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We prove new Hermite-Hadamard inequalities for conformable fractional integrals by using convex function, �-convex, and
coordinate convex functions. We prove new Montgomery identity and by using this identity we obtain generalized Hermite-
Hadamard type inequalities.

1. Introduction

�e class of convex functions is well known in the literature
and is usually de	ned in the followingway: let I be an interval
in R; then a function � : I → R is said to be convex on I if
the inequality

� (�� + (1 − �) �) ≤ �� (�) + (1 − �) � (�) (1)

holds for all �, � ∈ I and � ∈ [0, 1]. Also, we say that � is
concave, if the inequality in (1) holds in the reverse direction.
�ere are several generalizations of the convex function.
Here we mention basic de	nition of �-convex function and
coordinate convex function. In the paper [1], Hudzik and
Maligranda considered a generalization of convex function,
which is known as �-convex function in the second sense.�is
class of function is de	ned in the following way: a function� : [0, +∞) → R is said to be �-convex in the second sense if

� (�� + (1 − �) �) ≤ ��� (�) + (1 − �)� � (�) (2)

holds for all �, � ≥ 0 and � ∈ [0, 1] and for some 	xed � ∈(0, 1]. �e class of �-convex functions in the second sense is
usually denoted by �2� .

In [2], the concept of convex functions de	ned on the
coordinates of the bidimensional interval of the plane of two
variables was introduced.

De�nition 1. Let us consider the bidimensional interval Δ fl[�, �] × [�, �] in R
2 with � < � and � < �. A function � :[�, �] × [�, �] → R is called convex on the coordinates if the

partial mappings �� : [�, �] → R de	ned as ��(�) fl �(�, �)
and �� : [�, �] → R de	ned as ��(�) fl �(�, �) are convex for
all � ∈ [�, �] and � ∈ [�, �].
Remark 2. Note that every convex function � : [�, �] ×[�, �] → R is convex on the coordinates, but the converse
is not generally true [2].

Many important inequalities have been obtained for this
class of functions but here we will present only one of them.

If � : I → R is a convex function on the interval I, then,
for any �, � ∈ I with � ̸= �, we have the following double
inequality:

�(� + �
2 ) ≤ 1

� − � ∫�
�

� (�) �� ≤ � (�) + � (�)
2 . (3)
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Both inequalities hold in reverse direction if the function� is concave on the interval I. �is remarkable result was
given in ([3], 1893) and is well known in the literature
as Hermite-Hadamard inequality. Since its discovery, this
inequality has become the center of interest for many proli	c
researchers and received a considerable attention. Also, a
number of extensions, generalizations, and variants of (3)
have been provided in the theory of mathematical inequal-
ities. For example, see [4–12] and the references cited therein.

Now we recall some de	nitions and important results in
the theory of conformable fractional calculus. For detailed
treatment of the results, we refer the interested readers to [13–
20].

De�nition 3 (see [20]). Given a function � : [0,∞) → R, the
conformable fractional derivative of � of order � is de	ned by

D� (�) (�) = lim
�→0

� (� + ��1−�) − � (�)
� (4)

for all � > 0 and � ∈ (0, 1). If the conformable fractional
derivative of � of order � exists, then we say that � is�-dierentiable. Let � be �-dierentiable in (0, �), and
lim
→0+��(�) exists; then de	ne

�� (0) = lim

→0+

�� (�) . (5)

We will, sometimes, write ��(�) and (��/���)(�) for D�(�)(�)
to denote the conformable fractional derivatives of� of order�.
�eorem 4 (see [20]). Let � ∈ (0, 1] and �, � be �-
di	erentiable at a point � > 0. 
en we have the following:

(1) (��/���)(��) = ���−�, for all � ∈ R.

