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Abstract: In conformal field theory in Minkowski momentum space, the 3-point cor-
relation functions of local operators are completely fixed by symmetry. Using Ward
identities together with the existence of a Lorentzian operator product expansion (OPE),
we show that the Wightman function of three scalar operators is a double hypergeo-
metric series of the Appell F4 type. We extend this simple closed-form expression to
the case of two scalar operators and one traceless symmetric tensor with arbitrary spin.
Time-ordered and partially-time-ordered products are constructed in a similar fashion
and their relation with the Wightman function is discussed.
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1. Introduction

Conformal field theory can be formulated algebraically in terms of a set of primary
operators and of rules that define the operator product expansion (OPE). Equivalently,
all correlation functions of a conformal field theory can be obtained from 2- and 3-point
functions, which are themselves fixed by conformal symmetry up to a small number of
numerical coefficients. This statement applies both to correlation functions in position
space and in momentum space, but it is by far more common in conformal field theory
to use the position-space representation. There are several good reasons why it is so:

1. All the 2- and 3-point functions in position space are known and relatively easy to
evaluate. In the case of scalar operators and of operators carrying low-dimensional
spin representations they have been known since a long time [1–5]. More recently,
correlation functions involving larger spin representations have been constructed
using the embedding-space formalism [6–12], and this construction can be extended
in an algorithmicway to arbitrary spin representations usingweight-shifting operators
[13,14].

2. Higher-point functions can be computed with the help of an operator product expan-
sion that has a large range of convergence. This OPE applies naturally when two
operators are close in space, but it actually extends over most of the possible configu-
ration space [15–18]. This implies in particular that distinct convergent OPEs can be
used to compute the same correlation function, which is the key property exploited
by the conformal bootstrap [19–23].

3. There is a simple connection between the correlation function in Euclidean and
Minkowski position space: Wightman functions in Minkowski space are obtained
from Euclidean correlators by a straightforward Wick rotation. This property relates
unitary Lorentzian theories to reflection-positive Euclidean ones and explains the
reality of 3-point function coefficients.

All of these properties are altered in momentum space. Let us review them in reverse
order:

3. There are branch cuts in the complexified momentum space that make the Wick
rotation between Minkowski and Euclidean space non-trivial. A comprehensive dis-
cussion of this phenomenon has recently appeared in Ref. [24]. We shall see in this
paper that the time-ordered product of operators in Minkowski momentum space
is simply related to the known Euclidean expression, but also that the Wightman
functions are very different objects that do not have a Euclidean counterpart.

2. A momentum-space OPE can be defined by the Fourier transform of the position-
space OPE. Its convergent limit is when the two operators involved have both large
momenta [25]. However, this momentum-space OPE has only been formulated in
Euclidean theories so far. Very little is known about the Lorentzian OPE, about its
convergence properties, or even whether it converges at all.

1. Maybe more surprisingly, our knowledge of conformal 3-point functions in momen-
tum space is quite incomplete.While they have been extensively studied in Euclidean
theories [25–34], partly because of their relevance for inflation [35–43], it is only
recently that their study in Lorentzian signature has begun [24,44–46]. Moreover,
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even in the simplest case of 3 scalar operators, the only expression available in the
literature so far is in the form of a quite complicated integral over Bessel functions
[24].

In spite of these difficulties, there exist strong motivations to study conformal field
theory in Minkowski momentum space. For instance, the light-like limit of momentum-
space correlators is intrinsically connected with the study of local operators integrated
along a light ray [47–50], which has been instrumental in the derivation of conformal
collider bounds [51–58], of the proof of the average null energy condition from causality
[59,60] or even in the study of asymptotic symmetries [61]. A limit of the momentum
space 3-point function also enters in the light-cone Hamiltonian truncation formalism
[62,63], and the use ofmomentum spacemakes anomaly coefficients appear explicitly in
correlators [44,45]. Moreover, when the momentum-space 3-point functions are known,
constructing conformal blocks out of them is simple in the sense that it does not require
additional integration [44–46]: a recent example where this technology has been put to
good use is Ref. [64].

Even though this list of motivations is far from exhaustive, it makes evident that there
is an interest in closing the gaps of points (1) and (2) discussed above. The goal of this
paper is precisely to improve on point (1) by providing a simple closed-form expression
for theWightman 3-point function inMinkowski momentum space. This goal is after all
quite modest since it consists in taking the Fourier transform of a known position-space
3-point function, but we will see that its computation is not quite simple. Along the way,
we will also touch upon point (2), although without discussing the delicate issue of OPE
convergence.

1.1. Strategy and main result. The strategy for determining the 3-point function will be
to use conformalWard identities to express it in terms of the solutions of some differential
equation, in the spirit of the Euclidean derivation of Ref. [25]. What is new in our case is
not so much the difference between the Euclidean andMinkowskian conformal algebras
as it is the boundary condition provided by the Lorentzian OPE. With this strategy, we
do not perform directly the Fourier transform of the position-space correlation function,
although we use it to verify numerically and in some limits analytically the validity of
our derivation. In the case of 3 scalar operators, our result is

〈〈φ f (p f )φ0(p0)φi (pi )〉〉 =˜λ f 0i�(−p f )�(pi )

× (−p2f )
� f −d/2(−p2i )

�i−d/2

(p20)
(�i+� f −�0)/2

F� f �0�i

(

p2f
p20

,
p2i
p20

)

, (1)

where F� f �0�i is an Appell F4 generalized hypergeometric function of two variables
defined in Eq. (36), and˜λ f 0i is an OPE coefficient related to the usual one by Eq. (46).
We have eliminated the δ-function demanding overall momentum conservation by use
of the notation

〈0|O1(p1) · · ·On(pn) |0〉 ≡ (2π)dδd(p1 + · · · + pn)〈〈O1(p1) · · ·On(pn)〉〉, (2)

and the �-functions impose conditions on the momenta pi and p f ,1

�(p) ≡ �(−p2)�(p0) =
{

1 if p is time-like with positive energy,
0 otherwise. (3)

1 Note that this definition is equivalent to �(p) = �(p0 − | p|) used in Ref. [24], but we write it as a
function of p2 and p0 to emphasize the fact that it is a Lorentz-invariant object.
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This result applies in the regime |p f |, |pi | < |p0| where the function F� f �0�i is ana-
lytic, while the discussion of Sect. 2.4 and in particular the general expression (47)
covers all kinematic configurations. This result is valid for any scaling dimensions of
the operators, as well as in any space-time dimension d ≥ 2.

The rest of the paper is organized as follows: Sect. 2 is devoted to explaining the
steps that lead to the result (1). It also contains discussions of the special cases that
are generalized free field theory and d = 2 space-time dimensions. We then generalize
this result in Sect. 3, replacing one of the scalar operators with a traceless symmetric
tensor of arbitrary spin. In Sect. 4 we introduce the time-ordering operator in the 3-
point function, show how the result differ from the Wightman function, and perform
consistency checks. The appendix presents the direct Fourier transform of the position-
space correlation function used to verify our results numerically.

2. The Wightman 3-Point Function of Scalar Operators

We begin with a derivation of the Wightman function of 3 distinct scalar operators.
The momentum-space representation of this correlation function could in principle be
obtained directly by performing the Fourier transform of theWightman function in posi-
tion space, which is known and relatively simple. This is the approach followed in Ref.
[24], and the result is an integral over Bessel functions.Wewill follow instead a different
approach purely based on the symmetries of the 3-point function and on the existence
of an operator product expansion (OPE). Our result is a closed-form expression, which
provides a more practical and efficient way of evaluating the scalar 3-point function at
any point in momentum space.

2.1. Momentumeigenstates and support. Beforewebeginwith the derivation, it is useful
to recall some properties of the momentum-space representation. The Hilbert space of a
conformal field theory can be constructed in terms of a (infinite) set of primary states |O〉
and of their descendants obtained by acting repeatedly with the generator of translations
Pμ,

|O〉 , Pμ |O〉 , P2 |O〉 ,
(

PμPν − 1
d ημν P2

)

|O〉 , . . . (4)

An equivalent representation of this Hilbert space is in terms of distributions over flat
Minkowski space,

|O(x)〉 ≡ e−i x ·P |O〉 , x ∈ R
d−1,1. (5)

The state/operator correspondence associates to each such state a local operator O(x)
such that

O(x) |0〉 = |O(x)〉 . (6)

Taking P0 as the Hamiltonian of the theory, one should include in the definition (5) the
prescription x0 → x0 + iε with positive ε so that the norm of the state |O(x)〉 is well-
defined when the Hamiltonian is bounded from below.2 For a scalar state |φ(x)〉, this
norm, or equivalently the Wightman 2-point function of the operator φ(x), is given by

2 The Minkowski metric is taken in the “mostly +” convention, i.e. η = diag(−1, 1, . . . , 1) and Lorentz
indices run from 0 to d − 1.



Conformal 3-Point Functions and the Lorentzian OPE in Momentum Space 231

〈φ(x1)|φ(x2)〉 = 〈0| φ(x1)φ(x2) |0〉 = 1

[−(x01 − x02 − iε)2 + (x1 − x2)2]�
, (7)

where � is the scaling dimension of the operator φ and the normalization is convention-
ally chosen.

There exist yet another equivalent representation of the Hilbert space given by the
states

|O(p)〉 ≡
∫

dd x ei p·x |O(x)〉 , (8)

which are eigenstates of the generator of translations, Pμ |O(p)〉 = pμ |O(p)〉. As
before, these states are in one-to-one correspondence with the set of operators

O(p) ≡
∫

dd x ei p·xO(x). (9)

The advantage of this basis is that the states are orthogonal in a distributional sense:
their norm satisfies3

〈φ(p f )|φ(pi )〉 = (2π)dδd(p f + pi )�(pi )
2d−2�+1π(d+2)/2

� (�)�
(

� − d−2
2

) (−p2i )
�−d/2, (10)

and hence vanishes if p f �= −pi . The function � is defined in Eq. (3): it indicates that
the norm only has support when pi (and thus −p f ) is time-like and has positive energy.
When this condition is not satisfied, the state must be null:

|φ(p)〉 = 0 if p2 > 0 or p0 < 0. (11)

Note that this property is specific to the Lorentzian theory: momentum eigenstates can be
constructed in an Euclidean theory but they have different characteristics. In the notation
of Eq. (2), the Wightman 2-point function of a scalar operator is therefore

〈〈φ(−p)φ(p)〉〉 = �(p)
2d−2�+1π(d+2)/2

� (�)�
(

� − d−2
2

) (−p2)�−d/2 ≡ W�(p). (12)

These general considerations are also important for the Wightman 3-point function
since it can be written as the expectation value of an operator between two momentum
eigenstates,

〈0| φ f (p f )φ0(p0)φi (pi ) |0〉 = 〈

φ f (p f )
∣

∣φ0(p0) |φi (pi )〉 , (13)

where we have used the labels i for “initial” and f for “final” states. Because of the
condition (11) on the states, this 3-point function only has support when both momenta
pi and −p f are time-like with positive energies, i.e.

