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Summary

We review the empirical phylogenetic literature on plant diversification, highlighting challenges

in separating the effects of speciation and extinction, in specifying diversification mechanisms,

and in making convincing arguments. In recent discussions of context dependence, key

opportunities and landscapes, and indirect effects and lag times,we seeadistinct shift away from

single-point/single-cause ‘key innovation’ hypotheses toward more nuanced explanations

involving multiple interacting causal agents assembled step-wise through a tree. To help

crystalize this emerging perspective we introduce the term ‘synnovation’ (a hybrid of ‘synergy’

and ‘innovation’) for an interacting combination of traits with a particular consequence (‘key

synnovation’ in the case of increased diversification rate), and the term ‘confluence’ for the

sequential coming together of a set of traits (innovations and synnovations), environmental

changes, and geographic movements along the branches of a phylogenetic tree. We illustrate

these concepts using the radiation of Bromeliaceae. We also highlight the generality of these

ideas by considering how rate heterogeneity associated with a confluence relates to the

existence of particularly species-poor lineages, or ‘depauperons.’Many challenges are posed by

this re-purposed research framework, including difficulties associated with partial taxon

sampling, uncertainty in divergence time estimation, and extinction.

I. Introduction

Species diversity is evidently not distributed evenly through time
(Simpson, 1953) or across geography (Willis, 1922), taxonomy
(Scotland & Sanderson, 2004), or phylogenetic history (Vargas &
Zardoya, 2014). Nor is it distributed according to a simple random

model with a constant rate of speciation and extinction. This was
shown first by comparison of simulated and real diversity curves in
the fossil record (Raup et al., 1973) and surveys of diversities of
higher taxa with known fossil ages (Stanley, 1985); then in assays of
phylogenetic tree shape and topology (Mooers & Heard, 1997),
supported subsequently using phylogenetic trees with estimated
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divergence times (Pybus & Harvey, 2000). Departures from a
homogeneous diversification rate must lead to both unexpectedly
species-rich and unexpectedly depauperate clades, but most work
has focused on ‘radiations’, in which species richness significantly
exceeds some background level (a Web of Science title search for
‘species-rich’ finds 354 citations, vs only 46 for ‘species-poor’).
Indeed, the word ‘innovation,’ which is often used in connection
with radiations, has a decidedly positive connotation, suggesting
the promotion of diversity. Although this bias may have neglected
some interesting patterns – and we draw attention here to the
existence and causes of especially depauperate lineages – our focus is
also squarely on plant radiations in the sense of increased
diversification rate.

While we fully appreciate that the evolution of ‘disparity’ (in
morphology, physiology, etc.) is of tremendous interest, and that
it is central to the definitions of ‘adaptive radiation’ and ‘key
innovation’ in the eyes of many authors (reviewed by Givnish,
1997, 2015; Sanderson, 1998; Losos & Mahler, 2010; Glor,
2010), we have chosen to concentrate here on the other major
attribute that has figured prominently in these discussions, namely
differential rates of diversification, which in turn are a function of
the origin and extinction of species. This, we contend, is a worthy
object of study in its own right, regardless of what views one holds
on the definition of ‘adaptive radiation’. Of course, having decided
to focus on diversification, it naturally becomes interesting to ask
whether rapid diversification always, sometimes, or only rarely is
associated with the evolution of significant disparity, and to try to
identify any general circumstances where more or less disparity is
associated with diversification. Note that we are not obliged to
commit to any particular definition of ‘adaptive radiation’ to ask
and to answer such questions clearly. In fact, as Olsen & Arroyo-
Santos (2009) argued, invoking ‘adaptive radiation’ in this context
may just distract attention from analyses of the underlying
variables and, on the whole, may cause more trouble than it is
worth.

Our main contention is that the study of radiations has matured
faster than the terminology available to describe them. We believe
more attention needs to be focused on what we term the confluence
of a variety of interacting events and, as a step in this direction, we
also introduce the term synnovation to highlight synergistic
interactions among traits. Whereas synnovation and related terms
focus on the promotion of diversification, the notion of confluence
can just as well apply to factors resulting in species-poor lineages,
or depauperons. Our hope is that these ideas will focus research in
even more integrative directions, and will help to crystalize for
broader audiences the great progress that our community has been
making.

II. Lessons from the literature

As the analytical methods for studying diversification in a
phylogenetic context have recently been thoroughly reviewed (e.g.
Etienne & Haegeman, 2012; Stadler, 2013; Morlon, 2014), we
motivate our proposals mainly based on lessons from empirical
studies. The relevant literature is now so vast, however, that we
highlight only selected studies that have figured prominently and

that help us to make some general observations. To focus our effort
further, we primarily derive our inferences from studies of living
plant species, with only brief consideration of fossil taxa.

We draw six take-home messages from our reading of the
empirical literature. The first three are broadly related to testing
radiation hypotheses and deriving convincing conclusions – they
are more methodologically oriented. The last three are more
biological and relate to our overall conception of the diversification
problem. Together, we think these signal amajor shift over the past
few decades from an emphasis on simple causal hypotheses tomore
elaborate explanations involving multiple interacting agents (e.g.
Drummond et al., 2012; Wagner et al., 2012).

1. Parsing speciation and extinction

The net diversification rate of a clade (r) is the difference between its
rate of speciation (s), and extinction (e): that is, r = s� e. The nine
possible combinations of changes in speciation and extinction rate
are shown in Table 1, which emphasizes that radiations can be
driven by increasing the speciation rate alone, by decreasing the
extinction rate alone, or combinations of both. Many case studies
have highlighted traits that are viewed as increasing speciation rate,
for example, nectar spurs (Hodges & Arnold, 1995) or bilateral
flower symmetry (Sargent, 2004). Others have highlighted traits
thatmay drive radiation primarily by decreasing extinction rate, for
example, latex production (Farrell et al., 1991) or extrafloral
nectaries (Marazzi & Sanderson, 2010).

The methodological challenge of inferring separate rates of
speciation and extinction are well known (Nee, 2006; Rabosky,
2010), and we will note only that many studies are limited to
estimating the net rate of diversification (e.g. Baldwin & Sander-
son, 1998; Beaulieu & Donoghue, 2013). Instead, we draw
attention to the likelihood that many individual factors influence
speciation and extinction simultaneously, in the same direction or
in opposite directions. For example, the evolution of chemical
defenses in Inga (Fabaceae; Richardson et al., 2001a; Kursar et al.,
2009) and Protium (Burseraceae; Fine et al., 2014) might affect (in
combination with other factors, such as habitat specialization) both
speciation and extinction by increasing species range sizes and the
coexistence of related species within communities. Such simulta-
neous effects also apply to geographic movements: entering a new
area might increase the speciation rate by opening up new habitats

Table 1 Nine possible effects of a change along a phylogenetic tree on
diversification

Speciation
rate

Extinction
rate Consequences for clade

Affects neither – – Nothing happens
Affects one Up – Speciation-driven radiation

– Down Extinction-driven radiation
Down – Slow death
– Up Slow death

Affects both Up Up Lots of turnover
Down Down Little turnover
Up Down Ultra-radiation
Down Up Die horrible death
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and also decrease extinction by release from predators or compet-
itors.

