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1 Introduction

It is an old idea to define generalized space-times by association with Jordan alge-
brasJ , in such a way that the space-time is coordinatized by the elements ofJ , and
that its rotation, Lorentz, and conformal group can be identified with the automor-
phism, reduced structure, and the linear fractional group ofJ , respectively [6, 7, 8].
The aesthetic appeal of this idea rests to a large extent on the fact that key in-
gredients for formulating relativistic quantum field theories over four dimensional
Minkowski space extend naturally to these generalized space times; in particular ,
the well-known connection between the positive energy unitary representations of
the four dimensional conformal groupSU(2, 2) and the covariant fields transform-
ing in finite dimensional representations of the Lorentz groupSL(2, C) [21, 20]
extends to all generalized space-times defined by Jordan algebras [10]. The ap-
pearance of exceptional Lie groups and algebras in extended supergravities and
their relevance to understanding the non-perturbative regime of string theory have
provided new impetus; indeed, possible applications to string and M-Theory con-
stitute the main motivation for the present investigation.

In this paper, we will present a novel construction involving the maximally
extended Lie groupE8(8), which contains all previous examples of generalized
space-times based on exceptional Lie groups, and at the same time goes beyond the
framework of Jordan algebras. More precisely, we show that there exists a quasi-
conformal nonlinear realization ofE8(8) on a space of 57 dimensions1. This space
may be viewed as the quotient ofE8(8) by its maximal parabolic subgroup [11];
there is no Jordan algebra directly associated with it, but it can be related to a
certain Freudenthal triple system which itself is associated with the “split” excep-
tional Jordan algebraJOS

3 whereOS denote the split real form of the octonionsO.
It furthermore admits anE7(7) invariant norm formN4, which gets multiplied by
a (coordinate dependent) factor under the nonlinearly realized “special conformal”
transformations. Therefore the light cone, defined by the conditionN4 = 0, is
actually invariant under the fullE8(8), which thus plays the role of a generalized
conformal group. By truncation we obtain quasiconformal realizations of other ex-
ceptional Lie groups. Furthermore, we recover previous conformal realizations of
the lower rank exceptional groups (some of which correspond to Jordan algebras).
In particular, we give a completely explicit conformal M¨obius-like nonlinear real-
ization ofE7(7) on the 27-dimensional space associated with the exceptional Jor-

dan algebraJOS
3 , with linearly realized subgroupsF4(4) (the “rotation group”) and

E6(6) (the “Lorentz group”). Although in part this result is implicitly contained in
the existing literature on Jordan algebras, the relevant transformations have never
been exhibited explicitly so far, and are here presented in the basis that is also used
in maximal supergravity theories.

1A nonlinear realization will be referred to as “quasiconformal” if it is based on a five graded
decomposition of the underlying Lie algebra (as forE8(8)); it will be called “conformal” if it is
based on a three graded decomposition (as e.g. forE7(7)).
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The basic concepts are best illustrated in terms of a simple and familiar exam-
ple, namely the conformal group in four dimensions [21], and its realization via
the Jordan algebraJC2 of hermitean2× 2 matrices with the hermiticity preserving
commutative (but non-associative) product

a ◦ b := 1
2 (ab + ba) (1)

(basic properties of Jordan algebras are summarized in appendix A). As is well
known, these matrices are in one-to-one correspondence with four-vectorsxµ in
Minkowski space via the formulax ≡ xµσµ whereσµ := (1, ~σ). The “norm
form” on this algebra is just the ordinary determinant, i.e.

N2(x) := detx = xµxµ (2)

(it will be a higher order polynomial in the general case). Definingx̄ := xµσ̄µ

(whereσ̄µ := (1,−~σ)) we introduce the Jordan triple product onJC2 :

{a b c} := (a ◦ b̄) ◦ c + (c ◦ b̄) ◦ a− (a ◦ c) ◦ b̄

= 1
2(ab̄c + cb̄a) = 〈a, b〉c + 〈c, b〉a − 〈a, c〉b (3)

with the standard Lorentz invariant bilinear form〈a, b〉 := aµbµ. However, it is
not generally true that the Jordan triple product can be thus expressed in terms of a
bilinear form.

