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Abstract. We show that a transitively reduced digraph has a confluent
upward drawing if and only if its reachability relation has order dimen-
sion at most two. In this case, we construct a confluent upward drawing
with O(n2) features, in an O(n) × O(n) grid in O(n2) time. For the
digraphs representing series-parallel partial orders we show how to con-
struct a drawing with O(n) features in an O(n)×O(n) grid in O(n) time
from a series-parallel decomposition of the partial order. Our drawings
are optimal in the number of confluent junctions they use.

1 Introduction

One of the most important aspects of a graph drawing is that it should be
readable: it should convey the structure of the graph in a clear and concise way.
Ease of understanding is difficult to quantify, so various proxies for it have been
proposed, including the number of crossings and the total amount of ink required
by the drawing [1,18]. Thus given two different ways to present information, we
should choose the more succinct and crossing-free presentation.

Fig. 1. Conventional and confluent
drawings of K5,5

Confluent drawing [7,8,9,15,16] is a style
of graph drawing in which multiple edges
are combined into shared tracks, and two
vertices are considered to be adjacent if a
smooth path connects them in these tracks
(Figure 1). This style was introduced to re-
duce crossings, and in many cases it will also
improve the ink requirement by represent-
ing dense subgraphs concisely. However, it
has had a limited impact to date, as there are only a few specialized graph
classes for which we can either guarantee the existence of a confluent drawing
or test for confluence efficiently. A closely related graph drawing technique, edge
bundling [10], differs from confluence in emphasizing the visualization of high
level graph structure, but does not necessarily seek to reduce the number of edge
crossings.

Hasse diagrams are a type of upward drawing of transitively reduced directed
acyclic graphs (DAGs) that have been used since the late 19th century to visu-
alize partially ordered sets. To maximize the readability of Hasse diagrams, as
with other types of graph drawing, we would like to draw them without cross-
ings. Thus upward planar graphs (DAGs that can be drawn so that all edges
go upwards and no edges cross) have been an important thread of research in
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Fig. 2. A simple DAG P (left) that is not upward planar, although its underlying
graph is planar. Its Dedekind–MacNeille completion (middle) is upward planar, with
an added element (shaded). Replacing that element with a junction creates an upward
confluent drawing of P (right).

graph drawing. A DAG is upward planar if and only if it is a subgraph of a
planar st-graph, i.e. a planar DAG with one source and one sink, both on the
outer face [6]. Testing upward planarity is NP-complete [12] but for DAGs with
a single source or a single sink it may be tested efficiently [17,4]. However, many
DAGs (even planar DAGs such as the one in Figure 2) are not upward planar.

In this paper, we bring these threads together by finding efficient algorithms
for upward confluent drawing of transitively reduced DAGs. We show that a
graph has an upward confluent drawing if and only if it represents a partial order
P with order dimension at most two, and that these drawings correspond to two-
dimensional lattices containing P . We construct the smallest lattice containing P
(its Dedekind–MacNeille completion) in worst-case-optimal time, and draw it
confluently in area O(n2), using as few confluent junctions as possible. For series-
parallel partial orders, the time and number of junctions can be reduced to linear.

2 Preliminaries

2.1 Posets and Lattices

A partially ordered set (partial order, or poset) P = (V,≤) is a set V with a
reflexive, antisymmetric, and transitive binary relation ≤. We adopt the conven-
tion that n = |V | unless otherwise stated. We also use a < b to denote that a ≤ b
and a �= b. We say that a covers b in P if b < a and �x ∈ P such that b < x < a.
Elements a, b ∈ P are comparable if a ≤ b or b ≤ a; otherwise, we write a||b to
indicate that they are incomparable. A total order or linear order is a partial
order in which every pair of elements in P is comparable. If R is a set of linear
orders Ri, we can define a poset P as the intersection of R: that is, a ≤ b in P
if and only if a ≤ b in every linear order Ri. If P can be defined from R in this
way, then R is called a realizer of P . Every partial order P has a realizer; the
dimension dim(P ) is the smallest number of linear orders in a realizer of P .

