seven instrumental records in the Karakoram and Hindu Kush 

Mountains of the Upper Indus Basin (UIB) have been analysed for seasonal and annual 

trends over the period 1961-2000 and compared with neighbouring mountain regions and 

the Indian sub-continent. Strong contrasts are found between the behaviour of winter and 

summer temperatures and between maximum and minimum temperatures. Winter mean 

and maximum temperature show significant increases whilst mean and minimum summer 

temperatures show consistent decline. Increase in diurnal temperature range (DTR) is 

consistently observed in all seasons and the annual data set, a pattern shared by much of 

the Indian sub-continent but in direct contrast to both GCM projections and the 

narrowing of DTR seen worldwide. This divergence commenced around the middle of 

the 20
th

 century and is thought to result from changes in large-scale circulation patterns 

and feedback processes associated with the Indian monsoon. 

 

The impact of observed seasonal temperature trend on runoff is explored using derived 

regression relationships. Decreases of ~20 % in summer runoff in the Rivers Hunza and 

Shyok are estimated to have resulted from the observed 1 
o
C fall in mean summer 

temperature since 1961, with even greater reductions in spring months. The observed 

downward trend in summer temperature and runoff is consistent with the observed 

thickening and expansion of Karakoram glaciers, in contrast to widespread decay and 

retreat in the Eastern Himalaya. This suggests that the Western Himalaya is showing a 

different response to global warming than other parts of the globe. 
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1. Introduction 

 

Instrumental records show a systematic increase in global mean temperature (Folland et 

al. 2001a, b), with global mean temperature increasing at a rate of 0.07 °C decade
-1

 over 

the last century (Jones and Moberg 2003). In addition, the 1990s were the warmest 

decade, and 1998 the warmest year since the start of the global mean temperature record 

in 1856 (Jones and Moberg 2003). However, the warming has not been globally uniform. 

High northern latitudes have been particularly affected, with reconstructions of mean 

surface temperature over the past two millennia suggesting that the late 20
th

 century 

warmth is unprecedented (Mann and Jones 2003) and attributed to the anthropogenic 

forcing of climate (Thorne et al. 2003).  

 

In most parts of the world there have been differential changes in daily maximum and 

minimum temperatures, resulting in both a narrowing of diurnal temperature range (DTR) 

and an increase in mean temperature (Karl et al. 1993; Easterling et al. 1997; Jones et al. 

1999). However, there are suggestions that the western Himalayan region is showing a 

different response to global warming (Kumar et al. 1994; Yadav et al. 2004), with an 

increase in DTR and a cooling of mean temperature in some seasons, possibly as a result 

of local forcing factors. 

 

Meteorological data from the western Himalaya and trans-Himalayan mountains have 

been little studied. However, here we report on instrumental records of temperature data 

obtained for the Upper Indus Basin for 1900-2000. The Upper Indus Basin (UIB) (Fig. 1) 

is a key area for climatological studies as it is located at the boundary between tropical 
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and continental climatic influences and has quite different climatic controls from the 

eastern or Greater Himalaya. Indian monsoon air masses, which bring significant rainfall 

on the southern margin, penetrate infrequently across the Himalayan mountain divide to 

the trans-Himalayan regions of the Karakoram and Hindu Kush Mountains. Precipitation 

in these northern ranges is concentrated in winter and spring months (Archer and Fowler 

2004) and carried on westerly disturbances originating predominantly from 

Mediterranean and Caspian Sea regions. Winter precipitation provides the principal 

source for accumulation on UIB glaciers in the greatest area of perennial ice outside the 

Polar Regions (22 000 km
2
) and upon melting, for runoff in the River Indus.  

 

In the UIB, summer runoff (July to September) is highly correlated with winter 

precipitation in middle-elevation basins dependent on an ephemeral snowpack (Fowler 

and Archer 2005). However, summer temperature and runoff are negatively correlated on 

these snow-fed catchments where increased temperature results in increased evaporative 

loss and, since snow cover volume is limiting, in reduced runoff (Singh and Bengtsson 

2005). 

 

In contrast, summer runoff volume in major high-elevation Indus tributaries such as the 

Rivers Hunza and Shyok (Fig. 1), fed by glaciers and permanent snowpack, is 

uncorrelated with winter precipitation but highly correlated with summer mean 

temperature (Archer 2003). Linear regression analysis by Archer (2003) suggests that a 1 

°C rise in mean summer temperature arising from climate change would result in an 

increase of 17 % in summer runoff for the River Shyok (basin area 65 025 km
2
) and a 16 
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% increase for the River Hunza (basin area 13 925 km
2
) respectively. Together these two 

catchments contribute more than 25 % of the inflow to Tarbela Dam which is the main 

controlling structure for the Indus Basin Irrigation System, one of the world’s largest 

integrated irrigation networks. 

 

These significant, but opposing, responses to variations in summer temperatures indicate 

potentially important practical impacts of temperature trend on river runoff and 

consequently upon local rural livelihoods in the mountains and the productivity of 

agriculture on the Indus plains. In addition, temperature trend (along with precipitation) 

will influence glacier mass balance. Whilst most of the world’s mountain glaciers have 

been shrinking for at least the last thirty years (WGMS 2000), including the neighbouring 

Greater Himalaya (Hasnain 1999; Mastny 2000; Shrestha and Shrestha 2004), Hewitt 

(1998) reports the widespread expansion of larger glaciers in the Central Karakoram, 

accompanied by an exceptional number of glacier surges. This contrast in the behaviour 

of glaciers suggests a pattern of climatic change in Karakoram and Hindu Kush different 

from that in the Greater Himalaya.  

 

The main focus of this study is the investigation of trend in seasonal temperature series 

over the period from 1900-2000 for seven instrumental records in the UIB. However, 

before this is addressed, the extent to which individual temperature records or groups of 

records are representative of the region in which they are located has been investigated. 