But, in relation to our central argument below, we wish to
emphasize that a sequence of phylogenetic events, concentrated
along a series of branches in a phylogeny (Fig. 1), can have additive
effects and collectively yield the variety of outcomes in Table 1.
Thus, a trait that primarily decreases the extinction rate along one
branch might be followed by an event that primarily increases the
speciation rate, which might then trigger what we regard as a
radiation. Such sequences of events delimitmultiple regimeswithin
a tree among which diversification rates can vary significantly. We
return to this point below.

2. Specifying mechanisms

Surprisingly often, it remains unclear how a character or geographic
movement is supposed to connect, mechanistically, to the diver-
sification rate. In many cases an argument is made for the adaptive
value of a trait, but not directly for how it would influence
speciation and/or extinction. For example, the evolution of the vine
habit is said to increase access to different light environments, and
thereby to promote survival (Gianoli, 2004), but it is not entirely
obvious how this would shift the diversification rate (the same
applies to many other cases, for example, monocarpy in Agave
(Agavaceae); Good-Avila et al., 2006). The dots need to be
connected as clearly as possible, both to make a compelling

argument and to facilitate further tests. A particularmechanism can
make specific testable predictions about the phylogenetic and/or
geographic distribution of the trait of interest, and, perhaps more
importantly, about the expected distribution of variation in the
trait.

As an illustration, consider the seminal work by Hodges and
colleagues on nectar spurs in the flowers of Aquilegia (Ranun-
culaceae; Hodges & Arnold, 1995; Hodges, 1997a,b). This
clearly specified a mechanism that could increase the rate of
speciation: a small difference in spur morphology might influence
pollinator behavior and thereby function in premating isolation.
An expectation of this model is that sister species should often
differ in spur characteristics and pollinator type. Although
functional studies have demonstrated the plausibility of the
mechanism, increasingly resolved phylogenetic trees for Aquilegia
cast doubt on the role of spurs in driving speciation (Whittall &
Hodges, 2007; Bastida et al., 2010; Fior et al., 2013). Shifts from
bees to hummingbirds to hawkmoths have only rarely accom-
panied speciation events; instead they mark more inclusive clades
within which a number of related species share the same basic
spur morphology and pollinator type (Whittall & Hodges,
2007). Moreover, the parallel European radiation of Aquilegia,
which took place within the same time frame as the North
American radiation and yielded a similar number of species,
entailed little differentiation in pollinators or spur morphology
(Bastida et al., 2010).

Key innovation Key synnovation Key confluence

(a) (b) (c)

Key confluence

(d)

Key confluence

(e)

Fig. 1 Phylogenetic trees illustrating key innovation, key synnovation, and key confluence; triangle size and color represent clade diversity. (a) A ‘key
innovation’ hypothesis in which the increased rate of diversification is attributed solely to the one marked character change (brown rectangle). (b) A ‘key
synnovation’ hypothesis in which a pair of synergistically interacting characters (two brown rectangles) underlie a shift in diversification rate; note that the
components of a synnovation need not have evolved on adjacent branches, but instead (as shown here) might be separated by some distance in the tree,
creating a ‘lag time’ between the first innovation and the noteworthy increase in diversification. Note that elements of a synnovation (or confluence)might also
be inferred to have arisen along a single branch (not shown). (c) A ‘key confluence’ hypothesis (stippled oval) in which an increased rate of diversification is
attributed to the synergistic interactionof themarked synnovation (twobrown rectangles)with an environmental/geographic factor (blue rectangle). (d)A key
confluence involving an innovation (brown rectangle) followedby climate change (blue rectangle) affecting all of the lineages; here the radiation involves three
major branches. (e) A key confluence involving the same innovation and climate change as in (d), but in the reverse order; here the radiation involves just two
major branches.
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In retrospect, a more likely general explanation for the rapid
diversification of Aquilegia features geographic movements from
Asia into North America and separately into Europe, and
subsequent habitat differentiation in both areas, but especially in
Europe in connection with recent climate changes (Bastida et al.,
2010; Fior et al., 2013). Spurs may have played a less direct role in
Aquilegia than in some other groups; for example, sister species in
the orchid clade Disa do often differ in spur characteristics and
pollinators (Johnson et al., 1998).

Along these same lines, pollinator-driven diversification has
been widely invoked to explain the radiation of angiosperms
(Sargent, 2004; Kay & Sargent, 2009; van der Niet & Johnson,
2012; for contrasting results compare Schnitzler et al., 2001 with
Schiestl & Schluter, 2009). Specifically, bilaterally symmetrical
flowers are viewed as restricting the direction of entry of
pollinators with the potential for more precise pollen placement
to decrease gene flow between incipient species (Neal et al., 1998).
Again, it follows that sister species in clades with bilateral flowers
should often differ in the position of pollen deposition, and this
could specifically be tested. The same applies to the number and
arrangement of stamens, and their mode of operation; for
example, the staminal lever in Salvia (Lamiaceae; Classen-
Bockhoff et al., 2004) and the beak of the galea in Pedicularis
(Orobanchaceae; Ree, 2005; Eaton et al., 2012). Directly in line
with our central argument given in Section III, B. C. O’Meara
et al. (unpublished) argue that it is the combination of bilateral
corolla symmetry and reduced stamen number that triggers higher
rates of speciation.

The point of the cases cited above is that, properly framed, it is
not just the presence or absence of a state (e.g. bilateral symmetry),
but the phylogenetic distribution of the variable(s) specifically
related to speciation thatmatters (cf. the polymorphic ‘modulators’
of Bouchenak-Khelladi et al., 2015). From this perspective,
methods are needed to identify regions in a phylogeny that show
the greatest lability in traits of interest (e.g. Marazzi et al., 2012;
Beaulieu et al., 2013), which might allow us to test the proposition
that heightened variability itself drives diversification (Ricklefs &
Renner, 1994, 2000).

3. Convincing arguments

In reviewing the literature, we are struck that there is no one
formula for developing a convincing hypothesis about
diversification and its causes. Studies of individual clades, and
even of individual evolutionary events, can sometimes be compel-
ling, especially when these permit comprehensive sampling and
explicit functional comparisons pivoting around an event of
interest. Studies that test correlations across multiple clades and
events (the stock-in-trade of phylogenetic comparative biology; but
seeMaddison& FitzJohn, 2015) can be highly useful, of course, in
isolating the contribution of particular attributes in contrasting
evolutionary backgrounds. In general, the most convincing cases
bring together multiple lines of evidence (beyond phylogenetic
trees and character reconstructions), including carefully designed
functional studies and field experiments (Weber & Agrawal, 2012;
cf.Wainwright et al., 2012, for an exceptional zoological example).