If X ⊆ P is any subset of P , then an element a ∈ P is called a lower bound
of X if it is less than or equal to every element of X . Similarly, an element b is
called an upper bound of X if it is greater than or equal to every element of X .
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If X has a lower bound a that belongs to X itself, then a is the (unique) least
element in X , and similarly if X has an upper bound b that belongs to X then
b is the (unique) greatest element in X . If the set A of lower bounds of X has
a greatest element a, then a is the greatest lower bound or infimum of X , and
similarly if the set B of upper bounds of X has a lowest element b then b is the
least upper bound or supremum of X . If P itself has an infimum or a supremum,
these elements are typically denoted by 0 and 1 respectively. If P contains both
an infimum and a supremum, it is said to be bounded.

A poset L is a lattice if for every pair of elements x and y in L the set {x, y}
has both an infimum and a supremum. In this context, the supremum of {x, y}
is called the meet of x and y and denoted x ∧ y, and similarly the infimum is
called the join and denoted x∨y. A lattice L is complete if every subset of L has
an infimum and supremum in L. Every finite lattice is complete and bounded.

2.2 Hasse Diagrams and Upward Planarity

Every poset P = (V,≤) can be represented by a directed acyclic graph G which
has a vertex for each element in P and an edge uv for each pair (u, v) with u ≤ v
in P . However, when we draw a poset it is more common to draw a different
DAG, the transitive reduction G′ of G, in which there is an edge from u to v in
G′ if and only if v covers u in P . A Hasse diagram of P is an upward drawing
of G′, meaning that the y coordinate of the head of each edge is greater than
the y coordinate of the tail of each edge, so that the drawing “flows” upward
from smaller elements to larger elements. In a Hasse diagram, we do not need to
explicitly draw the edges as directed edges: the direction of an edge is represented
implicitly by the relative position of its endpoints. There is an upward path from
a to b in a Hasse diagram of P if and only if a ≤ b. A poset is planar if it has a
Hasse diagram that is upward planar, i.e. its transitive reduction has an upward
drawing in which none of the edges intersect except at a shared vertex.

A finite lattice is planar if and only if its transitive reduction is a planar st-
graph, a DAG which contains exactly one source s and one sink t both of which
belong to the outer face of an upward planar drawing [28]. More generally, any
DAG is upward planar if and only if it is a subgraph of a planar st-graph [6]. In
the other direction, every planar finite bounded poset must be a lattice [3,5,19].
This implies that a two-dimensional bounded poset that is not a lattice (such
as the one on the left of Figure 2) cannot have an upward planar drawing, and
that planarity (a crossing-free drawing) and two-dimensionality (realization by
a pair of linear orders) are distinct for non-lattice posets.

2.3 Lattice Completion of a Poset

The Dedekind–MacNeille completion of a poset P is the smallest complete lattice
containing P [22]. For any subset X of P , let X− and X+ denote the set of lower
bounds and upper bounds of X respectively. A cut of P is a pair A, B ⊆ P such
that A+ = B and A = B−; the completion of P has these cuts as its elements.
The completion is partially ordered by set containment: if (A, B) and (C, D) are
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cuts, then (A, B) ≤ (C, D) if and only if A ⊆ C and B ⊇ D. The element of
the completion corresponding to an element x of P is the cut ({x}−, {x}+), and
the new elements added to P to make it into a lattice come from cuts (A, B) for
which A ∩B = ∅. The completion automatically has the same dimension as the
partial order from which it was constructed [27].