The automorphism group ofJC2 , which is by definition compatible with the
Jordan product, is just the rotation groupSU(2); the structure group, defined as the
invariance of the norm form up to a constant factor, is the productSL(2, C) × D,
i.e. the Lorentz group and dilatations. The conformal group associated withJC2
is the group leaving invariant the light-coneN2(x) = 0. As is well known, the
associated Lie algebra issu(2, 2), and possesses a three-graded structure

g = g−1 ⊕ g0 ⊕ g+1 , (4)

where the grade+1 and grade−1 spaces correspond to generators of translations
Pµ and special conformal transformationsKµ, respectively, while the grade 0 sub-
space is spanned by the Lorentz generatorsMµν and the dilatation generatorD.
The subspacesg1 andg−1 can each be associated with the Jordan algebraJC2 , such
that their elements are labelled by elementsa = aµσµ of JC2 . The precise corre-
spondence is

Ua := aµPµ ∈ g+1 and Ũa := aµKµ ∈ g−1 . (5)

By contrast, the generators ing0 are labeled bytwoelementsa, b ∈ JC2 , viz.

Sab := aµbν(Mµν + ηµνD) . (6)

The conformal group is realized non-linearly on the space of four-vectorsx ∈ JC2 ,
with a Möbius-like infinitesimal action of the special conformal transformations

δxµ = 2〈c, x〉xµ − 〈x, x〉cµ (7)
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with parametercµ. All variations acquire a very simple form when expressed in
terms of above generators: we have

Ua(x) = a ,

Sab(x) = {a b x} ,

Ũc(x) = −1
2{x c x} , (8)

where{...} is the Jordan triple product introduced above. From these transforma-
tions it is elementary to deduce the commutation relations

[Ua, Ũb] = Sab ,

[Sab, Uc] = U{abc} ,

[Sab, Ũc] = Ũ{bac} ,

[Sab, Scd] = S{abc} d − S{bad} c . (9)

(of course, these could have been derived directly from those of the conformal
group). As one can also see, the Lie algebrag admits an involutive automorphism
ι exchangingg+1 andg−1 (hence,ι(Kµ) = Pµ).

The above transformation rules and commutation relations exemplify the struc-
ture that we will encounter again in section 3 of this paper: the conformal realiza-
tion of E7(7) onR

27 presented there has the same form, except thatJC2 is replaced

by the exceptional Jordan algebraJOS
3 over the split octonionsOS. While our form

of the nonlinear variations appears to be new, the concomitant construction of the
Lie algebra itself by means of the Jordan triple product has been known in the liter-
ature as the Tits-Kantor-Koecher construction [24, 13, 17], and as such generalizes
to other Jordan algebras. The generalized linear fractional (M¨obius) groups of Jor-
dan algebras can be abstractly defined in an analogous manner [18], and shown to
leave invariant certain generalizedp-angles defined by the norm form of degreep
of the underlying Jordan algebra [14, 9]. However, explicit formulas of the type
derived here have never before appeared in the literature.

While this construction works for the exceptional Lie algebrasE6(6), andE7(7),
as well as other Lie algebras admitting a three graded structure, it fails forE8(8),
F4(4), andG2(2), for which a three grading does not exist. These algebras possess
only a five graded structure

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g+1 ⊕ g+2 . (10)

Our main result, to be described in section 2, states that a “quasiconformal” real-
ization is still possible on a space of dimensiondim(g1)+1 if the top grade spaces
g±2 are one-dimensional. Five graded Lie algebras with this property are closely
related to the so-called Freudenthal Triple Systems [4, 22], which were originally
invented to provide alternative constructions of the exceptional Lie groups2. This

2The more general Kantor-Triple-Systems for whichg±2 have more than one dimension, will not
be discussed in this paper.
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relation will be made very explicit in the present paper. The novel realization of
E8(8) which we will arrive at contains various other constructions of exceptional
Lie algebras by truncation, including the conformal realizations based on a three
graded structure. For this reason, we describe it first in section 2, and then show
how the other cases can be obtained from it.

