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Abstract

Two distinct and parallel research communities have been working along the lines of the Model-
Based Diagnosis approach: the FDI community and the DX community that have evolved in the
fields of Automatic Control and Artificial Intelligence, respectively. This paper, which details and
extends (Cordier et al., 2000a, 2000b), clarifies and links the concepts and assumptions that
underlie the FDI analytical redundancy approach and the DX logical approach. The formal match
of the two approaches is proved and the theoretical proof of their equivalence together with the
necessary and sufficient conditions is provided. This work results from the collaboration existing
within the French IMALAIA group supported by the French National Programs on Automatic
Control GDR-Automatique and on Artificial Intelligence GDR-I3, and AFIA.
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I Introduction

Diagnosis is an increasingly active research topic, which can be approached from different
perspectives according to the knowledge available. The so-called Model-Based Diagnosis (MBD)
approach rests on the use of an explicit model of the system to be diagnosed. The occurrence of a
fault is captured by discrepancies between the observed behavior and the behavior that is predicted
by the model. Fault localization then rests on interlining the groups of components that are
involved in each of the detected discrepancies. A definite advantage of this approach with respect
to others, such as the relational approach (Peng, Reggia, 1990) or the pattern recognition
approach (Dubuisson, 1990), is that it only requires knowledge about the normal operation of the
system, following a consistency-based reasoning method.

Two distinct and parallel research communities have been using the MBD approach. The FDI
community has evolved in the Automatic Control field from the seventies and uses techniques
from control theory and statistical decision theory. It has now reached a mature state and a
number of very good surveys exist in this field (Patton, Chen, 1991; Gertler, 1993; Frank, 1996;
Iserman, 1997; CEP, 1997). The DX community emerged more recently, with foundations in the
fields of Computer Science and Artificial Intelligence (Reiter, 1987; de Kleer, Williams, 1987,
1989; Hamscher, Console, de Kleer, 1992; Travé-Massuyès, Dague, Guerrin, 1997). Although the
foundations are supported by the same principles, each community has developed its own
concepts, tools and techniques, guided by their different modeling backgrounds. The modeling
formalisms call indeed for very different technical fields; roughly speaking analytical models and
linear algebra on the one hand and symbolic and qualitative models with logic on the other hand.
The level of technicality of the contributions, and the fact that each community has its own set of
conferences, publications and terminology, result in a poor understanding of the work in both
sides.

The French IMALAIA group, supported by the French National Programs on Automatic Control
GDR-Automatique and on Artificial Intelligence GDR-I3 and AFIA, has been working along these
lines, benefiting from the work already performed by the ALARM group (Cauvin et al.,  1998)
and related work in France (Basseville, Cordier, 1996; Staroswiecki, 1998; Travé-Massuyès, Dague,
1999). The goals of this work are to agree upon a common DX/FDI terminology, to identify links
in the concepts, similarities and complementarities in the DX and FDI methods, and to contribute
to a unifying framework, thus taking advantage of the synergy of complementary techniques
from the two communities.

This paper, which considerably details and extends (Cordier et al., 2000a, 2000b), clarifies and
links the concepts that underlie the FDI analytical redundancy approach and the DX logical
approach. In particular, the link between structured parity equations or analytical redundancy
relations (ARR for short) and conflicts (in the sense of Reiter) is clarified by introducing the
notions of potential conflict  or ARR support and interpreting a conflict as the support of a non
satisfied ARR. It is shown that the formal match of the two approaches can be proved provided
completeness properties of the set of ARRs.

The FDI and DX approaches used for fault isolation are then analyzed from the two perspectives.
It is shown that the first one, based on fault signatures, proceeds along a column interpretation of
the fault signature matrix linking faults and ARRs whereas the later one, based on conflicts,
proceeds along a row interpretation.

The results provided by the two approaches are then shown to be identical and the theoretical
proof is included. This is proved in the no exoneration case under the single fault and the multiple
fault assumptions, the exoneration case being left for further investigations. For the sake of clarity,
the study is carried out in a pure consistency-based framework, i.e. without fault models.

The example that has been chosen to support the comparative analysis throughout the paper is the
well-known system from (Davis, 1984) composed of three multipliers and two adders referred as
the polybox example (figure 1). It refers to a typical static system, i.e. for which the transient
behavior can be ignored. This choice has been made on purpose so that the comparison can be
made in the classical framework of logical MBD and that the problems related to temporal
diagnosis (Brusoni et al. 1998) can be ignored for now. Following the same idea, the only
available observations are assumed to be those at one snapshot, putting aside the problems of
incremental diagnosis and of the choice of the best next test point (de Kleer, Williams, 1987; de
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Kleer et al.,  1991). In addition, the system is assumed to operate in an ideal non noisy and non
disturbed environment.
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Figure 1 — The system

The paper is organized as follows. Section II presents the FDI analytical redundancy approach
and the DX logical approach, respectively. Section III proposes a unified framework for the two
approaches. The assumptions and concepts adopted by the FDI and DX communities are outlined
and the correspondence between conflicts and ARRs is exhibited. Section IV proves the
equivalence of the two approaches in the no exoneration case. Finally, Section V grounds the
concepts into their implementation schemas and section VI discusses the results and outlines
several interesting directions for future investigation.

II Presentation of the two approaches

II.1 The FDI analytical redundancy approach

II.1.1 The system model

A system is made of a set of components and a set of sensors, which provide a set of observations.
The behavior model of the system expresses the constraints that link its descriptive variables. It is
given by a set of relations, the formal expression of which depends on the type of knowledge
(analytical, qualitative, production rules or numerical tables, etc.). It generally relies on a
component-based description, which relates a set of constraints (or operators) to each component.
In the case of the polybox example, elementary components are the adders A1, A2 (operators +),
the multipliers M1, M2, M3 (operators ×) together with the set of sensors (identity operators).

Definition 2.1: The system model SM is defined as the behavioral model BM, i.e. the set of
relations defining the system behavior, together with the observation model OM, i.e. the set of
relations defining the observations that are performed on the system and the sensor models.

The set V of variables can be decomposed into the set of unknown variables X and the set of
observed variables O. In the polybox example, we have:

V = X ∪ O where

X = {a, b, c, d, e, f, g, x, y, z}

O = {aobs, bobs, cobs, dobs, eobs, fobs, gobs}

Behavioral Model (BM):

RM1: x = a × c
RM2: y = b × d
RM3: z = c × e
RA1: f = x + y
RA2: g = y + z
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Observation model (OM):

RSa: a = aobs
RSb: b = bobs
RSc: c = cobs
RSd: d = dobs
RSe: e = eobs
RSf: f = fobs
RSg: g = gobs

II.1.2 The diagnosis problem

The diagnosis requirements define a set of identifiers {Fop} as the set of faults F that may occur on
an operator op. Without loss of generality, we assume that there is a one-to-one correspondence
between components and operators (see discussion in III.3) and the set of faults is hence noted
{Fc} where c is a component.

Definition 2.2: The set of observations OBS is a set of relations of the form vobs 
= val, where vobs

∈ O and val is in the domain of vobs.

In the polybox example, OBS = {aobs = 2, bobs = 2, cobs = 3, dobs = 3, eobs = 2, fobs = 10,
gobs = 12} is a set of observations.

Definition 2.3: A diagnosis problem is defined by the system model SM, a set of observations
OBS, and a set of faults F.

II.1.3 Analytical Redundancy Relations

Definition 2.4: An analytical redundancy relation (ARR) is a constraint deduced from the system
model which contains only observed variables, and which can therefore be evaluated from any
OBS. It is noted r = 0, where r is called the residual of the ARR.

ARRs are used to check the consistency of the observations with respect to the system model SM.
The ARRs are satisfied if the observed system behavior satisfies the model constraints.
ARRs can be obtained from the system model by eliminating the unknown variables.

Definition 2.5: For a given OBS, the instantiation of the residual r is noted val(r, OBS),
abbreviated as val(r)  when not ambiguous. Val(r, OBS) = 0 thus means that the observations
satisfy the ARR.

In the polybox example, three redundancy relations are ARR1, ARR2 and ARR3 (see section V.1
for more details on the way these ARRs are obtained from a structural analysis):

ARR1: r1 = 0 where r1 ≡ fobs – aobs.cobs – bobs.dobs
ARR2: r2 = 0 where r2 ≡ gobs – bobs.dobs – cobs.eobs
ARR3: r3 = 0 where r3 ≡ fobs – gobs – aobs.cobs + cobs.eobs

ARR1, ARR2 and ARR3 are obtained from the models of M1, M2, A1; M2, M3, A2; and M1, M3,
A1, A2, respectively. If we assume that the sensors are not faulty, then the ARRs can be rewritten
as:

ARR1: f – (a.c + b.d) = 0
ARR2: g – (b.d + c.e) = 0
ARR3: f – g – a.c + c.e = 0

Note that any of ARR1, ARR2 or ARR3 can be obtained from the two other ones.
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II.1.4 Signature matrix

Besides analytical redundancy relations, a fundamental concept in the FDI approach is that of
fault signature. The theoretical signature of a fault can be viewed as the expected trace of the fault
on the different ARRs, given the system model.

Definition 2.6: Given a set ARR of ARRi: ri = 0, with Card(ARR) = n, the (theoretical) signature of
a fault Fj is given by the binary vector FS j = [s1j , s2j , ..., snj]

T in which sij  is given by the
following application:

s: ARR × F    → {0,1}
(ARRi, Fj) → sij  = 1 if the component affected by Fj is involved in ARRi

sij  = 0  otherwise

The interpretation of some sij  being 0 is that the occurrence of the fault Fj does  not affect ARRi,
meaning that val(ri) = 0. On the other hand, the interpretation of some sij  being equal to 1 is that
the occurrence of the fault Fj is expected to affect ARRi, meaning that val(ri) is now expected to
be different from 0. This interpretation implicitly assumes that the occurrence of Fj is observable
on the result of the ARRi, or, equivalently, that if ARRi is satisfied, then Fj is not present. As it will
be stated later more formally, this is known as the single fault  exoneration (SF-exo) assumption.

Definition 2.7: Given a set ARR of n ARRs, the signatures of a set of faults F = {F1, F2, …, Fm} all
put together constitute the so-called signature matrix FS of dimensions n×m.