Ganter and Kuznetsov [11] give a stepwise algorithm for constructing the com-
pletion of P . Given a poset P and its completion L they show how to complete
a one-element extension of P in time O(|L| · |P | · ω(P )), where ω(P ) denotes
the width of P . To compute the completion of a large poset, they begin with a
single-element poset (whose completion is trivial) and use this subroutine to add
elements one at a time; therefore, the total time is O(|L| · |P |2 · ω(P )). Nourine
and Raynaud [26] give an algorithm with running time O((|P | + |B|) · |B| · |L|)
where B is a basis of P (a set of subsets of P which generate L). As part of
our drawing algorithm, we improve these results in the case of two-dimensional
posets: we show for such sets how to construct the completion in time O(|P |2),
optimal in the worst case since (as we also show) there exist two-dimensional
posets whose completion has a quadratic number of elements.

2.4 Confluent Drawing

Confluent drawing is a technique for drawing non-planar diagrams without cross-
ings [7, 8, 9, 15, 16] by merging together groups of edges and drawing them as
tracks that, like train tracks, meet smoothly at junction points but do not cross.
A confluent drawing consists of a set of labeled points (vertices and junctions)
and curves (track segments) in the Euclidean plane, such that the two endpoints
of each track segment are vertices or junctions, such that no two track segments
intersect except at a shared endpoint, and such that all track segments that meet
at a junction share a common tangent line at that point. The graph represented
by a confluent drawing has as its vertices the vertices of the drawing; two vertices
u and v are adjacent if and only if there is a smooth curve in the plane from
u to v that is a union of track segments and that does not pass through any
other vertex. (Some papers on confluence require that this curve also be non-
self-intersecting but that requirement is irrelevant for upward drawings since
monotone curves cannot self-intersect.) An undirected graph G is confluent if
and only if there exists a confluent drawing that represents it.

We define a confluent diagram of a poset to be a drawing of its transitive
reduction in a way that is both confluent and upwards. In other words, if G
is a directed acyclic graph representing a poset P , then we define a confluent
diagram of P to be an upward confluent drawing of the transitive reduction of
G in which all tracks are oriented upwards (monotonic in the y direction), and
therefore all smooth curves passing through the tracks are similarly oriented.
For each pair of elements a, b ∈ P , the drawing should have a smooth track
from a upwards to b if and only if a is covered by b. For technical reasons we
also require that for each source there exists an unbounded y-monotone curve
downwards that does not cross the diagram – that is, that each source can be
seen from below – and symmetrically that each sink can be seen from above.
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Fig. 3. Example of our algorithm. Left : Input poset P . Middle: Grid embedding with
added points and dominance pairs. Right : Completion points replaced by confluent
junctions and rotated 45◦.

In the application to visualization of partial orders, this is a natural restriction
as it makes the minimal and maximal elements easy to find in the drawing.

3 The Algorithm

Let G be a poset with dimension at most two. We now describe an O(n2) algo-
rithm to embed a confluent diagram of P in an O(n) × O(n) grid. That is, we
will generate an upward confluent drawing of the transitive reduction of a DAG
representing P such that each vertex in the drawing has integer coordinates.

Our algorithm has three phases. In the first phase, we embed the elements
of P in a (2n + 1) × (2n + 1) grid. Recall that since P has dimension two, it is
realized by two linear orders, which correspond to two different total orderings
of the same n elements in P . Thus, the first steps of our algorithm are:

1. (a) Find two linear orders L1 and L2 that realize P . This can be done in
O(n2) time from any graph whose transitive closure is P by Algorithm
1 of [21].

(b) For each element p of P , having position p1 in L1 and p2 in L2 with
1 ≤ pi, pj ≤ n, place a vertex representing p in the grid with coordinates
(2i, 2j).

After this step, the even rows and columns in the grid each contain exactly one
element of P , and the dominance relationship of these points corresponds to the
order of the elements in P . Recall that for two elements p and q in the plane, p
dominates q if and only if pi ≥ qi for each coordinate i and p �= q.