〈〈φ f (p f )φ0(p0)φi (pi )〉〉 ∝ �(−p f )�(pi ). (14)

By translation invariance, correlation functions in momentum space are always propor-
tional to a δ-function, in this case enforcing p f + p0+ pi = 0. Nevertheless, the constraint
(14) does not restrict the intermediate momentum p0, which can be either space-like or
time-like, with positive or negative energy. Two possible configurations of momenta are
shown in Fig. 1.

3 Our definition of the conjugate state is 〈O(p)| = 〈0|O(p) and therefore |O(p)〉† = 〈O(−p)|.



232 M. Gillioz

(a) p20 > (b)0 p20 < 0

Fig. 1. Two examples of momentum configurations for the Wightman 3-point function. The momenta pi ,
p0 and p f add up to zero, and both pi and −p f must lie in the light cone indicated in blue for the 3-point
function to be non-zero. The intermediate momentum p0 can either be space-like (a) or time-like (b)

There are additional constraints coming from conformal symmetry: using Lorentz
symmetry, we can choose to parametrize the 3-point function in terms of the three invari-
ant quantities p2f , p

2
0 and p2i . This choice is not unique, but it will turn out to be the

most convenient in the next sections. The scale symmetry determines the overall scaling
dimension of the 3-point function. Taking p20 as the reference scale, we can write

〈〈φ f (p f )φ0(p0)φi (pi )〉〉 = �(−p f )�(pi )(p
2
0)

(� f +�0+�i−2d)/2F

(

p2f
p20

,
p2i
p20

)

.

(15)

where F is a function of two dimensionless arguments. This might seem a curious
choice of reference scale since both −p2f and −p2i are positive over the region of sup-

port whereas p20 can potentially change sign. We will see in the next section that this
choice is motivated by the various OPE limits of the 3-point function. Moreover, note
that the scalar 3-point function enjoys the conjugation symmetry

〈〈φ f (p f )φ0(p0)φi (pi )〉〉 = 〈〈φi (−pi )φ0(−p0)φ f (−p f )〉〉, (16)

which means that the choice (15) makes F a symmetric function under the simultaneous
exchange of its two arguments and of the scaling dimensions � f and �i . Finally, there
are constraints coming from the special conformal symmetry that will completely restrict
the form of F . Since these constraints are much more involved, we dedicate Sect. 2.3 to
their study. But before proceeding with them, we discuss the role played by the operator
product expansion.

2.2. OPE limits in momentum space. Besides the Hilbert space construction discussed
in the previous section, the other key property of conformal field theory is the existence
of an operator product expansion. The OPE expresses how a local operator acts on the
Hilbert space of the theory: in the position-space representation,

φ1(x1) |φ2(x2)〉 =
∑

O
λO12 CO12(x1 − x2, P) |O(x2)〉 , (17)
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where the operator CO12(x, P) is completely fixed by conformal symmetry, while the
OPE coefficients λO12 encode the dynamical content of the theory. CO12 is a series
expansion in the generator Pμ, for instance in the case where the operators φ1, φ2 and
O are scalars

CO12(x, P) = |x |�O−�1−�2

(

1 +
�O + �1 − �2

2�O
x · P + · · ·

)

. (18)

In an Euclidean CFT |x | would be the Euclidean norm; in a Lorentzian CFT, it is its
analytic continuation |x |2 = −(x0 − iε)2 + x2.

Since the OPE ultimately expresses the completeness of the Hilbert space, there must
exist a similar statement in the momentum-space representation. Taking the Fourier
transform of Eq. (17) with respect to both x1 and x2, one can write

φ1(p1) |φ2(p2)〉 =
∑

O
λO12 ˜CO12(p1, p1 + p2) |O(p1 + p2)〉 , (19)

where we have defined

˜CO12(p, q) =
∫

dd x ei p·xCO12(x, q). (20)

We have used the fact that |O(p1 + p2)〉 is a momentum eigenstate to replace the gen-
erator Pμ by its eigenvalue. For this reason, ˜CO12(p, q) is not anymore a derivative
operator acting on the primaryO but just a number. This is a consequence of the orthog-
onality of momentum eigenstates. One should realize however that this definition of the
momentum-space OPE is purely formal so far, and it faces two major problems. First,
we have not established whether the Fourier transform commutes with the sum over
conformal primaries. It is known that the OPE for Wightman functions converges in the
sense of distributions [65], but the series might not converge at every given configuration
of momenta (see Ref. [66] for a discussion and examples in d = 2 dimensions). In any
case, this problem is absent when the OPE applies to a 3-point function since the sum is
given by a single term. The second problem is a practical one: using the expansion (18),
one can formally write

˜CO12(p, q) =
[

1 − i
�O + �1 − �2

2�O
qμ ∂

∂pμ
+ · · ·

] ∫

dd x

ei p·x |x |�O−�1−�2 ,

(21)

and recognize in the integral on the right-hand side the Wightman 2-point function of
a fictitious operator with scaling dimension (�1 + �2 − �O)/2. This integral is dis-
continuous at p2 = 0 and the dependence of ˜C12O(p, q) on p is difficult to establish,
which means that this formal definition of the OPE in impractical for computations, but
it establishes a property that will be crucial in the next section: by definition, ˜C12O(p, q)

is an analytic function in q around q = 0.
Applying this momentum-space OPE to the Wightman 3-point function, one gets

〈〈φ f (p f )φ0(p0)φi (pi )〉〉 = λ f 0i ˜C f 0i (p0,−p f )〈〈φ f (p f )φ f (−p f )〉〉 (22)

where the line above the 3-point function indicates that the OPE is taken between φ0
and φi . In the limit p f → 0, the series (21) for ˜C f 0i (p0,−p f ) is dominated by its first
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(a) pf → (b)0 p2i , p
2
f → 0−

Fig. 2. Examples of momentum configurations in the limits (a) p f → 0 as in Eq. (24) and (b) p2f , p
2
i → 0−

as in Eq. (28). The configuration (a) also shows that the limit p f → 0 can be reached taking p2f → 0− first

term, and since the integral is a Wightman 2-point function for an operator with scaling
dimension (�i + �0 − � f )/2, we can use Eq. (12) to get

˜C f 0i (p0, 0) = 2d−�i−�0+� f +1π(d+2)/2

�
(

�i+�0−� f
2

)

�
(

�i+�0−� f −d+2
2

) (−p20)
(�i+�0−� f −d)/2, (23)

Note that p0 is necessarily time-like in this limit since it approaches −pi , as illustrated
in Fig. 2a. We obtain therefore the limit

〈〈φ f (p f )φ0(p0)φi (pi )〉〉p f →0

= λ f 0i
22d−�i−�0−� f +2πd+2(−p2f )

� f −d/2(−p20)
(�i+�0−� f −d)/2

�
(

� f
)

�
(

� f − d−2
2

)

�
(

�i+�0−� f
2

)

�
(

�i+�0−� f −d+2
2

) .
(24)

The limit pi → 0 can established in a similar fashion starting from the OPE

〈〈φ f (p f )φ0(p0)φi (pi )〉〉 = λ f 0i ˜Ci0 f (−p0, pi )〈〈φi (−pi )φi (pi )〉〉. (25)

The result corresponds to exchanging the labels f and i in Eq. (24).
These OPE limits are important, but in practice they will not be convenient to deter-

mine the Wightman 3-point function completely. Instead, there is another case that can
be resolved with the help of the OPE: the light-cone limit p2f → 0− with p f �= 0.

To understand this limit, consider that the coefficient ˜C f 0i (p0,−p f ) is invariant under
Lorentz transformations. It can therefore be written in terms of the invariant quantities
p2f , p

2
0 and p2i . The analyticity in p f implies that ˜C f 0i (p0,−p f ) is also analytic in p2f .

When applied to Eq. (22), this means that the 3-point function is equal to an analytic
function of p2f multiplying the 2-point function, and therefore

〈〈φ f (p f )φ0(p0)φi (pi )〉〉p2f →0− ∝ (−p2f )
� f −d/2(p20)

(�i+�0−� f −d)/2 f

(

p2i
p20

)

,

(26)
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where f is an unknown function. The same argument can be applied in the limit p2i → 0
to the OPE (25) to establish that

〈〈φ f (p f )φ0(p0)φi (pi )〉〉p2i →0− ∝ (−p2i )
�i−d/2(p20)

(� f +�0−�i−d)/2 f ′
(

p2f
p20

)

,

(27)

for a different function f ′. Taking both limits p2f → 0− and p2i → 0− simultaneously,
in a configuration of momenta similar to Fig. 2b in which p0 is necessarily space-like,
one must have

〈〈φ f (p f )φ0(p0)φi (pi )〉〉p2f ,p2i →0− ∝ (−p2f )
� f −d/2(−p2i )

�i−d/2

(p20)
(� f +�i−�0)/2

. (28)

This form is consistent with the ansatz (15) for the Wightman 3-point function, and it
establishes that the function F has the asymptotic limit

F(z f , zi )z f ,zi→0− ∝ (−z f )
� f −d/2(−zi )

�i−d/2. (29)

When combined with the constraints from conformal Ward identities, this will com-
pletely fix the scalar Wightman function up to an overall coefficient, which in turn will
be determined by the limit (24). This is the topic of the next section.