(2) (��/���)(�) = 0, for all constant functions �(�) = �.
(3) (��/���)(��(�) + ��(�)) = �(��/���)(�(�)) + �(��/���)(�(�)), for all �, � ∈ R.
(4) (��/���)(�(�)�(�)) = �(�)(��/���)(�(�)) + �(�)(��/���)(�(�)).
(5) (��/���)(�(�)/�(�)) = (�(�)(��/���)(�(�)) −�(�)(��/���)(�(�)))/(�(�))2.
(6) (��/���)((� ∘ �)(�)) = ��(�(�))(��/���)(�(�)), for �

di	erentiable at �(�).
If, in addition, the function � is di	erentiable, then

����� (� (�)) = �1−� �
�� (� (�)) . (6)

Also, it is important to note the following:

(1) (��/���)(1) = 0.
(2) (��/���)(!��) = ��1−�!��, � ∈ R.
(3) (��/���)(sin(��)) = ��1−�cos(��), � ∈ R.
(4) (��/���)(cos(��)) = −��1−� sin(��), � ∈ R.
(5) (��/���)((1/�)��) = 1.

(6) (��/���)(sin(��/�)) = cos(��/�).
(7) (��/���)(cos(��/�)) = − sin(��/�).
(8) (��/���)(!(
�/�)) = !(
�/�).

De�nition 5 (see [21] (conformable fractional integral)). Let� ∈ (0, 1) and 0 ≤ � < �. A function � : [�, �] → R is�-fractional integrable on [�, �] if the integral
∫�
�

� (�) ��� fl ∫�
�

� (�) ��−1�� (7)

exists and is 	nite. All �-fractional integrable functions on[�, �] are indicated by L1�([�, �]).
Remark 6. Note that the relation between the Riemann
integral and conformable fractional integral is given by

I
�
� (�) (�) = I

�
1 (��−1�) = ∫


�

� (�)
�1−� ��, � ∈ (0, 1] . (8)

�e �-fractional integrable functions are strongly related to
fractional Lebesgue and Sobolev spaces. General de	nitions
of fractional Lebesgue and Sobolev spaces can be found in the
monograph [22]. Moreover, in recent years, they have been
widely used in the theory of regularity for PDE. For interested
readers, we recommend [23–25] and some of the references
therein.

�eorem 7 (see [13]). Let � : (�, �) → R be di	erentiable and0 < � ≤ 1. 
en, for all � > �, one has
I
�
�D
�
� (�) (�) = � (�) − � (�) . (9)

�eorem 8 (see [13] (integration by parts)). Let �, � :[�, �] → R be two functions such that�� is di	erentiable.
en

∫�
�

� (�) D�� (�) (�) ���

= ��""""�� − ∫�
�

� (�) D�� (�) (�) ���.
(10)

�eorem 9 (see [13]). Assume that � : [�,∞) → R such that

�(�)(�) is continuous and � ∈ (�, � + 1].
en, for all � ≥ �, one
has

D
�
�I
�
� (�) (�) = � (�) . (11)

Very recently, Anderson [21] investigated the following
conformable integral version of Hermite-Hadamard inequal-
ity.

�eorem 10 (see [21]). Let � ∈ (0, 1] and let � : [�, �] → R

be an �-di	erentiable function with 0 < � < �, such that D��
is increasing; then one has the following inequality:

�
�� − �� ∫�

�
� (�) ��� ≤ � (�) + � (�)

2 . (12)

Moreover, if the function � is decreasing on [�, �], then one has
�(� + �

2 ) ≤ �
�� − �� ∫�

�
� (�) ���. (13)
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Remark 11. It is obvious that if we choose � = 1, then
inequalities (12) and (13) reduce to inequality (3).

Several important variants of Hermite-Hadamard
inequality have been provided in the literature, such as the
versions established by Anderson [21] and Sarikaya et al. [26]
and so forth.

In this paper, we prove new Hermite-Hadamard inequal-
ities for conformable fractional integrals by using convex
function, �-convex, and coordinate convex functions. We
prove new Montgomery identity for conformable fractional
integral. By using this identity, we obtainHermite-Hadamard
type inequalities. �ese results give us the generalizations of
the earlier results.

2. Hermite-Hadamard Inequalities

�eorem 12. Let � ∈ (0, 1], � : [�, �] → [0, +∞) be a convex
function de�ned on [�, �], where 0 < � < �; then the following
double inequality holds:

� (� + �)�−1 �(� + �
2 ) ≤ �

� − � ∫�
�

� (�) ���

≤ min{��−1 (�� (�) + � (�)
� + 1 ) ,

��−1 (� (�) + �� (�)
� + 1 )} .