 

 

2. Data 
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The analysis investigates temperature data for six trans-Himalayan stations. Srinagar, in 

the neighbouring Jhelum Basin south of the Himalayan divide, has also been included for 

comparison. The stations cover a distance east to west of about 300 km and from north to 

south of over 200 km. Several data sources have been used, with measurement locations 

shown in Figure 1 and listed in Table 1. 

 

INSERT FIGURE 1 AND TABLE 1 

 

1. For the pre-partition period up to 1947, climate statistics for Gilgit and Skardu were 

derived from daily maximum and minimum temperature records in six-monthly daily 

weather reports published by the India Meteorological Department (IMD). Records 

commence in 1900 and 1903 for Skardu for Gilgit respectively and are essentially 

complete from 1905-35 and thereafter intermittent until 1947. 

 

2. For the post-partition period, the Pakistan Meteorological Department (PMD) provided 

daily records of maximum and minimum temperature for Gilgit and Skardu to 1999, and 

monthly records for Astore, Dir, Drosh and Bunji to 1997. With the exception of Dir 

(1967) these records commence in the 1950s.  

 

3. Monthly mean temperature records for Srinagar (1894-2000) were obtained from the 

Climate Research Unit at the University of East Anglia, UK.  

 

Validation was based primarily on the inspection of records as station history files were 

not available. Interviews with PMD staff indicated that standard meteorological practice, 
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established by IMD in 1891, had been adopted by PMD. However site changes had 

occurred during partition at Gilgit and Skardu. The principal validation check of records 

was through double mass curve analysis which was carried out by season and separately 

for maximum and minimum temperatures. No evidence of heterogeneity was found in 

any of the maximum temperature series. However, two years of inconsistent winter 

minima were identified at Drosh and these were substituted by regression with other 

stations. In addition, evidence of heterogeneity was identified in the winter minimum 

record at Bunji with a break of slope in the double mass curve in 1977; the pre-1977 

record was adjusted to be consistent with the later record. Whilst Bunji has been included 

in time series analysis, results must be considered of lower reliability than other stations.  

 

The network has recently been supplemented by more than 20 automatic observations 

stations at elevations up to 4700 m (Hewitt and Young 1993) and although record lengths 

are still insufficient for time series analysis, they provide a basis for assessing altitudinal 

variations in temperature (Archer 2004).  

 

3. Spatial correlation of temperature 
 

Mountainous regions are said to require a much greater density of climate stations than 

neighbouring flat lands to achieve the same reliability of areal estimates. In this most 

rugged of world landscapes, the existing network of weather stations falls short by more 

than an order of magnitude of the minimum requirement recommended by WMO (1970). 

The climatological network in the UIB is also biased by the predominant location of 

stations on valley floors. In order to assess regionally representative trends, it is necessary 

to establish the extent to which seasonal variations are correlated across the region. 
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Archer (2004) investigated such spatial relationships by drawing up correlation matrices 

of annual, seasonal and monthly temperature between weather stations in the region. A 

summary of the results for the key period of ablation, divided between the 3-month 

periods April-June and July-September is shown in Table 2. 

 

INSERT TABLE 2 

 

Conclusions drawn from this table and from the related analysis are: 

 

1. In spite of the separation of stations in distance and by major topographic barriers, 

seasonal temperatures and their anomalies are remarkably conservative. Positive 

correlation coefficients occur between all stations, with better correlation over shorter 

distances. The high correlation between temperature at Srinagar, south of the main 

Himalaya, and the northern valley stations of Gilgit and Skardu is particularly notable. 

 

2. Correlation of mean temperature is much higher during spring and summer than during 

winter months. It is suspected that in winter, under the prevailing influence of the Tibetan 

anticyclone, more local conditions such as valley temperature inversions prevail. 

 

3. On average, the station with the best seasonal correlation with other stations is Astore. 

For the spring and summer season the correlation coefficient for mean temperature is 

greater than 0.75 with all stations except Drosh (July-September).  
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4. Correlation of monthly mean temperature at high altitude stations with short records at 

Kunjerab (4733 m) and Shandur (3719 m) with Gilgit and Skardu yielded on average 

eight months with correlation coefficients greater than 0.8.  

 

The high correlation in mean temperature between valley stations separated by 

considerable horizontal distances and intervening mountain barriers strongly implies that 

these correlations will be reflected over much shorter vertical distances. This view is 

supported by the high correlation coefficients demonstrated between valley stations and 

short records from high altitude stations (Archer 2004) and also by the strong observed 

correlation between valley temperature stations and catchment runoff which is generated 

at higher elevations (Archer 2003). It is concluded that the temperature time series at 

valley stations can be used to provide a regional picture of seasonal and year-to-year 

variation in temperature. 

 

4. Analysis of temporal temperature change 

 

a. Recent trends in the UIB, 1961-2000 

 

Trends in annual, seasonal and monthly mean, maximum and minimum temperature were 

investigated for stations at Dir, Drosh, Bunji, Gilgit, Astore, and Skardu for the period 

1961-1999. For Srinagar, only mean temperature for the period 1961-2000 was available 

for investigation. The records were analysed by fitting a linear least squares trend line to 

the annual deviation from the mean and assessing the significance of trend using 

Student’s t-test.  
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A summary of the results of the analysis of annual and seasonal trend in mean, maximum 

and minimum temperature is provided in Table 3 as a basis for illustrating common 

patterns and regional differences. Increases (+) and decreases (–) are shown as change in 

o
C decade

-1
. 

 

INSERT TABLE 3 

 

1) MEAN TEMPERATURE 

 

In contrast to many studies indicating unprecedented warming in the 20
th

 Century (e.g. 

Jones and Moberg 2003), about half the records in the UIB show a reduction in mean 

annual temperature since the 1960s and more strongly since the mid-1970s. The trend is 

statistically significant (p<0.05) at Bunji and Dir, with cooling rates of –0.52 and –0.26 

o
C decade

-1
 respectively since 1961 (Table 3a) and is related to significant cooling of 

mean temperature during spring (March to May and summer (June to August). 