In the polybox example, the signature matrix for the set of single faults corresponding to
components A1, A2, M1, M2 and M3, respectively, is given by:

FA1 FA2 FM1 FM2 FM3

ARR1 1 0 1 1 0

ARR2 0 1 0 1 1

ARR3 1 1 1 0 1

II.1.5 Multiple faults

The case of multiple faults can be dealt with by expanding the number of columns of the

signature matrix, leading to a total number of 2m–1 columns if all the possible multiple faults are
considered. The theoretical signature of a multiple fault is generally obtained from the signatures
of single faults as explained below. Consider that Fj is a multiple fault corresponding to the
simultaneous occurrence of k single faults F1,…, Fk, then the entries of the signature vector of Fj
are given by:

sij  = 0 if si1  = si2  = … = sik = 0
sij  = 1 otherwise, i.e. if ∃ l ∈ {1,.., k} such that sil  = 1

In the polybox example, the signature matrix above extended to double faults (all signatures of
triple faults and above are identical to (1,1,1)) is given by:

FA1 FA2 FM1 FM2 FM3 FA1A2 FA1M1 FA1M2 FA1M3 FA2M1 FA2M2 FA2M3 FM1M2 FM1M3 FM2M3

ARR1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1

ARR2 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1

ARR3 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

The interpretation of multiple fault signature entries is the same as for single faults. Given the way
multiple fault signatures are derived from single fault signatures, this interpretation implies that the
simultaneous occurrence of several faults is not expected to lead to situations in which the faults
compensate, resulting in the non-observation of the multiple fault. As it will be stated later more
formally, this is known as the multiple fault exoneration (MF-exo) assumption, which is a
generalization of the exoneration assumption defined for single faults.
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II.1.6 Diagnosis

The diagnosis sets in the FDI approach are given in terms of the faults accounted for in the
signature matrix. The generation of diagnosis sets is based on a column interpretation of the
signature matrix. The ARRs are instantiated with the observed values OBS and the associated
residuals are determined, providing an observed signature, which can be compared with the fault
theoretical signatures. This comparison is stated as a decision-making problem.

Definition 2.8: The signature of a given observation OBS is a binary vector OS = [OS1,…,OSn]T

where OSi = 0 if and only if val(ri, OBS) = 0 and OSi = 1 otherwise.

The first step is to decide whether a residual value is zero or not, in the presence of noises and
disturbances. This problem has been thoroughly investigated within the FDI community. It is
generally stated as a statistical decision-making problem, making use of the available noise and
disturbance models (Basseville, Nikiforov, 1993).
The second step is to actually compare the observed signature with the fault signatures. A solution
to this decision-problem is to define a consistency criterion as follows:

Definition 2.9: An observed signature OS = [OS1,…,OSn]T is consistent with a fault signature FS j
= [s1j ,…,snj]

T if and only if OSi = sij  for all i.

The consistency criterion has clear semantics and is therefore appropriate for comparing the
obtained diagnosis results with the ones obtained by the logical approach (cf. section 3). In
practical situations, this definition is too demanding, hence the FDI community generally uses a
weaker similarity-based consistency criterion (Cassar, Staroswiecki, 1994).

Definition 2.10: The diagnosis sets are given by the faults whose signatures are consistent with the
observed signature.

In the polybox example, the following results about single faults are obtained from the signature
matrix of II.1.4 for different observed signatures:

(OS1,OS2,OS3) = (0,0,0) ⇔ no fault

(OS1,OS2,OS3) = (0,1,1) ⇔ A2 or M3 faulty

(OS1,OS2,OS3) = (1,0,1) ⇔ A1 or M1 faulty

(OS1,OS2,OS3) = (1,1,0) ⇔ M2  faulty

(OS1,OS2,OS3) = (1,1,1) ⇔ no single fault

The results about multiple faults are obtained from the extended signature matrix of II.1.5.
Among the four first cases above, the observed signatures (0,0,0) and (1,1,0) give the same results
and we have the following changes:

(OS1,OS2,OS3) = (0,1,1) ⇔ A2 or M3 or (A2 and M3) faulty

(OS1,OS2,OS3) = (1,0,1) ⇔ A1 or M1 or (A1 and M1) faulty

So far, the new double faults are supersets of single fault candidates; hence they are not
considered. Considering multiple faults does not bring thus more information for the four first
observed signatures. This is not the case for the (1,1,1) signature where double faults appear:

(OS1,OS2,OS3) = (1,1,1) ⇔ 8 double faults (all except (A1 and M1) and (A2 and M3)) 
and all faults of size ≥ 3 as supersets.

Another interesting point to note is that, in the polybox example, the same results are obtained for
the three first observed signatures when the procedure is applied on ARR1 and ARR2 only:

(OS1,OS2) = (0,0) ⇔ no fault

(OS1,OS2) = (0,1) ⇔ A2 or M3 faulty

(OS1,OS2) = (1,0) ⇔ A1 or M1 faulty
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In these examples, the use of ARR3, associated with r3, does not provide any more localization
power. This is obviously not the case for the two last observed signatures, for which r3 is needed to
disambiguate the signature (1,1). It can be noticed that ARR3 was obtained from the combination
of ARR1 and ARR2. The contribution of this kind of additional redundancy relations and the
existence of a minimal set of ARRs is discussed in VI.1.

It is worth mentioning that the FDI community has developed a big amount of work for obtaining
so-called structured residuals, which are designed so that every residual is sensitive to a subset of
faults (Gertler, 1993; Staroswiecki et al., 1993). This provides a specific structure to the signature
matrix. The localization power of a set of residuals can be derived from the properties of the
signature matrix structure. Another approach is to design so-called directional residuals, which are
designed so that the occurrence of a given fault gives a particular direction to the residual vector
(observed signature). These methods make the choice of a set of ARRs whose signatures are more
relevant than others.

II.2 The DX logical diagnosis approach

(Reiter, 1987) proposed a logical theory of diagnosis. This theory is often referred to as diagnosis
from first principles; i.e. given a description of a system together with observations of the system’s
behavior which conflict with the way the system is meant to behave, the problem is to determine
those components of the system which, when not assumed to be operating normally, restore the
consistency with the observed behavior.

This approach, also referred to as the consistency-based approach, was later extended and
formalized in (de Kleer, Mackworth, Reiter, 1992). In the following we refer to the basic definition
of (Reiter, 1987) without considering posterior extensions and refinements.

II.2.1 The system model

The description of the behavior of the system is component-oriented and rests on first-order logic.
The components are those elements subject to faults and that are part of the diagnosis of the
system.

Definition 2.11: A system model is a pair (SD, COMPS) where:
1. SD, the system description, is a set of first order logic formulas with equality.

 2. COMPS, the components of the system, is a finite set of constants.

The system description uses a distinguished predicate AB, interpreted to mean abnormal. ¬AB(c)
with c belonging to COMPS hence describes the case where the component c is behaving
correctly.

Example (polybox continued):

COMPS = {A1, A2, M1, M2, M3}

SD = { ADD(x) ∧ ¬AB(x) ⇒ Output(x) = Input1(x) + Input2(x),
MULT(x) ∧ ¬AB(x) ⇒ Output(x) = Input1(x) × Input2(x),
ADD(A1), ADD(A2), MULT(M1), MULT(M2), MULT(M3),
Output(M1) = Input1(A1), Output(M2) = Input2(A1),
Output(M2) = Input1(A2), Output(M3) = Input2(A2),
Input2(M1) = Input1(M3) }

Let us note one aspect which differs somewhat from the description of the system in the FDI
approach: with the distinguished predicate AB it is possible to link explicitly a physical
component with the formulas describing its behavior and to make explicit the fact that the
formulas describe the normal behavior of the component.
Formulas describing the behavior of the components are generally expressed by constraints and
need a constraint solver to be processed. In the absence of such a constraint solver, they can be
preprocessed by hand, e.g., the two first constraints above can be rewritten as:

         { ADD(x) ∧ ¬AB(x) ⇒ Output(x) := Input1(x) + Input2(x),
ADD(x) ∧ ¬AB(x) ⇒ Input1(x) := Output(x) – Input2(x),
ADD(x) ∧ ¬AB(x) ⇒ Input2(x) := Output(x) – Input1(x),
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MULT(x) ∧ ¬AB(x) ⇒ Output(x) := Input1(x) × Input2(x),
MULT(x) ∧ ¬AB(x) ∧ Input2(x)≠0 ⇒ Input1(x) := Output(x) / Input2(x),
MULT(x) ∧ ¬AB(x) ∧ Input1(x)≠0 ⇒ Input2(x) := Output(x) / Input1(x) }

II.2.2 The diagnosis problem

A diagnosis problem results from the discrepancy between the normal behavior of a system as
described by the system model and a set of observations.

Definition 2.12: A set of observations OBS is a set of first-order formulas.

Definition 2.13: A diagnosis problem is a triple (SD, COMPS, OBS) where (SD, COMPS) is a
system model and OBS a set of observations.

Note that this definition matches Definition 2.3 provided that each fault F corresponding to a set ∆
of components is described by:

∧ c ∈ ∆ ⊆ COMPS AB(c).

Example (polybox continued): Suppose the polybox is given the inputs a = 2, b = 2, c = 3, d = 3,
e = 2 and it outputs f = 10, g = 12 in response. The set of observations is represented by:
OBS = {Input1(M1) = 2, Input2(M1) = 3, Input1(M2) = 2, Input2(M2) = 3, Input2(M3) = 2,
Output(A1) = 10, Output(A2) = 12}.

II.2.3 Diagnosis

A diagnosis is a conjecture that certain components of the system are behaving abnormally. This
conjecture has to be consistent with what is known about the system and with the observations.
Thus, a diagnosis is given by an assignment of a behavioral mode, AB or ¬AB, to each component
of the system in a way consistent with the observations and the model.

Definition 2.14: A diagnosis for (SD, COMPS, OBS) is a set of components ∆ ⊆ COMPS such
that: SD ∪ OBS ∪ {AB(c) | c ∈ ∆} ∪ {¬AB(c) | c ∈ COMPS – ∆} is consistent. A minimal
diagnosis is a diagnosis ∆ such that ∀∆' ⊂ ∆, ∆' is not a diagnosis

Following the principle of parsimony, minimal diagnoses are often the preferred ones.

Proposition 2.1: If every occurrence in the clausal form of SD ∪ OBS of an AB-literal is positive,
which is in particular the case in the absence of fault models and of exoneration models, the
minimal diagnoses are sufficient to characterize all the diagnoses, i.e. the diagnoses are exactly the
supersets of the minimal diagnoses.

The particular case mentioned in proposition 2.1 corresponds to SD limited to correct behavioral
models expressed as necessary conditions (i.e. ¬AB(x) ⇒ CM as in the example), that is to the
absence of explicit fault models (i.e. of the form AB(x) ⇒ FM), which is the case studied in this
paper, and to the absence of exoneration models (i.e. of the form CM ⇒ ¬AB(x), which express
sufficient conditions of correctness and can be generally seen as very weak, non predictive, fault
models).

