
1834 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 58, NO. 6, JUNE 2010

Confocal Ellipsoidal Reflector System for a
Mechanically Scanned Active Terahertz Imager
Nuria Llombart, Member, IEEE, Ken B. Cooper, Member, IEEE, Robert J. Dengler, Member, IEEE,

Tomas Bryllert, and Peter H. Siegel, Fellow, IEEE

Abstract—We present the design of a reflector system that can
rapidly scan and refocus a terahertz beam for high-resolution
standoff imaging applications. The proposed optical system utilizes
a confocal Gregorian geometry with a small mechanical rotating
mirror and an axial displacement of the feed. For operation at sub-
millimeter wavelengths and standoff ranges of many meters, the
imaging targets are electrically very close to the antenna aperture.
Therefore the main reflector surface must be an ellipse, instead
of a parabola, in order to achieve the best imaging performance.
Here we demonstrate how a simple design equivalence can be used
to generalize the design of a Gregorian reflector system based
on a paraboloidal main reflector to one with an ellipsoidal main
reflector. The system parameters are determined by minimizing
the optical path length error, and the results are validated with
numerical simulations from the commercial antenna software
package GRASP. The system is able to scan the beam over 0.5 m
in cross-range at a 25 m standoff range with less than 1% increase
of the half-power beam-width.

Index Terms—Reflector antennas, scanning antennas, submil-
limeter-wavelength imaging, terahertz radar, THz.

I. INTRODUCTION

R
ECENTLY attention has focused on defense and security

terahertz (THz) applications because signals at these fre-

quencies can penetrate many garments and provide moderate

resolution images of the body at long standoff ranges without

any exposure to ionizing radiation. One promising approach
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to THz imaging utilizes the frequency-modulated continuous-

wave (FMCW) radar technique, where at submillimeter wave-

lengths, ultra-high resolution range measurements are used to

detect objects concealed under clothing. In the FMCW radar

imager described in [1], a 570–600 GHz radar beam is focused

onto targets at 4 m standoff range using a folded-path antenna

system with a 40 cm diameter ellipsoidal main reflector. To ob-

tain imagery with a single transceiver located at the reflector’s

close focus, the entire radar platform was mechanically rotated

about two axes at rates of a few degrees per second. This slow

scanning speed limited the THz radar’s imaging rate to roughly

10–20 ms per pixel, or one useful frame every several min-

utes. Other THz imaging systems have implemented advanced

scanning mechanism to steer the main beam, as for example in

[2], where two off-axis continuously rotating reflectors are used

achieve a fast vertical scan without any acceleration, and in [3],

where a periscope-based conical scan is implemented. However

these systems rely on steering the beam after the main aperture,

making them difficult to be used with large diameter apertures.

A goal of the next-generation THz imaging radar system is

to greatly increase the imaging speed [4] as well as the standoff

range distance. The system will be operating at 25 m with a 1 m

antenna aperture. The cross-range field of view of the system

was chosen to be 0.5 0.5 m in area to span a field of view

the size of a human torso. One route to achieving fast imaging

is to fabricate a camera-like imaging system, where a focal

plane radar array would acquire information from several pixels

simultaneously. However, this approach would require a very

large development cost because THz heterodyne detector array

technology is in its infancy [5], [6]. Therefore we consider here

an alternative that while still relying on mechanical scanning of

a single beam projected onto a target, can nonetheless achieve

rapid imaging by rotating a small, lightweight secondary mirror

to steer the beam. We estimate that the imaging radar’s frame

rate could increase by up to two orders of magnitude in this

way [4]. Moreover, our design leaves open the possibility of

zooming the THz beam’s focal point throughout a swath of near

field distances in order to attain high quality imagery of targets

over a long span of standoff ranges. The idea of using a small

rotating mirror in order to increase the imaging acquisition time

has already been used in several existing active THz imagers

[7]–[9]. In [7] and [8], a telecentric lens design is used to

focus each target pixel into a collimated beam. The collimated

beams can be steered with a small mirror towards the front-

and back-end electronics. In [9] a large focusing mirror is used

in combination with a small rotation mirror that will steer the

beam towards different parts of the mirror before focusing to
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the target. These optical designs are very effective in terms of

acquisition time. However, they pay a large cost in resolution

because the main apertures are very under illuminated.

The scanning THz imager’s design proposed here uses a near-

field or confocal Gregorian reflector system (CGRS) [10]–[13]

consisting of two paraboloid reflectors sharing a common focus.