Whereas previous attempts to construct generalized space-times mainly fo-
cussed on generalizing Minkowski space-time and its symmetries, the physical
applications that we have in mind here are of a somewhat different nature, and
inspired by recent developments in superstring and M-Theory. More specifically,
the generalized “space-times” presented here could conceivably be identified with
certain internal spaces arising in supergravity and superstring theory. As an ex-
ample, recall that the solitonic degrees of freedom ofd = 4,N = 8 supergravity
carry 28 electric and 28 magnetic charges, which appear as central charges in the
N = 8 superalgebra, and combine into the56 representation ofE7(7) (this is a
non-trivial fact, because the superalgebra initially “knows” only about the R sym-
metry SU(8)). Central charges and their solitonic carriers have been much dis-
cussed in the recent literature because it is hoped that they may provide a window
on M-Theory and its non-perturbative degrees of freedom. They also play an im-
portant role in the microscopic description of black hole entropy: for maximally
extendedN = 8 supergravity, the latter is conjectured to be given by anE7(7) in-
variant formula [12], which reproduces the known results in all cases studied so
far. This formula is formally identical to our eq. (25) defining a light-cone inR

57,
which suggests that the 57th component of ourE8(8) realization should be inter-
preted as the entropy. While the latter is onlyE7(7) invariant, the formula defining
it actually possesses a bigger nonlinearly realized quasiconformal invariance under
E8(8)!

For applications to M-Theory it would be important to obtain the exponentiated
version of our realization. One might reasonably expect that modular forms with
respect to a fractional linear realization of the arithmetic groupE8(8)(Z) will have
a role to play; in this case, such forms would consequently depend on 28 complex
variables and one real one. The 57 dimensions in whichE8(8) acts might alter-
natively be interpreted as a generalized Heisenberg group, in which case the 57th
component would play the role of a variable parameter~. The action ofE8(8)(Z)
on the 57 dimensional Heisenberg group would then constitute the invariance group
of a generalized Dirac quantization condition. This observation is also in accord
with the fact that the term modifying the vector space addition inR

57 (cf. eq.(23)),
which is required byE8(8) invariance, is just the cocycle induced by the standard
canonical commutation relations on an (28+28)-dimensional phase space.
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2 Quasiconformal Realization ofE8(8)

2.1 E7(7) decomposition ofE8(8)

We will start with the maximal case, the exceptional Lie groupE8(8), and its qua-
siconformal realization onR57, because this realization contains all others by trun-
cation. Our results are based on the following five graded decomposition ofE8(8)

with respect to itsE7(7) ×D subgroup

g−2 ⊕ g−1 ⊕ g0 ⊕ g+1 ⊕ g+2

1 ⊕ 56 ⊕ (133 ⊕ 1) ⊕ 56 ⊕ 1
(11)

with the one-dimensional groupD consisting of dilatations.D itself is part of
an SL(2, R) group, and the above decomposition thus corresponds to the de-
composition248 → (133,1) ⊕ (56,2) ⊕ (1,3) of E8(8) under its subgroup
E7(7) × SL(2, R).

In order to write out theE7(7) generators, it is convenient to further decompose
them w.r.t. the maximal compact subgroup ofE7(7), which is SU(8). In this basis,
the Lie algebra ofE7(7) is spanned by the SU(8) generatorsGi

j , which are anti-
hermitean and traceless, together with the antisymmetric and complex self-dual
generatorsGijkl, transforming in the70 and63 representation of SU(8), respec-
tively:

(Gijkl)† = 1
24εijklmnpq Gmnpq := Gijkl ,

Gi
j ≡ (Gi

j)† = −Gj
i ,

with SU(8) indices1 ≤ i, j, . . . ≤ 8. The commutation relations are[
Gi

j , Gk
l

]
= δk

j Gi
l − δi

l Gk
j ,[

Gi
j , Gklmn

]
= −4 δ

[k
j G

lmn]i − 1
2 δi

jG
klmn ,[

Gijkl , Gmnpq
]

= − 1
36 εijkls[mnp Gq]

s .