Although multiple evolutionary instances are a distinct virtue,
their convincingness depends on the veracity of the comparisons.
Simple sister group comparisons typically lack the resolution to
precisely identify where significant shifts in diversification occurred
(e.g. possibly nestedwell within one of the two clades).Nectar spurs
again provide an example. In addition to studying the single origin
of spurs in Aquilegia, Hodges (1997a,b) compared the diversity of
clades with spurs to that of their presumed sister groups without
spurs, and found a positive relationship between spurs and diversity
in most cases. However, the connection seems less convincing in
light of recent phylogenetic work. For example, in Halenia
(Gentianaceae) spurs evolved well before the major radiation of
the group, which was probably driven instead by movement into
neotropicalmountains (vonHagen&Kadereit, 2003). Likewise, in
Impatiens (Balsaminaceae) the spurred sepal considerably predated
the rapid radiation that began in the Pliocene, perhaps drivenmore
by seed dispersal traits (Janssens et al., 2009).

The same applies to broad studies attempting to identify
radiations and innovations using orders, families, etc., as terminals
(e.g. Fiz-Palacios et al., 2011; Ferrer & Good, 2012; Magall�on
et al., 2015; Tank et al., 2015). The basic problem is that a large
clade might be identified as a radiation when the actual diversi-
fication shift(s) took place within it (e.g. Sanderson & Donoghue,
1994), or perhaps in a more inclusive clade (e.g. Sanderson &
Wojciechowski, 1996). This is a very real problem across
angiosperms, where many of the exceptionally diverse named
clades (e.g. Asteraceae, Poaceae,Orchidaceae, Cactaceae, Fabaceae,
monocots, and angiosperms themselves) actually comprise ancient
species-poor lineages subtending one or more nested radiations
(Smith et al., 2011).

4. Context dependence

The literature consistently shows that the influence of a trait on
speciation or extinction (or both) is highly context dependent (de
Queiroz,2002;Donoghue,2005).Geographyandenvironmentare
often crucial. For example, fleshy, bird-dispersed fruits have been
seen as a key innovation, with their effect on speciation mediated
through increased long-distance dispersal and population isolation
(e.g. Smith, 2001; Bolmgren&Eriksson, 2005; Biffin et al., 2010),
but such fruitsmaywell have a different impact on diversification in
mountain forests vs flat savannas. Seed dispersal by ants, often with
the production of elaiosomes, probably reduces dispersal distances
andgeneflow, thereby increasing allopatricdifferentiation (Lengyel
et al., 2009), but myrmechochory may have its greatest impact on
diversification in unpredictable, nutrient-limited, or fire-prone
environments (Lengyel et al., 2009). Klak et al. (2004) highlighted
specialized hygrochastic capsules (which release only a few seeds at
once, thereby extending dispersal through time) as driving the
diversification of the ruschioid Aizoaceae in southern Africa, but
these may increase the establishment of allopatric populations
mainly in the context of the climatic uncertainty and edaphic
heterogeneity of that area (Ellis et al., 2006).

Temporal context is important too. A given landscape might or
might not elicit a radiation, depending on when it is encountered,
and on the diversity and structure of the biological community at
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that time (Simpson, 1953; Donoghue & Edwards, 2014). For
example, the radiation of a number of originally Laurasian, cold-
adapted clades into the Andes of South America (e.g. Valeriana
(Caprifoliaceae s.l.): Bell & Donoghue, 2005; Lupinus (Fabaceae):
Hughes & Eastwood, 2006; Astragalus (Fabaceae): Scherson et al.,
2008) depended on their arrival at a time when suitable high-
elevation environments were emerging and open for colonization.
Similarly, the radiation in the Miocene of a variety of lineages that
were pre-adapted to arid climates (C4 grasses, Aizoaceae, etc.:
Arakaki et al., 2011) depended on the expansion of such environ-
ments in that period. Similarly, Ericaceae adapted to oligotropic
conditions (by virtue of small leathery leaves and specialized
mycorrhizal associations) may have been pre-adapted to radiate
into mountainous regions as these emerged (Schwery et al., 2015).

Biotic context also matters. For example, radiations within
leptosporangiate ferns depended on the presence of angiosperm-
dominated forests (Schneider et al., 2004). At amuch smaller scale,
hummingbirds were present when Aquilegia entered North
America from Asia (Bastida et al., 2010), and may have provided
a ‘bridge’ there betweenbee andhawkmothpollination (Whittall&
Hodges, 2007). By contrast, hummingbirds were lost from Europe
before the arrival of Aquilegia, and the radiation there proceeded
with bees alone.

Recent studies feature even more complex context dependence.
Kostikova et al. (2014) argued that in Polygonaceae the evolution
of smaller seeds with specific dormancy and dispersal mechanisms
lowered the extinction rate when lineages entered colder seasonal
climates. In campanulid angiosperms, Beaulieu & Donoghue
(2013) showed a correlation between the production of achene
fruits and increased diversification rate, mainly driven by Asterales
(with lesser effects in Apiales and Dipsacales), suggesting that this
might have been attributable to the geographic spread of the
Asteraceae out of South America (along with an increased rate of
growth form evolution). In the Bromeliaceae case featured in
Section III.6, Givnish et al. (2014) explored the effects of the
evolution of several characters in the context of biotic interactions
in different regions and habitats.

More attention is needed to the context that sympatry with
close relatives creates. Increased diversification via allopolyploidy
(e.g. Tragopogon (Asteraceae): Soltis et al., 2012; Persicaria
(Polygonaceae): Kim et al., 2008) and homoploid hybrid speci-
ation (e.g. Helianthus (Asteraceae): Yakimowski & Rieseberg,
2014) both depend on sympatry, and reinforcement involving
recently diverged populations could generate diversity in some
groups (e.g. Costus (Costaceae): Kay & Schemske, 2008; Phlox
(Polemoniaceae): Hopkins & Rausher, 2012). Character displace-
ment related to community composition (e.g. Stylidium (Stylid-
iaceae): Armbruster et al., 1994) has recently been studied in
several groups using measures of phylogenetic over-dispersion in
local communities (Burmeistera (Campanulaceae): Muchhala &
Potts, 2007; Pedicularis: Eaton et al., 2012; Iochroma and relatives
(Solanaceae): Muchhala et al., 2014). It remains unclear, however,
whether such sympatric divergence translates into increased
diversification.