2.3. Conformal Ward identities. The form (15) of the Wightman 3-point function
already takes into account all the information from Poincaré and scale symmetry. Only
the symmetry under special conformal transformation remains to be imposed. To do so,
we follow the approach pioneered in Ref. [25]. It consists in writing down a system of
differential equations for the unknown function F .

The infinitesimal transformations of the momentum-space operators under the con-
formal group are given in Appendix A. In particular, the action (102) of the generator of
special conformal transformation is a second order differential operator. When applied
to the scalar 3-point function, written in this case as a function of the two momenta p f
and pi only, it gives the Ward identity

̂Kμ〈〈φ f (p f )φ0(−p f − pi )φi (pi )〉〉 = 0, (30)

where

̂Kμ ≡
∑

p∈{pi ,p f }

[

−2pρ ∂2

∂pμ∂pρ
+ pμ ∂2

∂pρ∂pρ
+ 2(� − d)

∂

∂pμ

]

. (31)

This equation is a Lorentz vector with d components. However, its projection along a
direction perpendicular to both pi and p f is trivial. There are thus only 2 scalar equa-
tions that are generated by p f · ̂K and pi · ̂K . Using the ansatz (15), these two equations
become partial differential equations for the function F ,
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[

z f (1 − z f )
∂2

∂z2f
− 2z f zi

∂2

∂z f ∂zi
− z2i

∂2

∂z2i

+

(

1 +
d

2
− � f + αz f

)

∂

∂z f
+ αzi

∂

∂zi
− β

]

F(z f , zi ) = 0,

[

zi (1 − zi )
∂2

∂z2i
− 2z f zi

∂2

∂z f ∂zi
− z2f

∂2

∂z2f

+

(

1 +
d

2
− �i + αzi

)

∂

∂zi
+ αz f

∂

∂z f
− β

]

F(z f , zi ) = 0,

(32)

with

α = � f + �i − 3d

2
− 1, β =

(

� f + �0 + �i − 2d
) (

� f − �0 + �i − d
)

4
.

(33)

This system of equation is of the type satisfied by Appell’s F4 generalized hypergeo-
metric function of two variables [67, eq. 16.14.4]. The F4 function is defined around
(z f , zi ) = (0, 0) by the double infinite series

F4(a, b; c f , ci ; z f , zi ) =
∞
∑

n,m=0

(a)n+m(b)n+m
n!m!(c f )n(ci )m

znf z
m
i . (34)

Themost general solution to the system (32) is a linear combination of the four functions

(−z f )� f −d/2(−zi )�i−d/2F� f �0�i (z f , zi ), (−zi )�i−d/2F
˜� f �0�i

(z f , zi ),

(−z f )� f −d/2F� f �0˜�i
(z f , zi ), F

˜� f �0˜�i
(z f , zi ),

(35)

where we have introduced a shorthand notation for the Appell F4 function

F� f �0�i (z f , zi ) = F4
(

� f −�0+�i
2 ,

� f −˜�0+�i
2 ;� f − d−2

2 ,�i − d−2
2 ; z f , zi

)

(36)

and denoted ˜� = d − �.4

Of the four solutions (35), only the first one is consistent with the asymptotic behav-
ior (29) for generic values of the scaling dimensions � f and �i . We conclude that

〈〈φ f (p f )φ0(p0)φi (pi )〉〉 =˜λ f 0i�(−p f )�(pi )

× (−p2f )
� f −d/2(−p2i )

�i−d/2

(p20)
(�i+� f −�0)/2

F� f �0�i

(

p2f
p20

,
p2i
p20

)

(37)

4 This notation is of course reminiscent of the scaling dimension of “shadow” operators (see e.g. Ref. [68]
for a modern discussion). The fact that the Ward identity has four solutions is actually related to the existence
of a shadow transform that can be applied either to the initial or to the final state, or to both. The 3 discarded
solutions correspond then to the correlation function 〈〈˜φ f φ0φi 〉〉, 〈〈φ f φ0˜φi 〉〉 and 〈〈˜φ f φ0˜φi 〉〉. Note that in a
Wightman function it is not possible to define the shadow transform of the middle operator φ0. This is reflected
in the fact that the solutions are invariant under �0 ↔ d − �0, i.e. F� f �0�i (z f , zi ) = F� f ˜�0�i

(z f , zi ).
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with an unknown coefficient˜λ f 0i . This is the equation quoted in the introduction and
can be considered the main result of this work. Its simplicity is striking when compared
with the integral representation in terms of Bessel functions of Ref. [24]. In the special
case where �i ,� f = d

2 + n with n ∈ N, the OPE limit (28) does not unambiguously
select a unique solution. This situation can however be understood by analytic continu-
ation in �i and � f of the general case, since a careful analysis of the Fourier transform
shows that Wightman functions do not have non-analyticities when � = d

2 + n [24].
The result (37) is indeed analytic in � f , �0, �i and d as long as the unitarity bound is
satisfied (� ≥ d−2

2 ), and it applies therefore in all generality.
This result is not complete, however, because some kinematically-allowed range of

the arguments p2f /p
2
0 and p2i /p

2
0 fall outside the radius of convergence of the Appell F4

series. In particular, there is a singularity as p20 → 0 that need to be resolved. This will
be done in the next section with the help of the other momentum-space OPE limit.

2.4. Analytic continuation and normalization. At fixed z f , the radius of convergence of
the double hypergeometric series (34) in zi is (1−√|z f |)2. However, the first singularity
in zi appears on the positive real axis, and it turns out that the Appell F4 function is
analytic over the full negative real axis zi ∈ (−∞, 0]. This is made manifest by the
existence of a transformation formula stating that [67, eq. 16.16.10]

F� f �0�i (z f , zi ) = c� f �0�i (−zi )
−(� f +�i−˜�0)/2F� f �i�0

(

z f
zi

; 1

zi

)

+ c� f ˜�0�i
(−zi )

−(� f +�i−�0)/2F� f �i˜�0

(

z f
zi

; 1

zi

)

,

(38)

where

c� f �0�i = �
(

�i − d−2
2

)

�
( d
2 − �0

)

�
(

� f +�i−�0
2

)

�
(

1 − � f +�0−�i
2

) . (39)

For theWightman 3-point function, this transformation formula and its conjugate taking
(z f , zi ) → (1/z f , zi/z f ) show that the result (37) applies over the whole kinematic
range in which p0 is space-like. When p0 approaches the light cone, there is a branch
point singularity: applying the transformation (38) to the 3-point function,

〈〈φ f (p f )φ0(p0)φi (pi )〉〉

=˜λ f 0i�(−p f )�(pi )

[

c� f ˜�0�i
(−p2f )

� f −d/2(−p2i )
(�i+�0−� f −d)/2F� f �i ˜�0

(

p2f
p2i

,
p20
p2i

)

+c� f �0�i

(−p2f )
� f −d/2(p20)

�0−d/2

(−p2i )
(� f +�0−�i )/2

F� f �i�0

(

p2f
p2i

,
p20
p2i

)

]

.

(40)

The first term on the right-hand side is analytic at p20 = 0, and the non-analyticity only
arises from the factor (p20)

�0−d/2 in the second term.5 This representation suggests that

5 The divergence present when �0 < d
2 is actually integrable by the unitarity bound �0 > d−2

2 . This
suggests that it should be possible to take the inverse Fourier transform of this expression and recover the
position-space 3-point function.
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the 3-point function can be continued past the light cone p20 = 0, but the continuation
is ambiguous.

In fact, the structure of Eq. (40) is not surprising: when expressing the conformal
Ward identities in terms of the variables p2f /p

2
i and p20/p

2
i , they still admit four solu-

tions, of which only two are consistent with the asymptotic limit (26). The most general
form of the 3-point function at time-like p0 is therefore

〈〈φ f (p f )φ0(p0)φi (pi )〉〉

= �(−p f )�(pi )

[

˜λ
(a)
f 0i (−p2f )

� f −d/2(−p2i )
(�i+�0−� f −d)/2F� f �i ˜�0

(

p2f
p2i

,
p20
p2i

)

+˜λ
(b)
f 0i

(−p2f )
� f −d/2(−p20)

�0−d/2

(−p2i )
(� f +�0−�i )/2

F� f �i�0

(

p2f
p2i

,
p20
p2i

)

]

.

(41)

The two unknown coefficients ˜λ
(a)
f 0i and ˜λ

(b)
f 0i can be fixed with the help of the OPE

limit p f → 0. This limit is subtle, however, since the second argument of the Appell
functions in Eq. (41) approaches their radius of convergence, p20/p

2
i → 1, and it is not

possible to evaluate them using the hypergeometric series definition (34). Instead, one
can study the OPE limit by taking p2f → 0− first, as shown in Fig. (2)a. In this case, the
Appell functions turn into ordinary hypergeometric functions

F� f �i�0(0, z) = 2F1
(

� f −�i+�0
2 ,

� f −˜�i+�0
2 ;�0 − d−2

2 ; z
)

, (42)

with a well-known behavior at argument z = 1, where we have the asymptotic limit

F� f �i�0(0, z) ≈ �
(

�0 − d−2
2

)

�
(

1 − � f
)

�
(

1 − � f +�i−�0
2

)

�
(

1 − � f +˜�i−�0
2

) [1 +O(1 − z)]

+
�

(

�0 − d−2
2

)

�
(

� f − 1
)

�
(

� f −�i+�0
2

)

�
(

� f −˜�i+�0
2

) (1 − z)1−� f [1 +O(1 − z)] .

(43)

The non-analytic term in 1− z in the second line is in contradiction with the existence of
the limit p f → 0. Therefore, the non-analytic terms coming from the functions F� f �i�0

and F� f �i˜�0
in Eq. (41) must cancel exactly, and the analytic terms must add up to the

limit determined in Eq. (24). This gives a linear system of equations for the coefficients
˜λ

(a)
f 0i and˜λ

(b)
f 0i , whose unique solution is

˜λ
(a)
f 0i = �

(

�0 − d
2

)

�
(

� f +�i−˜�0
2

)

�
(

� f +�0−�i
2

) N ,

˜λ
(b)
f 0i = �

( d
2 − �0

)

�
(

� f +�i−�0
2

)

�
(

� f +˜�0−�i
2

) N , (44)

where N is related to the OPE coefficient λ f 0i by

N = 22d−� f −�0−�i+2πd+2

�
(

�i+�0−� f
2

)

�
(

� f − d−2
2

)

�
(

�i+�0−� f −d+2
2

) λ f 0i . (45)
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This result is valid for any configuration of momenta as long as p0 is space-like and
p2f < p2i . There exists a similar expression covering the case p2f > p2i , which by the

conjugation symmetry (16) can be obtained from the simultaneous exchange p2i ↔ p2f
and �i ↔ � f in Eq. (41). The special case p2i = p2f is covered by Eq. (37) since it
necessarily implies that p0 is space-like.