 

All records show summer cooling. This is large and statistically significant at some 

stations, with rates of –0.30, –0.99, –0.35 and –0.38 
o
C decade

-1
 at Astore, Bunji, Dir and 

Gilgit respectively (Table 3a). Similarly, a cooling of spring mean temperature is seen at 

four out of seven stations, although this is only significant at two stations, and the Skardu 

record exceptionally shows significant warming (Table 3a). Change in fall (September to 

November) mean temperature over the same period is comparable to that of spring. 

 

In contrast, in winter (December to February) a warming of mean temperature is seen in 

most records from 1961-2000. There is evidence of significant winter warming trend at 
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Skardu and Srinagar (p<0.05), Gilgit (p<0.10) and Drosh, with insignificant trend seen at 

other stations. 

 

2) MAXIMUM AND MINIMUM TEMPERATURE 

 

Since 1961 there has been an increase in annual maximum temperature at all stations 

except Bunji and Astore (Table 3b). Significant increases in maxima occur mainly in the 

months from November to April. However, there has also been a contrasting and large 

region-wide reduction in annual minimum temperature (Table 3c). This has resulted in 

the most striking change in the UIB since 1961; the large increase in diurnal temperature 

range (DTR) at all stations. Figure 2a shows the large increase in annual DTR at Skardu, 

Gilgit and Dir during 1961-2000. This increase is strongest at the northern stations, with 

Skardu, Gilgit, Bunji and Dir showing positive trends in DTR in all months as well as all 

seasons. The largest change in DTR is found during the period from June to November, 

summer and fall seasons, when all stations in the UIB show a positive trend (see Figure 

2b). 

 

INSERT FIGURES 3 AND 4 

 

Figure 3 clearly shows the region-wide increase in winter maximum temperature over the 

period 1961-1999 at stations in the UIB. There have been smaller changes in winter 

minimum temperature, with small increases in minima at some sites and decreases in 

minima at others (Figure 4). Since temperature maxima have been increasing at a greater 

rate than temperature minima, even where temperature minima are also increasing, there 
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has been a resulting increase in winter DTR at all stations, and an overall winter 

warming. 

 

In contrast, in summer months there has been a region-wide reduction in temperature 

maxima (Figure 5; Table 3c). Perhaps more surprising however, is the concomitant 

reduction in summer temperature minima (Figure 6). This is statistically significant 

(p<0.05) at all stations except Drosh and there are high rates of cooling, with reductions 

of –1.11 
o
C decade

-1
 at Bunji (Table 3c) and over –0.4 

o
C decade

-1
 at all stations. These 

reductions are at their highest in June. Summer cooling of mean temperature therefore 

arises as a result of reduction in both minimum and maximum temperature, although the 

former has by far the larger effect. Since summer minimum temperatures show greater 

rates of cooling than maximum temperatures, there has also been a significant increase in 

summer DTR. 

 

INSERT FIGURES 5 AND 6 

 

 In spring and fall, a similar cooling trend is also observed in temperature minima (Table 

3c). Combination with a significant upward trend in temperature maxima at many 

stations in fall (Table 3b) results in an increasing DTR in spring and fall. 

 

b. Long term change at Gilgit, Skardu and Srinagar 

 

The duration of temperature records at Gilgit and Skardu is unique for currently operating 

trans-Himalayan stations. Despite discontinuity in the temperature record arising from 

site changes, comparison has been made of trend in maximum, minimum and mean 
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monthly temperatures and diurnal temperature range for the periods 1905-35 and 1958-

2000 and mean temperature only for Srinagar. 

 

There are significant features in common between the UIB stations and Srinagar during 

the later period. All records show a warming trend in winter months related to increases 

in maximum temperature and cooling in summer months related to decreases in minimum 

temperature. 

 

Both the significant correlation in seasonal temperature between Srinagar and UIB 

stations (Table 2) and the similarity of the seasonal pattern of change with Gilgit and 

Skardu suggest that the homogeneous record at Srinagar may provide an analogue of 

long-term climatic change for the UIB.  

 

INSERT FIGURE 7 

 

Over the longer period from 1894-2000, there has been a small but significant increase in 

annual mean temperature at Srinagar (p<0.01) of 0.07 oC decade-1. During the winter 

season (DJF), prior to 1960 the temperature increase was significant (p<0.05) at 0.10 oC 

decade
-1

 (Figure 7a). However, since 1960 the rate of increase has accelerated to 0.51 
o
C 

decade
-1

. If individual months are further examined then large and statistically significant 

increases in mean temperature are seen in the months from December to April (p<0.05) 

(Figure 7b-f), with smaller increases during other months. This suggests that the rate of 
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increase of winter temperatures in the UIB region may also have accelerated in the period 

since 1960, a possible signal of global warming. 

 

More remarkable however, is the sudden divergence in temperature trend between the 

high latitudes and the western Himalayan region in the latter half of the 20
th

 century. 

Climate proxies and instrumental records in the northern high latitudes indicate 

unprecedented warming (Jones and Moberg 2003) but instrumental records from some 

UIB stations suggest a cooling of mean temperature, annually and in all seasons except 

winter. Figure 8 shows the striking increase in DTR at Skardu and Gilgit in all seasons 

since the middle of the 20th century. This has been caused by a pronounced cooling of 

minimum temperatures since 1960, particularly in summer and autumn (Figure 9), 

coupled to a slight increase in maximum temperatures in all seasons since 1960 (Figure 

10). This is in contrast to the narrowing of DTR seen in the rest of the globe since 1950 

(Karl et al. 1993; Easterling et al. 1997). However, during 1900-1935 DTR in the 

Western Himalaya remains constant or shows a decreasing trend. This is akin to trends 

seen in the remainder of the northern high latitudes since 1950 (e.g. Karl et al. 1993).  