Niche filling and competitive interactions among related species
within communities are invoked to explain diversity-dependent

slow-downs in diversification (Raup et al., 1973; Rabosky, 2009,
2014), though a number of other processes could be responsible
(Etienne & Rosindell, 2012; Moen & Morlon, 2014), and some
models predict the opposite (Emerson & Kolm, 2005). Vamosi &
Vamosi (2010, 2011) argued that trait evolution can change these
dynamics, by increasing either the geographic area available for
further diversification or the carrying capacity of a region. For
example, they suggested that bilaterally symmetrical flowers could
increase diversification by allowing the co-existence of a larger
number of closely related species.

5. Key opportunities and key landscapes

Context dependence implies that significant radiations can occur in
the absence of evolutionary changes, simply, for example, by the
movement of a lineage into a new region that provides more of the
same environment, in amore ‘open’ state. This is the sense inwhich
‘key opportunity’ has been used (e.g. Moore & Donoghue, 2007).
This is distinguishable from ‘key landscape’ in the sense of Givnish
(1997, 2015), which refers to a landscape that promotes diversi-
fication across multiple lineages. Island archipelagos provide the
classic case, but continental mountain chains act similarly (see
Drummond et al., 2012; Hughes & Atchison, 2015). Some
radiations in these settings are of an adaptive type, with shifts into
multiple habitats and life forms, for example, silverswords
(Dubautia and relatives, Asteraceae; Baldwin, 1997; Baldwin &
Sanderson, 1998) and Bidens (Asteraceae; Knope et al., 2012) in
Hawaii; Lobelia (Lobeliaceae) and relatives in Africa and Hawaii
(Knox & Palmer, 1998; Givnish et al., 2009); Aeonium (Crassul-
aceae) and Sonchus (Asteraceae) in the Macronesian islands (Kim
et al., 1996; Jorgensen &Olesen, 2001); and Espeletia (Asteraceae)
in the mountains of South America (Monasterio & Sarmiento,
1991). Others are at the ‘nonadaptive’ (Gittenberger, 1991;
Givnish, 1997; Rundell & Price, 2009) end of the spectrum, with
niche conservatism and climate change promoting isolation and
subsequent divergence in allopatry but with little niche or
morphological differentiation (Wiens, 2004).

There has been great interest in documenting unusually high
rates of diversification in particular areas, including the Mediter-
ranean basin (Valente et al., 2010a,b), the p�aramo of the Andes
(Madri~n�an et al., 2013), the Qinghai-Tibetan plateau (Wen et al.,
2014), and theCape Floristic Province in SouthAfrica (Richardson
et al., 2001b; Klak et al., 2004; Linder & Hardy, 2004; Sauquet
et al., 2009). These have undoubtedly been hotspots of diversifi-
cation formany plant groups, but it is important to note that in each
of these regions there are a wide range of outcomes among clades,
and this distribution of outcomes deserves study in its own right.
That is, there are plant groups that have radiated little if at all
in these areas (e.g. for the Cape flora, Warren & Hawkins,
2006), alongside multiple iconic radiations – for example, Erica
(Ericaceae), Pelargonium (Geraniaceae), Restionaceae, and
Iridaceae in the Cape region of South Africa (Goldblatt &
Manning, 2002; Linder, 2003); Proteaceae in Mediterranean
hotspots of the Southern Hemisphere (Sauquet et al., 2009);
Dianthus (Caryophyllaceae) in Mediterranean Europe (Valente
et al., 2010b); Espeletia, Lupinus, Puya (Bromeliaceae), and
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Valeriana in p�aramo (Madri~n�an et al., 2013); Aizoaceae in
succulent Karoo (Klak et al., 2004); and Pedicularis,
Rhododendron (Ericaceae), and Sausurea (Asteraceae) in the
Hengduan Mountains of the eastern Himalayas (Boufford,
2014; Wen et al., 2014). Explanations range from enhanced
speciation as a function of spatial heterogeneity to decreased
extinction as a result of relative temporal stability (e.g. Jansson &
Davies, 2008; Linder, 2008). Such comparisons will be especially
useful when specific predictions can be tested, for example,
concerning area sizes, ages, and physical connectivities (Don-
oghue & Edwards, 2014).

Geographic area, by itself, has been noted as a correlate of
diversity in angiosperm families, suggesting density dependence
and an important role for expansion into new territory, which
might be enhanced by certain traits (e.g. herbaceous habit; Vamosi
& Vamosi, 2010, 2011; or perennial habit permitting expansion
into montane territory; Drummond et al., 2012; Hughes &
Atchison, 2015). Increased vein density within angiosperms (Boyce
et al., 2009; Brodribb& Feild, 2010) could be viewed as providing
a competitive edge (enhanced water flow and photosynthesis) and
promoting occupation ofmore territory. A similar argumentmight
bemade for a positive feedback betweenhigher growth rates and the
production of easily decomposed leaf litter and higher fertility soils
(Berendse & Scheffer, 2009). Geographic expansion might result
from evolutionary transition into new biomes (Donoghue, 2008;
Crisp et al., 2009;Donoghue&Edwards, 2014), and such shifts do
appear to have promoted diversification in some cases (e.g.
Verboom et al., 2003, 2009; Sauquet et al., 2009; Koenen et al.,
2013; Onstein et al., 2014).

6. Lag times, enablers, and indirect effects

Not infrequently, the evolution of a trait of interest seems to be
situated near a point in a phylogeny identified as a significant
radiation – but not right at that point (e.g. Smith et al., 2011). If the
attribute in question had anything to do with the radiation, it must
have exerted an indirect effect. It was necessary, perhaps, but not
sufficient.

Cactaceae provide an example. They started out in warm semi-
arid environments with inducible CAM photosynthesis in their
leaves (Edwards & Donoghue, 2006). The early evolution of
delayed bark formation and stomata on the stems enabled an
increase in stem succulence, which set the stage for the vascular-
ization of the cortex in the Cactoideae and their radiation into even
drier and colder habitats (Edwards & Donoghue, 2006).
Subsequent shifts in growth form and pollination further elevated
diversification rates in several lineages (Arakaki et al., 2011;
Hernandez-Hernandez et al., 2014). In such cases, it is hard to
pin the cause of the radiation on any single attribute (Donoghue,
2005); instead, as we develop at length in Section III, several factors
apparently came together to promote diversification in a step-wise
fashion.

C4 photosynthesis in grasses (Poaceae) is a case of an apparent
lag-time. Spriggs et al. (2014; see also Bouchenak-Khelladi et al.,
2009, 2014) showed an association between the evolution of C4

within the PACMAD clade and higher rates of diversification.

They argued that the initial effect might have been to increase the
competitive ability and survival of C4 plants in hot, arid, open
environments, but that there was a ‘delayed rise’ withinC4 lineages,
such that increased diversification only set in later when climates
changed and grassland environments spread.