The result (41) also turns out to be a straightforward analytic continuation of Eq. (40),
sharing the same structure with a branch point singularity at p20 = 0. The parts that are
analytic in p20 match provided that one makes the identification

˜λ f 0i = 22d−� f −�0−�i+2πd+2

�
(

� f +�0−�i
2

)

�
(

�i+�0−� f
2

)

�
(

� f − d−2
2

)

�
(

�i − d−2
2

)

λ f 0i . (46)

˜λ f 0i is real and analytic in the scaling dimensions� f ,�0 and�i as well as in the space-
time dimension d. It has zeroes when� f = �i +�0 +2n and when�i = � f +�0 +2n
with n ∈ N. This is the situation of generalized free field theory discussed in more detail
in Sect. 2.5. In contrast, the 3-point function (41) at time-like p0 does not vanish in gen-
eralized free field theory, but it it still analytic in the scaling dimensions, even though
the coefficients ˜λ

(a)
f 0i and ˜λ

(b)
f 0i are not. This is best seen from the following compact

expression for the Wightman 3-point function that covers both the space-like and the
time-like regions in p0:

〈〈φ f (p f )φ0(p0)φi (pi )〉〉

=˜λ f 0i�(−p f )�(pi )
(−p2f )

� f −d/2(−p2i )
�i−d/2

(p20 − iε)(� f +�i−�0)/2
F� f �0�i

(

p2f
p20 − iε

,
p2i

p20 − iε

)

+˜λ f i0�(−p f )�(−p0)
(−p2f )

� f −d/2(−p20)
�0−d/2

(p2i + iε)(� f +�0−�i )/2
F� f �i�0

(

p2f
p2i

,
p20
p2i

)

+˜λ0 f i�(pi )�(p0)
(−p2i )

�i−d/2(−p20)
�0−d/2

(p2f + iε)(�i+�0−� f )/2
F�0� f �i

(

p20
p2f

,
p2i
p2f

)

.

(47)

This representation somehow obscures the facts that the 3-point function is real and that
it has a branch point at p20 = 0, but it makes the analyticity in� f ,�0,�i and d manifest
over its whole region of support.

This is our final result for theWightman 3-point function of scalar operators. It should
be noted that this result has been successfully compared with a direct evaluation of the
Fourier transform of the position-space 3-point function, analytically in the OPE lim-
its of Sect. 2.2 and numerically for generic kinematics. Some details about the direct
computation of the Fourier transform are presented in Appendix B. Before moving on
to the study of other correlation functions, we will discuss some interesting features of
the Wightman function.

2.5. Generalized free field theory. As already mentioned, something special happens to
the 3-point function when one scaling dimension equals the sum of the other two. Let
us assume that �0 = � f + �i first. In this case we will interpret φ0 as the compos-
ite operator [φ f φi ]. Of the three terms in Eq. (47), only the first one remains because
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˜λ f i0 = ˜λ0 f i = 0. Moreover, the Appell function F� f �0�i is trivially equal to one in
this case. We obtain therefore

〈〈φ f (p f )[φ f φi ](p0)φi (pi )〉〉 =˜λφ f [φ f φi ]φi �(−p f )�(pi )(−p2f )
� f −d/2(−p2i )

�i−d/2.

(48)

The dependence on the momenta pi and p f factorizes, and we see a similar factorization
in the OPE coefficient,

˜λφ f [φ f φi ]φi =
(

2d−2� f +1π(d+2)/2

�
(

� f
)

�
(

� f − d−2
2

)

) (

2d−2�i+1π(d+2)/2

� (�i ) �
(

�i − d−2
2

)

)

λφ f [φ f φi ]φi .

(49)

This means that we can write

〈〈φ f (p f )[φ f φi ](p0)φi (pi )〉〉 = λφ f [φ f φi ]φi 〈〈φ f (p f )φ f (−p f )〉〉〈〈φi (−pi )φi (pi )〉〉.
(50)

This result is expected from a generalized free field theory, and since the only dynamical
data in a conformal 3-point function is encoded in the OPE coefficient, the kinematics
must match that of the generalized free theory whenever the scaling dimensions obey
such relations.

A similar study of the case �i = � f + �0 shows that

〈〈φ f (p f )φ0(p0)[φ f φ0](pi )〉〉 = λφ f φ0[φ f φ0]〈〈φ f (p f )φ f (−p f )〉〉〈〈φ0(p0)φ0(−p0)〉〉.
(51)

If instead we take�0 = � f +�i +2n where n is a positive integer, the right-hand side of
Eq. (50) gets multiplied by a homogeneous polynomial of degree n in p2f , p

2
i and p f · pi ,

because the hypergeometric series that defines F� f �0�i terminates at order n. This
provides a way of resolving the exact structure of the double-trace operator [φ f �nφi ].

The factorization of 3-point functions into 2-point functions is actually a trivial state-
ment in the position-space representation, and it is easy to take their Fourier transform
directly and reproduce expressions like (50) and (51). Nevertheless, it is important to
see that our general result (47) covers these special cases in a quite non-trivial manner.

2.6. Holomorphic factorization in two dimensions. Another curiosity occurs in two
space-time dimension. Using light-cone coordinates p2 = −p+ p− together with a spe-
cial identity of the Appell F4 function that only applies when d = 2 [67, eq. 16.16.6],
we can write

F� f �0�i

(

p2f
p20

,
p2i
p20

)

= 2F1

(

� f −�0+�i
2 ,

� f −˜�0+�i
2 ;� f ;− p+f

p+0

)

× 2F1

(

� f −�0+�i
2 ,

� f −˜�0+�i
2 ;�i ;− p−

i

p−
0

)

.

(52)

This allows to write the 3-point function in the fully factorized form

〈〈φ f (p f )φ0(p0)φi (pi )〉〉 = λ f 0i W (p+f , p
+
0 , p

+
i )W (p−

f , p
−
0 , p−

i ) (53)
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where we have defined

W (p+f , p
+
0 , p+i ) = (2π)2

2(� f +�0+�i−2)/2

(p+f )
� f −d/2(p+i )�i−d/2

|p+0 |(� f −�0+�i )/2

×
[

�(p+0 )

� (�i ) �
(

� f +�0−�i
2

) 2F1

(

� f −�0+�i
2 ,

� f −˜�0+�i
2 ;�i ;− p+i

p+0

)

+
�(−p+0 )

�
(

� f
)

�
(

�i+�0−� f
2

) 2F1

(

� f −�0+�i
2 ,

� f −˜�0+�i
2 ;� f ;− p+f

p+0

)

]

.

(54)

� here is the ordinary Heaviside step function. This is consistent with the fact that the
Wightman 3-point function in position space can be factorized into holomorphic and
anti-holomorphic pieces, or equivalently into left- and right-movers. This result is also
found to match the direct Fourier transform of the position-space correlator, which can
be easily performed in this case. The interesting way in which this factorization arises
from the general expression (47) is another verification of its validity.

3. Adding Spin: Traceless Symmetric Tensor

We will now discuss how to incorporate an operator that is not a scalar in the analysis
of the previous section. Our approach is not meant to be systematic, but instead focuses
on the simplest case as an example.

3.1. Poincaré and scale symmetry. Starting with theWightman 3-point function (1), we
choose to keep the operators φ0 and φi scalar and replace φ f by an operator O f carry-
ing spin. The only type of spin representations allowed by conformal symmetry are are
traceless symmetric tensors. In this case it is convenient to introduce a null polarization
vector ζ 2 = 0 and define the momentum-space operator with spin � by [7,69,70]

O(�)(p, ζ ) = ζμ1 · · · ζμ�Oμ1...μ�(p). (55)

Both the symmetry and the tracelessness of the operator are automatically encoded in
this definition. As in the scalar case, this operator is in one-to-one correspondence with
a momentum eigenstate

∣

∣O(�)(p, ζ )
〉 ≡ O(�)(p, ζ ) |0〉. The only novelty is that not all

such state are linearly independent, since states related by a little group transformation
on ζ are equivalent, and some states are even null in the case of a conserved operator
∂μOμν... = 0. But these considerations do not affect the construction of Sect. 2.1. We
can still construct the most general ansatz consistent with Poincaré and scale symmetry,
the only new constraint being that it must be a polynomial of degree � in the polarization
vector ζ . Therefore we can write

〈〈O(�)
f (p f , ζ )φ0(p0)φi (pi )〉〉 = �(−p f )�(pi )(p

2
0)

(� f +�0+�i−�−2d)/2

×
�

∑

n=0

(p f · ζ )n(pi · ζ )�−n F (�)
n

(

p2f
p20

,
p2i
p20

)

(56)

where the F (�)
n are � distinct functions to be determined. This ansatz is valid as long as

p0 is space-like as in Fig. 1a, and the general case will again be obtained by analytic
continuation.
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Note that this treatment of the spin does not apply in d = 2 spacetime dimensions: In
that case the ansatz (56) is redundant because the polarization vector ζ can be expressed
as a linear combination of p f and pi . In d = 2, all operators can be viewed as scalars
with different conformal weights for the holomorphic and anti-holomorphic pieces, and
it is easy to generalize the results of Sect. 2.6 in that case.