This type of reflector system has been proposed for satellite ap-

plications because of its excellent scanning performance [13],

[14], a consequence of a cancellation of the coma and astig-

matism aberrations that are normally present in more conven-

tional reflector configurations [15]. In that proposed satellite ap-

plication of CGRS, a phased array is used to perform the beam

scanning, while for the terrestrial THz imaging of persons ad-

dressed here, we propose using a small rotating mirror for beam

steering due to the technical challenge of scaling phased array

technology to submillimeter wavelengths. In [16], beam scan-

ning was proposed to be achieved by using small rotating re-

flectors in the aperture-image space of two reflectors. A tertiary

reflector was shaped in order to have very good beam quality

while scanning by rotational movement of this reflector. In our

design, the rotating mirror is illuminated by a collimated beam

rather than a expanding beam as in [16]. This is important be-

cause it relaxes the tolerances on the position of the rotating

mirror’s principal axes, which otherwise would be difficult to

align at these high frequencies.

The paper is divided as follows. Section II presents the geom-

etry of the reflector system. Section III studies the distortions of

the scanned beam over the symmetric plane of a CGRS, while

Section IV extends the design to a system that focuses in the

near-field using an ellipsoidal reflector. In Section V we con-

sider the reflector’s ability to refocus at variable ranges using a

displacement of the feed. Finally, Section VI discusses the pos-

sibility of simultaneous scanning in the azimuth and elevation

directions using the secondary mirror.

II. REFLECTOR ANTENNA GEOMETRY

We consider first a CGRS based on a paraboloidal main re-

flector and subreflector, with diameters and , as shown

in Fig. 1. These parabolas share the same focal point, which is

taken as the origin of the system. The focal distances of both

paraboloidal reflectors are related by the system magnification

as . The overall dimension of the antenna system

will depend on this magnification and the f-number ( )

of the system. The main reflector is offset by in the plane.

The beam is steered in the plane, , by rotating an angle

about the x-axis the flat mirror (diameter ) located at a dis-

tance from the subreflector. The flat mirror is illuminated by

a paraboloidal feed reflector, diameter , in order to achieve

plane wave incidence over the secondary reflector. The focal

distance and angle of the feed reflector, and , can be ad-

justed to optimize the far field characteristics of the available

feeds and the refocusing requirements.

The THz imager described in [1] uses a silicon etalon beam

splitter to duplex the transmit and receive signals. In the antenna

geometry of Fig. 1, the signal duplexing can be done at the feed

reflector level by placing the beam splitter between the horn

and the feed reflector. The characteristics of the feed reflector

can also be changed to accommodate this beam splitter without

Fig. 1. Paraboloid CGRS geometry: (a) ��-, (b) ��- and (c) ��-planes.

affecting the scanning performance. Another more compact way

of duplexing is to use a waveguide coupler.

III. STUDY OF THE SCANNING PERFORMANCE

For cm-scale 3D radar imaging of targets at standoff ranges

of 25 m, diffraction-limited resolution requires the main aper-

ture to have a diameter of about 1 m. The typical cross-range

span needed for imagery of persons is 0.5 m (or ),

which means that the necessary angular displacement of the ro-

tating mirror can be determined by the beam deviation factor

to be: , where is the beam deviation

factor [17], and it is defined as the ratio between the main beam

scan angle and the subreflector scan angle. The varies be-

tween 0.7 and 1 depending on the system f-number and offset. If

the reflector is uniformly illuminated, this corresponds to scan-

ning by approximately half-power beam-widths (HPBW)

at 670 GHz.

The first order distortions associated with beam scanning can

be assessed by computing the path length error, referred as in

this paper, over the main aperture [15]. This error is the differ-

ence between the length of each ray and the length of the central

one. As explained in [13], the CGRS has superior scanning per-

formances because the coma and astigmatism errors associated

with asymmetric path length errors cancel, leaving a quadratic

path length error for the confocal geometry.

Fig. 2 shows the ray picture for a plane wave incident at

on a symmetric confocal system with

and . The rays are only computed up to the ro-

tating flat mirror for a 2D cut. The corresponding path length
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Fig. 2. Picture of the ray tracing of a CGRS system with� � ����,� � �,
� � � � and � � � for a plane wave incident at � � ��� .

Fig. 3. Normalized path length error of a symmetric Paraboloid CGRS consid-
ering different system parameters as a function of the main aperture dimension
for a plane wave incident at � � ��� .

error is shown in Fig. 3. In this case the size of the rotating

mirror is , which is probably too large for sig-

nificant imaging speed improvement. At a larger magnification

, the rotating mirror would be correspondingly smaller

in size ( ), but at a cost of a larger path length error

(Fig. 3). A second tradeoff for larger magnification is that the

rotational angle needed for a fixed beam scanning distance

scales with , potentially presenting a greater challenge to the

mechanical implementation of a fast rotation [4].