Extrafloral nectaries (EFNs) might also have promoted diver-
sification indirectly. Ant-attracting EFNs are correlated with a
higher diversification rate in Senna (Fabaceae; Marazzi & Sander-
son, 2010), in which theymay have increased individual fitness and
the potential for dispersal into new areas. The persistence of plants
with EFNs might have allowed them to radiate later with the
ecological opportunities afforded by uplift of theAndes (Marazzi&
Sanderson, 2010). EFNs in Viburnum (Adoxaceae), which, in
combination with domatia, maintain protective mite populations
(Weber et al., 2012), have also been correlated with a higher
diversification rate (Weber & Agrawal, 2014; Spriggs et al., 2015).
Here, too, the initial effect may have been to increase individual
fitness, and potentially range size, thereby increasing the likelihood
of a later rise in speciation rate.

III. New terms, new possibilities

The preceding review highlights the emergence in the literature of
more complicated explanations for radiations involving multiple
interacting causal agents. Traits can have multiple effects on
speciation and extinction, and might elicit a particular outcome
only in a certain context. A trait might evolve at one point in a
phylogeny, but only influence diversification later, when other
traits or external conditions have changed. Although it appears that
synergistic interactions of factors are the norm, this is not reflected
in the terms in wide use to describe radiations. We could try to
retrofit the older ‘key innovation’ terminology, but, by its very
nature, this tends to narrow the search to one causal event at one
point in time. Instead, we suggest that some standardization of
older terms and the introduction of several new ones – explained
with the help of Fig. 1 – might help to crystalize the emerging
outlook, stimulate new research, and convey our community’s new
understanding to a broader audience.

1. Apomorphy and innovation

The most general technical term in use for a character (intrinsic to
the organism, heritable, and passed down through the tree) that
arises anywhere in a phylogeny is ‘apomorphy’ (Hennig, 1966).
When does an apomorphy qualify as an ‘innovation’? One
possibility is to simply equate apomorphy and innovation and
use the words interchangeably. However, given the existence of the
two terms, and the tendency in the literature to view ‘innovation’ as
a special case of ‘apomorphy’, we suggest that innovation be used
when it is posited (hypothesized initially, and then hopefully tested)
that an apomorphy possesses some specific characteristic or
downstream consequence of interest.We purposely leave this open
ended, in recognition of the fact that there are multiple possible
consequences of potential interest to biologists. Of course, this
invites specialized terms for particular classes of innovations, some
of which we highlight here.
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2. Precursor, enabler, and key innovation

One possible consequence of interest is the acquisition of novel
character identity (e.g. the origin of a new, individualized body
part), in which case the term ‘novelty’ would be appropriate
(Wagner, 2014). Another possible downstream consequence of
interest is an increase in the probability of origin of some other
character of interest, in which case we suggest the term ‘precursor’
(Marazzi et al., 2012). Yet another possibility is an innovation that
promotes the exploration of new designs or serves to increase the
generation of disparity, in which case we suggest the term ‘enabler’
(Donoghue, 2005). Of course, the consequence of most direct
relevance here is a shift in the rate of diversification. By our reading
of the literature, the term ‘key innovation’ hasmost often been used
for a trait that significantly increases the diversification rate.We are
aware of no term for the opposite effect, namely for a trait that
decreases the diversification rate, but we think such a termwould be
useful (see Section IV).

Of course, it is possible for an innovation to have more than one
of the effects we have highlighted (and ours is not an exhaustive list).
For example, an apomorphy might act as a precursor and as an
enabler at the same time, and a precursor or an enabler could also
increase the diversification rate. With respect to increased diver-
sification, one possibility would be to consistently use the word
‘key’ as a modifier. Thus, a trait that promoted origins of another
trait and also promoted diversification would be a ‘key precursor’.
Similarly, a ‘key enabler’ would be a trait hypothesized to increase
both disparity and diversification. We appreciate that associating
the word ‘key’ with diversification is arbitrary, but we suspect this
probably reflects common usage and would be least disruptive.

3. Synnovation

So far, we have tried only to clarify themeaning (proposed usage) of
existing terms. We note, however, that these all refer to single
apomorphies/innovations – they are focused on single evolutionary
events, happening at single points in a tree (or, if replicated, each
instance localized in this way). Our main point is that this is
insufficient, at least for productive discussions of shifts in
diversification. We need, in addition, to be thinking about
combinations of characters that interact synergistically with one
another to produce effects of interest. As an attempt to encourage
such thinking (and, as necessary, the development of newmethods)
we introduce the term ‘synnovation’ (‘synergy’ + ‘innovation’) to
refer to two or more interacting apomorphies that together have
some property or downstream consequence of interest (including,
but not limited to, those noted above for single apomorphies). Of
most direct relevance here are characters that interact with one
another to increase the diversification rate, for which we would (in
parallel with ‘key innovation’) use ‘key synnovation’. As we stressed
above, it will be critical to specify the nature of hypothesized
interactions and their joint consequences for diversification.

From the earliest discussions of the key innovation concept, it
has been noted that the attributes that have an impact on
diversification may have been built up sequentially. Cracraft
(1990), for example, provided a compelling example in his analysis

of the flight apparatus in birds, a complex set of interacting traits
assembled in a series of steps in a region of the phylogeny extending
from dinosaurs to modern birds. In plants, Donoghue (2005)
provided a concrete example of an enabler (overtopping growth
resulting in a trunk and side branches), and one of the new designs
that it facilitated (megaphyllous leaves), together promoting
diversification within monilophytes (in leptosporangiate ferns)
and lignophytes (in seed plants).

4. Confluence

Until now, we have been talking about single apomorphies or
interacting combinations of apomorphies that have specific
properties or consequences of interest. However, when it comes
to diversification, it is evident from the literature on context
dependence that this is still insufficient. Many shifts in diversi-
fication seem to entail additional, extrinsic factors, such as
migration into new territories (e.g. Moore & Donoghue, 2007)
and/or environmental shifts such as climate change (e.g. Arakaki
et al., 2011). We need, therefore, a more encompassing term that
accommodates the coming together of innovations or synnova-
tions with biogeographic movements and/or environmental
changes. For this we suggest the very general and widely
understood term ‘confluence’ (as in the phrase ‘a confluence of
events’). In this context, confluence refers to the assembly of a set
of attributes – including innovations, synnovations, environ-
ments, and geographic territories – that together yield some
consequence of interest. We imagine that this assembly generally
takes place sequentially, through a region of a phylogenetic tree,
although shifts in some of the elements might be inferred along
the same phylogenetic branch. Where the specific consequence of
interest is an increase in the diversification rate, we would, for
consistency, use the phrase ‘key confluence’. Examples along these
lines have increased in the literature, and have become increasingly
explicit, such as the ‘multi-tiered scenario’ of Drummond et al.
(2012) to explain the ‘super radiation’ of Lupinus in terms of
morphological innovation (perennial habit) and the occupation of
montane environments. We suppose that confluences also
underlie most significant decreases in diversification too (see
Section IV).