The fundamental56 representation ofE7 is spanned by the anti-symmetric com-
plex tensorsZij and their complex conjugates

Zij := (Zij)∗ .

The action ofE7(7) is given by

δZij = Λi
kZ

kj − Λj
kZ

ki + ΣijklZkl ,

δZij = Λk
iZjk − Λk

jZik + ΣijklZ
kl . (12)

In order to extendE7(7)×D to the fullE8(8), we must enlargeD to anSL(2, R)
with generators(E,F,H) in the standard Chevalley basis, together with2 × 56
further generators(Fij , F

ij) and(Eij , E
ij), where, of course,

F ij = (Fij)∗ and Eij = (Eij)∗ .
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However, under hermitean conjugation, we have

F ij = (Eij)† and Eij = (Fij)† .

Similarly, E∗ = E andF ∗ = F , butE† = F .
The grade−2,−1, 1 and 2 subspaces in the above decomposition correspond

to the subspacesg−2, g−1, g1, andg2 in (11), respectively:

F ⊕ {F ij , Fij} ⊕ {Gijkl, Gi
j ; H} ⊕ {Eij , Eij} ⊕ E (13)

The grading may be read off from the commutators withH

[H , E] = 2E , [H , F ] = −2F ,[
H , Eij

]
= Eij ,

[
H , F ij

]
= −F ij ,

[H , Eij ] = Eij , [H , Fij ] = −Fij .

Under SU(8) the new generators transform as
[
Gi

j , Ekl
]

= −δk
j Eil + δl

j Eik + 1
4δi

j Ekl ,[
Gi

j , Ekl

]
= −δi

l Ejk + δi
k Ejl + 1

4δi
j Ekl ,[

Gi
j , F kl

]
= −δk

j F il + δl
j F ik + 1

4δi
j F kl ,[

Gi
j , Fkl

]
= −δi

l Fjk + δi
k Fjl + 1

4δi
j Fkl .

The remaining non-vanishing commutation relations are given by

[E,F ] = H

and [
Gijkl , Emn

]
= δ

[ij
mn E

kl]
,

[
Gijkl , Emn

]
= − 1

24 εijklmnpq Epq ,[
Gijkl , Fmn

]
= −δ

[ij
mn F

kl]
,

[
Gijkl , Fmn

]
= 1

24 εijklmnpq Fpq ,

[
Eij , F kl

]
= −12Gijkl ,

[
Eij , Ekl

]
= 2 δij

kl E ,[
Eij , Fkl

]
= −4 δ

[i
[kG

j]
l] − δij

kl H ,
[
F ij , Fkl

]
= −2 δij

kl F ,[
E , F ij

]
= −Eij ,

[
F , Eij

]
= −F ij .

.

To see that we are really dealing with the maximally split form ofE8, let us count
the number of compact generators: in addition to the 63 generators ofSU(8), there
are56+1 anti-hermitean generators(Eij−Fij) , (Eij−F ij) and(E−F ), giving
a total of 120 generators corresponding to the maximal compact subgroupSO(16).

An important role is played by the symplectic invariant of two56 representa-
tions. It is given by

〈X,Y 〉 := i (XijYij −XijY
ij) . (14)
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The second important structure which we need to introduce is the triple product.
This is a trilinear map56 × 56 × 56 −→ 56, which associates to three elements
X, Y andZ another element transforming in the56 representation, denoted by
(X,Y,Z), and defined by

(X,Y,Z)ij := −8iXikYklZ
lj −8iY ikXklZ

lj −8iY ikZklX
lj

−2iY ijXklZkl − 2iXijY klZkl − 2iZijY klXkl

+ i
2 εijklmnpqXklYmnZpq . (15)

A somewhat tedious calculation3 shows that this triple product obeys the relations

(X,Y,Z) = (Y,X,Z) + 2 〈X,Y 〉Z ,

(X,Y,Z) = (Z, Y,X) − 2 〈X,Z〉Y ,

〈(X,Y,Z) ,W 〉 = 〈(X,W,Z) , Y 〉 − 2 〈X,Z〉 〈Y,W 〉 ,

(X,Y, (V,W,Z)) = (V,W, (X,Y,Z)) + ((X,Y, V ) ,W,Z)
+ (V, (Y,X,W ) , Z) . (16)

We note that the triple product (15) could be modified by terms involving the sym-
plectic invariant, such as〈X,Y 〉Z; the above choice has been made in order to
obtain agreement with the formulas of [3].