By virtue of proposition 2.1, we will limit ourselves most of the time in this paper to minimal
diagnoses.

II.2.3.1 R-conflicts

A direct way of computing diagnoses based on definition 2.14 is a generate and test algorithm
where subsets of components are selected, generating minimal ones first, and tested for
consistency. The obvious problem is the inefficiency of this method. A method based upon the
concept of conflict set has been proposed and is at the basis of most of implemented DX
algorithms. This concept has been introduced by (Reiter, 1987) and will be designated by R-
conflict in this paper.

Definition 2.15: An R-conflict for (SD, COMPS, OBS) is a set of components C = {c1, ..., ck} ⊆
COMPS such that SD ∪ OBS ∪ {¬AB(c) | c ∈ C} is inconsistent, i.e.: SD ∪ OBS |= ∨c ∈ C
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AB(c). A minimal R-conflict is an R-conflict, which does not strictly include (set inclusion) any R-
conflict.

An R-conflict can be interpreted as follows: one at least of the components in the R-conflict is
faulty in order to account for the observations; or equivalently it cannot be the case that all the
components of the R-conflict behave normally. On the last expression of definition 2.15, it can be
seen that an R-conflict identifies with a positive AB-clause which is an implicate of the system
description and the observations.

Example (polybox continued): The polybox with the observations as seen above (f = 10, g = 12)
has the following minimal R-conflicts: {A1, M1, M2} and {A1, A2, M1, M3} due to the abnormal
value of 10 for f. In the case f = 10 and g = 10, the two minimal R-conflicts are: {A1, M1, M2}
and {A2, M2, M3}. In the case f = 10 and g = 14, the three minimal R-conflicts are: {A2, M2,
M3}, {A1, M1, M2}, and {A1, A2, M1, M3}.

II.2.3.2 Computing minimal diagnoses using R-conflicts

Using these minimal R-conflicts, it is possible to give a characterization of minimal diagnoses,
which provides a basis for computing them. This characterization is based on the minimal hitting
set definition which follows:

Definition 2.16: A hitting set for a collection C of sets is a set H ⊆ ∪ {S / S ∈ C} such that H ∩ S
≠ {} for each S ∈ C. A hitting set intersects each set of the collection. A hitting set is minimal if
and only if no proper subset of it is a hitting set for C. Obviously, in order to compute the
minimal hitting sets of a collection C of sets, only those elements in C which are minimal have to
be considered.

Proposition 2.2: ∆ is a minimal diagnosis for (SD, COMPS, OBS) if and only if ∆ is a minimal
hitting set for the collection of (minimal) R-conflicts for (SD, COMPS, OBS).

Example (polybox continued):
With f = 12 and g = 12, the only minimal diagnosis is {}.

With f = 10 and g = 12 as above, there are four minimal diagnoses obtained by computing the
minimal hitting sets for the collection of minimal R-conflicts {{A1, M1, M2}, {A1, A2, M1, M3}}
which are: ∆1 = {A1}; ∆2 = {M1}; ∆3 = {A2, M2}; ∆4 = {M2, M3}.

With f = 10 and g = 10, there are five minimal diagnoses obtained by computing the minimal
hitting sets for the collection of minimal R-conflicts {{A1, M1, M2}, {A2, M2, M3}}. They are:
∆1 = {M2}; ∆2 = {A1, A2}; ∆3 = {A1, M3}; ∆4 = {A2, M1}; ∆5 = {M1, M3}.

With f = 10 and g = 14, there are eight minimal diagnoses obtained by computing the minimal
hitting sets for the collection of minimal R-conflicts {{A1, M1, M2}, {A1, A2, M1, M3}, {A2, M2,
M3}}. They are:
∆1 = {A1, A2}; ∆2 = {A1, M2}; ∆3 = {A1, M3}; ∆4 = {A2, M1}; ∆5 = {A2, M2}, ∆6 = {M1,
M2}; ∆7 = {M1, M3}; ∆8 = {M2, M3}.

A more general characterization of conflicts and diagnoses, available with exoneration models and
with fault models, can be found in (de Kleer, Mackworth, Reiter, 1992), allowing to get conflicts
and diagnoses from prime implicates and prime implicants of the logical theory and giving then a
way of computing diagnoses using a theorem prover. Our aim in this paper being to compare the
basis of the FDI and DX approach in the absence of fault models, we do not consider these
extensions of the theory and limit ourselves to the above definitions.

III Unified framework for the DX and FDI approaches

This section first discusses the different ways DX and FDI formulate the diagnosis problem and
links the different objects that underlie the concept of fault on each side. The notion of potential
conflict  or ARR support is introduced and the formal match of the two approaches is obtained,
proving that a conflict can be interpreted as the support of a non satisfied ARR. The matrix
framework is then proposed as suitable to strictly compare both approaches.
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III.1 System model (SM) vs. system description (SD)

Both FDI and DX approaches are model-based.

In FDI, the system model SM is composed of the behavior model BM and the observation model
OM of the non faulty system. Behavioral laws are described in BM as constraints between variables
(in general a set of differential algebraic equations). Most works in the FDI community do not
explicitly use the concept of component, and BM describes the system as a whole, using e.g. state
space models. When component based models are used, topological knowledge is implicitly
included as shared variables. The observation model describes which system variables are available
from the sensors and the sensor models. In the simplest cases, the behavioral law of a non faulty
sensor just equals some variable to the sensor output (an observed variable belonging to O): a =
aobs.

Very often, the observation model OM is not present in DX. The equality a = aobs for each
variable in O is thus implicitly assumed, and sensor faults are dealt with by considering sensors as
components. In DX, the system description SD includes explicit topological knowledge and
behavioral models of components. The main difference with FDI is that the assumption of correct
behavior of a component, which supports its model, is explicitly coded thanks to the AB predicate.
So, if F is a formula1

 describing the correct behavior of a component c, SM just contains F (which
implicitly means that the behavior of ¬AB(c) is given by F) whereas SD explicitly contains the
formula: ¬AB(c) ⇒ F. To achieve a suitable comparison framework, further developments assume
that the following property holds.

SRE Property (System Representation Equivalence): Let SM and SD respectively be a FDI and
a DX model of the same system. The SRE property is true if each formula of SM representing
(part of) a behavioral law of a component or sensor c appears in the right-hand side of an
implication in SD, the left-hand side of which is ¬AB(c) and conversely, SM is then simply
obtained from SD by substituting False to all occurrences of the AB predicate.

In the following, by virtue of the SRE property, SM and SD are equally used. The restriction of
SM (SD) to the behavioral law(s) of a set of components C is denoted by SM(C) (SD(C)).

III.2 FDI observations versus DX observations

In DX, the set of observations expresses as a set of first-order formulas. It is hence possible to
express disjunctions of observations, which provides a powerful language. However, very often,
only conjunctions of atomic formulas are used. In FDI, the observations are always conjunctions
of equalities assigning a real value and/or possibly an interval value to an observed variable. In the
following, to favor the comparative analysis, we do assume that we have the same observation
language In both FDI and DX approaches, OBS is identical and made up of relations aobs = v,
which assign a value v to an observed variable.

III.3 FDI faults vs. DX faults

DX adopts a component-centered modeling approach and defines a diagnosis as a set of (faulty)
components. In FDI the concept of component is not in general the central one. Whereas DX
abstracts the diagnosis process at the component level, FDI deepens the analysis down to variables
and parameters. FDI faults hence rather correspond to the DX concept of fault mode. In general,
several parameters can be associated with a given component, giving rise to different fault modes.
The difference is that FDI faults are viewed as deviations with respect to the models of normal
behavior whereas in DX's logical view the faulty behavior cannot be predicted from the normal
model and the involved parameters. For deterministic models, two kinds of deviations are
considered (Gertler, 1998):
• in the system parameters, which may take values different from the nominal ones. These are

referred to as multiplicative faults2.
                                                
1 F can be assumed to be written in first-order predicate calculus, even if in practice a constraint logic
programming framework is frequently used, the truth value of F being thus evaluated with respect to a given
semantics of the constraints in a given domain.
2 with reference to their influence on the state variable vector in a state space model.
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• in known variables associated to the sensors and actuators. These are referred to as additive
faults2.

As a consequence, the columns of the signature matrix are generally associated with variables and
parameters. The link between additive/multiplicative faults and components is hence easy to
establish (Staroswiecki, 2001): sensor and actuator faults are generally modeled as additive faults
whereas system component faults are modeled as multiplicative faults.

Note that, in FDI, system parameters may be physical parameters when the models are issued from
physical first principles, or so called structural parameters when, typically, the model is the result
of black-box identification. Structural parameters have no straightforward physical semantics.
However, in some cases, it is possible to establish the (non necessarily one-to-one) correspondence
with physical parameters (Isermann, 1989). In the two cases, the model developer must be able to
make the link between parameters and physical components if the goal is fault isolation. On the
other hand, linking variables to sensors and actuators is straightforward.

Conversely, the DX approach could easily account for FDI fault models by expressing the model
at a finer granularity level. For instance, considering a single-input single-output (static)
component c whose behavior depends on two parameters θ1 and θ2 , the standard DX model given
by:

COMPONENT(x) ∧ ¬AB(x) ⇒ Output(x) = f(Input(x), θ1, θ2)
COMPONENT(c)

could be replaced by:

COMPONENT(x) ∧ PARAMETER1(y) ∧ PARAMETER2(z) ∧ ¬AB(y) ∧ ¬AB(z) ⇒
Output(x) = f(Input(x), y, z)

PARAMETER1(θ1), PARAMETER2(θ2), COMPONENT(c)

The component-based DX approach can hence be generalized by allowing the set COMPS to
include not only components (including sensors and actuators), but also parameters. This
framework is adopted in the following, COMPS standing for the set of generalized components, in
one-to-one correspondence with FDI faults.

III.4 ARRs vs. R-conflicts

In the two approaches, diagnosis is triggered when discrepancies occur between the modeled
(correct) behavior and the observations (OBS). As seen in section II.2, in DX, diagnoses are
generated from the identification of R-conflicts, where an R-conflict is a set of components the
correctness of which supports a discrepancy. In the ARR framework, discrepancies come from
ARRs, which are not satisfied by OBS.

The fundamental correspondence between ARRs and R-conflicts is now established using the
following definitions and property.

Definition 3.1: The support of an analytical redundancy relation ARRi is the set of components
(columns of the signature matrix) with a non zero element3 in the row corresponding to this ARRi.

Definition 3.2: The scope  of a component cj is the set of ARRs (rows of the signature matrix) with
a non zero element in the column corresponding to cj.

