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1. Introduction

Fractional differential equations turned to be successful models of real life phe-
nomenon (see e.g. [1, 2, 4,5,6] ). This gives one motivation to study and discuss
some of the well known classical differential equations, when some of the deriva-
tives are replaced by fractional derivatives. One of the classical equations is the
heat equation

∂u(x, t)

∂t
=

∂2u(x, t)

∂x2 .

There are many fractional forms of the heat equation. One of such forms is
∂αu(x,t)

∂tα
= ∂2u(x,t)

∂x2 , 0 < α < 1. Other forms are

∂αu(x, t)

∂tα
=

∂2u(x, t)

∂x2
,

1 ≤ α < 2, and
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∂u(x, t)

∂t
=

∂αu(x, t)

∂xα ,

0 < α < 1.

The heat differential equation was treated for the classical fractional deriva-
tives either Caputo or Riemann definitions.

In this paper we investigate the differential equation:

∂α

∂tα
∂αu(x, t)

∂tα
=

∂2u(x, t)

∂x2
, 0 < α < 1, (∗)

with conditions

u(0, t) = 0, t >, (1)

u(1, t) = 0, t > 0, (2)

∂u(x, 0)

∂t
= 0, (3)

u(x, 0) = f(x), 0 < x < 1. (4)

where the fractional derivative is the conformable fractional derivative, see [3].

Fractional derivative is as old as calculus. The most popular definitions are:

(i) Riemann-Liouville Definition: If n is a positive integer and α ∈ [n−1, n),
the αth derivative of f is given by

Dα
a (f)(t) =

1

Γ(n− α)

dn

dtn

t
∫

a

f(x)

(t− x)α−n+1 dx.

(ii) Caputo Definition. For α ∈ [n− 1, n), the α derivative of f is

Dα
a (f)(t) =

1

Γ(n− α)

t
∫

a

f (n)(x)

(t− x)α−n+1 dx.

Now, all definitions are attempted to satisfy the usual properties of the
standard derivative. The only property inherited by all definitions of fractional
derivative is the linearity property. However, the following are the setbacks of
one definition or another:
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(i) The Riemann-Liouville derivative does not satisfyDα
a (1) = 0 (Dα

a (1) = 0
for the Caputo derivative), if α is not a natural number.

(ii) All fractional derivatives do not satisfy the known product rule

Dα
a (fg) = fDα

a (g) + gDα
a (f).

(iii) All fractional derivatives do not satisfy the known quotient rule:

Dα
a (f/g) =

gDα
a (f)− fDα

a (g)

g2
.

(iv) All fractional derivatives do not satisfy the chain rule:

Dα
a (f ◦ g)(t) =f (α)

(

g(t)
)

g(α)(t).

(v) All fractional derivatives do not satisfy: DαDβf = Dα+βf in general.

(vi) Caputo definition assumes that the function f is differentiable.
Authors, introduced a new definition of fractional derivative as follows:

For α ∈ (0, 1], and f : [0,∞) −→ R, let

Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε

for all t > 0, α ∈ (0, 1). Tα is called the conformable fractional derivative of
f of order α.

Definition 1. Let f (α)(t) stands for Tα(f)(t). Hence

f (α)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
.

If f is α−differentiable in some (0, a), a > 0, and lim
t→0+

f (α)(t) exists, then

by definition
f (α)(0) = lim

t→0+
f (α)(t).

We should remark that Tα(t
p) = p tp−α. Further, this definition coincides with

the classical definitions of R-L and of Caputo on polynomials (up to a constant
multiple).

One can easily show that Tα satisfies all the properties in the following
theorem:
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Theorem 2. Let α ∈ (0, 1], and f, g be α−differentiable at a point t.
Then:

(1) Tα(af + bg) = aTα(f) + bTα(g), for all a, b ∈ R.

(2) Tα(t
p) = ptp−α for all p ∈ R.

(3) Tα(fg) = fTα(g) + gTα(f).

(4) Tα(
f

g
) =

gTα(f)− fTα(g)

g2
.

(5) Tα(λ) = 0, for all constant functions f(t) = λ.

(6) If, in addition, f is differentiable, then Tα(f)(t) = t1−α df

dt
.