 

INSERT FIGURES 8, 9 AND 10 

 

 

5. Discussion 

 

Whilst there are clearly differences between stations in the amount and even the direction 

of change, several common patterns emerge, especially when the series are decomposed 

into seasonal groupings or minimum and maximum series. Trends are less evident in 
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annual and mean temperature series because of differences in behaviour between seasons 

or between maxima and minima. The observed trends in the UIB may be compared with 

those in neighbouring parts of the Himalaya, Central Asia and the Indian sub-continent. 

The most significant common patterns in the UIB with respect to the 1961 to 2000 period 

are: 

 

1. Decrease in summer mean temperature   (7 of 7 sites, 4 significant) 

2. Decrease in summer minimum temperature  (6 of 6 sites, 5 significant) 

 

3. Decrease in fall minimum temperature  (6 of 6 sites, 4 significant) 

4. Increase in fall maximum temperature  (4 of 6 sites, 3 significant) 

 

5. Increase in winter mean temperature  (5 of 7 sites, 3 significant) 

6. Increase in winter maximum temperature  (5 of 6 sites, 3 significant) 

 

7. Decrease in annual minimum temperature  (6 of 6 sites, 4 significant) 

8. Increase in annual maximum temperature  (4 of 6 sites, 2 significant) 

 

a. Summer temperatures 

 

The consistent decline in summer mean and minimum temperatures is perhaps surprising 

in view of the frequently observed and reported retreat of neighbouring Himalayan 

glaciers which has generally been ascribed to an increase in summer temperatures 

(Yamada et al. 1992: Hasnain 2002). Thus, Shrestha et al. (1999) derived a consistent 

upward trend in summer temperatures (June to September) for the period 1977-94, 



 16 

ranging from 0.14 
o
C for low elevations stations to significant increases of 0.62 

o
C for the 

Nepal Himalaya and 1.09 oC for trans-Himalayan stations. However their analysis was 

based on maximum temperatures, whilst minimum temperatures, graphed but not 

analysed, show steady or falling trends. The decline in minimum temperatures was 

confirmed by Sharma et al. (2000) for several stations in Nepal. Only two of six stations 

in the UIB show an upward trend in maximum summer temperatures, but the rates of 

decrease in the remaining four stations is much less than for minimum temperatures.  

 

Cook et al. (2003) re-examined a longer Kathmandu mean temperature record and 

compared it with a 0.5o latitude-longitude gridded data set based on records from 

neighbouring northern India; both showed a cooling trend in the monsoon (June to 

September) as well as in pre-monsoon (February to May) for the period 1901-95. In 

addition, Hingane et al. (1985) found that northwest India shows a significant decreasing 

trend in mean temperature in summer (–0.05 
o
C decade

-1
), confirmed by Kumar et al. 

(1994) for minimum temperature at the same decreasing rate whilst maximum 

temperatures have been steady. Summer cooling trends during the last few decades of the 

20th century have also been documented for the Tibetan Plateau (Liu and Chen 2000), 

central China (Hu et al. 2003) and central Asia (Briffa et al. 2001).  

 

Cook et al. (2003) attributed this summer cooling to a coincident increase in monsoonal 

rainfall in Nepal after 1950, which would tend to suppress temperatures through 

increased daytime cloud cover. In the UIB, increasing summer rainfall since 1961 

(Archer and Fowler 2004) and a coincident increase in daytime cloud cover may also 
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provide an explanation for the summer cooling of maximum temperature. It does not, 

however, provide an explanation for the large decreases in minimum temperature seen in 

the summer. The decrease in summer temperature minima could be explained by a 

coincident decrease in cloud cover during the night, although currently no data are 

available to assess this.  

 

Other research has argued for an aerosol induced cooling over much of South Asia and 

the Indian sub-continent. Ramanathan et al. (2005) suggest that during the “Indian dry 

season”, from October to May, the haze from the Asian Brown Cloud reduces the surface 

receipt of solar radiation and precipitation efficiency, causing the observed cooling of sea 

surface temperatures over the North Indian Ocean. This, in turn, has reduced monsoonal 

summer precipitation by ~5 % in India. However, it is unlikely that aerosol induced 

cooling offers an explanation for the observed summer cooling in the UIB as during the 

monsoon the effect of the Asian Brown Cloud is diminished in India. Additionally, the 

UIB region has seen a recent increase in summer precipitation (Archer and Fowler 2004). 

 

Finally, there is the possibility that upward trends in summer temperature are more 

marked at higher elevations as shown by the analysis of Shrestha et al. (1999) for Nepal; 

this would imply an increased lapse rate. A tendency for warming trends to increase with 

elevation has been found in both the Tien Shan of central Asia (Aizen et al. 1997) and the 

Tibetan Plateau (Liu and Chen 2000). There is no evidence of elevation dependency of 

warming (cooling) in our dataset although this would not necessarily be expected as the 

range in station elevation is only 1000 m. 
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b. Winter temperatures 

 

The UIB shows a consistent increase in winter mean temperatures, with increasing trends 

since 1961of 0.17 and 0.38 oC decade-1 at Gilgit and Skardu respectively. The increase in 

winter maximum temperature is large and statistically significant (p<0.05) at Gilgit, 

Skardu and Dir, with increases of 0.27, 0.55 and 0.51 
o
C decade

-1
 respectively. However, 

winter minima only show positive trend at three of six stations and none are significant. 

The greatest warming in neighbouring regions has also been in winter temperature. For 

India, Kumar et al. (1994) derived winter warming trends of 0.09 
o
C decade

-1
 for 

maximum temperature in an all-India temperature series and 0.08 oC decade-1 for the 

Northwest region for 1901-1987.  Shrestha et al. (1999) found increases in winter 

maxima of 0.61, 0.90 and 1.24 
o
C decade

-1
 for all-Nepal, Himalaya and trans-Himalayan 

stations respectively. Cook et al. (2003) found indications of warming since 1960 at 

Kathmandu only in the period from October to January. Additionally, decadal winter 

increases of 0.32 
o
C in mean temperature have been suggested for the Tibetan Plateau by 

Liu and Chen (2000).  