While there is no (symmetric) quadratic invariant ofE7(7) in the56 represen-
tation, a real quartic invariantI4 can be constructed by means of the above triple
product and the bilinear form; it reads

I4(Zij , Zij) := 1
12 〈(Z,Z,Z) , Z〉

≡ 4ZijZjkZ
klZli − ZijZijZ

klZkl

+ 1
24 εijklmnpqZijZklZmnZpq

+ 1
24 εijklmnpqZ

ijZklZmnZpq

≡ I4(Zij, Zij)∗ . (17)

2.2 Quasiconformal nonlinear realization ofE8(8)

We will now exhibit a nonlinear realization ofE8(8) on the57-dimensional vec-
tor space with basisZ := (Zij , Zij , z), wherez is real, and againZij = (Zij)∗.
While z is anE7(7) singlet, the remaining 56 variables transform linearly under
E7(7). ThusZ forms the56 ⊕ 1 representation ofE7. In writing the transforma-
tion rules we will always omit the transformation parameters in order not to make
the formulas (and notation) too cumbersome. To recover the infinitesimal varia-
tions, one must simply contract the formulas with the appropriate transformation
parameters.

3Which relies heavily on the Schouten identityε[ijklmnpqXr]s = 0.
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The generatorH acts by scale transformations:

Gi
j(Zkl) = 2 δk

j Zil , Gi
j(z) = 0 ,

Gijkl(Zmn) = 1
24εijklmnpqZpq , Gijkl(z) = 0 ,

H(Zij) = Zij , H(z) = 2 z .

(18)

TheE generators act as translations onZ; we have

E(Zij) = 0 , E(z) = 1 . (19)

and

Eij(Zkl) = 0 , Eij(z) = −iZij ,

Eij(Zkl) = δkl
ij , Eij(z) = iZij .

(20)

By contrast, theF generators are realized nonlinearly:

F (Zij) = 1
6 (Z,Z,Z)ij − Zij z

≡ −4iZikZklZ
lj −iZijZklZkl

+ i
12εijklmnpqZklZmnZpq − Zij z ,

F (z) = I4(Zij , Zij)− z2

≡ 4ZijZjkZ
klZli − ZijZijZ

klZkl

+ 1
24 εijklmnpqZijZklZmnZpq

+ 1
24 εijklmnpqZ

ijZklZmnZpq − z2 . (21)

Observe that the form of the r.h.s. is dictated by the requirement ofE7(7) covari-
ance: (F (Zij), F (Zij)) andF (z) must still transform as the56 and1 of E7(7),
respectively. The action of the remaining generators is likewiseE7(7) covariant:

F ij(Zkl) = 4iZkiZjl− i
4 εijklmnpqZmnZpq ,

Fij(Zkl) = 8i δk
i ZjmZml +i δkl

ijZ
mnZmn + 2iZijZ

kl + δkl
ij z ,

F ij(z) = 4ZikZklZ
lj + ZijZklZkl − 1

12 εijklmnpqZklZmnZpq − iZij z ,

Fij(z) = 4ZikZ
klZlj + ZijZ

klZkl − 1
12 εijklmnpqZ

klZmnZpq + iZij z .