In II.1.3, ARRs have been defined with respect to a syntactic property (observed variables), and
sets of ARRs are supposed to be (in some cases, proven to be) complete, in the sense that they are
sensitive to relevant faults. Note that proving this property in the general case amounts to prove a
general diagnosability property of faults. We will take it as an assumption, to be proven for
particular systems under consideration, and moreover make a distinction between the standard
view of completeness in FDI and a view taking ARR supports into account.

                                                
3 It will be seen later that an extension can be done so that the elements of the FS matrix can take a value
different from 1, when not equal to 0.
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ARR-d-completeness Property: A set E of ARRs is said to be d-complete if:
E is finite;
for any OBS, if SM ∪ OBS |= ⊥, then ∃ ARRi ∈ E such that {ARRi} ∪ OBS |= ⊥.

ARR-i-completeness Property: A set E of ARRs is said to be i-complete if:
E is finite;
for any set C of components, C ⊆ COMPS, and for any OBS, if SM(C) ∪ OBS |= ⊥, then ∃

ARRi ∈ E such that the support of ARRi is included in C and {ARRi} ∪ OBS |= ⊥.

It will be clear from the comparison that d-completeness guarantees detectability, and i-
completeness aims at isolation.

Proposition 3.1: Assuming the SRE property, let OBS be a set of observations for a system
modeled by SM (or SD). 1) Given an analytical redundancy relation ARRi violated by OBS, the
support of ARRi is an R-conflict; 2) If E is a d-complete set of ARRs, then if there exists an R-
conflict for (SD, COMPS, OBS), there exists an analytical redundancy relation ARRi∈E violated
by OBS; 3) If E is i-complete, then given an R-conflict C for (SD, COMPS, OBS), there exists an
analytical redundancy relation ARRi ∈ E violated by OBS whose support is included in C.

Proof:
1) By hypothesis, {ARRi} ∪ OBS |= ⊥; since, if C is the support of ARRi, ARRi is a consequence

of SM(C), it follows that SM(C) ∪ OBS |= ⊥, i.e. C is an R-conflict.

2) Suppose now that an R-conflict has been detected and that E is d-complete. Since an R-conflict
exists, SM ∪ OBS |= ⊥, and d-completeness gives an ARRi ∈ E such that {ARRi} ∪ OBS |= ⊥.

3) Last, let C be an R-conflict and suppose that E is i-complete. By definition of R-conflicts, one
has SM(C) ∪ OBS |= ⊥, and i-completeness gives the result.

In consequence, the support of an ARR can be defined as a potential R-conflict (cf. the related
concept of possible conflict in (Pulido, Alonso, 2002)).

Corollary 3.1: If both the SRE property holds and the ARR-i-completeness holds, the set of
minimal R-conflicts for OBS and the set of minimal supports of ARRs (taken in any i-complete set
of ARRs) violated by OBS are identical.

Given SM, COMPS, OBS, the equivalence between really computed minimal R-conflicts for that
OBS on the one hand and minimal supports of those really computed ARRs which are falsified by
OBS on the other hand, depends both on the existence of a complete problem solver for DX
(computation of prime implicates) and of a computable i-complete set of ARRs. Proposition and
corollary 3.1 state the conditions under which a formal equivalence holds. This is a key point of
the comparison between the FDI and DX approaches. Notice that corollary 3.1 was stated in
(Cordier et al., 2000b) as proposition 4.1, omitting the condition of i-completeness. This
statement was thus exact only in the cases where an i-complete set of ARRs exists ((Pulido, Alonso,
2002) suggested rightly that some conditions were needed, but gave only a sufficient condition of
effective computability without any characterization and did not point out any concept similar to
i-completeness). This is the case for example for linear algebraic equations, but it has not be
proved in general. The completeness properties will be discussed more deeply in VI.1.

Example (polybox continued):
The potential R-conflicts are: C1 = {A1, M1, M2} (support of ARR1), C2 = {A2, M2, M3}
(support of ARR2) and C3 = {A1, A2, M1, M3} (support of ARR3).
With f = 10 and g = 12, ARR1 and ARR3 are not satisfied, which gives rise to the minimal R-
conflicts C1 and C3.
With f = 10 and g = 10, ARR1 and ARR2 are not satisfied, which gives rise to the minimal R-
conflicts C1 and C2.
With f = 10 and g = 14, ARR1, ARR2 and ARR3 are not satisfied, which gives rise to the minimal
R-conflicts C1, C2 and C3.
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III.5 The matrix framework

The FDI approach uses the signature matrix crossing ARRs in rows and sets of components in
columns. It was shown in II.1 that, given an observation OBS, diagnosis is achieved by identifying
those columns, which are identical (or closest with respect to a distance function) to the observed
signature.

In the DX approach, it has been seen in II.2 that (minimal) diagnoses are obtained as (minimal)
hitting sets of the collection of (OBS-) R-conflicts. From III.4 above, under the assumption of i-
completeness, such R-conflicts can be viewed as the supports of those ARRs which are not satisfied
by OBS, i.e. looking at the corresponding set of rows I. A (minimal) hitting set of the collection of
R-conflicts can thus be viewed as a (minimal) set J of singleton columns (i.e. columns
corresponding to one single component) such that each of the rows of I intersects at least one
column of J (i.e. has a non zero element in this column).

It is thus quite natural to adopt this matrix framework as a formal basis on which to compare the
two approaches.

Let ARR = {ARRi / i = 1…n} be a set, assumed to be i-complete, of ARRs and COMPS = {cj / j =
1…m} be the set of components of the system. FS = [sij]i = 1…n, j = 1…m is the signature matrix.

The jth  column of FS is the signature of a fault on cj and is noted FS j.

Definition 3.3: Any observation OBS splits the set ARR into two subsets. The subset of ARRs
which are violated, i.e. {ARRi ≡ (ri = 0) / val(ri, OBS) ≠ 0}, is defined as Rfalse. The subset of
ARRs which are satisfied, i.e. {ARRi ≡ (ri = 0) / val(ri, OBS) = 0}, is defined as Rtrue. Rtrue =
ARR \ Rfalse.

OBS is thus described through its signature OS, which is the binary column vector defined by: for
all i = 1…n, OSi = 1 if ARRi ∈ Rfalse and OSi = 0 if ARRi ∈ Rtrue. Note that this is equivalent to:
OSi = FaOBS(ARRi), where FaOBS stands for “not satisfied” and denotes the falsity value of the
relation ARRi with respect to OBS.

The FDI theory compares the observed signature to the fault signatures whereas DX considers
each line corresponding to an ARR in Rfalse separately, isolating R-conflicts before searching for
a common explanation. In the following, these approaches are called column view and line view
respectively.

III.6 Multiple faults

Notice that, in the matrix framework proposed in III.5, the DX approach deals with multiple faults
by implicitly considering sets of singleton columns. By default, there is no limitation on the
number of possible simultaneous faults: minimal diagnoses are built as minimal hitting sets of the
collection of minimal R-conflicts and are not limited in size. Single and multiple faults are thus
dealt with in exactly the same framework.

In the FDI approach, the signature matrix FS above, made up of singleton columns, is generally
used in the case of single fault assumption. As seen in II.1.5, dealing with multiple faults requires
adding new columns to FS, corresponding to the considered multiple faults (a maximum of
2|COMPS| – |COMPS| – 1 if all possible multiple faults are considered).

The following notation is used for columns representing non empty subsets of COMPS: for J =
{j1,...,jk} ⊆ {1,...,m}, let us note CJ the subset {cj / j ∈ J}4, and siJ the matrix element of FS at line i
and column FSJ (meaning the column added for CJ representing a multiple fault).

In order to compare FDI and DX approaches in the case of multiple faults, it is needed to specify
how multiple fault signature columns are built from single fault signature columns in the FDI
framework. Each of these new columns FSJ must be derived from the set of singleton columns
FS j1 , ..., FSjk by applying a given algorithm to extend deterministically the signature matrix. The

                                                
4 Component Cj is here straightforwardly identified to C{j}.
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section IV shows that this algorithm should depend on the assumptions that are made about the
combination of the effects of the single faults.

The requirements for this combination law to match the DX approach are quite clear: viewing a
hitting columns set {FS j1 , ..., FSjk} of the rows set I as a new column FSJ corresponding to CJ =
{cj1, ..., cjk}, it results from the hitting set definition that each row of I must intersect the column
FSJ if and only if it intersects at least one of the FS j1  columns. The column FSJ must have thus a
non zero element in a given row i of I if and only if at least one of the FS j1  columns has a non
zero element in row i, i.e. FSJ has to verify for all rows i in I:

siJ ≠ 0 if and only if ∃l 1≤l≤k si jl  ≠ 0 (FI property)

As in the FDI perspective, the extended matrix is computed for any possible set I of rows, the FI
property has to hold for each row i and extended column FSJ.

It happens that this is actually how the theoretical signatures of multiple faults are generally
obtained from the signatures of single faults in the FDI approach (cf. II.1.5) and it simply
expresses the intuitive idea that a multiple fault may affect an ARR if and only if at least one of
the single faults it is made up of may affect this ARR. This means that the scope of a multiple fault
is the union of the scopes of its single fault constituents.

IV Comparing DX and FDI approaches: assumptions and results

This section makes an intensive comparison of the DX and FDI approaches. It is shown that every
approach adopts different diagnosis exoneration assumptions by default. Under the same
assumptions, in particular with no exoneration at all, it is shown that the results provided by both
approaches are identical and the theoretical proofs are included.

IV.1 Exoneration assumptions for the comparison

The originality and the power of both the FDI and DX approaches result from the fact that they
are based only on the correct behavior of the components: no model of faulty behavior is needed.
Nevertheless, different assumptions are adopted by default by each approach, leading to different
computations of the diagnoses. These assumptions concern the manifestations of the faults
through observations.

The DX approach makes absolutely no assumption about how a component may behave when it is
faulty. This is because this approach is only based on a reductio ad absurdum principle: any
discrepancy between the correct model and the observations necessarily implies that a component
is faulty. This ensures the fundamental property of the DX approach, i.e. its logical soundness. In
the matrix framework, this means that, for any given OBS, only those rows (ARRs) which are not
satisfied by OBS are considered: for each one, its support constitutes the associated R-conflict.
Possible diagnoses (sets of faulty components) are built from these R-conflicts. However, the DX
approach allows one to state an explicit exoneration assumption at the level of every component:
assume any component, the model of which is satisfied in a given context, correct in this context.
Beyond the default assumption of DX (nothing assumed about faulty behavior), this exoneration
assumption is equivalent to state that the occurrence of any fault always manifests in the sense that
a faulty component does not behave according to its corresponding model. This hypothesis is
commonly expressed explicitly in SD by modeling components with biconditionals (relating the
explicit correctness assumption and the functioning law). Note that, as conditions of proposition
2.1 are no more satisfied in this case, only minimal diagnoses are still characterized in terms of R-
conflicts, a superset of a diagnosis being not in general a diagnosis. We do refer to this assumption
as to the component-based exoneration (COMP-exo) assumption.