We have considered an f-number of 1.5 up to now, but this

implies a quite large system since . Therefore smaller

f-numbers are preferable, but Fig. 3 shows that the path length

error for an f-number of 1 is substantially worse for the

case. We believe that a good compromise between system

size and distortion is achieved when and

, and in Fig. 4 we summarize the results of a physical optics

simulation of the entire antenna system using GRASP for these

parameters.

The system feed for this geometry was chosen to be the

Picket-Potter horn [18], which is commonly used at submil-

limeter wavelengths. This feed is modeled as a Gaussian beam

with a taper of 10 dB at 12 . Fig. 4 a and b show the far field

for the center and scanned ( ) beams, respectively. The

insets of the figures show the corresponding far field beam

intensities with respect to and .

When the mirror is in the central position, we obtain a pattern

with a HPBW of 0.0305 and a spillover loss of 0.39 dB.

Fig. 4. Paraboloid CGRS: Far field for � � � (a) and 3 (b), where � � �

refers to the offset plane (�	) and � � 
� to the symmetrical plane (�	). The
inset of the figures shows the far field �	-grids. The main geometrical parame-
ters are � � � �, � � ��, � � ��� �, � � ���� �, 
 � ���
 �,
� � �� , 
 � ��� �, � � ���� � and � � ����� .

With the flat mirror fully rotated to , the HPBW is

hardly affected at all, only increasing by 1%. In both cases, the

cross-polarization fields fall outside the shown scale.

Optimization of the secondary reflector’s shape, for example

by using a bifocal structure [19] or by deforming the sub-re-

flector surface [13], might result in even less beam distortion.

However, the fields shown in Fig. 4 are more than adequate

for imaging purposes, with virtually no change in the cross-

range resolution (i.e., the HPBW) over the beam scan.

GRASP simulations indicate that even larger scan angles are

possible with minimal distortion; for a scanning distance of

the HPBW only increases by 8%.

IV. NEAR FIELD FOCUSING

The previous section considered the confocal Gregorian

system with a paraboloidal main reflector, which provides

focusing in the far field. However, at a 25 m standoff distance,

targets are electrically very close to the antenna (in the reactive

near field) for a 670 GHz radar. This means the main reflector

must be an ellipsoid to achieve diffraction-limited focusing at

25 m. To a first order approximation, the near field patterns of
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Fig. 5. Geometry of a CGRS with an ellipsoidal reflector as main aperture.

an ellipsoid will be the same as the far field patterns of a parab-

oloid, as presented in the previous section, as long as the main

rays of the two mirror types are coincident and the ellipse’s

eccentricity is not too large. The geometrical mapping of the

paraboloidal main reflector to the corresponding ellipsoidal re-

flector is summarized in Fig. 5. The mapping consists of having

the same values of and for both types of reflectors, as

well as having the seconday focus of the ellipsoidal reflector at

and the desired focusing distance from the reflector. The

ellipsoidal surface is then defined by the major axis distance

, the foci distance , and the axis tilt angle

. This approximate optical equivalence of paraboloidal and

ellipsoidal reflectors was used by the authors for the fist time

in [24] where a compensated Gregorian system with reduced

cross-polarization was designed. Its primary utility is that

existing design rules for far field systems (for example, the

low cross-polarization dual-reflector system [21] and general

design rules [22], [23]) can be readily applied to the near field.

We have thus adapted the antenna geometry developed for

Figs. 1–4 to an ellipsoidal main reflector, and Fig. 6 shows the

resulting ray picture for a CGRS with and .

The inset shows a magnified view of the rays around the main

reflector region. For near-field focusing, the beam is scanned to-

wards ; see Fig. 6. The path length error calculation

for this system, where the length of the rays is computed starting

from the rotating mirror up to the second focal plane (see Fig. 6),

is shown in Fig. 7 as a function of the rotating mirror’s -coor-

dinate, which relates to the -coordinate of the main reflector as

. The normalized error amplitude is seen to

be less than 0.35 over the entire span, which is comparable to the

results of Fig. 3. The small distortions that do arise are attributed

to the system actually focusing to a slightly different distance

with respect to the nominal when scanning. Fig. 7 shows that

the error becomes much smaller if the second focal plane is dis-

placed by a distance (defined in Fig. 5), before

increasing again at . A larger f-number system will

have the minimum plane of distortion closer to the actual fo-

cusing distance, i.e., is smaller. For the imaging application

considered here, this focusing plane displacement is not very

significant.