(22)

Clearly,E7(7) covariance considerably constrains the expressions that can appear
on the r.h.s., but it does not fix them uniquely: as for the triple product (15) one
could add further terms involving the symplectic invariant. However, all ambi-
guities are removed by imposing closure of the algebra, and we have checked by
explicit computation that the above variations do close into the fullE8(8) algebra
in the basis given in the previous section. This is a crucial consistency check.
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The term “quasiconformal realization” is motivated by the existence of a norm
form that is left invariant up to a (possibly coordinate dependent) factor under all
transformations. To write it down we must first define a nonlinear “difference”
between two pointsX ≡ (Xij ,Xij ; x) andY ≡ (Y ij , Yij ; y); curiously, the
standard difference isnot invariant under the translations(Eij , Eij)! Rather, we
must choose

δ(X , Y) := (Xij − Y ij ,Xij − Yij ; x− y + 〈X,Y 〉) . (23)

This difference still obeysδ(X ,Y)=−δ(Y,X ) and thusδ(X ,X )=0, and is now
invariant under(Eij , Eij) as well asE; however, it is no longer additive. In fact,
with the sum of two vectors being defined asδ(X ,−Y), the extra term involving
〈X,Y 〉 can be interpreted as the cocycle induced by the standard canonical com-
mutation relations. In this way, the requirement ofE8(8) invariance becomes linked
to quantization!

The relevant invariant is a linear combination ofz2 and the quarticE7(7) in-
variantI4, viz.

N4(Z) ≡ N4(Zij, Zij ; z) := I4(Z) + z2 , (24)

In order to ensure invariance under the translation generators, we consider the ex-
pressionN4(δ(X ,Y)), which is manifestly invariant under the linearly realized
subgroupE7(7). Remarkably, it also transforms into itself up to an overall factor
under the action of the nonlinearly realized generators. More specifically, we find

F
(
N4(δ(X ,Y))

)
= −2 (x + y)N4(δ(X ,Y))

F ij
(
N4(δ(X ,Y))

)
= −2i (Xij + Y ij)N4(δ(X ,Y))

H
(
N4(δ(X ,Y))

)
= 4N4(δ(X ,Y))

Therefore, for everyY ∈ R
57 the “light cone” with base pointY, defined by the

set ofX ∈ R
57 obeying

N4(δ(X ,Y)) = 0 , (25)

is preserved by the fullE8(8) group, and in this sense,N4 is a “conformal invariant”
of E8(8) . We note that the light cones defined by the above equation are not only
curved hypersufaces inR57, but get deformed as one varies the base pointY. The
existence of a fourth order conformal invariant ofE8(8) is noteworthy in view of
the fact that no irreducible fourth order invariant exists for the linearly realized
E8(8) group (the next invariant after the quadratic Casimir being of order eight).

2.3 Relation with Freudenthal Triple Systems

We will now rewrite the nonlinear transformation rules in another form in order to
establish contact with mathematical literature. Both the bilinear form (14) and the
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triple product (15) already appear in [3], albeit in a very different guise. That work
starts from2× 2 “matrices” of the form

A =
(

α1 x1

x2 α2

)
, (26)

whereα1, α2 are real numbers andx1, x2 are elements of a simple Jordan alge-
braJ of degree three. There are only four simple Jordan algebrasJ of this type,
namely the3×3 hermitian matrices over the four division algebras,R, C, H andO.
The associated matrices are then related to non-compact forms of the exceptional
Lie algebrasF4, E6, E7, andE8, respectively. For simplicity, let us concentrate
on the maximal caseJOS

3 , when the matrixA carries 1+1+27+27 = 56 degrees of
freedom. This counting suggests an obvious relation with the56 of E7(7) and its
decomposition underE6(6), but more work is required to make the connection pre-
cise. To this aim, [3] defines a symplectic invariant〈A,B〉, and a trilinear product
mapping three such matricesA,B andC to another one, denoted by(A,B,C).
This triple system differs from a Jordan triple system in that it is not derivable
from a binary product. The formulas for the triple product in terms of the matri-
cesA,B andC given in [3] are somewhat cumbersome, lacking manifestE7(7)

covariance. For this reason, instead of directly verifying that our prescription (15)
and the one of [3] coincide, we have checked that they satisfy identical relations:
a quick glance shows that the relations (T1)–(T4) [3] are indeed the same as our
relations (16), which are manifestlyE7(7) covariant.