Definition 4.1 (COMP-exo assumption):  If the correct behavioral model of a component is
satisfied in a given context (given observation OBS and assumption of correct behavior of some
given components), then this component is assumed to be correct in this context.

Conversely, the FDI approach is based on a direct reasoning about the effects of a fault (column),
viewed as a non satisfaction of the correct behavioral model of the corresponding component, on
the ARRs (rows). In addition to the obvious fact that a fault cannot affect an ARR which it is not in
its scope, which is the direct reasoning used in DX, the idea is that a fault necessarily manifests
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itself by affecting the ARRs in its scope, causing them not to be satisfied by any given OBS.
Hence, given OBS, not only, as in DX, is any component in the support of a non satisfied ARR a
fault candidate, but also any component in the support of a satisfied ARR is implicitly exonerated
(satisfied rows are thus also used in the reasoning). In fact this result is not sound but rests on an
ARR-based exoneration (ARR-exo) assumption, which is implicitly made in the FDI approach and
has to be considered explicitly in order to compare the FDI approach with the DX approach.

Definition 4.2 (ARR-exo assumption): A set of faulty components necessarily shows its faulty
behavior, i.e. causes any ARR in its scope not to be satisfied by any given OBS. Or, equivalently,
given OBS, each component of the support of a satisfied ARR is exonerated, i.e. is considered as
functioning properly.

In the following, the comparison between DX and FDI approaches is made only in the case of no-
exoneration at all, i.e. no COMP-exo in DX (which is the default case) and no ARR-exo in FDI
(which is not the default case). The comparison of the FDI ARR-exo assumption and the DX
COMP-exo assumption has been made, relying on the concept of alibi (Raiman, 1992), but is out
of the scope of this paper and will be published apart.

IV.2 The no-exoneration case

In this subsection, under the SRE property, the no-exoneration case is now given a formal account
in the matrix framework previously introduced, in order to specify formally which (sets of)
components have to be considered as diagnoses in each case.

From the matrix viewpoint, the fact that ARRi, if satisfied by OBS, exonerates cj appears (cf.
II.1.4) in FS as sij  = 1. In order to release the default ARR-exo assumption in the FDI approach, it
is necessary to express that a faulty component may or may not affect the ARRs in its scope. To
make the difference with the previous case, the symbol X can be used instead of 1 for this
purpose. We can now represent the fact that cj belongs to the support of ARRi but is not
necessarily exonerated when ARRi is satisfied by OBS, by sij  = X. The semantics of sij  = X is thus:
a fault in cj can explain why ARRi is not satisfied by OBS, but ARRi may happen to be satisfied
by OBS even when cj is faulty (to be compared with the semantics of sij  = 1: a fault in cj implies
that ARRi cannot be satisfied by any OBS).

The generalized use of an exoneration assumption for each component of the support of each
ARR is called the exoneration case and corresponds to the assumption by default of the FDI
approach (elements of FS take their values in {0, 1}). As said above, in the present comparison, we
consider only the total lack of exoneration, called the no-exoneration case (elements of FS take
their values in {0,X}). In this later case, definitions 3.1 and 3.2 translate to: the support of an ARRi

is the set {cj / sij  = X}; the scope  of a component cj is the set {ARRi / sij  = X}.

IV.2.1 The single fault no-exoneration case (SF-no-exo case)

The column associated with the faulty component must have X in non satisfied rows and 0 or X in
satisfied rows. In this column view, the matching of the observed signature with a fault signature is
thus based on the fact that an X in the fault signature is consistent with either a 0 or a 1 in the
observed signature. So, it is just like using only non satisfied rows: the faulty component must
have X in each such row.

So acceptable diagnoses are those {cj} verifying:

Rfalse ⊆ Scope(cj) (CV-SF-no-exo)5

In the line view, {cj} is an acceptable diagnosis if it hits all the supports of not satisfied ARRs, that
is to say:

∀i (ARRi ∈ Rfalse ⇒ cj ∈ Support(ARRi)) (LV-SF-no-exo)

(LV-SF-no-exo) and (CV-SF-no-exo) are straightforwardly equivalent, because each one is
equivalent to: ∀i (FaOBS(ARRi) = 1 ⇒ sij  = X).
                                                
5 For explicitness purpose, the formulas corresponding to the different cases are labeled as explained: C/LV:
Column/Line View, S/MF: Single/Multiple Fault, (no-)exo: (no) ARR-based exoneration, FI: Fault Interaction.
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We have thus the result:

Theorem 4.1: Under the assumption of i-completeness, FDI single fault diagnoses in the ARR-no-
exoneration case are identical to DX single fault diagnoses.

Example (polybox continued) Releasing the exoneration assumption in the polybox example
leads to the following single fault signature matrix:

FA1 FA2 FM1 FM2 FM3

ARR1 X 0 X X 0

ARR2 0 X 0 X X

ARR3 X X X 0 X

The following results are then obtained:

With outputs f = 10 and g = 12, i.e. observed signature (1,0,1), there are 2 single fault diagnoses
{A1} and {M1}.
With outputs f = 10 and g = 10, i.e. observed signature (1,1,0), there is only one single fault
diagnosis {M2}.
With outputs f = 10 and g = 14, i.e. observed signature (1,1,1), there is no single fault diagnosis.
With outputs f = 12 and g = 12, i.e. observed signature (0,0,0), there are 5 single fault diagnoses.

These results obtained by FDI are identical to those obtained by DX (cf. II.2.3.2).

Let us remark also that, except in the case of normal observation (null observed signature), these
results are the same as under the default exo assumption (cf. II.1.6). This is because, as each one
of the ARRs can be derived from the other two, the observed signatures (1,0,0), (0,1,0) and (0,0,1)
are physically impossible. But this would not be the case in general. For instance, it is not the case
here for the normal observation f=12, g=12, i.e. observed signature (0,0,0): in the exo case (cf.
II.1.6), no single fault diagnosis exists, when in the no-exo case, five single-fault diagnoses
corresponding to the five components are proposed.

IV.2.2 The multiple fault no-exoneration case (MF-no-exo case)

In this case, (CV-SF-no-exo) can be straightforwardly extended to: CJ is a possible diagnosis iff

Rfalse ⊆ Scope(CJ) (CV-MF-no-exo)

No COMP-exo and multiple faults is the default case in DX. The way the line view selects a set of
column vectors (cf III.6) to build the equivalent extended matrix column interprets as follows: a
multiple fault can explain that a given ARR is not satisfied if and only if at least one of its faults
can explain it, i.e. several faults never produce more than the combination of their separate effects.
On the other hand, it is admitted that a faulty component does not necessarily affect an ARR in its
scope (no-exo) and that several faults may compensate each other (compensation), resulting in a
satisfied ARR.

With the help of the ordering 0<X, the no-exoneration fault interaction law can be stated very
simply:

siJ = sup j∈J {sij} (FI-MF-no-exo)

Thus in the line view the diagnoses are the sets CJ such that:

∀i (ARRi ∈ Rfalse ⇒ ∃j ∈ J, Cj ∈ Support(ARRi)) (LV-MF-no-exo)

This, due to (FI-MF-no-exo), translates to:

∀i (ARRi ∈ Rfalse ⇒ CJ ∈ Support(ARRi))

that in turn is the same as Rfalse ⊆ Scope(CJ), i.e. (CV-MF-no-exo).

Theorem 4.2: Under the assumption of i-completeness, FDI diagnoses in the ARR no-exoneration
case are identical to non empty DX diagnoses.
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Example (polybox continued): For the polybox example, the following extended signature matrix
is obtained from the usual one (see II.1.5) by replacing each 1 by X (all signatures of at least
triple faults are identical to (X,X,X)):

FA1 FA2 FM1 FM2 FM3 FA1A2 FA1M1 FA1M2 FA1M3 FA2M1 FA2M2 FA2M3 FM1M2 FM1M3 FM2M3

ARR1 X 0 X X 0 X X X X X X 0 X X X

ARR2 0 X 0 X X X 0 X X X X X X X X

ARR3 X X X 0 X X X X X X X X X X X

The following results are then obtained:

With outputs f = 10 and g = 12, i.e. observed signature (1,0,1), there are 4 minimal diagnoses: the
2 single fault diagnoses {A1} and {M1} and the 2 double fault diagnoses {A2, M2} and {M2,
M3}, and 22 superset diagnoses.

With outputs f = 10 and g = 10, i.e. observed signature (1,1,0), there are 5 minimal diagnoses: the
single fault diagnosis {M2} and the 4 double fault diagnoses {A1, A2}, {A1, M3}, {A2, M1} and
{M1, M3}, and 20 superset diagnoses.

With outputs f = 10 and g = 14, i.e. observed signature (1,1,1), there are 8 minimal double fault
diagnoses: {A1, A2}, {A1, M2}, {A1, M3}, {A2, M1}, {A2, M2}, {M1, M2}, {M1, M3} and {M2,
M3}, and 16 superset diagnoses.

These results obtained by FDI are identical to those obtained by DX (cf. II.2.3.2). In the case
where f = 12 and g = 12, i.e. observed signature (0,0,0), any non empty subset of components is a
diagnosis: there are 5 minimal single fault diagnoses and 26 superset diagnoses. The only
difference between FDI and DX is that, in this case, DX proposes also the empty diagnosis, {},
when FDI considers only the possible faults (it could be possible to add a “no-fault” column of
signature (0,0,0) to the signature matrix in order to represent the empty diagnosis, and thus the
results would be identical).

It can be noticed that, except in the f = 10 and g = 14 case (where anyhow, no exoneration can
apply as no ARR is satisfied), these results are different from those obtained under the default exo
assumption (II.1.6).

V Implementation issues

This section first presents the classical implementation schemes for the FDI and DX theories and
shows the implications and how the two theories result in significant differences on the operational
side.

V.1 Implementation of the FDI approach

This subsection presents the general lines of the so-called structural approach (Cassar,
Staroswiecki, 1994) to obtain a set of ARRs and the signature matrix for a given diagnosis
problem (SM, OBS, F), as defined in section II.1.2. Note that alternative methods have been
proposed, based on different computational tools but providing equivalent outcomes (Carpentier
1999), (Frank, 1996), (Gertler, 1998), (Patton et al, 2000). Given a system modeled by SM, the
system structure is defined through a binary application st:

st: R × V → {0,1}
             (f, v) → st(f, v)

where st(f, v) = 1 if and only if v appears in relation f, R and V being the set of relations in SM and
the set of variables respectively.