(14)

Proof. Let us de	ne a function � on [�, �] by
� (�) = ( �

� − �)�−1 . (15)

Obviously the function � is increasing and continuous func-
tion on [�, �]. �erefore,

'1 fl max

∈[�,�]

� (�) = ( �
� − �)�−1 (16)

and hence

��−1 ≤ '1 (� − �)�−1 , ∀� ∈ [�, �] , � ∈ (0, 1] . (17)

Now

∫�
�

� (�) ��� = ∫�
�

� (�) ��−1��

≤ '1 ∫
�

�
� (�) (� − �)�−1 ��

(by using (17)) .

(18)

By changing of variable and convexity of �, we get
∫�
�

� (�) ��� ≤ '1 (� − �)� ∫1
0

� (�� + (1 − �) �) ��−1��

≤ '1 (� − �)� ∫1
0

(�� (�) + (1 − �) � (�)) ��−1��
= ��−1 (� − �) [ � (�)

� (� + 1) + � (�)
� + 1] .

(19)

Hence,

�
� − � ∫�

�
� (�) ��� ≤ ��−1 (� (�) + �� (�)

� + 1 ) . (20)

Now let us de	ne a function ℎ on [�, �] by
ℎ (�) = ( �

� − �)
�−1 . (21)

Clearly the function ℎ is decreasing and continuous on [�, �].
�erefore,

'2 fl max

∈[�,�]

ℎ (�) = ( �
� − �)�−1 (22)

and hence

��−1 ≤ '2 (� − �)�−1 , ∀� ∈ [�, �] , � ∈ (0, 1] . (23)

Now

∫�
�

� (�) ��� = ∫�
�

� (�) ��−1��

≤ '2 ∫
�

�
� (�) (� − �)�−1 ��

= '2 (� − �)� ∫1
0

� (�� + (1 − �) �) ��−1��

≤ '2 (� − �)� ∫1
0

(�� (�) + (1 − �) � (�)) ��−1��
= ��−1 (� − �) [� (�)

� + 1 + � (�)
� (� + 1)] .

(24)

Hence,

�
� − � ∫�

�
� (�) ��� ≤ ��−1 (�� (�) + � (�)

� + 1 ) . (25)

From (20) and (25), we deduce the right-hand side of (14).
Now we prove le� inequality in (14).
It is well known that

∫�
�

� (�) ��� = ∫(�+�)/2
�

� (�) ��� + ∫�
(�+�)/2

� (�) ���. (26)

Also from the functions � and ℎ as de	ned in (15) and (21),
respectively, we have

' fl min

∈[(�+�)/2,�]

� (�) = min

∈[�,(�+�)/2]

ℎ (�) = (� + �
� − �)�−1 . (27)

�erefore,

∫(�+�)/2
�

� (�) ��� = ∫(�+�)/2
�

� (�) ��−1��

≥ '∫(�+�)/2
�

� (�) (� − �)�−1 ��,

∫�
(�+�)/2

� (�) ��� = ∫�
(�+�)/2

� (�) ��−1��

≥ '∫�
(�+�)/2

� (�) (� − �)�−1 ��.

(28)
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By using (28) in (26), we obtain

∫�
�

� (�) ��� ≥ ' [∫(�+�)/2
�

� (�) (� − �)�−1 ��

+ ∫�
(�+�)/2

� (�) (� − �)�−1 ��] .
(29)

Now, by changing of variable and using the fact that(2 − �)�−1 ≥ 2�−1 for � ∈ [0, 1], we obtain
∫(�+�)/2
�

� (�) (� − �)�−1 �� = ∫1
0

�(� + � (� − �)
2 )

⋅ ((� − �) (2 − �)
2 )�−1 (� − �

2 )��

≥ (� − �
2 )� 2�−1 ∫1

0
�(� + � (� − �)

2 ) ��

= (� − �)�
2 ∫1

0
�(� + � (� − �)

2 ) ��.

(30)

Similarly,

∫�
(�+�)/2

� (�) (� − �)�−1 �� = ∫0
1

�(� − � (� − �)
2 )

⋅ ((� − �) (2 − �)
2 )�−1 (− (� − �)

2 ) ��

≥ (� − �
2 )� 2�−1 ∫1

0
�(� − � (� − �)

2 ) ��

= (� − �)�
2 ∫1

0
�(� − � (� − �)

2 ) ��.