 

Change in winter temperature is less hydrologically significant than change during the 

summer as the most hydrologically active areas above an elevation of 4000 m remain 

above the freezing level even for maximum temperatures from November to March 

(Archer 2004). However, average winter slope lapse rates of 0.70 
o
C (100 m)

-1
 (Archer 

2004) suggest a shift in the freezing level of up to 300 metres and a decrease in the ratio 

of solid to total precipitation at lower elevations. The perception of decreased winter 

precipitation and increased duration of opening of passes in the Karakoram and Hindu 
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Kush through the winter may therefore be explained by an increase in winter temperature 

rather than by the decrease in winter precipitation suggested by Miehe (1992). 

 

c. Asymmetry of temperature trends 

 

The most striking temperature change in the UIB is the recent large increase in diurnal 

temperature range (DTR) observed in all seasons and in the annual data set. Contrasting 

changes in maximum and minimum temperature for Gilgit and Skardu shown in Figures 

9 and 10 suggest that this divergence commenced around the middle of the 20
th

 century. 

This change is not unique to the high elevation UIB but has also been observed over 

much of the Indian sub-continent (Kumar et al. 1994; Yadav et al. 2004).  In contrast, in 

many other parts of the world and especially at higher latitudes, minimum temperatures 

have increased at a higher rate than maximum temperatures resulting in a narrowing of 

DTR since 1950 (Karl et al. 1993; Easterling et al. 1997; Jones et al. 1999). Several 

explanations have been put forward for the increase in DTR on the Indian sub-continent.  

 

Firstly, it has been proposed by Cook et al. (2003) that change in DTR may result from 

change in precipitation regime. Cloud cover associated with precipitation reduces 

incoming solar radiation and traps more outgoing long wave radiation, hence altering 

surface temperature, and up to 80 % of DTR variance can be explained by cloud and 

precipitation records (Dai et al. 1999). Given the observed increase in DTR, one would 

expect a decrease in precipitation, with warmer days and cooler nights. However, Archer 

and Fowler (2004) found an increase in annual precipitation in the UIB from 1961-2000 

with a statistically significant (p<0.05) upward trend in precipitation during both winter 

and summer seasons.  
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Simple monthly correlation of various indices of temperature with precipitation is shown 

in Table 4. There is a significant (p<0.05) negative relationship between maximum 

temperature and precipitation in summer and autumn months, suggesting that increased 

precipitation may induce a cooling effect on maximum temperature. A negative 

relationship is found between DTR and precipitation in all months, suggesting that an 

increase in precipitation should cause a decrease in DTR. Therefore, although change in 

summer precipitation regime provides a possible explanation for reduction in summer 

maximum temperature in the UIB, it does not explain the increase in DTR. 

 

INSERT TABLE 4 

 

Secondly, change in snow covered area and thus regional albedo may cause change in 

DTR. Snow covered area is mainly dependent on winter precipitation. Low winter 

precipitation can therefore lower the regional albedo and cause more solar radiation to be 

absorbed at the surface, causing increased surface melting. This positive feedback may 

result in increased daytime maxima (Giorgi et al. 1997). Archer (2001) illustrated this 

feedback for the UIB by examining correlation between winter half-year precipitation 

and spring temperature. Significant negative correlation was found only for the months of 

March and April and did not persist into the summer. Additionally, as noted above, 

winter precipitation has shown an increasing trend in the UIB, significant (p<0.05) at 

three stations (Archer and Fowler 2004). Snow albedo feedback is therefore unlikely to 

have caused the observed change in DTR. Besides, Kumar et al. (1994) report that the 
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temperature asymmetry is shared with northwest India where there is no question of snow 

albedo effects. 

 

Thirdly, in the lowlands of the Indian subcontinent, land use changes including 

urbanisation (Kumar and Hingane 1988), deforestation (Kothyari and Singh 1996; Yadav 

et al. 2004), intensification of agriculture (Singh and Sontakke 2002) and widespread 

irrigation (Adel 2002) have been associated with change in temperature. Urbanised areas 

often show a narrower DTR than nearby rural areas (Gallo et al. 1996) as urbanisation 

increases night time temperature minima through the urban heat island effect. Land use 

change such as deforestation may reduce temperature minima. Yadav et al. (2004) 

suggest that land use change, particularly deforestation, has contributed to a widening of 

the DTR in northern India. The removal of tree canopies causes direct heating of the soil 

during the daytime to increase. This is then followed by the intense cooling of these soils 

by terrestrial radiation loss at night, enhanced by the fact that they are moisture deficient 

due to surface runoff increases associated with deforestation.  

 

Development activities leading to widespread deforestation do appear to offer a plausible 

explanation for the increase in DTR in northern India with, for example, 50 % of the areal 

expansion of agricultural land in the Garhwal region during 1963-93 coming from 

previously forested area (Sen et al. 2002). However, the same trend of widening DTR is 

also seen in the neighbouring region of the UIB where none of the same developmental 

pressures are relevant. Here, natural vegetation is sparse and limited either by low rainfall 

at lower elevations or by low temperature at higher elevations. The UIB is also sparsely 
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populated and neither the limited urbanisation nor land use change on valley floors is 

considered sufficient to have initiated significant changes in thermal regime. The upward 

trend in DTR in the UIB is thus difficult to explain but the region-wide increase in DTR 

in the western Himalaya suggests that changes in atmospheric circulation patterns are 

likely to be responsible. 