Definition 5.1: The set of (f, v) pairs such that st(f, v) = 1 is called the system structure.

The system structure can be represented by a bi-partite graph G = (R ∪ V, A) in which the nodes
are relation-nodes or variable-nodes and there exists a non-oriented edge aij  between node fi and
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node vj if and only if st(fi, vj) = 1. Equivalently, it can be represented by the incidence matrix of
G. In the polybox example, this matrix is given by:

a b c d e f g x y z aobs bobs cobs dobs eobs fobs gobs
RM1 1 1 1
RM2 1 1 1
RM3 1 1 1
RA1 1 1 1
RA2 1 1 1
RSa 1 1
RSb 1 1
RSc 1 1
RSd 1 1
RSe 1 1
RSf 1 1
RSg 1 1

The procedure can be guided by a structural analysis performed on the system structure, which
aims at exhibiting the calculation paths of unknown variables from observed variables. This
problem can be formalized in a graph theoretical framework, which comes back to the well-known
problem of finding a complete matching6 with respect to the unknown variables X in the bi-partite
graph G = (R ∪ V, A). In the system structure matrix representation, a complete matching with
respect to X (CMX matching for short) appears as a selection of one and only one entry per
column corresponding to an unknown variable, and per row, the rows corresponding to the SM
relations.

The following is a CMX matching on the system structure of the polybox example (selected entries
are indicated by ⊕), after an appropriate permutation of rows and columns that exhibits over-
constrained subsystems (i.e. subsystems for which the number of constraints is larger that the
number of unknown variables they link). In this case, there is only one over-constrained
subsystem, outlining two redundant relations RA1 and RA2. The existence of over-constrained
subsystems is stated by the FDI community as a necessary condition for the system to be
monitorable (Staroswiecki, Declerck, 1989).

a b c x d y e z f g
RSa ⊕
RSb ⊕
RSc ⊕
RM1 1 1 ⊕
RSd ⊕
RM2 1 1 ⊕
RSe ⊕
RM3 1 1 ⊕
RSf ⊕
RSg ⊕
RA1 1 1 1
RA2 1 1 1

Once a CMX matching has been found, every relation involved can be interpreted as a mechanism
which determines the value of its matched variable from the other variables which appear in the
relation7. The unknown variables are then wholly determined by the relations involved in the

                                                
6 A matching in a bi-partite graph G = (R ∪  V, A) is a sub-graph K = (R ∪  V, A’) such that the projections
PR(A’) and PV(A’) of A’ on R  and V  are one-to-one. It is complete with respect to a subset of variables X  if and
only if X ⊆ PV(A’).
7 Possible restrictions related to invertibility issues of the SM relation operators can be dealt with by marking
the corresponding edges, which are then not allowed for selection or allowed under restrictive conditions.
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matching. The remaining relations are hence redundant. ARRs are obtained from redundant
relations by replacing the unknown variables by their symbolic expression in terms of observed
variables, which can be guided by following the calculation paths indicated by the matching (this
symbolic propagation is not generally made explicit by the FDI community, although ARR design
methods like parity space or elimination theory based approaches perform it automatically). A
CMX matching indeed allows one to direct the edges of the bi-partite graph G. If the edges
belonging to the matching are oriented from relations to variables and the remaining edges from
variables to relations, then the resulting alternated oriented chains provide the unknown variables
calculation paths.

In the polybox example, the previous CMX matching results in two ARRs. Let us consider the first
redundant equation RA1, which leads to the first ARR: ARR1.

RSa: a = aobs
RSc: c = cobs
RM1: x = a × c
RSb: b = bobs
RSd: d = dobs
RM2: y = b × d
RA1: f = x + y
RSf: f = fobs

ARR1:r1 = 0 where r1 ≡ fobs – aobs.cobs – bobs.dobs

RA1

fobs

RSf

aobs cobs bobs dobs

RSe

y z

bobs

gobs

dobs cobs ebos

Figure 2 — Graphical interpretations of ARR1 and ARR2

Let us now consider the second redundant equation RA2, which leads to the second ARR: ARR2.

RSb: b = bobs
RSd: d = dobs
RM2: y = b × d
RSc: c = cobs
RSe: e = eobs
RM3: z = c × e
RA2: g = y + z
RSg: g = gobs

ARR2:r2 = 0 where r2 ≡ gobs – bobs.dobs – cobs.eobs 

If we assume that the sensors are not faulty, then the two ARRs can be rewritten as:

ARR1:f – (a × c + b × d) = 0
ARR2:g – (b × d + c × e) = 0
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Let us call the ARRs that are obtained from the perfect matching elementary ARRs. The number
of elementary ARRs is the same for any existing perfect matching, as it only depends on the
redundancy degree of the observed system (Luong et al., 1994). Given a set of elementary ARRs,
additional redundancy relations can be obtained by combining the elementary ones. This is
(algebraically) equivalent to substituting the expression derived from one relation for a variable in
another relation. These additional redundancy relations correspond to those that would be
obtained as elementary relations from other perfect matching existing on the system structure. In
the polybox example, a third redundancy relation ARR3 can be obtained as follows:

RSf: f = fobs
RSa: a = aobs
RSc: c = cobs
RM1: x = a × c
RA1: y = f – x
RSe: e = eobs
RSc: c = cobs
RM3: z = c × e
RA2: g = y + z
RSg: g = gobs

ARR3: r3 = 0 with r3 ≡ fobs – gobs – aobs.cobs + cobs.eobs

The number of existing complete matching in a bi-partite graph is a source of combinatorial
complexity. However, algorithms with only polynomial complexity have been proposed (Berge,
1975). It should be noticed that, given a set of ARRs, any combination of ARRs is also an ARR.
This is the case in the previous example in which ARR3 is obtained from ARR1 and ARR2 and
r3 = r1 – r2. The number of ARRs may be relevant and this issue will be discussed in VI.1.

V.2 Implementation of the DX approach.

This section presents the general lines of the most common implementation of the DX approach.
Most existing DX diagnosis systems are inspired from GDE (de Kleer, Williams, 1987) and use the
ATMS (Assumption Based Truth Maintenance System) of de Kleer (1986) along the following
architecture:

Figure 3 — DX diagnosis systems classical architecture.

The predictor is generally a constraint propagator. Constraints express the components behavioral
laws. The basic inference step is to find a constraint that allows it to determine the value for a
previously unknown variable. The newly recorded value may cause other constraints to trigger
and more values to be deduced. A symptom is manifested when two different values are deduced
for the same variable (i.e. logical inconsistency is detected). The dependencies tracing out the path
through the constraints that the inputs (defined by OBS) have taken to deduce a given variable
value prediction are used to construct the conflicts. Recording these dependencies is just the task
of the coupled ATMS (cf. figure 3).

To every prediction is associated a label  consisting of the disjunctive set of minimal environments
from which it follows. An environment is a conjunctive set of assumptions (in our case these are
correct behavior assumptions distinguished by the ¬AB symbol). A minimal inconsistent
environment is referred to as a nogood. Hence a nogood exactly corresponds to an R-conflict.
The ATMS records the inferences performed by the predictor as justifications, updates the labels
of the facts according to these justifications and associated assumptions and keeps updated the set
of nogoods.

Let us notice that the directionality of a component’s signal flow is irrelevant to this constraint
propagation based technique. Indeed, a component places a constraint between the values of its

Predictor
(simulator) ATMS

Diagnosis
candidate
generator
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terminals that can be used in any direction. For example, a substractor cannot be constructed by
simply reversing an input and the output of an adder. But the constraint f = x + y corresponding
to A1 of our polybox example can be used in all directions, i.e. x = f – y and y = f – x.

Consider the polybox example after the measurements f = 10 and g = 12. y = 6 can be calculated
in two different ways: y = b × d = 6, assuming that M2 is correct; y = g – z = g – (c × e) = 6,
assuming that both A2 and M3 are correct. The supporting environments of y = 6 are hence {M2}
and {A2, M3}. On the other hand, we can calculate y = f – x = f – (a × c) = 4, assuming that both
A1 and M1 are correct. Hence, the supporting environment of y = 4 is {A1, M1}. Since y = 6 and
y = 4 are inconsistent, we obtain two R-conflicts {M2, A1, M1} and {A2, M3, A1, M1}.

The diagnosis candidate generator can then compute candidate diagnoses from conflicts by
applying a hitting set algorithm as proposed in (Reiter, 1987), and corrected in (Greiner et al.,
1989).

VI Benefits and perspectives arising from the unified framework

VI.1 The SRE and ARR-completeness properties

The SRE property is required to perform a sound comparison. Indeed, it imposes that the models
SM and SD are isomorphic both from a semantic and a syntactic point of view.

The d-completeness property is a standard requirement of FDI, since if a fault cannot be detected
by any ARR, either it is out of interest, or the system is unsound and needs more sensors. On the
theoretical level, this property can be stated as follows. Let M(x, o) be the equation set that
represents SM, where x and o denote the vectors of variables contained in X and O respectively. A
d-complete set of ARRs is a finite equation set E(o) such that (we abbreviate M(x, o) consistent
and E(o) consistent by M(x, o) and E(o) respectively):

∀o (∃x M(x, o) ⇔ E(o)).

It is clear from this that d-completeness results from elimination theory that preserves equivalence
(notice that in (Krysander, Nyberg, 2002) such an equivalence is included in the definition of an
ARR, i.e. only d-complete ARRS are considered). An old result of algebraic geometry (Hodge,
Pedoe, 1952) states that this property holds for polynomial algebraic equations. In this case, the
theorem 4.2 applies and gives an equivalence between FDI (in the no-exo case) and DX
diagnoses. But the result just ensures existence and is not constructive, and thus cannot be used in
practice to build E. Progress has been made in this direction by computer algebra techniques
(such that the use of Gröbner bases). In a general way, the d-completeness property is satisfied by
sets E of ARRs which contain a basis (in the sense of a vector space basis) of all ARRs which can
be built to describe a system. The theoretical conditions under which such a basis exists are related
to the implicit functions theorem and can be exhibited in the form of a Jacobian condition in the
case of polynomial differential algebraic equations (Staroswiecki, Comtet-Varga, 2001).

The i-completeness property is a novel concept since it requires to take into account the ARRs’
supports. With the same notations as above, it can be stated as:

∀M’ ⊆ M ∃E’ ⊆ E ∀o (∃x M’(x, o) ⇔ E’(o)).

This is not common in the FDI community. The problem is related to the fact that having a basis
of ARRs does not guarantee that all the potential minimal R-conflicts are represented by the
ARRs’ supports.