In order to check the paraboloidal/ellipsoidal design equiva-

lence, the ellipsoidal CGRS was simulated with GRASP, and the

field values at 25 m are presented in Fig. 8. As expected from the

Fig. 6. Ray picture for an ellipsoidal CGRS with � � � �, � � ��,
� � � �, � � �� � and � � �� .

Fig. 7. Path length error for a symmetric CGRS with an ellipsoidal main re-
flector, and � � � � and � � �� as a function of the second focal plane
distance for � � � .

design equivalence, the fields at and 3 exhibit virtu-

ally the same HPBW and spillover losses as the ones associated

with the paraboloidal reflector. In fact, the beam profiles would

be indistinguishable from the ones shown in Fig. 4 if they were

plotted on top of one another. The HPBW of the center beam at

25 m, corresponding to 0.0305 , is .

V. REFOCUSING THE IMAGING SYSTEM

In this section an approach for focusing at different near-field

distances is considered. In particular, we propose to achieve

zooming by the mechanical displacement of a system compo-

nent. As with beam steering, the alternative of phased array

zooming [25], while very attractive, is prohibited by the avail-

able technology at THz frequencies. Our goal is to evaluate re-

focusing over a deviation covering the span 12.5 m –

37.5 m in range.

A single ellipsoidal reflector has two optimal focuses defined

by the ellipse parameters, and one can focus to a different sec-

ondary focus by axially displacing the first focal point by as

shown in the inset Fig. 9. This displacement results in the second

focus of the ellipse moving from to . Fig. 9 shows the ray

picture of an offset single reflector where the feed is displaced

by . This displacement will introduce a certain

path length error as shown in Fig. 10. The feed displacement is
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Fig. 8. Ellipsoidal CGRS: Near field at 25 m for � � � (a) and 3 (b).
The inset of the figures shows the near field ��-grids. The system has the same
geometrical parameters as Fig. 4 plus � � �� �, � � ���� and �� �

����	
 �.

chosen by minimizing the path length error computed up to

in each of the main planes. For offset reflectors, the optimum

feed displacement is different in the symmetrical ( )

and offset planes ( ) as can be seen Fig. 10. In the case of

a larger f-number, the relative difference between the optimum

distances for each plane is smaller as well as the maximum path

length error, resulting in higher quality beams, as can be seen

in the same figure. Fig. 11 shows the near fields at 12.5 m for

two offset reflectors with different f-numbers. The asymmetrical

path length error of Fig. 10 for results in significant

coma and beam tilting distortions. In an actual system, the feed

offset will be in between the optimum distances for each plane,

and it would be a compromise between the beam qualities in

both planes.

In the confocal geometry, the focal point of the main ellip-

soidal reflector needs to be displaced in order to refocus the

system. One could achieve the refocusing by translating the

whole secondary optical system (i.e., secondary reflector, ro-

tating mirror, feed reflector and feed). In such a case the beam

quality will depend on the main reflector’s f-number, which has

been fixed to 1.2 in previous sections in order to keep the system

Fig. 9. Ray picture for an ellipsoidal reflector with � � ���, � � ���� �,
� � ���,� � ��� and� � ���� �. The inset of the figure shows the
geometrical description of a single ellipsoidal reflector with the feed displaced
(� ) to change the focusing distance towards � from the nominal one � .

Fig. 10. Path length error when refocusing at 12.5 m for several reflector system
configurations: (1) Single reflector, SR, (	 � ��� � and � � ���� �)
where � � 	�� � for 
 � � and � � ��� � for 
 � 
� ; (2) SR,
(	 � ��� � and � � ���� �) where � � ���� � for 
 � � and
� � ���	�� for
 � 
� ); and (3) same CGRS of Fig. 8 (� � �����).

overall dimension reasonably small. This small f-number will

cause large beam distortions, as shown in Fig. 11. A solution

that presents better beam quality is the displacement of the feed

only. The advantage here is that the f-number of the feed re-

flector is higher (i.e., 2.2). The phase error associated with the

confocal geometry is also shown in Fig. 10 when only the feed is

displaced. The feed displacement provided in the figure caption

has been chosen as a compromise between the beam qualities in

both planes, and 90 . This error is comparable to that of

the single reflector with the same f-number. However the main

reflector is under illuminated (see Figs. 10 and 12). This aper-

ture illumination depends on the distances and , which

have been chosen to avoid blockage effects when displacing the

feed for refocusing at . Because of this poorer

illumination, the HPBW associated with the confocal geometry

is larger than the one of the single reflector. However, the beam

tilting effect and side lobe level in the offset cut ( ) are

much better for the CRGS, as indicated by the smaller beam

length error. Fig. 13 shows that fields, when refocusing at 37.5

m, have a comparable side lobe level and beam tilting effect than
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Fig. 11. Near field at � � ���� � of the geometries (1)-(2) described in
Fig. 10 with � � ��� �� and � � �� ��, respectively: (a) � � 	 and
(b) 90 cuts.