In the second phase, we insert additional points representing elements of the
completion of P ; these completion nodes correspond to confluent junctions in the
confluent diagram of P . We defer to a later section the proof that the dominance
order on the points generated in the first two phases gives the completion of P .
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2. For each odd pair of indices (i, j), in [3, 2n− 1] insert a junction in the grid
with coordinates (i, j) if all of the following four conditions hold:
– The poset point with x-coordinate i−1 has y-coordinate less than j−1.
– The point with x-coordinate i + 1 has y-coordinate greater than j + 1.
– The point with y-coordinate j − 1 has x-coordinate less than i − 1.
– The point with y-coordinate j + 1 has x-coordinate greater than i + 1.

In addition if P does not already have a least or a greatest element, then
insert invisible points at (1, 1) and (2n + 1, 2n + 1) respectively.

In the third phase, we generate the segments of the confluent diagram. These
segments correspond to direct dominance pairs of points from the first two
phases. It is possible to find all dominance pairs in a set of N points in time
O(N log N + k) [13] where k is the number of dominance pairs, but in our case
this would only lead to an O(n2 log n) time bound. Instead, we leverage the fact
that the vertices are embedded in an O(n) × O(n) grid, and use the following
O(n2 + k) time method to generate dominance pairs using a stack-based algo-
rithm related to Graham scan within each row. We prove later that the diagram
is planar and therefore that the number of dominance pairs k = O(n2).

3. Initialize for each column c a value tc, the topmost element seen so far in
column c.
Then, for each row r from 1 to 2n + 1:
(a) Initialize an empty stack S.
(b) For each column c from 1 to 2n + 1:

i. If there is a vertex or junction p at (r, c), add an edge from every
element of S to p, add an edge from tc to p (if tc is non-empty), and
set tc to p.

ii. If tc is non-empty, pop all items from S whose row number is less
than or equal to the row number of tc, and push tc onto S.

Thus we have computed the coordinates of all elements, confluent junctions, and
edges in the confluent diagram. When we render the drawing, we rotate it 45◦

counterclockwise to make it upward confluent (Figure 3).
Examples of non-confluent and confluent drawings of the same 100-element set

are shown in Figure 4. Our Python implementation renders the confluent track
segments as cubic Bézier curves with control points at a small fixed distance
directly above and below each confluent junction. Two such curves cannot cross
each other: for pairs of edges that do not share an endpoint, this follows from the
fact that the convex hulls of the control points are disjoint and that the curves
lie within the convex hulls, while for pairs of curves that share an endpoint it
follows from the fact that the two curves are images of each other under an affine
transformation of the plane and that (for pairs of edges sharing an endpoint) the
direction that any point on the curve is translated by this affine transformation
is transverse to the tangent direction of the curve at that point.

If the input is provided as a realizer rather than as a graph, and its completion
has few elements, then it is possible to construct the diagram more efficiently.
To do so, construct for each odd-indexed row or column of the integer grid an
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Fig. 4. A 100-element partially ordered set, the intersection of two random permuta-
tions, drawn as a conventional Hasse diagram with crossings (left), and as a confluent
Hasse diagram (right)

axis-parallel line segment that passes through a grid point if and only if that
point meets two of the four conditions for adding a junction in phase two of our
algorithm. The junctions can be recovered as the intersections of these line seg-
ments, and we may compute the edges of the diagram using an output-sensitive
algorithm for dominance pairs. By using integer searching data structures the
total time for this algorithm may be reduced to O((n + k) log log n), where k is
the number of confluent junctions; we omit the details.

4 Algorithm Correctness and Minimality

In this section we prove that the algorithm of Section 3 is correct and has optimal
running time. Our analysis also shows that a poset P has a confluent diagram
if and only if it has dimension at most two.

Lemma 1 (Baker, Fishburn and Roberts [3]). Let P be a bounded finite
planar poset. Then P is a lattice and has dimension at most 2.