 

GCM future climate simulations for the region from the IPCC suggest more pronounced 

increases in minimum rather than maximum temperatures over Asia related to increased 

monsoon cloudiness; hence an increase in mean temperature annually and during all 

seasons and a decrease in annual and winter DTR (Lal et al. 2001; IPCC 2001). During 

the summer an increase in DTR is simulated, but this results from a more pronounced 

increase in maximum temperature relative to the minimum temperature (Lal and 

Harasawa 2001) rather than the reduction in both summer maximum and minimum 

temperatures seen since 1961 in the UIB. GCM integrations also suggest that variations 

in DTR are much more sensitive to changes in feedbacks than in direct forcings, with 

variations arising mostly from changes in clouds and in soil moisture (Stone and Weaver 

2003). It is possible that global warming has induced process coupling in this region that 

occurs on scales too small for current GCMs to resolve well. Using a regional climate 

model, Pan et al. (2004) were able to simulate a local minimum of warming in the central 

U.S. (a “warming hole”) associated with changes in low-level circulations caused by 

regional-scale feedback processes under global warming. This was absent from GCM 

simulations of the same region, but this region is known to have experienced a cooling 

trend in the last 25 years of the 20
th

 century. A relationship between circulation changes 
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during the northern Hemisphere winter and winter DTR has also been examined by 

Easterling et al. (1997) for the European region. They found a bipolar pattern resulting 

from stronger westerly flows, with Iberia experiencing increased DTR and decreased 

DTR over northern Europe. 

 

Whilst explanation remains problematic; the shared response with the Indian sub-

continent suggests a regional or latitudinal effect associated with large scale climatic 

processes and their feedbacks, and related to changes in the monsoon circulation. Recent 

modelling work by Ramanathan et al. (2005) suggests that aerosol cooling brought about 

by the Asian Brown Cloud in the non-monsoonal months from October to May has 

caused the observed cooling of sea surface temperatures over the North Indian Ocean. 

This, in turn, weakens the monsoon circulation and causes a southward shift, reducing 

rainfall in India by ~5%. In the UIB, summer precipitation has increased but this may be 

due to the incursion of more westerly weather rather than monsoonal incursions. The 

relationship with circulation patterns will be investigated in further work. 

 

e. Impacts on hydrological regime and glaciological response 

 

The overall impact of climate change on glacier mass balance and hydrological regime 

require the joint consideration of change in both precipitation and the energy budget. The 

emphasis here is on the energy budget as represented by temperature. Trend in 

temperature will have both short and long term effects on glaciers and runoff. 

 

Short term effects of seasonal temperature are revealed by the analysis of current 

variability. A seasonal mean temperature range for both spring (April to June) and 
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summer (July to September) of 4 to 5 
o
C since 1961 provides a basis for the assessment 

of impact on runoff. Observed summer runoff on high altitude glacier-fed catchments 

shows significant positive correlation with summer temperatures. For the River Hunza a 

1 
o
C fall below the current mean temperature – the approximate fall in summer mean 

temperature since 1961 – gives a predicted 16 % decrease in summer runoff (r = 0.69); 

the equivalent decrease for the River Shyok is 17 % (r = 0.73) using derived regression 

equations (Figure 11). An equivalent figure of 16 to 18 % increase for a 1 
o
C temperature 

rise was identified from modelling studies on Western Himalayan catchments by Singh 

and Kumar (1997). Predicted runoff decreases for a 1 
o
C fall in the spring months are 

more striking, 48 % and 62 % for the Rivers Hunza (r = 0.73) and Shyok (r = 0.53) 

respectively, albeit with much smaller runoff totals. 

  

INSERT FIGURE 11 

 

On average, climate stations in the UIB show a reduction in mean summer temperature of 

1.2 
o
C over the period 1961 to 2000 (Figure 11a); representing a fall in average summer 

runoff of ~20 % on the Hunza and Shyok (Figure 11b). Similarly, during the more 

sensitive spring months a 40 year mean temperature reduction of 0.3 oC yields a fall in 

spring runoff of 15 to 20 %. These results are confirmed for the River Hunza at Dainyor 

where there is a significant downward trend in observed runoff for spring and summer of 

46 % and 35 % respectively over the record period (Figure 11c). The absence of 

significant trend for the River Shyok (Figure 11c) may be explained by regional variation 

in climatic trends. The nearest climate station to the Shyok catchment at Skardu has an 
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upward trend in spring and a less steep downward trend in summer than other UIB 

stations (Table 3a).  

 

In contrast, temperature and runoff are negatively correlated on middle altitude (snow-

fed) catchments although the regression relationships are non-significant and confounded 

by the much stronger influence of winter precipitation (Archer 2003). Singh and 

Bengtsson (2005) suggest through modelling studies that increased temperature results in 

increased evaporative loss and – since snow cover volume is limiting – in reduced runoff, 

with an estimated decrease of 9 % for a 1 
o
C rise in temperature for the Satluj basin in the 

Western Himalaya. 

 

These varied responses to changes in the driving variables mean that caution must be 

exercised in the prediction of runoff response to climate change, especially in complex 

catchments such as the main stem of the River Indus where a mix of climatic controls 

impact upon hydrological regimes. 

 

In the longer term, a reduction in summer temperature implies reduced ablation and a 

positive mass balance of glaciers, given constant precipitation. In addition, climate 

stations in the Karakoram show consistent positive trends in winter precipitation; 

averaging a 7 % increase per decade for the period since 1961 (Archer and Fowler 2004). 

In contrast, the observed higher temperatures in winter and associated decrease in the 

ratio of solid to total precipitation is expected to have an effect only on the lower reaches 

of glaciers. Whilst the lag time of large Karakoram glaciers may be many decades, the 
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reported expansion and thickening of many glaciers (Hewitt 1998 and pers. comm.) is 

consistent with the observed climatic changes. Karakoram glaciers offer a significant 

contrast with those in the Eastern Himalaya (Hasnain 1999).  

 

6. Conclusions 

 

Although there are variations between the stations analysed, in terms of the amount and 

direction of change in temperature, common patterns emerge which can be compared 

with neighbouring mountain regions and the Indian sub-continent. 

 

1. Mean and minimum summer temperatures show a consistent cooling in the period 

since 1961, a characteristic shared with northwest India and, at least, for lower 

level stations in Nepal. Summer maxima show little clear trend. 

2. Winter mean and maximum temperatures show statistically significant increases. 

Although winter minima show no significant trend, the large positive changes in 

the maxima are sufficient to tip the balance of change in the mean annual 

temperature to significantly positive at the most easterly stations of Skardu and 

Srinagar. 