3.2. Conformal Ward identities. Further restrictions on the functions F (�)
n in Eq. (56)

are provided by the Ward identity for special conformal transformations

̂Kμ〈〈O(�)
f (p f , ζ )φ0(p0)φi (pi )〉〉 = 0, (57)

where now instead of Eq. (31) the differential operator is

̂Kμ ≡
∑

p∈{pi ,p f }

[

−2pρ ∂2

∂pμ∂pρ
+ pμ ∂2

∂pρ∂pρ
+ 2(� − d)

∂

∂pμ

]

+
∂

∂pρ
f

(

ζμ ∂

∂ζ ρ
− ζ ρ ∂

∂ζμ

)

. (58)

The ansatz (56) contains more freedom than its scalar counterpart Eq. (15) as it is written
in terms of � distinct unknown functions, but it should be noted that theWard identity (57)
is also more constraining than Eq. (30): it does not only have components in the plane
spanned by pi and p f , but also along the orthogonal direction. If we denote by p⊥ a
vector such that p⊥ · pi = p⊥ · p f = 0, then theWard identity generated by the operator
p⊥ · ̂K takes the form

(n + 1)(� f − 2 + � − n)F (�)
n+1(z f , zi )

= (� − n)

[

�i − d + 1 − � + n + (1 − z f − zi )
∂

∂z f
− 2zi

∂

∂zi

]

F (�)
n (z f , zi ).

(59)

This recursion relation determines all the functions F (�)
n (z f , zi ) in terms of F (�)

0 (z f , zi ).
Moreover the projections of the differential operator (58) along the direction of p f and
pi are such that they never raise the power of pi · ζ , which means that we get a closed
system of differential equations for F (�)

0 (z f , zi ), which reads
[

z f (1 − z f )
∂2

∂z2f
− 2z f zi

∂2

∂z f ∂zi
− z2i

∂2

∂z2i

+

(

1 +
d

2
− � f + αz f

)

∂

∂z f
+ αzi

∂

∂zi
− β

]

F (�)
0 (z f , zi ) = 0,

[

zi (1 − zi )
∂2

∂z2i
− 2z f zi

∂2

∂z f ∂zi
− z2f

∂2

∂z2f

+

(

1 +
d

2
− �i + αzi

)

∂

∂zi
+ αz f

∂

∂z f
− β

]

F (�)
0 (z f , zi ) = 0,

(60)

with

α = � f + �i − 3d

2
− 1 + �,
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β =
(

� f + �0 + �i − � − 2d
) (

� f − �0 + �i − d − �
)

4
. (61)

This system is identical to that of Eq. (32) but with different parameters α and β. Hence
its most general solution is also a linear combinations of four Appell F4 hypergeometric
functions,

(−z f )� f −d/2(−zi )�i−d/2F (�)
� f �0�i

(z f , zi ), (−zi )�i−d/2F (�)
˜� f �0�i

(z f , zi ),

(−z f )� f −d/2F (�)

� f �0˜�i
(z f , zi ), F (�)

˜� f �0˜�i
(z f , zi ),

(62)

where now

F (�)
� f �0�i

(z f , zi ) = F4
(

� f −�0+�i+�

2 ,
� f −˜�0+�i+�

2 ;� f − d−2
2 ,�i − d−2

2 ; z f , zi
)

.

(63)

Note that F (�)
� f �0�i

(z f , zi ) can be obtained from the scalar function F� f �0�i (z f , zi ) by
a shift of all scaling dimensions � → � + � accompanied by a shift d → d + 2� in the
space-time dimension, under which the combination � − d

2 is invariant.
Without going into the details of it, a logic similar to that of Sect. 2.2 can be used to

argue that among the four solutions (62), only the first one is consistent with the OPE.
Thus we arrive at the result

F (�)
0 (z f , zi ) =˜λ

(�)
f 0i (−z f )

� f −d/2(−zi )
�i−d/2F (�)

� f �0�i
(z f , zi ), (64)

and the other functions F (�)
n (z f , zi ) are defined recursively by Eq. (59).6

3.3. Analytic continuation and normalization. The analytic continuation of this result to
the regions of time-like p0 proceeds as in Sect. 2.4, where we had seen that it is uniquely
determined by the existence of the OPE limits p f → 0 and pi → 0. We do not provide
the details of all such analytic continuations here as the result is quite complicated, but
focus instead on the simplest case that allows to determine the coefficient˜λ(�)

f 0i in Eq. (64).
Let us study the limit p f → 0 of the 3-point function. In order to achieve this, we

apply the transformation (38) to the function F (�)
0 of Eq. (64), and then continue the

non-integer power of p20 in such a way that the resulting contribution to the 3-point
function is analytic around the point p f = 0. When this procedure is complete, we are
left with the asymptotic limit

〈〈O(�)
f (p f , ζ )φ0(p0)φi (pi )〉〉p f →0

=˜λ
(�)
f 0i

�
(

�i − d−2
2

)

�
(

� f +�0−�i+�

2

)

�
(

� f + �
)

�
(

�i+�0−� f −�−d+2
2

)

× (−p2f )
� f −d/2(−p2i )

(�i+�0−� f −�−d)/2
[

(ζ · pi )� + · · ·
]

.

(65)

6 Derivatives ofAppell F4 functions can be again expressed in terms ofAppell F4 functionswith parameters

shifted by integers, but we did not find a form simple enough for the generic function F(�)
n (z f , zi ) to be

reproduced here.
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The ellipsis indicate terms of order (ζ · p f )/|p f |, which arise from the analytic contin-

uation of the functions F (�)
n with n > 0. It is important to realize that the term n = 0 in

the ansatz (56) is not the only contributor in the limit p f → 0 since the functions F (�)
n

contain increasingly divergent powers of |p f |.
This result can be matched with the position-space OPE

φ1(x1) |φ2(x2)〉 = λO12 C
μ1...μ�

O12 (x1 − x2, P)
∣

∣Oμ1...μ�(x2)
〉

+ · · · (66)

where we ignored the contribution of all other operators besides the traceless symmetric
tensor Oμ1...μ� . The operator Cμ1...μ�

O12 (x, P) admits a series expansion in Pμ, given at
lowest order by

Cμ1...μ�

O12 (x, ζ, P) = 1

|x |�1+�2−�O+�

[

xμ1 · · · xμ� +O(P)
]

. (67)

Taking the Fourier transform of this OPE as in Sect. 2.2, we get

φ1(p1) |φ2(p2)〉 = λO12˜C
μ1...μ�

O12 (p1, p1 + p2)
∣

∣Oμ1...μ�(p1 + p2)
〉

+ · · · (68)

where ˜Cμ1...μ�

O12 (p, q) is the Fourier transform of Cμ1...μ�

O12 (x, q), given at lowest order in
q by

˜Cμ1...μ�

O12 (p, 0) = i�2d−�1−�2+�O+1π(d+2)/2

�
(

�1+�2−�O+�
2

)

�
(

�1+�2−�O−�−d+2
2

)

× (−p2)(�1+�2−�O−�−d)/2 [

pμ1 · · · pμ� + trace terms
]

.

(69)

We did not bother to write down the trace terms involving the metric ημiμ j explicitly
as these vanish when contracted with the traceless symmetric tensor Oμ1...μ� . To use
this OPE in the 3-point function, we also need the momentum-space 2-point function of
traceless symmetric tensor operators. It was computed for instance in Ref. [46], and can
be written in a compact form as

〈〈O(�)(−p, ζ )Oμ1...μ�(p)〉〉 = 2d−2�+1π(d+2)/2

(� + � − 1)�(� − 1)�
(

� − d−2
2

)

× �(p)(−p2)�−d/2 [

ζμ1 · · · ζμ� + · · · ]
(70)

The ellipsis indicate that we have omitted terms proportional to ζ · p. The structure of
these terms is quite complicated, but we do not need them to perform the comparison
with Eq. (65), where they are neglected as well. We obtain finally

˜λ
(�)
f 0i = (−i)�22d−� f −�0−�i+2πd+2

(

� f − 1
)

�

�
(

� f − d−2
2

)

�
(

�i − d−2
2

)

�
(

� f +�0−�i+�

2

)

�
(

�i+�0−� f +�

2

) λ
(�)
f 0i .

(71)

Like the coefficient˜λ f 0i of Eq. (46),˜λ
(�)
f 0i is analytic in all the scaling dimensions and

in d, and it has zeroes at the dimensions of double-trace operators, in this case when
� f = �i +�0 +�+2n and�i = � f +�0 +�+2n with n ∈ N. These zeroes are consis-
tent with the vanishing of the 3-point function in generalized free field theory when p0
is space-like. The analytic continuation to time-like p0 comes with a pole that cancels
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either one of these zeroes, and in that case the Appell F4 function can be expressed as
a finite hypergeometric sum. As in the scalar case this can be used to resolve the exact
structure of the double-trace operators.

This concludes our study of Wightman functions involving a traceless symmetric
tensor. The problem of generalizing our findings to arbitrary spin representations for
each of the three operators is left for future work.

4. Time-Ordered Products

In this section we consider correlation function involving time-ordered products of oper-
ators and show to what extent the method of Sect. 2 can be used. The results also illus-
trate how different time-ordered correlation function are from the Wightman function
in momentum space.

4.1. Partial time-ordering. We consider first the case in which two out of the three
operators in the correlation function are time-ordered, as in

〈〈φ f (p f )T{φ1(p1)φ2(p2)}〉〉. (72)

The time-ordering operator is defined in position space by

T{φ1(x1)φ2(x2)} = �(x01 − x02 )φ1(x1)φ2(x2) + �(x02 − x01 )φ2(x2)φ1(x1). (73)

Our notation for the operators differs from Sect. 2 because of the different physical
interpretation of this correlation function. If

〈

φ f (p f )
∣

∣ still defines a final state created
by a single operator, there is no notion of an initial state created by a local operator in the
correlator (72). As a consequence, the momenta p1 and p2 might be time-like as well
as space-like. The only requirement is that they add up to −p f that is time-like and has
positive energy, by the condition (11) on the final state. The correlation function (72) is
also obviously symmetric under the exchange of the operatorφ1 andφ2,whichmeans that
itmust be represented by a function that is symmetric under the simultaneous exchange of
themomenta p1 ↔ p2 and of the scaling dimensions�1 ↔ �2. This suggests the ansatz

〈〈φ f (p f )T{φ1(p1)φ2(p2)}〉〉 = �(−p f )(−p2f )
(� f +�1+�2−2d)/2F12

(

p21
p2f

,
p22
p2f

)

, (74)

in which the function F12 enjoys the aforementioned symmetry. Since the partially-time-
ordered 3-point function obeys the same conformal Ward identities as the Wightman
function, it is possible to express the function F12 as a linear combination of Appell F4
functions of the type of Eq. (35). In other words, the two correlators are different solu-
tions to the same system of partial differential equations, but with a different boundary
condition.