Lemma 2. Let P be a finite poset with a confluent Hasse diagram D. Then
dim(P ) ≤ 2, and there exists a two-dimensional lattice C containing P such
that the elements of C \ P (other than the top and bottom element, if they do
not belong to P ) correspond one-for-one with the confluent junctions of D.

Proof: Replace the confluent junctions of D with vertices, and re-interpret the
confluent segments as edges between these vertices. If there is more than one
minimal vertex of P , add a vertex below all minimal vertices, connected to
the minimal vertices by upward edges, and similarly if there is more than one
maximal vertex of P , add a vertex above all maximal vertices connected to them
by edges. The modified drawing is st-planar and hence by Lemma 1 represents
a lattice, which clearly contains P . �
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Lemma 3. Let P be a finite poset with order dimension at most two, let C be
the completion of P , and let S be the set of elements of C \P (other than the top
and bottom element, if P itself is not bounded). Then the elements of S coincide
with the junction points added in phase 2 of our algorithm, and the dominance
ordering on these points coincides with the lattice ordering in C.

Proof: In one direction, let p be a junction point added in phase 2 of our al-
gorithm, and p− and p+ be the sets of points from phase 1 that are dominated
by p and that dominate p respectively. Then it follows from the four conditions
according to which phase 2 adds a point that (p−, p+) forms a cut in P . The
equivalence of the dominance and lattice orderings on pairs consisting of a junc-
tion point and a point from P follows immediately, and the same equivalence for
pairs of junction points is also easy to verify.

In the other direction, we must show that we add a junction point for every
element of S, that is, every cut (L, U) where L has more than one maximal
element and U has more than one minimal element. Let i be one less than the
minimum x-coordinate of a point in U , and let j be one less than the minimum
y-coordinate; then (because the coordinates of points in P are their positions in
the two orderings of a realizer) the set L of points dominated by every point in U
equals the set of points below and to the left of (i, j). Two of the four conditions
of phase 2 are automatically met at (i, j): the points with x-coordinate i+1 and
with y-coordinate j + 1 are both in U and are distinct because U has more than
one minimal point. The other two conditions must also be met, for if they were
not then the point violating the condition would dominate L, contradicting the
fact that all points that dominate L belong to U . �

Theorem 1. A given partial order P has a confluent diagram if and only if
dim(P ) ≤ 2. If P has a confluent diagram, the algorithm of Section 3 computes
a valid confluent diagram of P , and embeds that diagram in a O(n)×O(n) grid
in worst case optimal O(n2) time. The number of confluent junctions in the
drawing is the minimum possible for any confluent diagram of P .

Proof: If a poset P has dimension three or more, then so does any lattice
containing it, and by Lemma 1 and Lemma 2 there can be no confluent diagram
of P . Otherwise, we may assume that P has dimension at most two.

By Lemma 3, the dominance ordering on the points computed by our algo-
rithm coincides (except possibly for the removal of the top and bottom elements)
with the completion of P . In this set of points, there can be no crossing pairs
of dominance relations, for if the edges (L1, U1)–(L2, U2) and (L3, U3)–(L4, U4)
crossed (where (Li, Ui) is a cut either added in the completion or corresponding
to an original point of P ) then (L1∪L3, U2∪U4) would also be a cut whose point
would lie between the other four points, contradicting the assumption that these
edges represent minimal dominance pairs. Therefore, the diagram constructed
by our algorithm is planar, and by Lemma 1 it must represent a lattice super-
set of P . The added elements belong to the completion, so the diagram must
represent a subset of the completion, and since the completion has no proper



10 D. Eppstein and J.A. Simons

Fig. 5. A poset P with O(n) elements and dimension 2 whose completion has size
Ω(n2). On the left is the normal Hasse diagram, and on the right is the confluent
version as drawn by our algorithm. The two permutations L1 and L2 generating P are
the identity and the permutation (3n, 3n − 2, . . . , n; 4n + 1, n − 1, 4n, n − 2, . . . , 3n +
2, 0; 3n + 1, 3n − 1, . . . , n + 1).

lattice subsets it must represent the completion itself. The completion gives the
minimum number of added elements (and therefore, by Lemma 2, the minimum
number of junctions) of any diagram for P .