5. Indirect effects revisited

Several recent developments (and terms), mentioned briefly above,
are consistentwith the spirit of our proposals, andhelp to clarify our
viewpoint. Weber & Agrawal (2014) highlighted traits having an
‘indirect effect’ on diversification, where subsequent changes in
context set off one or more increases in diversification rate (see also
Marazzi & Sanderson, 2010). Similarly, Spriggs et al. (2014)
highlighted ‘lag times’ or ‘delayed shifts’ between the origin of a
trait and an increase in the diversification rate. These cases highlight
context dependence and the need for additional characters and/or
environmental changes to spark diversification. In our terms, they
point to a confluence of events, played out over some period of
time, including character combinations (synnovations) and extrin-
sic changes of various sorts. Under these circumstances, which we
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take to be the norm, no single factor is the driver and every
component of the confluence has an indirect effect.

Motivated by Simpson’s (1953) discussion of the physical,
ecological, and evolutionary factors necessary for the occupation
of a new adaptive zone (Glor, 2010; cf. the model of Donoghue
& Edwards, 2014 for a shift into a new biome), Bouchenak-
Khelladi et al. (2015) categorized variables as ‘background’
(present before the start of a radiation), ‘triggers’ (contempora-
neous with a radiation), or ‘modulators’ (arising after a
radiation). They found variation across several plant radiations
in whether intrinsic or extrinsic variables (or both) provided
backgrounds, triggers, or modulators. The order did not seem to
matter as much as eventually attaining the right combination
(although we imagine order being important in other cases;
Fig. 1d,e). Fully consistent with our outlook, all of this implies
that radiations are complex, unfold over time, and involve a
confluence of intrinsic and extrinsic events. Where we differ
perhaps is with respect to their statement that ‘each radiation
should be triggered by a single variable’. Instead, we are arguing
for the importance of synnovations (multiple interacting traits)
and confluences (including extrinsic variables), with diversifica-
tion and its causes distributed through a region of a tree
(Donoghue, 2005).

6. A worked example

To illustrate the use of these terms, we have chosen Bromeliaceae as
an example, focusing especially on the excellent work of Givnish
et al. (2014), who carried out an extensive series of analyses using a
phylogeny for 90 of the c. 3140 neotropical species (Fig. 2). Several
other recent studies have also dealt with Bromeliaceae, sometimes
yielding contrasting results as a consequence of differences in scope,
sampling, and methodology (Quezada & Gianoli, 2011; Silvestro
et al., 2014; Bouchenak-Khelladi et al., 2015). Our aim is not to
solve evolutionary problems within Bromeliaceae, just to illustrate
how we would apply the terms discussed above in a real case.

Some background on Bromeliaceae is necessary. First, although
CAM photosynthesis may have been connected to rapid diver-
sification within the Bromelioideae (Silvestro et al., 2014; see also
Quezada & Gianoli, 2011), Givnish et al. (2014) found that
CAM was probably not a driver across Bromeliaceae as a whole;
not all CAM Bromeliaceae radiated, and Tillansioideae radiated
without CAM (at least initially). Second, the ‘tank’ habit is so
closely linked phylogenetically with the evolution of epiphytism
in Bromeliaceae (Givnish et al., 2014; Silvestro et al., 2014) that it
is difficult to tease apart their individual effects; they may have
acted in concert to promote species richness. Third, in Brome-
lioideae the evolution of ‘entangled seeds’ preceded the evolution
of epiphytes; the order is unclear in Tillandsioideae, but it is
possible that entangled seeds of some type (sticky or comose) were
necessary for the evolution of epiphytism. Fourthly, geographic
movements seem to have been important – from Guyana into the
Andes, from the Andes into the lower elevation Atlantic
rainforests of Brazil in Bromelioideae, and probably multiple
movements into Central America and the Caribbean in the mostly
higher elevation Tillandsioideae.

In our terminology, a confluence, involving both intrinsic and
extrinsic factors, drove diversification in both the Bromelioideae
and the Tillandsioideae (Fig. 3). In both cases the confluence
appears to have involved a specific synnovation composed of
entangled seeds, epiphytism, and the closely connected tank
condition (Fig. 2). In the Bromelioideae these seem to have evolved
in this order, suggesting the possibility that entangled seeds acted as
an enabler; in Tillandsioideae the order is still unclear. Whether
CAM should also be included in the synnovation is unclear. In the
Bromelioideae its evolution predated the rest of the synnovation,
whereas in Tillandsioideae CAM evolved within the radiation (a
modulator in the sense of Bouchenak-Khelladi et al., 2015).
Importantly, in both the Bromelioideae and the Tillandsioideae it
appears that movement into new regions and habitats played an
important role, and must therefore be considered elements of the
confluence along with the synnovation. One wonders in such a case
(and could potentially test) whether the order of assembly of a
synnovation alters the pattern of diversification, or whether all that
matters is that the elements of the confluence eventually come
together (cf. Bouchenak-Khelladi et al., 2015). In any case, all of
these elements worked in combination to elevate species richness –
causation is not attributable to any one of them in isolation.

In this example, the comparison of the two major radiations
within Bromeliaceae suggests that a similar synnovation
independently influenced both. The details of this synnovation
hypothesis could be tested internally by further resolution of
Bromeliaceae phylogeny, but also potentially by designing relevant
functional experiments to better understand the interaction among
the component characters. Various break-downs, ormodifications,
of the synnovation in derived clades could also present research
opportunities (e.g. Galley & Linder, 2007; Humphreys et al.,
2011). It is also possible to look outside of Bromeliaceae for ‘the
same’ or very similar key synnovations and confluences, and such
comparisons might suggest the addition or subtraction of elements
to achieve even greater generality.

Leptosporangiate ferns and orchids provide obvious outside
comparisons. In ferns, the evolution of epiphytism also appears to
have been associated with increased diversification (Schuettpelz &
Pryer, 2009); it may have originated in several clades well before
multiple diversification shifts were promoted by the rapid spread of
angiosperm-dominated rainforests. In orchids, epiphytism is also
probably associated with higher diversity, where, tellingly, it has
been portrayed as ‘a suite of key innovations’ (Gravendeel et al.,
2004). Silvera et al. (2009) argued that CAM photosynthesis was a
drought avoidance mechanism that stimulated the evolution of
epiphytism, and that epiphytism, in turn, promoted higher rates of
speciation into a wider range of habitats, especially with the spread
of tropical rainforests. Overall, these comparisons suggest that
synnovations involving epiphytism generally also involve some
enabling character changes (e.g. seed dispersal or drought avoid-
ance) and subsequent environmental changes that opened new
territory and habitats. Although CAM is clearly not necessary for
the radiation of epiphytes (e.g. in Tillandsioideae), it is so often
associated that it may have been an important part of the
synnovation in multiple cases. In general, the identification of
similar synnovations/confluences elsewhere in a phylogeny, and
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tests of their joint effects on diversification, are areas in need of
methodological attention.