Fig. 12. Ray picture for the ellipsoidal CGRS with� � �
�� cm. Notice that
the main reflector is under illuminated.

the ones at 12.5 m. In both cases, the cross-polarization fields

fall outside the shown scale.

Finally, both operations, scanning and refocusing, can be si-

multaneously combined. To check the quality of the fields, we

have computed the near fields at the external boundaries of the

focusing region at the maximum scan angle ( deg) with

GRASP. The fields are shown in Fig. 14 and Table I presents

a summary of the simulated parameters of the system for both

Fig. 13. Near fields at (a) � � ���� � (� � �
�� ��) and (b) � �


��� � (� � �� ��) of the ellipsoidal CGRS.

Fig. 14. Near field at � � ���� � and � � 
��� � of the ellipsoidal
CPGRS with � � 
 .

operations. Note that the spill over (SO) provided in the table

is associated with a Gaussian beam excitation, and the SO as-

sociated with the actual feed pattern may be larger. Even when

refocusing, the scanned beams are of excellent quality. On one

hand, the spillover loss is below 0.8 dB over the whole scan-

ning and focusing operation range. For example, the HPBWs

( and ) when scanning increase by less than 6% with re-

spect to the center beam ( ). From Table I, we can see that

and at the several focusing distances are different from

each other. Actually, if the main aperture would have the same

illumination when refocusing, i.e., the same spillover loss, the

HPBW at 12.5 m and 37.5 m would be half and one and a half

that at 25 m, respectively. Instead, the actual values are larger

and smaller than these ideal ones because of different illumina-

tion of the main reflector. Even so, they are within a factor of

two of one another and should provide comparable imaging per-

formance at the different distances.

VI. 2-AXIS SCANNING SYSTEM

A flat secondary mirror that can rotate in two planes could

achieve faster frame rates than a single-axis mirror by steering

the radar beam in a circular or spiral pattern [26]. Therefore it

is valuable to examine the beam quality in the orthogonal scan-

ning plane (the plane of Fig. 1 for the antenna configurations
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TABLE I
SCANNING AND REFOCUSING PARAMETERS OF THE ELLIPSOIDAL CGRS

Fig. 15. Near field at 25 m when scanning in the offset plane (� � �� ,
� � � ).

TABLE II
PARAMETERS OF THE 2D SCANNING ELLIPSOIDAL CGRS

presented here). In order to avoid beam blockage effects, simu-

lations were performed with a larger offset, , of 60 cm rather

than 55 cm used in Fig. 8. Fig. 15 shows the scanned beam when

the flat mirror is rotated by in this offset plane ( ).

As shown in Table II, which compares the beam widths and

spillover loss for scanning in the two directions, there will be

only a negligible impact (at most 3%) on the radar’s imaging

resolution when the beam is steered in any direction up to .

The asymmetry of the HPBWs when scanning towards positive

or negative angles for is associated with the offset of the

structure.

VII. CONCLUSION

The next generation of terahertz imagers will require fast

scanning and will benefit from refocusing capabilities. In this

paper, a reflector system design was presented that can achieve

both functionalities using mechanical rotation and translation of

small secondary optical elements while the large primary mirror

remains stationary. The reflector geometry consists on a con-

focal system. Using this system, very low path length errors

are obtained when either scanning or refocusing the beam, or

both operations are applied, yielding to very low beam distor-

tions. The design was implemented by generalizing a confocal

dual reflector system with a paraboloidal main reflector into

a near-field focusing system with an ellipsoidal main reflector

using a simple equivalence rule. The beam patterns were numer-

ically calculated using GRASP for all extreme system specifi-

cations of scan angle ( ) and refocusing distance (50% from

the nominal). These results indicate that the THz imaging radar

system will able to scan a target area of 0.5 m at 25 m stand-off

with less than 3% increase of the HPBW at the nominal focusing

distance, and to refocus from 12.5 m up to 37.5 m while main-

taining cm-scale imaging resolution.
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