Our algorithm spends O(n2) time in its first two phases as it iterates over
O(n2) grid cells spending constant time per cell. In the third phase, it uses
constant time per edge and by planarity there are O(n2) edges, so the time is
again O(n2). This time bound is optimal since (as shown in Figure 5) there exist
two-dimensional posets whose completion has Ω(n2) elements. �

Although our method produces drawings in a grid of linear dimensions, it may be
possible in some cases to compact our drawings into a smaller grid. An algorithm
of de la Higuera and Nourine [14] may be used to find the smallest grid into which
a drawing produced by our algorithm can be compacted.

5 Confluent Drawings of Series-Parallel Posets

Fig. 6. A series-parallel poset

A series-parallel partial order is a poset
that can be built up from single elements
by two simple composition operations:

– The series composition P ; Q of posets
P and Q is the order on the set P ∪ Q
in which p ≤ q for every p ∈ P and
q ∈ Q.

– The parallel composition P ||Q is the or-
der on P ∪ Q in which every pair of an
element from P and an element from Q
are incomparable.
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A B

Grid Embeddings

Fig. 7. Series and parallel composition operations on two drawings A and B

Pairs of elements that are both from P or both from Q retain their ordering
in the larger set.

Series-parallel partial orders are attractive because many important computa-
tional problems can be solved more easily in them than in more general posets,
and because they have applications to a wide variety of problems including
scheduling [25], concurrency [20], data mining [23], networking [2], and more
(see [24]).

Series-parallel partial orders can be represented naturally by a binary tree,
known as a decomposition tree of the order. The leaves of the tree correspond
to single element sets and the internal nodes of the tree correspond to series or
parallel composition operations. As the following theorem shows, given a decom-
position tree T for a series-parallel partial order P , we can draw the confluent
diagram of P in linear time by traversing T , performing the corresponding com-
position operations, and inserting confluent junctions when necessary.

Theorem 2. Let P be a series-parallel partial order, given as its decomposition
tree. Then a confluent diagram of P with a linear number of junctions can be
drawn in an O(n) × O(n) grid in linear time.

A

B

Insert Junction

A

B

No Junction

A

B

No Junction

Fig. 8. Series composition
A;B has a confluent junc-
tion if and only if A has no
unique upper bound and B
has no unique lower bound

Proof: We traverse the decomposition tree in post-
order, recursively finding embeddings for each sub-
tree. For each tree node, we do the following:

1. If the node is a leaf, then we embed the corre-
sponding element in a single grid cell.

2. Otherwise, if the node is a series or parallel
node, then we translate the grid embeddings of
its two children so that their bounding boxes
meet corner to corner (Figure 7).

3. For a series composition A; B we also insert a
confluent junction at the shared corner of A and
B if and only if A has more than one maximal
element and B has more than one minimal ele-
ment (Figure 8).

By using a linked list of the maximal and minimal nodes for the current subtrees,
we can perform these operations in time proportional to the number of leaves in
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the decomposition tree. Therefore the total time is linear. The size of the grid
will be proportional to the size of the decomposition tree, i.e., O(n)×O(n) �

6 Conclusions

We have designed, analyzed, and implemented an algorithm for drawing conflu-
ent Hasse diagrams using a minimum number of confluent junctions. It would
be of interest to test experimentally how many crossings it eliminates, and how
much ink it saves. Also, upward planarity may be tested even for non-st-planar
graphs that have only one source or one sink; can similar conditions be extended
to the case of upward confluent drawings? Can we efficiently find upward planar
drawings of graphs that are not transitively reduced? If a partially ordered set
must be drawn with crossings, can we use confluence in a principled way to keep
the number of crossings small? We leave these questions to future research.
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