(31)

Now

�(� + �
2 ) = ∫1

0
�(�

2 + �
2) ��

≤ 1
2 ∫1
0

[�(� + � (� − �)
2 ) + �(� − � (� − �)

2 )] ��.
(32)

Combining (29), (30), (31), and (32), we get

∫�
�

� (�) ��� ≥ ' (� − �)� [1
2

⋅ ∫1
0

(�(� + � (� − �)
2 ) + �(� − � (� − �)

2 ))��]

≥ (� + �)�−1 (� − �) �(� + �
2 ) ,

(33)

which is equivalent to the le� inequality in (14).

Corollary 13. Under the assumptions of 
eorem 12, if we put� = 1, we get the following well-known Hermite-Hadamard
inequality for convex function:

�(� + �
2 ) ≤ 1

� − � ∫�
�

� (�) �� ≤ � (�) + � (�)
2 . (34)

Now we prove Hermite-Hadamard inequality for con-
formable fractional integral by using �-convex function.
�eorem 14. Let �, � ∈ (0, 1] and let � : [�, �] → [0, +∞) be
an �-convex function de�ned on [�, �], where 0 < � < �; then
the following double inequality holds:

(� + �)�−1 2�−1�(� + �
2 ) ≤ 1

� − � ∫�
�

� (�) ���

≤ min{��−1 (� (�)
� + � + � (�) 9 (�, � + 1)) ,

��−1 (� (�) 9 (�, � + 1) + � (�)
� + �)} ,

(35)

where 9(�, �) is Euler beta function de�ned for �, � > 0.
Proof. By de	nition of �-convex function, we have

� (�� + (1 − �) �) ≤ ��� (�) + (1 − �)� � (�) ,
� (�� + (1 − �) �) ≤ ��� (�) + (1 − �)� � (�) ,

∀� ∈ (0, 1) .
(36)

Let � be de	ned in (15). �en, as in the proof of �eorem 12,
we have

'1 fl max

∈[�,�]

� (�) = ( �
� − �)�−1 , (37)

��−1 ≤ '1 (� − �)�−1 , ∀� ∈ [�, �] , � ∈ (0, 1] . (38)

Now

∫�
�

� (�) ��� = ∫�
�

� (�) ��−1��

≤ '1 ∫
�

�
� (�) (� − �)�−1 ��

(by using (38)) .

(39)

By changing of variable and �-convexity of �, we get
∫�
�

� (�) ��� ≤ '1 (� − �)� ∫1
0

� (�� + (1 − �) �) ��−1��

≤ '1 (� − �)� ∫1
0

(��� (�) + (1 − �)� � (�)) ��−1��
= ��−1 (� − �) (� (�) 9 (�, � + 1) + � (�)

� + �) .

(40)

Hence,

1
� − � ∫�

�
� (�) ���

≤ ��−1 (� (�) 9 (�, � + 1) + � (�)
� + �) .

(41)
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Let ℎ be de	ned in (21). �en similar proof leads to

'2 fl max

∈[�,�]

ℎ (�) = ( �
� − �)�−1 ,

��−1 ≤ '2 (� − �)�−1 , ∀� ∈ [�, �] , � ∈ (0, 1] .
(42)

Now

∫�
�

� (�) ��� = ∫�
�

� (�) ��−1��

≤ '2 ∫
�

�
� (�) (� − �)�−1 ��

= '2 (� − �)� ∫1
0

� (�� + (1 − �) �) ��−1��

≤ '2 (� − �)� ∫1
0

(��� (�) + (1 − �)� � (�)) ��−1��
= ��−1 (� − �) (� (�)

� + � + � (�) 9 (�, � + 1)) .

(43)

Hence,

1
� − � ∫�

�
� (�) ���

≤ ��−1 (� (�)
� + � + � (�) 9 (�, � + 1)) .

(44)

From (41) and (44), we deduce the right-hand side of (35).
Now we prove le� inequality in (35).
It is well known that

∫�
�

� (�) ��� = ∫(�+�)/2
�

� (�) ��� + ∫�
(�+�)/2

� (�) ���. (45)

Also from the functions � and ℎ as de	ned in (15) and (21),
respectively, we have

' fl min

∈[(�+�)/2,�]

� (�) = min

∈[�,(�+�)/2]

ℎ (�) = (� + �
� − �)�−1 . (46)

�erefore,

∫(�+�)/2
�

� (�) ��� = ∫(�+�)/2
�

� (�) ��−1��

≥ '∫(�+�)/2
�

� (�) (� − �)�−1 ��,

∫�
(�+�)/2

� (�) ��� = ∫�
(�+�)/2

� (�) ��−1��

≥ '∫�
(�+�)/2

� (�) (� − �)�−1 ��.