Example (polybox continued): The polybox example perfectly illustrates the above issue (cf.
II.1.3). ARR3 may be obtained by combining ARR1 and ARR2, however its real support is {A1,
A2, M1, M3} which does not include M2 whereas both Supp(ARR1) and Supp(ARR2) include
M2.

The support may have to be taken into account relatively even to one single ARR, when nonlinear
equations are dealt with. Let us consider the following system:
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Example (the inverted polybox):

Figure 4 — The inverted polybox

Here COMPS = {A1, A2, M}, where A1 and A2 are adders and M is a multiplier, with models as in
section II. We assume that O = {a, b, c, d, f} and X = {x, y}.

The unique ARR is given by:

ARR1: f – (a + b) × (c +d) = 0, with support {A1, A2, M}.

Let us consider the following observations: OBS = {a = –1, b = c = d = f = 1}. ARR1 is violated
by OBS, giving rise to FDI single fault diagnoses {A1}, {A2} and {M}. But, if we consider the DX
approach, then an R-conflict for OBS is {A1,M} because

SD ∪ {¬AB(A1)} ∪ {a = –1, b = 1} |= x = 0
SD ∪ {¬AB(M)}  ∪ {x = 0} |= f = 0

and this conflict does not appeal to the behavior of A2. Thus DX single fault diagnoses are {A1}
and {M} different from FDI ones.

It seems thus from theorem 4.1 that, even for such a simple system, ARR-i-completeness is not
satisfied. Indeed, on the one hand SM({A1, M1}) ∪ OBS |= ⊥, on the other hand the unique ARR
actually satisfies {ARR1} ∪ OBS |= ⊥, but Support(ARR1) = {A1, A2, M} is not included in {A1,
M}.

The problem actually comes from a lack of precision in the definition of an ARR. Definition 2.4
just requires that an ARR is a constraint between variables belonging to O entailed by SM. But it
does not precise what is the syntactic language of an ARR.

The spirit of FDI is that an ARR is a symbolic expression in terms of variables of O, obtained by
symbolically eliminating the non observable variables of X between model equations. In particular
no potential value of any observable should be used in an ARR, as it is computed before knowing
any OBS. The problem arises when particular values of (observable or non observable) variables,
when input in a component’s model SM(C), determine its output independently of a subset of
remaining inputs.

Thus, if the model of M is expressed as: f = x × y (1), it is quite natural to consider ARR1 as the
only ARR. But the two particular cases that may yield a smaller support can be stated apart by
augmenting the model of M of two (redundant) equations:

if x = 0 then f = 0 (2)
if y = 0 then f = 0 (3)

where the particular constant value 0 occurs (equation (2) is precisely the one that has been used
above in DX propagation of OBS). To obtain i-completeness, it is natural to consider also as
ARRs, in addition of ARR1:

ARR2: if a + b = 0 then f = 0, with support {A1, M}
ARR3: if c + d = 0 then f = 0, with support {A2, M}

obtained respectively by eliminating x between the model of A1 and equation (2) and by
eliminating y between the model of A2 and equation (3). We call ARR2 and ARR3 (partially)
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instantiated ARRs. Thus, ARR2 is violated by OBS and gives rise to FDI single faults {A1} and
{M} as DX.

The key point is that, for the particular value 0 at one input, the model of the multiplier is
expressed as a relation between two variables instead of three (the other input disappears). This
leads to a strictly smaller support for the ARR, and thus to a strictly smaller potential conflict.

In the general case, let us consider a given ARRi depending on a set of observed variables
{o1,...op}, then the partial derivative of ARRi with respect to either of these variables is generically
non zero. However since in non-linear systems, the partial derivatives are functions of the
operating point, it can be understood that they may be zero or not, depending on the system’s
trajectories. Therefore the structure of the ARRs may change for those operating points for which
some of the partial derivatives cancel, giving rise to as many instantiated ARRs.

The ARR-i-completeness issue is naturally linked to the redundancy and minimality issues. It is
known in DX that only minimal (for subset inclusion) R-conflicts are relevant, the non minimal
ones being redundant. On the other hand, we showed in V.1 that a given CMX matching in the bi-
partite graph of the system structure provides a set of elementary ARRs, but that other ARRs can
be computed by combining these elementary ones or by using other existing CMX matching. By
construction, combined ARRs are clearly redundant when considered just as equations. But, in the
light of the logical framework, one has to consider each ARR jointly with its associated support to
obtain i-completeness. The question that must be answered is hence: under which conditions is a
given ARRj a logical consequence of a minimal set of ARRis, i ≠ j, and can thus be considered as
redundant?

Proposition 6.1: The necessary and sufficient condition for a given ARRj to be a logical
consequence of a set of ARRis, i ∈ I, j ∉ I, is: ∃ I’ ⊆ I such that
1) for any observation OBS, if all ARRis, i ∈ I’, are satisfied by OBS, then ARRj is satisfied by
OBS (or, equivalently, if ARRj is not satisfied by OBS, necessarily at least one of the ARRis is not

satisfied by OBS): ∧i ∈ I’ ARRi[OBS] ⇒ ARRj[OBS] is valid.

2) the support of ARRj contains the support of each ARRi, i ∈ I’:

Supp(ARRj) ⊇ ∪i ∈ I’ Supp(ARRi).

ARR[OBS] designates the ground formula obtained from ARR by substituting each observed
variable by its value in OBS: if OBS = {Xj = vj} then ARR[OBS] = ARR[Xj/vj] (and so, what we
designated by Fa

OBS
(ARR) is nothing else that the falsity value of ARR[OBS], with respect to the

semantics of the constraints of the domain).

Proof:  These conditions are obviously sufficient: they traduce exactly that, each time ARRj
produces an R-conflict (i.e. is not satisfied by one given OBS), then one of the ARRis produces a
smaller or equal R-conflict. The proof that these conditions are necessary can be stated as follows.
The logical form of a given ARRj, making explicit the assumptions about the normality of

components belonging to the support of ARRj is the valid formula: ∧Ci ∈ Supp(ARRj) ¬AB(Ci) ⇒
ARRj, where free (observed) variables in ARRj are assumed to be universally quantified (with
respect to their interpretation domain). This can be equivalently formulated as the validity of:

PC(ARRj) ∨ ARRj, where PC(ARRj) = ∨Ci ∈ Supp(ARRj) AB(Ci) is the positive AB-clause

formulation of the potential R-conflict Supp(ARRj). Suppose now that a given ARRj is a logical
consequence of a set of ARRis, i ∈ I. This is logically expressed as:

∧i ∈ I (PC(ARRi) ∨ ARRi) |= (PC(ARRj) ∨ ARRj) (5.1)

i.e.: ∀ L ⊆ I (∧l ∈ L PC(ARRl) ∧ ∧k ∈ I \ L ARRk) |= (PC(ARRj) ∨ ARRj).
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Taking into account that PC(ARRl) and PC(ARRj) are AB-clauses and that ARRk and ARRj do
not contain any AB-literal, this is equivalent to:

∀ L ⊆ I (∧l ∈ L PC(ARRl) |= PC(ARRj)) or (∧k ∈ I \ L ARRk |= ARRj) (5.2)

Let I' = {i ∈ I | Supp(ARRi) ⊆ Supp(ARRj)}. For each element i ∈ I \ I', there exists a component
in Supp(ARRi) which does not belong to Supp(ARRj), i.e. there exists a positive AB-literal in the
clause PC(ARRi) which does not appear in the clause PC(ARRj). Thus:

∧i ∈ I \ I' PC(ARRi) |≠ PC(ARRj).

From this, one can deduce by choosing L = I \ I' in (5.2) that:

∧i ∈ I' ARRi |= ARRj

which is nothing else than condition 1 for {ARRi}i ∈ I' and ARRj.

As for any i ∈ I' Supp(ARRi) ⊆ Supp(ARRj), the condition 2 for {ARRi}i ∈ I' and ARRj is also
satisfied. This ends the proof that the conditions 1 and 2 are necessary.

In FDI, any ARR which is obtained as a combination of elementary ARRis, say ⊗i ∈ I ARRi,
practically satisfies condition 1 because any combination operator ⊗ is obviously required to

verify ∧i ARRi[OBS] ⇒ ⊗i ARRi[OBS] for any OBS. However, computing trivially the union of
the supports of the ARRis does not give in general the right (i.e. minimal) support of ⊗i ARRi.

Indeed, Supp(⊗i ARRi) is more often than not strictly included in ∪i ∈ I Supp(ARRi), which
makes that condition 2 is not satisfied in general and consequently ⊗i ARRi is not redundant. The
reason is that, in a combination ⊗i ARRi, some variables/parameters associated to some
components are eliminated and it thus may happen that some components, which were involved in
the supports of some ARRi, are actually not needed to support ⊗i ARRi. In principle, the
computation of the real support could be automated, thanks to the correspondence between
variables/parameters and components, from symbolic computation of combination of elementary
ARRs. In practice, both computations of the combinations and of their supports are either done by
hand or automatically derived from other CMX matching.

The existence of instantiated ARRs is, to the best of our knowledge, a novel issue, that we could
outline from the comparison of the precompiled supports of ARRs and the on-line computed R-
conflicts. As a matter of fact, instantiated ARRs cannot be derived from a pure structural analysis
as the ones proposed in (Krysander, Nyberg, 2002) or (Pulido, Alonso, 2002). One could argue
that such instantiated ARRs, which have to be considered when diagnosing discrete systems (e.g. if
models are written in extension, all ARRs are instantiated), have few practical interest for
continuous systems, those usually considered by FDI, because they occur only at singular points.
This has to be further investigated on real examples. But in any case, instantiated ARRs are most
probably relevant for hybrid systems. Establishing conditions under which instantiated ARRs exist
and provide additional diagnosis information is thus a future direction of research, as is the
possibility of obtaining i-completeness (at least, the set of possible supports for ARRs is finite,
which opens to enumerative methods).

VI.2 Off-line vs. on-line computation of R-conflicts

From the computational point of view, the main difference between the FDI and DX approaches is
that in FDI most of the computational work is done off-line. Using just the knowledge of which
variables are observed, i.e. sensor locations, modeling knowledge is compiled: ARRs are obtained
by combining model equations or constraints, and eliminating unobserved variables. The only
thing that has to be done on-line, i.e. when a given OBS is acquired, is to compute the truth value
(with respect to OBS) of each ARR and to compare the obtained observed signature with the fault
theoretical signatures (columns of the signature matrix). In terms of R-conflicts, this means that
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potential R-conflicts are compiled and that, for a given OBS, R-conflicts are exactly those potential
R-conflicts which are supports of those ARRs which are not satisfied by OBS.