As before, this boundary condition is provided by an OPE limit. Since the basis of
momentum eigenstates created by single local operator insertion is complete, it must be
possible to write

T{φ1(p1)φ2(p2)} |0〉 =
∑

O
λO12 ˜CT

O12(p1, p1 + p2) |O(p1 + p2)〉 , (75)
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(a) p21, p
2
2 → 0+ (b) p21 → 0+, p2f → 0−

Fig. 3. Examples ofmomentum configurations for the partially-time-ordered 3-point function (72), which only
has support when the momentum −p f lies in the light-cone shown in blue. In both examples the momenta p1
and p2 are space-like, and one can deform one configuration into the other without any light-cone crossing

for some function ˜CT
O12(p, q) that differs from ˜CO12(p, q) of Eq. (19). This function

admits the formal expansion

˜CT
O12(p, q) =

[

1 − i
�O + �1 − �2

2�O
qμ ∂

∂pμ
+ · · ·

]

∫

dd x ei p·x (x2 + iε)(�O−�1−�2)/2, (76)

where the norm (x2 + iε) is the time-ordered analog of the norm appearing in Eq. (21).7

It corresponds to the time-ordered 2-point function of a fictitious operator with scaling
dimension (�1 +�2 −�O)/2. Therefore, the integral on the right-hand-side of Eq. (76)
can be written as a momentum-space 2-point function,

〈〈T{φ(−p)φ(p)}〉〉 = −i
πd�

( d
2 − �

)

22�−d� (�)
(p2 − iε)�−d/2 ≡ F�(p). (77)

This gives immediately the asymptotic limit p f → 0 of the correlation function (72):

〈〈φ f (p f )T{φ1(p1)φ2(p2)}〉〉p f →0 = −iλ f 0i

22d−�i−�0−� f +1πd+1�
(

� f −�1−�2+d
2

)

�
(

� f
)

�
(

� f − d−2
2

)

�
(

�1+�2−� f
2

)

× (−p2f )
� f −d/2(p21 − iε)(�1+�2−� f −d)/2.

(78)

The symmetry φ1 ↔ φ2 is obvious on the right-hand side since p21 = p22 in this limit.
Unlike the Wightman function, the partially time-ordered 3-point function do not admit
any other Lorentzian OPE limit.

7 One can write a similar OPE for the anti-time-ordered product of operators in which the sign of the iε
prescription is opposite.
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It is not necessarily obvious how to reconcile this OPE limit with the symmetric
ansatz (74) for the 3-point function. That ansatz gives a good description of the correla-
tion function in a neighborhood of p21 = p22 = 0, which corresponds to a configuration
of momenta as in Fig. 3a. Both p1 and p2 lie close to the light-cone and have positive
energy in that case, while the limit p f → 0 requires p2 → −p1. It is therefore useful
to introduce the different ansatz

〈〈φ f (p f )T{φ1(p1)φ2(p2)}〉〉 = �(−p f )(p
2
1)

(� f +�1+�2−2d)/2Ff 2

(

p2f
p21

,
p22
p21

)

, (79)

covering in particular configurations like Fig. 3b in which both p2f and p22 are small

compared to p21. We will assume for now that both p1 and p2 space-like as in the fig-
ure and discuss later what happens when either one of them crosses a light-cone. With
this ansatz, the Ward identity (30) for special conformal transformations implies that
Ff 2(z f , z2) is a linear combination of the four functions

(−z f )� f −d/2(z2)�2−d/2F� f �1�2(z f , z2), (−z f )� f −d/2F� f �1˜�2
(z f , z2),

(z2)�2−d/2F
˜� f �1�2

(z f , z2), F
˜� f �1˜�2

(z f , z2),

(80)

where F� f �1�2 is the Appell F4 function given in Eq. (36). Besides providing an explicit
value for the limit p f → 0, the OPE (76) also implies that the 3-point functions must
scale like (−p2f )

� f −d/2 in the limit p2f → 0−. Among the 4 functions in Eq. (80), only
the first two follow this asymptotic behavior. We must therefore have

Ff 2(z f , z2) = (−z f )
� f −d/2

[

A (z2)
�2−d/2F� f �1�2(z f , z2) + B F� f �1˜�2

(z f , z2)
]

(81)

for some coefficients A and B. This form is readily compatible with the limit p f → 0,
which corresponds to z f → 0− and z2 → 1−. The limit z f → 0 should be taken first,
and one can then use Eq. (43) to obtain the limit z2 → 1−. For generic A and B there is
a non-analytic piece proportional to (1− z2)1−� f in this limit. Requiring that this term
vanishes and that the limit reproduces Eq. (78), one obtains

A = −iλ f 0i
22d−�i−�0−� f +1πd+1

�
(

� f − d−2
2

)

�
(

�1+�2−� f
2

)

�
( d
2 − �2

)

�
(

� f +�1−�2
2

) ,

B = −iλ f 0i
22d−�i−�0−� f +1πd+1

�
(

� f − d−2
2

)

�
(

�1+�2−� f
2

)

�
(

�2 − d
2

)

�
(

� f −�1−�2+d
2

)

�
(

� f −�1+�2
2

)

�
(

� f +�1+�2−d
2

) .

(82)

The symmetry φ1 ↔ φ2 is not at all obvious in this result. But one can now make use of
the transformation property (38) of the Appell F4 function to bring the 3-point function
in the form of the ansatz (74) where the symmetry becomes evident. We find
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F12(z1, z2) = −iλ f 0i
22d−�i−�0−� f +1πd+1

�
(

�1+�2−� f
2

)

�
(

� f +�1−�2
2

)

�
(

� f +�2−�1
2

)

�
(

� f +�1+�2−d
2

)

×
[

f� f �1�2 (−z1)
�1−d/2(−z2)

�2−d/2F�1� f �2 (z1, z2)

+ f� f �1˜�2
(−z1)

�1−d/2F�1� f ˜�2
(z1, z2)

+ f� f ˜�1�2
(−z2)

�2−d/2F
˜�1� f �2

(z1, z2)

+ f� f ˜�1˜�2
F

˜�1� f ˜�2
(z1, z2)

]

,

(83)

where we have denoted

f� f �1�2 =
�

( d
2 − �1

)

�
( d
2 − �2

)

�
(

� f +�1+�2−d
2

)

�
(

1 − �1+�2−� f
2

) . (84)

This is our result for the partially-time-ordered 3-point function. The symmetryφ1 ↔ φ2
follows from the property F�1� f �2(z1, z2) = F�2� f �1(z2, z1) of the Appell F4 func-
tion. The results of Refs. [44,46] are special cases of this expression. They correspond
to the limit p21, p

2
2 → 0+ which is finite under the assumption that �1,�2 > d

2 .
Unlike the Wightman function, this correlation function is not analytic in the scaling

dimensions. It has poles when �1,�2 = d
2 + n with n ∈ N. This is a well-known

feature of the time-ordered correlation function, which is also present in the two-point
function (77): correlation functions involving operators with these special dimensions
have anomalies and must be renormalized. In momentum space, this renormalization
leads to the appearance of logarithms [44]. The result (83) also shows that the 3-point
function diverges when � f = �1 + �2 − d − 2n. We do not have an explanation for
the presence of these poles.

4.2. Relationship with the Wightman function. The relationship between time-ordered
and Wightman functions in momentum space is complicated. There is no simple way to
go from one to the other without invoking the position-space representation. Neverthe-
less, there exists a link between the two given by the operator identity

T{φ1(p1)φ2(p2)} + T{φ1(p1)φ2(p2)} = φ1(p1)φ2(p2) + φ2(p2)φ1(p1), (85)

where T indicates the reverse time-ordering operation. When applied to the 2-point
function, it implies that

2 Re〈〈T{φ(−p)φ(p)}〉〉 = 〈〈φ(−p)φ(p)〉〉 + 〈〈φ(p)φ(−p)〉〉, (86)

where have used the fact that the anti-time-ordered 2-point function is the complex con-
jugate of the time-ordered one. This equality is satisfied by the 2-point functions given
in Eqs. (12) and (77) for all values of the momentum p: when p is space-like both
Wightman functions vanish and the time-ordered function is purely imaginary; when p
is time-like, the non-trivial phase in the time-ordered function is precisely matched by
the Wightman function.

The identity (85) become more interesting when we apply it to the 3-point function,
as it provides an interesting verification of our result. We have

2Re〈〈φ f (p f )T{φ1(p1)φ2(p2)}〉〉
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= 〈〈φ f (p f )φ1(p1)φ2(p2)〉〉 + 〈〈φ f (p f )φ2(p2)φ1(p1)〉〉. (87)

In Sect. 4.1 we focused on the regime where p1 and p2 are both space-like. In this case
the Wightman functions on the right-hand side vanish, and we found indeed that the
partially-time-ordered 3-point function (83) is purely imaginary. When either p1 or p2
crosses the light-cone, necessarily with positive energy, then the corresponding Wight-
man function on the right-hand side becomes non-zero and equal to Eq. (37). Thus the
partially-time-ordered function must acquire a non-trivial phase. The ansatz (79) is well-
suited to study the case where p2 crosses the light-cone. Consistency with the light-cone
limit (78) actually indicates that one should replace p22 → p22 − iε in that case, and one
obtains therefore the relation

2 Re
[

e−iπ(�2−d/2)A
]

=˜λ f 12. (88)

It can be verified from the definitions (82) for A and (46) for˜λ f 12 that this is indeed
satisfied.