IV. Rate heterogeneity and depauperons

The most likely signal of any confluence of processes affecting
diversification is heterogeneous rates of speciation and extinction in
time, in space, and across phylogeny. The prospects for accurately
reconstructing highly heterogeneous diversification histories
remain uncertain, however, not least because of the impacts of
extinction through time, and the difficulty of accounting for these
impacts in clades with a poor fossil record (Nagalingum et al.,
2011; Quental & Marshall, 2011). Fortunately, after nearly a
century of modeling diversification (Yule, 1924; Kendall, 1949;
Strathmann & Slatkin, 1983; Raup, 1985; Stanley, 1985; Slowin-
ski & Guyer, 1989; Gilinsky & Good, 1991; Nee et al., 1992,
1994; Nee, 2006), substantial progress has beenmade on statistical
inference in the context of these models using likelihood and

Bayesian approaches (Morlon et al., 2011; Etienne & Haegeman,
2012; Rabosky et al., 2013).

Strong inferences about rate heterogeneity are essential to
explain radiations and their causes, but this also applies more
broadly to other diversity patterns in the tree of life. Rather than
dwelling entirely on radiations, we turn to another pattern in which
the lexicon developed above may well be relevant: the flip side of
evolutionary radiations – significantly depauperate lineages, or
‘depauperons’ (Strathmann & Slatkin, 1983; Magall�on & Sander-
son, 2001; Renner, 2004; Ricklefs, 2005; Ricklefs et al., 2006)
(Fig. 3). ‘Living fossils’ are a special case (Darwin, 1859: p. 107),
long recognized p. 107), long recognized by their combination of
low rates of both diversification and morphological evolution
(Eldredge & Stanley, 1984; Cloutier, 1991; Yoshida, 2002; Lloyd
et al., 2012; but see Schopf, 1984 for a critique and an attempt to
dissect the relationship between these rates). Phylogenetic analyses
suggest that depauperons are common. Amborella trichopoda, as
sister to the remaining 250 000+ angiosperms, is the poster child

(a)

(b)

Entangling seeds

Tank habit

Epiphytism

Species richness

Dry habitats Absorptive

trichomes

CAM

Ornithophily

Fertile, moist

montane habitats

Tillandsioideae (1256 spp.)

Core Tillandsioideae

Bromelioideae (856 spp.)

Core Bromelioideae

Core Bromeliaceae

CAM

CAM

C. America

Tank

Epiphyte

Tank

Epiphyte

Atlantic

Entangling seeds

Entangling seeds

T1 T2 T3 T4 H N Pi Pu B1 B2 B3 B4 B5 B6

Fig. 2 Synnovation and confluence in the radiation of Bromeliaceae. (a) The set of variously interrelated factors analyzed by Givnish et al. (2014) in relation to
species richness (modified fromtheir Fig. 1). Brownboxesmark characters consideredpart of the replicated synnovation in (b); blueboxesmarkbiogeographic/
environmental factors considered part of the confluence. Characters in white boxes are not considered part of the synnovation in (b); CAM photosynthesis
(purple box) is not consistently associated with diversification in Bromeliaceae (see main text). (b) A simplified version of phylogenetic relationships in core
Bromeliaceae (excluding themoredistantly relatedBrochinioideae andLindmanioideae) derived fromGivnish et al. (2014) (H,Hechtioideae;N,Navioideae; Pi,
Pitcairnioideae; Pu, Puyoideae; T1–T4, major lineages within Tillandsioideae; B1–B6, major lineages within Bromelioideae). Givnish et al. (2014) identified
significant radiations (shownas green triangles) corresponding towhatwe label ‘Core Tillandsioideae’ andwithinwhatwe label ‘Core Bromelioideae’. The ‘key
confluence’ in both lineages includes a synnovation composed of entangled seeds, epiphytism, and the closely associated tank habit (brown rectangles), along
withgeographicmovement (blue rectangles)openingupnewterritory (movement to theAtlantic rain forest inBromelioideae;movements intoCentralAmerica
and the Caribbean within Tillandsioideae).
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for a plant depauperon, but there are many others (e.g. Osmund-
aceae (22 spp.) sister to the remaining 9000 species of leptospo-
rangiate ferns; Acorus (2–4 spp.) sister to the remaining 60 000
monocots; Anomochlooideae (4 spp.) sister to the remaining
12 000 Poaceae; Apostasioideae (16 spp.) sister to the remaining
22 000 Orchidaceae; Anthionemeae (70 spp.) sister to the
remaining 3700 Brassicaceae; Barnadesiodeae (94 spp.) sister to
the remaining 23 000 Asteraceae). Even crude tests (e.g. the sister
group test of Slowinski & Guyer, 1989) in these cases lead to clear
statistical rejection of homogeneous rate models in favor of
heterogeneous ratemodels with different diversification rates in the
depauperon and its sister group. Mangroves provide an example
with high replication, the repeated origin (perhaps 21 times) of this
lifestyle yielding depauperons with a collective diversification rate
just 1/4 that of angiosperms as a whole (Ricklefs et al., 2006).

The contrast between models needed to explain a species-rich
clade and the persistence of a species-poor clade helps illustrate
some of the challenges of inferring rate heterogeneity. Although
species-rich clades are by no means ‘easily’ explained in real cases,
mathematically they are not challenging: they require a shift to a
high net diversification rate sustained over a long enough period of
time. An increase in the rate parameter of a simple Yule model with
high constant speciation and no extinction suffices. By contrast, as
Strathmann&Slatkin (1983) first pointed out, it is much harder to
explain the persistence of species-poor clades on long time-scales. A
low net diversification must be combined with the lowest
biologically realistic extinction rates, recognizing that the latter
will presumably never be zero. Contrary to expectation, over a long
enough time-scale most of these clades will simply go extinct. It is
highly improbable, for many combinations of low extinction rates
and low (but higher) speciation rates, that a clade both survives a
long time and leaves a small number of descendants.

Faced with this conundrum and yet also the existence of a large
number of small and ancient animal phyla, Strathmann & Slatkin
(1983) postulated an explicitly heterogeneous diversification
model that initially generates a large number of species, but then
is followed by much lower speciation rates (and nonzero extinc-
tion). They described both episodic and more gradual versions of
this heterogeneity, the latter assuming a density-dependent
decrease in speciation rate over time. They found that present-
day depauperons must represent a small number of surviving
lineages from a once much larger pool of closely related species,
none of whom survived to the present. In other words, there must
have been distinct diversification regimes at different points in
history.

Other sequences of processes could also produce depauperons.
For example, in the ‘taxon pulse’ of Erwin (1985), a clade starts
diversifying in an ancestral environment, but then moves and
radiates in a derived environment, perhaps cycling through this
sequence several times, while each time suffering high extinction in
the ancestral environment(s) (Fig. 3). Not only are depauperons
repeatedly generated, but the signal of evolutionary history is
repeatedly degraded and eventually lost in such a process. The
‘dying embers’ scenario inViburnum (Spriggs et al., 2015)might be
an example – it may have started out in the tropics, thenmoved and
radiated in temperate and boreal areas, but experienced elevated
extinction in the ancestral tropical environment.