3. The most striking recent change is the large increase in diurnal temperature range, 

observed at all seasons and in the annual data set. Long records at Gilgit and 

Skardu suggest that the trend of divergence commenced in the middle of the 20
th

 

century. This change is in common with much of the Indian subcontinent but in 

direct contrast to most other parts of the globe where a narrowing of DTR has 

been observed. Explanations are problematic but appear to be associated with the 
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coupling of regional feedbacks such as aerosol cooling to large scale climatic 

processes. 

4. Using linear relationships between spring and summer temperatures and runoff in 

the Rivers Hunza and Shyok and the cooling regional temperature trend, produced 

a predicted reduction of 20% in runoff over the record period. This predicted fall 

was exceeded by actual runoff decreases on the River Hunza. The absence of 

equivalent decline in the River Shyok can be explained by regional variations in 

temperature trend, with easterly stations in the UIB showing more positive 

temperature trend. 

5. Summer temperature reductions and positive trend in winter precipitation imply 

reduced ablation and increased accumulation of Karakoram glaciers. These 

climatic changes are consistent with the observed thickening and expansion of 

glaciers in the UIB region, in contrast to widespread retreat and decay in the 

Eastern Himalaya. 

6. The hydrological and glaciological impact of change in temperature is highly 

dependent upon the season in which the change occurs. Summer cooling has a 

widespread impact at all elevations whereas the effects of winter warming are 

restricted to lower elevations only. 

7. The viability of temperature measurements at valley stations as indices of change 

at higher elevations is confirmed both by the strong links between temperature 

and runoff and by the strong spatial correlation in seasonal temperature across the 

region. 
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List of Figure Captions 

 

Figure 1 The upper Indus basin showing relief, rivers and stations used in the analysis. 

Inset shows continental location of study area. 

 

Figure 2 Trend in diurnal temperature range at Gilgit, Skardu and Astore: (a) annual; (b) 

June to November. 

 

Figure 3 Trend in winter (DJF) maximum temperature at UIB stations from 1961-1999. 

Panels show temperature series with fitted linear trend line (dashed) given for each 

series. 

 

Figure 4 Trend in winter (DJF) minimum temperature at UIB stations from 1961-1999. 

Panels show temperature series with fitted linear trend line (dashed) given for each series. 

 

Figure 5 Trend in summer (JJA) maximum temperature at UIB stations from 1961-1999. 

Panels show temperature series with fitted linear trend line (dashed) given for each series. 

 

Figure 6 Trend in summer (JJA) minimum temperature at UIB stations from 1961-1999. 

Panels show temperature series with fitted linear trend line (dashed) given for each series. 

 

Figure 7 Trend in winter (DJF) mean temperature at Srinagar from 1894-2000 with fitted 

linear trend shown for periods 1894-1960 and 1961-2000 and overall trend shown for the 
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whole period (dashed line). Separate mean temperature time series are given for each of 

the months from December to April, with fitted linear trend lines. 

 

Figure 8 Seasonal variations in DTR at Skardu and Gilgit. The dashed lines represent a 

fitted linear trend for the periods 1905-1935 and 1955-1999; (a) Summer and Autumn 

and, (b) Winter and Spring. 

 

Figure 9 Seasonal variations in minimum temperature at Skardu and Gilgit. The dashed 

lines represent a fitted linear trend for the periods 1905-1935 and 1955-1999; (a) 

Summer and Autumn and, (b) Winter and Spring.  Note that different scales are used for 

the y-axis to highlight the differences between minimum temperatures in different 

seasons. 

 

Figure 10 Seasonal variations in maximum temperature at Skardu and Gilgit. The dashed 

lines represent a fitted linear trend for the periods 1905-1935 and 1955-1999; (a) 

Summer and Autumn and, (b) Winter and Spring. Note that different scales are used for 

the y-axis to highlight the differences between maximum temperatures in different 

seasons. 

 

Figure 11 Relationship between temperature and runoff at (i) Gilgit and the River Hunza 

at Dainyor Bridge and (ii) Skardu and the River Shyok at Yugo. (a)  Temperature trend 

from June to August; (b) Relationship between seasonal temperature and runoff (mm) 

from June to August; (c) Runoff trend from June to August. 
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Figure 1 The upper Indus basin showing relief, rivers and stations used in the analysis. Inset shows continental location of study area. 
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Figure 2 Trend in diurnal temperature range at Gilgit, Skardu and Astore: (a) annual; (b) 

June to November. 
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Figure 3 Trend in winter (DJF) maximum temperature at UIB stations from 1961-1999. 

Panels show temperature series with fitted linear trend line (dashed) given for each series. 
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Figure 4 Trend in winter (DJF) minimum temperature at UIB stations from 1961-1999. 

Panels show temperature series with fitted linear trend line (dashed) given for each series. 
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Figure 5 Trend in summer (JJA) maximum temperature at UIB stations from 1961-1999. 

Panels show temperature series with fitted linear trend line (dashed) given for each series. 
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Figure 6 Trend in summer (JJA) minimum temperature at UIB stations from 1961-1999. 

Panels show temperature series with fitted linear trend line (dashed) given for each series. 
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Figure 7 Trend in winter (DJF) mean temperature at Srinagar from 1894-2000 with fitted 

linear trend shown for periods 1894-1960 and 1961-2000 and overall trend shown for the 

whole period (dashed line). Separate mean temperature time series are given for each of 

the months from December to April, with fitted linear trend lines. 
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Figure 8 Seasonal variations in DTR at Skardu and Gilgit. The dashed lines represent a 

fitted linear trend for the periods 1905-1935 and 1955-1999; (a) Summer and Autumn 

and, (b) Winter and Spring. 
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Figure 9 Seasonal variations in minimum temperature at Skardu and Gilgit. The dashed 

lines represent a fitted linear trend for the periods 1905-1935 and 1955-1999; (a) 

Summer and Autumn and, (b) Winter and Spring. Note that different scales are used for 

the y-axis to highlight the differences between minimum temperatures in different 

seasons. 
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Figure 10 Seasonal variations in maximum temperature at Skardu and Gilgit. The dashed 

lines represent a fitted linear trend for the periods 1905-1935 and 1955-1999; (a) 

Summer and Autumn and, (b) Winter and Spring. Note that different scales are used for 

the y-axis to highlight the differences between maximum temperatures in different 

seasons. 
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Figure 11 Relationship between temperature and runoff at (i) Gilgit and the River Hunza 

at Dainyor Bridge and (ii) Skardu and the River Shyok at Yugo. (a)  Temperature trend 

from June to August; (b) Relationship between seasonal temperature and runoff (mm) 

from June to August; (c) Runoff trend from June to August. 
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Table 1 Climate stations used in analysis. 