Finally, it would be interesting to check the identity (87) in the case where both
momenta p1 and p2 are time-like. However, the analytic continuation of the partially-
time-ordered function is ambiguous, and the information provided by the OPE is not suf-
ficient to resolve it. A naive guesswould be to replace z1 → z1+iε and z2 → z2+iε in the
expression (83). However, it can be verified that this guess does not satisfy (87): at least
one additional term proportional to z�1−d/2

1 z�2−d/2
2 F�1� f �2(z1, z2) must be present

when both p1 and p2 are time-like.8 Note that the presence of this additional term is con-
sistent with an observation that can bemade using generalized free field theory: when the
scaling dimensions satisfy� f = �1+�2, the 3-point function is expected to factorize as

〈〈[φ1φ2](p f )T{φ1(p1)φ2(p2)}〉〉 = λφ1φ2[φ1φ2]〈〈φ1(−p1)φ1(p1)〉〉〈〈φ2(−p2)φ2(p2)〉〉.
(89)

The right-hand side is non-zerowhen p1 and p2 are both time-likewith positive energies.
However, the function F12 in Eq. (83) vanishes identically when � f = �1 +�2. There-
fore it cannot be the complete answer when both p1 and p2 are time-like. On the other
hand, the other relation obtained fromageneralized free field theory correlation function,

〈〈φ f (p f )T{[φ f φ2](p1)φ2(p2)}〉〉
= λφ f φ2[φ f φ2]〈〈φ f (p f )φ f (−p f )〉〉〈〈T{φ2(−p2)φ2(p2)}〉〉, (90)

is satisfied by Eq. (81) even when p2 is time-like, provided that one makes the substitu-
tion p22 → p22 − iε. In summary, the computation of the partially-time-ordered 3-point
function in the regime of time-like p1 and p2 remains an interesting open problem that
cannot be directly addressed with our method.

8 Consider for instance that one can add to the function F12 in Eq. (81) a term proportional to

[

(z1 − iε)�1−d/2 − (z1 + iε)�1−d/2
] [

(z2 − iε)�2−d/2 − (z2 + iε)�2−d/2
]

F�1� f �2 (z1, z2).

This term satisfies the conformal Ward identity, preserves the symmetry φ1 ↔ φ2 and vanishes whenever p1
or p2 is space-like. It might actually be the unique term with these properties.
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4.3. The fully time-ordered 3-point function. The lastmomentum-space 3-point function
that one can consider is the fully time-ordered product

〈〈T{φ1(p1)φ2(p2)φ3(p3)}〉〉. (91)

It cannot be understood as the overlap of momentum eigenstates, and so the OPE analy-
sis of the previous sections do not apply. But the permutation symmetry φ1 ↔ φ2 ↔ φ3
between the 3 operators is actually sufficient to determine the 3-point function uniquely
up to an overall coefficient: when all three momenta are space-like, the Euclidean result
of Ref. [25] applies readily,9

〈〈T{φ1(p1)φ2(p2)φ3(p3)}〉〉
= λ123 22d−�1−�2−�3πd

�
(

�1+�2−�3
2

)

�
(

�1+�3−�2
2

)

�
(

�2+�3−�1
2

)

�
(

�1+�2+�3−d
2

)

× (p23)
(�1+�2+�3−2d)/2FT

(

p21
p23

,
p22
p23

)

,

(92)

where

FT(z1, z2) = g�1�3�2(z1)
�1−d/2(z2)

�2−d/2F�1�3�2(z1, z2)

+ g�1�3˜�2
(z1)

�1−d/2F�1�3˜�2
(z1, z2)

+ g
˜�1�3�2

(z2)
�2−d/2F

˜�1�3�2
(z1, z2)

+ g
˜�1�3˜�2

F
˜�1�3˜�2

(z1, z2),

(93)

and the coefficients g�1�3�2 are defined by

g�1�3�2 ≡ �
( d
2 − �1

)

�
( d
2 − �2

)

�
(

�1+�2−�3
2

)

�
(

�1+�2−˜�3
2

)

. (94)

Once again the 3-point function is expressed in terms of the solutions to the conformal
Ward identities (30). This time all four solutions appear in the 3-point function, nomatter
which of the momenta is taken as the reference momentum.

This fully-time-ordered 3-point function can be related to the partially-time-ordered
correlator using an identity similar to Eq. (85):

T{φ1φ2φ3} − T{φ1φ2φ3} = φ1 T{φ2φ3} + φ2 T{φ1φ3} + φ3 T{φ1φ2}
− T{φ1φ2}φ3 − T{φ1φ3}φ2 − T{φ2φ3}φ1.

(95)

We have omitted to write the argument of the operators because this identity is purely
combinatoric and applies in position space as well as in momentum space. In position
space it can be verified by expanding the time-ordered product according to its defini-
tion. In momentum space, the content of the identity is more interesting as it provides
an interesting relation between Eq. (92) and the results of the previous sections. When
all three momenta are space-like, each of the 3-point functions on the right-hand side
vanishes individually as it involves a null state. To see that the left-hand side vanishes

9 To fix the overall coefficient in this result, the authors of Ref. [25] also use an OPE limit, but it is an
Euclidean OPE that is conceptually different from the Lorentzian OPE discussed in Sect. 2.2.
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as well, it is sufficient to note that the time-ordered and anti-time-ordered products are
related by complex conjugation, 10 so that the identity becomes

Im〈〈T{φ1(p1)φ2(p2)φ3(p3)}〉〉 = 0 (p21, p
2
2, p

2
3 > 0). (96)

The function FT in Eq. (93) is indeed real. Thismeans that there is no distinction between
the time-ordered and anti-time-ordered products when all momenta are space-like.

If one of the momenta is instead time-like (say p1), one term on the right-hand side
of the identity (95) is non-zero. In the time-ordered 3-point function, this configuration
can be reached by analytic continuation in p21. There are only two possible analytic
continuations of the function FT that preserve the permutation symmetry of the opera-
tors: one of them consist in taking p21 → p21 − iε and the other p21 → p21 + iε. From
the representation of the 3-point function as the Fourier transform of the position-space
correlator, it is easy to see that the first of these analytic continuations corresponds to
the time-ordered product and the second to the anti-time-ordered product. They are the
complex conjugate of each other, and thus one can write

2i Im〈〈T{φ1(p1)φ2(p2)φ3(p3)}〉〉 = 〈〈φ1(p1)T{φ2(p2)φ3(p3)}〉〉
+〈〈T{φ2(p2)φ3(p3)}φ1(p1)〉〉 (p22, p

2
3 > 0).

(97)

When p1 has positive energy, the right-hand side is given by Eq. (74), or equivalently
Eq. (79). It can be verified that these expressions precisely match the imaginary part of
Eq. (92) with p21 → p21 − iε. This provides a simple and yet non-trivial verification of
the results of Sect. 4.1.

5. Discussion

In this paper, we have provided a simple closed-form11 expression for the momentum-
space Wightman function of 3 scalar operators, as well as two scalars and one traceless
symmetric tensorwith arbitrary spin.Besides the explicit results,wehave given a detailed
explanation of the logic underlying this approach so that the interested readers might
themselves proceed to the derivation of correlation functions not given here. Thismethod
should be particularly suited to study the Wightman correlation functions of operators
such as conserved currents or the energy-momentum tensor. For other spin representa-
tions, one might want to develop the theory of weight-shifting operators in momentum
space.

In addition, studying the (partially-)time-ordered correlation function in the case of
scalar operators, we have found that they take generically a more complicated form,
which we were not able to fix completely by analytic continuation away from the OPE
limits. One observes also that the time-ordered correlation functions can be expressed as

10 This can be seen in position space, where the time-ordered and anti-time-ordered correlation functions
only differ by the sign of the Feynman iε prescription. Since both functions are symmetric under x → −x ,
the Fourier transform preserves this property.
11 The terminology of “closed-form” is used because the Appell F4 function is a recognized function whose

properties are known and well-documented, but really it does not carry much meaning: to evaluate it, one must
either use one of its integral representations or the double-infinite hypergeometric series (34). Nevertheless,
we have provided for every possible momentum configurations at least one representation in terms of which
the double hypergeometric series converges, and thus the function can be approximated to arbitrary precision
with a truncated series.
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a sum of the Wightman function and of some its shadow transforms. This supports the
idea that theWightman function are really the building blocks in a Lorentzian conformal
field theory.

Finally, we would like to emphasize that the computation of the Wightman 3-
point function opens the door to the computation of higher-point functions through the
momentum-space OPE: one way of interpreting our results is in terms of the relation

φ1(p1)φ2(p2) |0〉 =
∑

O
λO12˜CO12(p1, p1 + p2)O(p1 + p2) |0〉 , (98)

which we have formally established for any operatorO and in every kinematic configu-
ration of the momenta p1 and p2. 12 Many questions about the convergence of this OPE
in a 4-point function remain to be answered: it is guaranteed to converge in a distribu-
tional sense only [65], but not necessarily at every single point in momentum space. The
problem has been addressed in d = 2 [66], but it remains open in higher dimensions.
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A. Conformal Algebra

In this appendix we describe our conventions for the generators of the Lorentzian
conformal group SO(d, 2) and the infinitesimal transformation of the operators in the
momentum-space representation. There are d(d + 1)/2 generators of SO(d, 2), denoted
by the antisymmetric tensors J AB with indices A, B = 0, . . . , d +1. They are hermitian,
(J AB)† = J AB , and obey the algebra

[J AB, JCD] = −i
(

ηAC J BD − ηAD J BC − ηBC J AD + ηBD J AC
)

, (99)

with metric ηAB = diag(−1,+1, . . . ,+1,−1). We take the Lorentz indices in the range
0, . . . , d − 1 and identify

Mμν = Jμν, Pμ = Jμ d − Jμ d+1, Kμ = Jμ d + Jμ d+1, D = Jd d+1.(100)

12 In practice determining ˜CO12(p1, p1 + p2) from the 3-point function still requires multiplication with
the inverse of the 2-point function of the operator O, which for operators of large spin can be a bit tedious.

http://creativecommons.org/licenses/by/4.0/
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This gives the commutation relations13

[Mμν, Mρσ ] = −i
(

ημρMνσ − ημσ Mνρ − ηνρMμσ + ηνσ Mμρ
)

,

[Mμν, Pρ] = −i
(

ημρPν − ηνρPμ
)

,

[Mμν, K ρ] = −i
(

ημρK ν − ηνρKμ
)