(47)

By using (47) in (45), we obtain

∫�
�

� (�) ��� ≥ ' [∫(�+�)/2
�

� (�) (� − �)�−1 ��

+ ∫�
(�+�)/2

� (�) (� − �)�−1 ��] .
(48)

Similar to (30), we have

∫(�+�)/2
�

� (�) (� − �)�−1 ��

≥ (� − �)�
2 ∫1

0
�(� + � (� − �)

2 ) ��.
(49)

Also,

∫�
(�+�)/2

� (�) (� − �)�−1 ��

≥ (� − �)�
2 ∫1

0
�(� − � (� − �)

2 ) ��.
(50)

Now, using �-convexity of �, we have

�(� + �
2 ) = ∫1

0
�(�

2 + �
2) ��

≤ 1
2� ∫
1

0
[�(� + � (� − �)

2 ) + �(� − � (� − �)
2 )] ��.

(51)

Combining (48), (49), (50), and (51), we get

∫�
�

� (�) ��� ≥ ' (� − �)� [1
2

⋅ ∫1
0

(�(� + � (� − �)
2 ) + �(� − � (� − �)

2 ))��]

≥ (� + �)�−1 (� − �) 2�−1�(� + �
2 ) ,

(52)

which is equivalent to the le� inequality in (35).

Corollary 15. Under the assumptions of 
eorem 14, if we put� = 1, we get the following well-known Hermite-Hadamard
inequality for �-convex function [27]:

2�−1�(� + �
2 ) ≤ 1

� − � ∫�
�

� (�) �� ≤ � (�) + � (�)
� + 1 . (53)

In the following theorem, we prove Hermite-Hadamard
inequality for conformable fractional integral by using coor-
dinate convex function.

�eorem 16. Let � ∈ (0, 1] and let � : Δ = [�, �] × [�, �] →[0, +∞) be a convex function on the coordinates on Δ, where
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0 < � < � and 0 < � < �; then the following double inequality
holds:

1
2 [(� + �)�−1

� − � ∫�
�

�(�, � + �
2 )���

+ (� + �)�−1
� − � ∫�

�
�(� + �

2 , �) ���]

≤ 1
(� − �) (� − �) ∫�

�
∫�
�

� (�, �) ��� ���

≤ 1
2� (� + 1) [ ��−1

� − � ∫�
�

(� (�, �) + �� (�, �)) ���

+ ��−1
� − � ∫�

�
(� (�, �) + �� (�, �)) ���] .

(54)

Proof. Since � : Δ → [0, +∞) is convex on the coordinates,
it follows that the mapping �� : [�, �] → [0, +∞), ��(�) =�(�, �), is convex on [�, �] for all � ∈ [�, �]. �en, by
�eorem 12, we have

(� + �)�−1 �� (� + �
2 ) ≤ 1

� − � ∫�
�

�� (�) ���,
� ∈ [�, �] ;

(55)

that is,

(� + �)�−1 �(�, � + �
2 ) ≤ 1

� − � ∫�
�

� (�, �) ���,
� ∈ [�, �] .

(56)

Integrating (56) on [�, �], we have
(� + �)�−1

� − � ∫�
�

�(�, � + �
2 )���

≤ 1
(� − �) (� − �) ∫�

�
∫�
�

� (�, �) ��� ���.
(57)

Similarly, using the mapping �� : [�, �] → [0, +∞), ��(�) =�(�, �), we get
(� + �)�−1

� − � ∫�
�

�(� + �
2 , �) ���

≤ 1
(� − �) (� − �) ∫�

�
∫�
�

� (�, �) ��� ���.
(58)

Summing inequalities (57) and (58), we deduce the le�-
hand side of (54).

Now we prove right inequality in (54).