Further:

1. Tα(t
p) = ptp−α for all p ∈ R.

2. Tα(1) = 0.

3. Tα(e
cx) = cx1−αecx, c ∈ R.

4. Tα(sin bx) = bx1−α cos bx, b ∈ R.

5. Tα(cos bx) = −bx1−α sin bx, b ∈ R.

6. Tα(
1
α
tα) = 1

However, it is worth noting the following fractional derivatives of certain
functions:

(i) Tα(sin
1
α
tα) = cos 1

α
tα.

(ii) Tα(cos
1
α
tα) = − sin 1

α
tα.

(iii) Tα(e
1

α
tα) = e

1

α
tα .

2. The Conformable Fractional Heat Equation

Let us start with the fact that the second derivative of a function is by definition
the iteration of the first derivative. So y′′ = d

dx
dy
dx
.

Hence it is so natural to consider the equation:

∂α

∂tα
∂αu(x, t)

∂tα
=

∂2u(x, t)

∂x2
, (∗)
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u(0, t) = 0, t > 0, (5)

u(1, t) = 0, t > 0, (6)

∂u(x, 0)

∂t
= 0, (7)

u(x, 0) = f(x), 0 < x < 1. (8)

Before we start our discussion, let us discuss conformable fractional linear
differential equations with

constant coefficients:
dα

dxα
dαy

dxα
± µ2y = 0. (5)

If we associate the auxiliary equation r2 ± µ2 = 0, to this equation, then
the roots are r = ±µ, or r = ±µi. In the first case, we have by formula (iii)
above (see [3]) that

y = e∓
µ

α
tα

are two independent solutions of the equation.
In the second case we have by formulas (i) and (ii) above (see [3]), that

y1 = sin
µ

α
tα and y2 = cos

µ

α
tα (6)

are two independent solutions of the equation (5).
In general, conformable fractional linear differential equation of order 2α,

with constant coefficients can be written in the form

dα

dxα
dαy

dxα
+ a

dαy

dxα
+ by = g(x).

Let us write Dα for dα

dxα . So the equation can be written in the form
Dα(Dαy) + aDαy + by = g(x). For the homogeneous solution, we consider
the equation r2 + ar + b = 0. Using the properties of conformable fractional
derivative in [3], and the formulas (i), (ii) and (iii) above one gets the same
theory as the usual linear differential equations.

Now we can start discussing our heat equation (∗). Let us use separation
of variables method.

Let u(x, t) = P (x)Q(t). Substituting in the differential equation to get

dα

dtα
dαQ(t)

dtα
P (x) = Q(t)

d2P (x)

dx2
,

from which we get

dα

dtα
dαQ(t)

dtα
/Q(t) =

d2P (x)

dx2
/P = λ,
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some constant. Consequently:

dα

dtα
dαQ(t)

dtα
− λQ = 0, and

d2P (x)

dx2
− λP = 0.

Now, we consider the equation

d2P (x)

dx2
− λP = 0.

As is well known, there are three cases for the values of λ to be considered.
λ = 0, λ = −µ2 and λ = µ2.

Conditions (1) and (2) forces

µ = nπ and Pn(x) = cn sinnπx. (7)

Equations (5) and (6), gives

Q(t) = b1 cos
nπ

α
tα + b2 sin

nπ

α
tα

Condition (3) now gives b2 = 0, and Q(t) = b1 cos
nπ
α
tα. Consequently,

using equation (7), we get

u(x, t) =
∞
∑

n=1

an sinnπx cos
nπ

α
tα

Using condition (4) we find that an is the nth Fourier coefficient of the
function f(x).

One can consider the following form of the conformable fractional differen-
tial equation:

∂α

∂xα
∂αu(x, t)

∂xα
=

∂u

∂t
, (8)

with conditions

u(x, 0) = f(x), 0 < x < 1,

u(0, t) = 0, t > 0,

u(1, t) = 0, t > 0.

Here equation (5) can be put into action, and one can solve (8) with the
given boundary conditions the same way as the ordinary heat equation is solved
taking into account formulas (i), (ii) and (iii) above. However, conformable
fractional Fourier series comes up in the way. So this will be postponed to a
forthcoming paper.
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