,

[D, Pμ] = i Pμ,

[D, Kμ] = −i Kμ,

[Pμ, K ν] = −2i
(

ημνD + Mμν
)

,

(101)

and all other commutators vanish. The transformation rules for a primary operatorO(p)
with scaling dimension � are

[

Pμ,O(p)
] = pμO(p),

[D,O(p)] = i

(

pρ ∂

∂pρ
+ d − �

)

O(p),

[

Mμν,O(p)
] = i

(

pμ ∂

∂pν
− pν ∂

∂pμ
− �μν

)

O(p),

[

Kμ,O(p)
] =

(

−2pρ ∂2

∂pμ∂pρ
+ pμ ∂2

∂pρ∂pρ
+ 2(� − d)

∂

∂pμ
− 2

∂

∂pρ
�μρ

)

O(p),

(102)

where �μν is the spin matrix acting on the indices of the operatorsO which are implicit
here. These transformations follow from the definition (9) of operators in momentum
space, together with the decomposition of the Hilbert space into irreducible representa-
tions of the Lorentz group and dilatations,

D |O〉 = −i� |O〉 , Mμν |O〉 = −i�μν |O〉 , Kμ |O〉 = 0. (103)

B. Direct Fourier Transform

Consider the position-space Wightman 3-point function of scalar operators

〈0|O f (x f )O0(x0)Oi (xi ) |0〉
= λ f 0i

(x2f 0)
(� f +�0−�i )/2(x2f i )

(� f +�i−�0)/2(x20i )
(�0+�i−� f )/2

, (104)

where we have denoted x2ab = −(x0a −x0b −iε)2+(xa−xb)2. The goal of this appendix is
to bring the Fourier transform of this expression in a formwhere it can easily be evaluated
numerically, and to derive results analytically in limits where the integrals are tractable.
Since Eq. (104) is the product of three Wightman function, its Fourier transform can be
written

〈〈O f (p f )O0(p0)Oi (pi )〉〉 = λ f 0i

∫

ddk

(2π)d
Wα(k)Wβ(−p f − k)Wγ (pi − k) (105)

13 Our conventions match Refs. [21,22] with an additional i to have Hermitian generators and hence unitary
representations in Lorentzian signature.
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where

Wα(k) =
∫

dd x
ei k·x

[−(x0 − iε)2 + x2
]α (106)

and we have defined

α = � f + �i − �0

2
, β = � f + �0 − �i

2
, γ = �i + �0 − � f

2
. (107)

We will denote the integral in (105) with Wαβγ (p f , pi ). Using the formula (12) for
Wα(k),

Wαβγ (p f , pi ) = 22d−2α−2β−2γ+3π(d+6)/2

�(α)�(β)�(γ )�
(

α − d−2
2

)

�
(

β − d−2
2

)

�
(

γ − d−2
2

)

×
∫

ddk �(k)�(−p f − k)�(pi − k)

×
[

−k2
]α−d/2 [

−(−p f − k)2
]β−d/2 [

−(pi − k)2
]γ−d/2

.

(108)

This integral is free of ultraviolet divergences since the region of integration in k is
bounded by the presence of the � functions defined in Eq. (3). It can however have
infrared divergences depending on the value of the parameters α, β and γ and on the
kinematics. To avoid this situation we will assume that the momenta pi and p f are
non-colinear and that

α, β, γ >
d

2
. (109)

Working in d > 2 space-time dimensions, it is convenient to introduce light-cone coor-
dinates k = (k+, k−, k⊥), such that the scalar product of two vectors is k1 · k2 =
− 1

2

(

k+1 k
−
2 + k−

1 k
+
2

)

+ k⊥
1 · k⊥

2 and the integration measure ddk = 1
2dk

+dk−dd−2k⊥.
This corresponds to choosing k0 = 1

2

(

k+ + k−)

and k‖ = 1
2

(

k+ − k−)

, where k‖ indi-
cates some preferred space direction. We can take in particular this direction in the plane
of p f and pi , so that p f = (p+f , p

−
f , 0) and pi = (p+i , p−

i , 0). Now the � functions
give the conditions

0 < k+ < min(−p+f , p
+
i ) ≡ k+max, 0 < k− < min(−p−

f , p
−
i ) ≡ k−

max, (110)

and

|k⊥| < min

(√
k+k−,

√

(−p+f − k+)(−p−
f − k−),

√

(p+i − k+)(p−
i − k−)

)

≡ k⊥
max.

(111)

It is immediately obvious that the integral is non-zero if p±
f < 0 and p±

i > 0 only, i.e. the
result will be proportional to �(−p f )�(pi ) as expected. Using spherical coordinates
for k⊥, we have

Wαβγ (p f , pi ) = 22d−2α−2β−2γ+2πd+2
˜Wαβγ (p f , pi )

�
( d−2

2

)

�(α)�(β)�(γ )�
(

α − d−2
2

)

�
(

β − d−2
2

)

�
(

γ − d−2
2

)

(112)
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where we have now defined

˜Wαβγ (p f , pi ) = 2
∫ k+max

0
dk+

∫ k−
max

0
dk−

∫ k⊥
max

0
dk⊥ (k⊥)d−3

[

k+k− − (k⊥)2
]α−d/2

×
[

(−p+f − k+)(−p−
f − k−) − (k⊥)2

]β−d/2

×
[

(p+i − k+)(p−
i − k−) − (k⊥)2

]γ−d/2
.

(113)

In this form, the integral is easy to evaluate numerically, but still hard to handle analyt-
ically. Besides numerical checks of the results of Sect. 2 that have been performed, we
consider two kinematic limits in which it can be evaluated explicitly.
The first limit is

− p−
f , p

+
i � −p+f , p

−
i . (114)

In this case p0 = −p f − pi is space-like since p20 ≈ −p+f p
−
i > 0. We are therefore in

the situation of Eq. (28),

− p2i ,−p2f � p20 . (115)

The integral (113) simplifies to

˜Wαβγ (p f , pi ) ≈ 2
∫ p+i

0
dk+

∫ −p−
f

0
dk−

∫

√
k+k−

0
dk⊥ (k⊥)d−3

[

k+k− − (k⊥)2
]α−d/2

×
[

−p+f (−p−
f − k−)

]β−d/2 [

(p+i − k+)p−
i

]γ−d/2
.

(116)

With the change of variable k+ = p+i u, k
− = −p−

f v, k
⊥ = (−p−

f p
+
i w)1/2, the depen-

dence on the momenta can be factored out,

˜Wαβγ (p f , pi )

≈ (−p−
f p

+
i )α(p+f p

−
f )

β−d/2(p+i p
−
i )γ−d/2

×
∫ 1

0
du

∫ 1

0
dv

∫ uv

0
dw w(d−4)/2(uv − w)α−d/2(1 − v)β−d/2(1 − u)γ−d/2.

(117)

After rescaling w → uvw, the three integrals factorize and one arrives at

˜Wαβγ (p f , pi ) ≈ (−p−
f p

+
i )α(p+f p

−
f )

β−d/2(p+i p
−
i )γ−d/2

× �
( d−2

2

)

�(α)�
(

α − d−2
2

)

�
(

β − d−2
2

)

�
(

γ − d−2
2

)

�
(

α + β − d−2
2

)

�
(

α + γ − d−2
2

) ,
(118)

or for the complete integral (108),

Wαβγ (p f , pi ) ≈ 22d−2α−2β−2γ+2πd+2

�(β)�(γ )�
(

α + β − d−2
2

)

�
(

α + γ − d−2
2

)

(−p2f )
α+β−d/2(−p2i )

α+γ−d/2

(p20)
α

.

(119)
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This is in agreement with Eq. (37) and the definition (46) of ˜λ f 0i . Note that the sin-
gularity in d = 2 that appears at intermediate steps of the computation is absent in
the final limit; one can verify that a derivation using light-cone coordinates in d = 2
(i.e. without the orthogonal component k⊥) gives an identical result. Similarly, this limit
is completely analytic in α, β and γ so that the assumption (109) can be relaxed.
The second limit that can be taken analytically is

− p±
f � p±

i . (120)

It corresponds to

− p2f � −p2i ≈ −p20 (p20 < 0). (121)

In this case the integral (113) can be approximated with

˜Wαβγ (p f , pi ) ≈ 2
∫ −p+f

0
dk+

∫ −p−
f

0
dk−

∫ k⊥
max

0
dk⊥ (k⊥)d−3

[

k+k− − (k⊥)2
]α−d/2

×
[

(−p+f − k+)(−p−
f − k−) − (k⊥)2

]β−d/2 [

p+i p
−
i

]γ−d/2
,

(122)

which after the change of variables k+ = −p+f u, k
− = −p−

f v, k
⊥ = (p+f p

−
f w)1/2

becomes

˜Wαβγ (p f , pi ) ≈ (p+f p
−
f )

α+β−d/2(p+i p
−
i )γ−d/2

∫ 1

0
du

∫ 1

0
dv

∫ min[uv,(1−u)(1−v)]

0
dw

×w(d−4)/2 [uv − w]α−d/2 [(1 − u)(1 − v) − w]β−d/2 .

(123)

To evaluate the remaining integral, one performs the change of variable

u = 1 − χξ, v = ηξ, w = χηξ(1 − ξ), (124)

in terms of which
∫ 1

0
du

∫ 1

0
dv

∫ min[uv,(1−u)(1−v)]

0
dw =

∫ 1

0
dχ χ

∫ 1

0
dη η

∫ 1

0
dξ ξ2. (125)

This gives again three independent integrals that can be expressed as ratios of �-
functions, and we find

˜Wαβγ (p f , pi )≈(p+f p
−
f )

α+β−d/2(p+i p
−
i )γ−d/2 �

( d−2
2

)

�(α)�(β)�
(

α− d−2
2

)

�
(

β− d−2
2

)

�(α + β)�
(

α + β − d−2
2

) .

(126)

This gives finally for the integral (108)

Wαβγ (p f , pi ) ≈ 22d−2α−2β−2γ+2πd+2

�(α + β)�(γ )�
(

α + β − d−2
2

)

�
(

γ − d−2
2

) (−p2i )
γ−d/2(−p2f )

α+β−d/2.

(127)

Again, we find perfect agreement with the OPE limit (24).
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