Also, by �eorem 12, using inequality (20), we have

1
(� − �) (� − �) ∫�

�
∫�
�

� (�, �) ��� ���

= 1
(� − �) (� − �) ∫�

�
[∫�
�

�� (�) ���]���

≤ 1
(� − �) (� − �)

⋅ ∫�
�

[��−1 (� − �) ( � (�, �)
� (� + 1) + � (�, �)

� + 1 )]���

= ��−1
� (� + 1) (� − �) ∫�

�
(� (�, �) + �� (�, �)) ���.

(59)

Similarly, using inequality (25), we have

1
(� − �) (� − �) ∫�

�
∫�
�

� (�, �) ������

= 1
(� − �) (� − �) ∫�

�
[∫�
�

�� (�) ���]���

≤ 1
(� − �) (� − �)

⋅ ∫�
�

[��−1 (� − �) ( � (�, �)
� (� + 1) + � (�, �)

� + 1 )] ���

= ��−1
� (� + 1) (� − �) ∫�

�
(� (�, �) + �� (�, �)) ���.

(60)

Summing inequalities (59) and (60), we deduce the right-
hand side of (54).

Remark 17. Under the assumptions of �eorem 16, if we
put � = 1, we get the Hermite-Hadamard inequality for
coordinate convex function obtained by Dragomir in [2].

Remark 18. Under the assumptions of �eorem 16, using
inequalities (57), (58), (59), and (60), the following double
inequality holds:

max{(� + �)�−1
� − � ∫�

�
�(�, � + �

2 )���, (� + �)�−1
� − �

⋅ ∫�
�

�(� + �
2 , �) ���} ≤ 1

(� − �) (� − �)
⋅ ∫�
�

∫�
�

� (�, �) ������ ≤ 1
� (� + 1) ⋅ min{ ��−1

� − �
⋅ ∫�
�

(� (�, �) + �� (�, �)) ���, ��−1
� − �

⋅ ∫�
�

(� (�, �) + �� (�, �)) ���} .

(61)
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3. Generalization of Hermite-Hadamard
Type Inequalities

Now, we are in position to 	nd some new estimations
for the le�-hand side of Hermite-Hadamard inequality for
conformable fractional integral as given in �eorem 12 by
using a new Montgomery identity.

Lemma 19 (new Montgomery identity). Let �, � ∈ R with0 ≤ � < �, and let � : [�, �] → R be �-fractional di	erentiable
function, where � ∈ (0, 1]. 
en

� (�) = 1
� − � ∫�

�
� (�) ���

+ 1
� − � ∫�

�
E (�, �) F�� (�) ���

+ � (�) + � (�)
2 + ��� (�) − ��� (�)

� (� − �) ,

(62)

where

E (�, �) fl
{{{{{{{

��
� + � − �

2 : � ≤ � < �,
��
� − � − �

2 : � ≤ � ≤ �. (63)

Proof. Integrating by parts, we have

∫

�
(��

� + � − �
2 )F�� (�) ���

= (��
� + � − �

2 )� (�) − (��
� + � − �

2 )� (�)

− ∫

�
� (�) ���,

∫�



(��
� − � − �

2 )F�� (�) ���

= (��
� − � − �

2 )� (�) − (��
� − � − �

2 )� (�)

− ∫�



� (�) ���.

(64)

Adding and solving for � yields the required result.

�eorem 20. Let � : [�, �] → [0, +∞) be an �-fractional
di	erentiable function such that |�|� is a convex function,
where 0 < � < � and � ∈ (0, 1]. 
en, for K > 1 andE−1 + K−1 = 1, one has

"""""""""(� + �)�−1 �(� + �
2 ) − 1

� − � ∫�
�

� (�) ���
"""""""""

≤ L (�; �, �, �, E, K) + |�| + MN [2� (� − �) ��
+ (�� + ��) (�� − �� − � (� − �))] ,

(65)

where

M fl sup

∈[�,�]

""""F�� (�)"""" ,

N fl

(� + �)�−1
2�2 (� − �) ,

� fl

� (�) + � (�)
2 + ��� (�) − ��� (�)

� (� − �) ,
L (�; �, �, �, E, K)

fl

"""""(� + �)�−1 − 1"""""� − � (��(�−1)+1 − ��(�−1)+1
E (� − 1) + 1 )

1/�

× [(� − �) (�� (�) + �� (�)
2 )]1/� .