In a complete lexicon we would be concerned about the entire
shape of the tree of life, and develop relevant terms related to both
increases and decreases in diversity. Confluence is neutral with
respect to direction; that is, we can say that a confluence of events
caused radiation or extinction at some rate. On the ‘increase’ side
we have ‘innovation’ for individual traits leading to increase, and
now ‘synnovation’ for a combination of traits underlying radiation.
On the ‘decrease’ side we lack comparable terms.

V. Obstacles to identifying synnovation, confluence,
and depauperons

Unfortunately, better terminology does not make inference in the
face of rate heterogeneity any easier. In the interest of ‘full
disclosure’, we briefly note just three especially difficult problems
that can introduce error and bias into such inferences: partial taxon
sampling (and sample size in general:Nee et al., 1994;Cusimano&
Renner, 2010;H€ohna et al., 2011;Wertheim&Sanderson, 2011),
divergence time estimation in the absence of a molecular clock
(Britton, 2005; Revell et al., 2005; dos Reis et al., 2014), and
extinction, sometimes informed by the fossil record (Quental &
Marshall, 2011), but often not (Nee et al., 1994; Magall�on &
Sanderson, 2001; Nee, 2006; Ricklefs, 2007; Purvis, 2008;
Crisp & Cook, 2009; Rabosky, 2010; Morlon et al., 2011).

In synnovation and confluence, several distinct events – trait
origins, shifts in speciation and extinction rate, ecological changes
and dispersal –probably occurred over some time interval (not all at
once at a single point on a tree). Their discovery thus relies on time
calibrations, and, especially for confluences involving both intrinsic
and extrinsic features, on absolute ages that depend on fossil
calibrations. Problems with absolute age estimation are well known
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Fig. 3 Onepossible scenario (in addition to the onedescribedby Strathmann
& Slatkin, 1983; see main text) for the existence of ‘depauperons’, with
diversification rate represented by different branch colors. Extinction rate (E)
goes down near the base of the entire clade (yellow branches), while
speciation rate (S) stays the same; the subclade on the right (red branches)
undergoes a radiation as speciation rate goes up and extinction rate stays the
same; in both depauperons (blue branches) speciation rate goes down, but
the extinction rate stays the same in the middle one and goes up on the left.

� 2015 The Authors

New Phytologist� 2015 New Phytologist Trust
New Phytologist (2015) 207: 260–274

www.newphytologist.com

New
Phytologist Tansley review Review 269



(Ronquist et al., 2012), but improvements are foreseeable, perhaps
combining better vetting of fossil calibrations (e.g. Parham et al.,
2012a,b; Wilf & Escapa, 2015) and better relaxed clock models
that incorporate biological causes of molecular rate variation (e.g.
Worobey et al., 2014). The localization of events to a window in
time is also often limited by the resolution afforded by a single edge
of a phylogenetic tree (although cf. stochastic mapping, e.g.
Huelsenbeck et al., 2003; Revell, 2013). Think of the long
angiosperm stem edge, for example. We may need to be satisfied
with localizing trait changes and diversification shifts to wide time
intervals, and testing for statistical overlap between several broad
regions in the phylogeny.

As an illustration of these problems, consider the depauperon
case. First, with respect to sampling, depauperons are easily
overlooked, as the celebrated example of Amborella attests, while
endless candidates for species-rich clades have been proposed and
debated. Although some have passed muster and others have not,
analyses of these clades have not suffered quite as much from
partial taxon sampling. Second, sample size is a severe problem.
Even with precise divergence times, the accuracy of speciation and
extinction rate estimates and the power of tests for differences in
rate between the depauperon and the rest of the tree are inherently
limited. For example, the difference between two sister groups
with one and 10 species is not significant according to either a
Slowinski–Guyer (SG) test, which ignores divergence times, or a
likelihood ratio test, which requires exact divergence times. But if
the clades have 100 and 1000 taxa, the likelihood test indicates a
highly significant difference; without the additional knowledge
provided by divergence times, the SG test still fails to detect any
difference.

Finally, the detection of depauperons amidst a background of
higher average rates and occasional rapid radiations exemplifies the
difficulties that extinction poses for inference. Rate heterogeneity
involving early radiation followed by declining speciation rates can
explain the persistence of depauperons, but only as a lingering small
sample from an originally much larger population of clades that
went extinct (see Fig. 3). As a consequence, finding a robust
association between any single depauperon and its traits, ecology,
etc. (e.g. Ricklefs, 2006) is highly subject to sampling error.

VI. Conclusions

A shift is well underway in studies of plant radiations, from simple
‘innovation’ hypotheses to increasingly complicated ‘synnovation’
and ‘confluence’ hypotheses. Our intention in coining these new
terms is to draw attention to these emerging objects of study,
namely the particular sequences and combinations of traits, and
environments, and geographic movements, assembled over time,
that have interacted to produce both the major increases and the
major decreases in diversification that we observe throughout the
tree of life.

We can imagine strongly contrasting responses to these
proposals. One response – the one we hope for – would view the
new terms as facilitating a welcome shift away from the ‘single-
point, single-cause’ mindset that has dominated radiation discus-
sions until recently. A less charitable response would reject these

terms as unnecessary, or perhaps even counterproductive, as they
give the appearance of trying to salvage an initial causal hypothesis
in the face of disappointment over the lack of a perfect correlation.
Why not, one might ask, just reject the initial key innovation
hypothesis as unfounded and formulate/test a new one? The
problem with this response is that it encourages the continued
search for single events at single points. If we are right, most such
hypotheses will fail, and this will not be especially productive. It
will be more productive, we think, to shift the frame of reference
and focus attention directly on identifying and testing the effects of
specific combinations of attributes, and searching for generalities of
this sort across multiple clades.

Regardless, as our explanations inevitably, and more explicitly,
become increasingly complex, we will need better tools to identify
and analyze synnovations and confluences of all sorts, and the
heterogeneity in rates that accompany them. In the end, success will
probably require the integration of phylogenies with many other
data sources – that is, trees by themselves can only go so far.
Geography and climate are key elements, of course, and we need to
directly integrate historical biogeography and functional experi-
ments. This will yield a much richer and more useful field of study.
However, as we proceed, it is increasingly important to acknowl-
edge and try to accommodate the inevitable uncertainties noted
above, and other fundamental methodological issues facing our
community (e.g.Maddison& FitzJohn, 2015). These are, and will
remain, extremely difficult inference problems. We would be well
advised to remain skeptical, bearing in mind that even our best
methods can only partially compensate for various inadequacies.
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