From a practical point of view, it is important to notice that computing ARRs is achieved by
computer algebra techniques aiming at formally eliminating unobserved variables in equations. In
FDI, this symbolic propagation process is not systematically automated but it is guided by a prior
structural analysis (cf. V.1). The absence in SM of explicit assumptions (of components
correctness) governing the validity of component models also implies that the support of each
ARR, and thus the signature matrix, is computed by hand. Conversely, in DX, instantiated
propagation is usually performed, i.e. the computational task starts as soon as OBS is known,
nothing being compiled off-line. But the presence in SD of explicit assumptions supporting the
validity of the models allows R-conflicts to be automatically derived by tracing the propagation
process (usually using an ATMS coupled with the inference engine, cf. V.2).

It is important to notice that nothing in the logical formalism of DX prevents to use symbolic
computation. In fact, the idea, coming from FDI, of compiling ARRs can be used as so in the DX
framework for obtaining potential R-conflicts. In a second step, a given OBS is used to derive the
R-conflicts in order to generate, as usual, diagnoses. Notice that this second step makes a quite
different use of ARRs and OBS than the one adopted in FDI whereas the first step (symbolic
compilation) is a matter of problem solvers. The FDI approach is generally limited to partial
symbolic propagation. In order to deduce more potential R-conflicts, symbolic constraint solving
methods would be needed. In some cases (e.g. linear equations), such complete algorithms,
producing all possible ARRs and associated potential R-conflicts, can be implemented.

This has indeed already been proposed in the DX framework: in his thesis (Loiez, 1997) computes
in advance all possible linear combinations of models eliminating all occurrences of unobserved
variables, i.e. all possible ARRs, for the monostable circuit, an analog electronic circuit proposed
as a reference problem (Dague, Taillibert, 1996). When this is possible, this is a way to get the best
from each approach:

• modeling knowledge is compiled (under ARRs form) according to sensor locations before
any observation has been made, which is the main advantage of the FDI approach;

• thanks to explicit correctness assumptions, potential R-conflicts (supports of ARRs) are
computed at the same time to give rise, given an OBS, to R-conflicts;

• R-conflicts are used to generate the diagnoses, which is the main advantage of the DX
approach.

Obviously, this requires that all observations are acquired at one go (or equivalently, that diagnosis
begins when all observations have been made): there is no analog in FDI of the incremental
evolution of diagnoses with respect to new observations and of the choice of the next observation
in order to discriminate at best between present diagnoses.

But it is easy to imagine how to transpose these DX techniques, while keeping the benefit of the
compilation. Given the location of all sensors, i.e. the set O of all observable variables, one can
successively, for each subset O' of O, compile the set of ARRs whose variables are exactly the
elements of O' and index it by O' and order these sets of ARRs according to the order of their
indexes for set inclusion in the lattice of subsets of O. For a partial set of observations OBS'
concerning a subset O' of observed variables, only those ARRs whose indexes are subsets of O' are
evaluated, checked for consistency and possibly considered to generate R-conflicts. In a
perspective of sequential observation, other ARRs, whose indexes intersect O', can be partially
evaluated in advance and their indexes updated (elements of O' are removed). When adding a new
observation concerning a variable o of O \ O', only those ARRs whose updated indexes are {o}
have to be checked. Strategies to choose the best next observation, i.e. the best o in O \ O' to be
observed, like those commonly used in DX, can be applied. For example a one-step look-ahead
strategy (de Kleer et al., 1991) just involves to check all ARRs whose updated indexes are
singletons (these ARRs are constraints involving only one variable). Again, no variable
propagation is needed at all.

Notice finally that, in the perspective of generating diagnoses from R-conflicts, what is compiled
as supports of ARRs are the potential R-conflicts, not the minimal R-conflicts for a given OBS. In
fact, as the potential R-conflicts are compiled before any observation has been made, it is
impossible, once an observation is given, to ensure that only minimal R-conflicts for this
observation are obtained. Even if an irredundant, i.e. logically minimal (no element is a logical
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consequence of the others in the sense of proposition 6.1), and i-complete set of ARRs is available,
it gives rise, for any given OBS, to a set of R-conflicts which are not generally all minimal. This is
because a strict inclusion between supports of some of these ARRs is possible: it may happen that
Supp(ARRi) ⊂ Supp(ARRj) and that ARRi and ARRj are both not satisfied by OBS (remark that
this does not contradict the set of ARRs being irredundant, which just implies the existence of at
least another observation OBS' for which ARRi is satisfied and ARRj is not satisfied). However, if
wanted, the generation of only minimal R-conflicts for any given OBS can be achieved. This just
requires to compile the lattice (for set inclusion) of all potential R-conflicts, labeling each one by
the set of ARRs of which it is the support. For a given OBS, it is then enough to explore this lattice
from bottom in a breadth first manner, stopping to explore supersets each time a non satisfied
ARR is met in the label of a potential R-conflict: one obtains this way exactly all minimal R-
conflicts for OBS. This search could even be itself compiled, giving as result a direct mapping
between all possible fault signatures and the associated sets of minimal R-conflicts. Given any
OBS, only the observed signature has to be computed and minimal R-conflicts are thus directly
obtained without any computation.

VI.3 Uncertainty management

It has been mentioned in II.1.6 that, when the observed signature fits no fault signature, some FDI
applications accept the closest fault signatures using a similarity-based consistency criterion, e.g.
with respect to some distance. The reason for accepting an approximate matching is that it is a way
to cope with model uncertainties, e.g. unknown disturbances or model errors. As uncertainty is not
fully characterized, the semantics of the distance is not clearly defined. However, the goal is to
guarantee some kind of robustness with respect to the decision procedure, which assesses whether
a residual is zero or not. For example, using the Hamming distance 8 as criterion, the correct fit of
the observed signature is guaranteed in presence of k decision errors if the fault signatures are all
at least at a distance of 2k+1 one from the other. Nevertheless, it seems that this operation can be
viewed as hypothesizing a whole set of possible observed signatures and needs no change in the
framework relating observed and fault signatures.

Another way to deal with uncertainties in FDI is to make use of as many ARRs as can be derived,
even though these may be redundant from a detection and localization point of view. However, it
can be argued that additional signature bits ensure more robust detection in the presence of noise
and disturbances (like error code bits in information theory), and this suggests to proceed with all
the available ARRs. Although a definition of logically redundant ARRs is provided in section
VI.1, the redundancy properties of ARRs in noisy environments must be stated in statistical terms
and are not studied in this paper.

The above mentioned methods used in FDI are among a set of methods which aim at providing
the diagnosis system with robustness. This is indeed an issue arising from the type of models
being used, which are essentially numeric with uncertainties represented either by unknown
disturbances or stochastically characterized signals. There are two families of methods: those
which act at the residual generation step (unknown input observers (Alcorta-Garcia, Frank, 1997),
disturbance optimal decoupling (Chen et al., 1993)...) and those which act at the residual
interpretation step (statistical decision methods (Basseville, Nikiforov, 1993), fuzzy interpretation
(Cassar, Staroswiecki, 1994), ...).

DX generally ignores the robustness problem, focusing on the use of high level of abstraction
models, which are qualitative or symbolic. Also widely used in DX, interval models (also known as
semi-qualitative models) are based on the assumption that uncertainties are bounded (Armengol et
al., 2001; Loiez, 1997). These have been investigated for several years in the DX community as
realizing a perfect compromise between precision and robustness; more recently, interval models
have been considered in pure FDI approaches (Adrot et al.,  1999; Ploix et al.,  2000).

Moreover the decoupling methods (Chen et al., 1993), (Staroswiecki et al., 1993) proposed by
FDI to make ARRs insensitive to unknown disturbances have no equivalent in DX.

                                                
8 The Hamming distance represents the number of edges separating two vertices in the {0,1}n hypercube, where n
is the number of ARRs.
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VI.4 Logical soundness vs. structural robustness

As seen in section 4, the DX logical diagnosis theory does not make any kind of assumption about
the faults a priori, which guarantees logically sound results. In the most general case, single as well
as multiple faults are considered: a fault may be observable or not at the symptom level and
multiple faults may as well compensate, i.e. being themselves not observable. When the application
domain suggests specific assumptions, these are explicitly stated as additional axioms, for example
the exoneration assumptions as defined in section IV.1

Conversely, the FDI approach is rather guided by structural robustness properties, i.e. the
diagnosis results are valid in all the observation/fault space but a tiny region corresponding to fault
cases discarded a priori, e.g. non detectable faults, which leave the SM satisfied. As pointed out in
II.1.4, the single fault assumption is frequently adopted in many FDI applications, because it
happens frequently that multiple faults have a very low probability, and not considering them
drastically simplifies the computation. When this hypothesis is not realistic, one must anticipate
how multiple faults combine their effects in the ARRs.

This is why comparing the DX and FDI approaches calls for the definition of all underlying
assumptions since they are by default different and that they do not necessarily match in their
formal definitions, e.g. ARR-exo and COMP-exo assumptions.

Also related is the fact that, since FDI has a pre-compilation approach, the faults and sensors are
chosen so that the diagnosis results are not ambiguous. Residuals are then so designed that they
are at least weakly isolating (Gertler, 1993), i.e. that every of the considered faults has a different
signature. If this is not possible, the solution calls for the redesign of the instrumentation system
(Carpentier, 1999). Conversely, in DX, the so-formulated theory allows one to generate all
diagnosis candidates and proposes techniques to stamp them with probability or preference
degrees. In practice, these degrees are used on line to generate only the most plausible candidates
(highest probabilities, best explanation capacity, etc.).

VII Conclusion

The first goal of FDI was historically fault detection and associated decision procedures. Its main
interest was to offer sophisticated techniques, such as observers and filters, so as to interpret
observations to produce a set of symptoms (residuals). Nevertheless, the residuals can be designed
in such a way that they are also informative from the fault localization point of view. DX
approached the diagnosis problem the other way around, focusing on fault localization by
pointing out the subsets of the system description that conflict with the observations. Our study
proves that a significant part of the two theories fits into a common framework which allows a
precise comparison. When they adopt the same hypotheses with respect to how faults manifest
themselves and how many faults can occur simultaneously, FDI and DX views agree on diagnoses.
This opens the possibility of a fruitful cooperation between these two diagnostic approaches.

Some points have been left out of this comparison. There is presently no equivalent in DX of the
notion of unknown disturbance or noise. Conversely, DX makes a systematic use of fault models,
whose counterpart in FDI can be found in assumptions about the additive or multiplicative
disturbances that model the faults but always with respect to a correct behavior model. Fault
models have been left out of the framework of the present paper. Temporal aspects of diagnosis,
which are crucial in the state tracking problem, have not been approached neither. Further studies
are needed to integrate these aspects, which would be beneficial to both communities.
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