(66)

Proof. Using Lemma 19 with E(�, �) de	ned in (63), convexity
of ��, Hölder’s inequality, and property of the modulus, we
have

"""""""""(� + �)�−1 �(� + �
2 ) − 1

� − � ∫�
�

� (�) ���
"""""""""

≤
"""""(� + �)�−1 − 1"""""� − � ∫�

�

""""� (�)"""" ��� + (� + �)�−1
� − �

⋅ ∫�
�

""""""""E (� + �
2 , �)""""""""

""""F�� (�)"""" ���

+ """"""""
� (�) + � (�)

2 + ��� (�) − ��� (�)
� (� − �)

""""""""
≤

"""""(� + �)�−1 − 1"""""� − � (∫�
�

��(�−1)��)
1/�

⋅ (∫�
�

�� (�) ��)
1/�

+ |�| + M

⋅ (� + �)�−1
� − � [∫


�

""""""""
��
� + � − �

2
"""""""" ���

+ ∫�



""""""""
��
� − � − �

2
"""""""" ���]

≤
"""""(� + �)�−1 − 1"""""� − � (∫�

�
��(�−1)��)

1/�

⋅ (∫1
0

[��� (�) + (1 − �) �� (�)] (� − �) ��)1/�

+ |�| + M(� + �)�−1
� − � [∫


�
(��

� + � − �
2 )���

+ ∫�



(��
� − � − �

2 )���] = L (�; �, �, �, E, K)
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+ |�| + MN [2� (� − �) ��
+ (�� + ��) (�� − �� − � (� − �))] .

(67)

�eorem 21. Let � : [�, �] → [0, +∞) be �-fractional differ-
entiable and �� is a convex function, where 0 < � < � and� ∈ (0, 1]. 
en, for K ≥ 1, one has"""""""""(� + �)�−1 �(� + �

2 ) − 1
� − � ∫�

�
� (�) ���

"""""""""
≤ F (�; �, �, �, K) + |�| + MN [2� (� − �) ��
+ (�� + ��) (�� − �� − � (� − �))] ,

(68)

where

F(�; �, �, �, K)
fl

"""""(� + �)�−1 − 1"""""� − � (�� − ��
� )1−1/�

× [�� (�) Q1 (�) + �� (�) Q2 (�)
� − � ]1/� ,

Q1 (�) = ∫�
�

��−1 (� − �) ��

= � (�� − ��)
� − ��+1 − ��+1

� + 1 ,

Q2 (�) = ∫�
�

��−1 (� − �) ��

= ��+1 − ��+1
� + 1 − � (�� − ��)

� ,

(69)

and M, N,� are de�ned as in 
eorem 20.

Proof. Using Lemma 19 with E(�, �) de	ned in (63), convexity
of ��, the well-known power mean inequality, and property
of the modulus, we have"""""""""(� + �)�−1 �(� + �

2 ) − 1
� − � ∫�

�
� (�) ���

"""""""""
≤

"""""(� + �)�−1 − 1"""""� − � ∫�
�

""""� (�)"""" ��� + (� + �)�−1
� − �

⋅ ∫�
�

""""""""E (� + �
2 , �)""""""""

""""F�� (�)"""" ���

+ """"""""
� (�) + � (�)

2 + ��� (�) − ��� (�)
� (� − �)

""""""""
≤

"""""(� + �)�−1 − 1"""""� − � (∫�
�

��−1��)
1−1/�

⋅ (∫�
�

��−1�� (�) ��)
1/�

+ |�| + M

⋅ (� + �)�−1
� − � [∫


�

""""""""
��
� + � − �

2
"""""""" ���

+ ∫�



""""""""
��
� − � − �

2
"""""""" ���]

≤
"""""(� + �)�−1 − 1"""""� − � (∫�

�
��−1��)

1−1/�

× (∫1
0

(�� + (1 − �) �)�−1 [��� (�) + (1 − �) �� (�)]

⋅ (� − �) ��)1/� + |�| + M

⋅ (� + �)�−1
� − � [∫


�
(��

� + � − �
2 )���

+ ∫�



(��
� − � − �

2 )���] = F (�; �, �, �, K) + |�|
+ MN [2� (� − �) �� + (�� + ��) (�� − ��
− � (� − �))] .

(70)
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