 

Table 2 Correlation coefficient (r) of: (a) spring mean temperature (April to June) – 

upper triangle, and (b) summer mean temperature (July to September) – lower triangle. 

Summarised from Archer (2004). 

 

Table 3 Trend in annual and seasonal temperature from 1961-1999 for: (a) mean, (b) 

mean maximum, and (c) mean minimum,, showing change in 
o
C decade

-1
.  

 

Table 4 Correlation between monthly precipitation and various indices of monthly 

temperature at Astore, 1961-1997: (A) maximum temperature, (B) minimum 

temperature, (C) mean temperature, and (D) diurnal temperature range. 

 

 



 49 

Table 1 Climate stations used in analysis. 

 
No. Station Elevation 

M asl 
Record 

Period 

Agency  

or Source 

1 Dir 1425  1967-1997 2 

2 Drosh 1465  1950-1997 2 

3 Gilgit 1460  1903-1999 1,2 

4 Bunji 1372  1953-1997 2 

5 Astore 2394  1954-1997 2 

6 Skardu 2210  1900-1999 1,2 

7 Srinagar 1587 1894-2000 3 

Agency:  1=IMD    2=PMD   3=CRU   
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Table 2 Correlation coefficient (r) of: (a) spring mean temperature (April to June) – 

upper triangle, and (b) summer mean temperature (July to September) – lower triangle. 

Summarised from Archer (2004).  
 

Station Astore Bunji Drosh Dir Gilgit Skardu Leh Srinagar 

Astore  0.77 0.82 0.77 0.93 0.80  0.84 

Bunji 0.79  0.48 0.50 0.84 0.57  0.55 

Drosh 0.59 0.36  0.76 0.78 0.63  0.83 

Dir 0.79 0.59 0.58  0.60 0.40  0.86 

Gilgit  0.91 0.82 0.54 0.74  0.80 0.68 0.76 

Skardu 0.78 0.58 0.46 0.46 0.73  0.81 0.65 

Leh     0.47 0.76  0.77 

Srinagar 0.82 0.68 0.59 0.81 0.81 0.74 0.49  

Bold figures: significance 0.01. Italic: significance 0.05 
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Table 3 Trend in annual and seasonal temperature from 1961-1999 for: (a) mean, (b) 

mean maximum, and (c) mean minimum, showing change in 
o
C decade

-1
.  

 
 (a) 

Station Annual Winter 

(DJF) 

Spring 

(MAM) 

Summer 

(JJA) 

Autumn 

(SON) 

Dir −0.26 −0.03 −0.41 −0.35 −0.19 

Drosh +0.01 +0.15 +0.02 −0.04 −0.03 

Bunji −0.52 +0.07 −0.32 −0.99 −0.66 

Gilgit  −0.13 +0.17 −0.08 −0.38 −0.15 

Astore −0.08 −0.07 −0.06 −0.30 +0.01 

Skardu +0.21 +0.38 +0.24 −0.05 +0.26 

Srinagar +0.19 +0.51 +0.07 −0.05 +0.08 

 (b) 

Station Annual Winter 

(DJF) 

Spring 

(MAM) 

Summer 

(JJA) 

Autumn 

(SON) 

Dir +0.07 +0.51 −0.19 −0.06 +0.10 

Drosh +0.05 +0.11 +0.11 +0.03 −0.08 

Gilgit  +0.20 +0.27 +0.16 −0.01 +0.35 

Bunji −0.29 +0.10 −0.20 −0.86 −0.16 

Astore −0.05 −0.07 −0.18 −0.19 +0.28 

Skardu +0.52 +0.55 +0.46 +0.30 +0.75 

 (c) 

Station Annual Winter 

(DJF) 

Spring 

(MAM) 

Summer 

(JJA) 

Autumn 

(SON) 

Dir −0.58 −0.60 −0.60 −0.62 −0.48 

Drosh −0.05 +0.22 −0.06 −0.12 −0.04 

Gilgit  −0.45 +0.02 −0.32 −0.75 −0.62 

Bunji −0.67 +0.06 −0.47 −1.11 −1.17 

Astore −0.13 −0.08 +0.06 −0.41 −0.08 

Skardu −0.17 +0.23 −0.05 −0.43 −0.34 

Notes: 

Bold   P < .05 

Bold Italic  P < .10 
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Table 4 Correlation between monthly precipitation and various indices of monthly 

temperature at Astore, 1961-1997: (A) maximum temperature, (B) minimum temperature, 

(C) mean temperature, and (D) diurnal temperature range. 

 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

A -0.14 -0.09 -0.56 -0.32 -0.67 -0.46 -0.38 -0.21 -0.55 -0.64 -0.53 -0.47 

B 0.22 0.28 -0.29 -0.27 -0.68 -0.30 -0.19 -0.25 -0.33 -0.33 -0.13 -0.38 

C 0.07 0.13 -0.47 -0.33 -0.70 -0.40 -0.31 -0.24 -0.50 -0.58 -0.43 -0.45 

D -0.53 -0.40 -0.60 -0.22 -0.49 -0.35 -0.40 -0.02 -0.41 -0.58 -0.55 -0.11 

Note:  Bold  p < 0.05 

 

 

 

 