To rewrite the transformation formulas we introduce Lie algebra generatorsUA

andŨA labeled by the above matrices, as well as generatorsSAB labeled by a pair
of such matrices. For the grade±2 subspaces we would in general need another set
of generatorsKAB andK̃AB labeled by two matrices, but since these subspaces
are one-dimensional in the present case, we have only two more generatorsKa

and K̃a labelled by one real numbera. In the same vein, we reinterpret the 57
coordinatesZ as a pair(Z, z), whereZ is a2×2 matrix of the type defined above.
The variations then take the simple form

Ka(Z) = 0 ,

Ka(z) = 2 a ,

UA(Z) = A ,

UA(z) = 〈A,Z〉 ,

SAB(Z) = (A,B,Z) ,

SAB(z) = 2 〈A,B〉 z ,

ŨA(Z) = −1
2 (Z,A,Z) + Az ,

ŨA(z) = 1
6 〈(Z,Z,Z) , A〉+ 〈A,Z〉 z ,

K̃a(Z) = 2
3 a (Z,Z,Z) + 2 aZz ,

11



K̃a(z) = 1
3 a 〈(Z,Z,Z) , Z〉+ 2 az2 , (27)

From these formulas it is straightforward to determine the commutation re-
lations of the transformations. To expose the connection with the more general
Kantor triple systems we write

KAB ≡ K〈A,B〉 (28)

in the formulas below. The consistency of this specialization is ensured by the
relations (16). By explicit computation one finds

[UA, ŨB ] = SAB ,

[UA, UB ] = KAB ,

[ŨA, ŨB ] = K̃AB ,

[SAB, UC ] = U(A,B,C) ,

[SAB, ŨC ] = −Ũ(B,A,C) ,

[KAB , ŨC ] = −U(A,C,B) + U(B,C,A) ,

[K̃AB , UC ] = −Ũ(B,C,A) + Ũ(A,C,B) ,

[SAB , SCD] = S(A,B,C)D + SC(B,A,D) ,

[SAB,KCD] = −K(A,B,C)D −KC(A,B,D) ,

[SAB, K̃CD] = −K̃(B,A,C)D − K̃C(B,A,D) ,

[KAB , K̃CD] = S(A,C,B)D − S(B,C,A)D − S(A,D,B)C + S(B,D,A)C . (29)

For generalKAB , these are the defining commutation relations of a Kantor triple
system, and, with the further specification (28), those of a Freudenthal triple system
(FTS). Freudenthal introduced these triple systems in his study of the metasym-
plectic geometries associated with exceptional groups [5]; these geometries were
further studied in [1, 3, 22, 16]. A classification of FTS’s may be found in [16],
where it is also shown that there is a one-to-one correspondence between simple
Lie algebras and simple FTS’s with a non-degenerate bilinear form. Hence there is
a quasiconformal realization of every Lie group acting on a generalized lightcone.

3 Truncations of E8(8)

For the lower rank exceptional groups contained inE8(8), we can derive similar
conformal or quasiconformal realizations by truncation. In this section, we will
first give the list of quasiconformal realizations contained inE8(8). In the second
part of this section, we consider truncations to a three graded structure, which
will yield conformal realizations. In particular, we will work out the conformal
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realization ofE7(7) on a space of 27 dimensions as an example, which is again the
maximal example of its kind.

3.1 More quasiconformal realizations

All simple Lie algebras (except forSU(2)) can be given a five graded structure
(10) with respect to some subalgebra of maximal rank and associate a triple system
with the grade+1 subspace [15, 2]. Conversely, one can construct every simple
Lie algebra over the corresponding triple system.

The realization ofE8 over the FTS defined by the exceptional Jordan algebra
can be truncated to the realizations ofE7, E6, andF4 by restricting oneself to
subalgebras defined by quaternionic, complex, and real Hermitian3 × 3 matrices.
Analogously the non-linear realization ofE8(8) given in the previous section can
be truncated to non-linear realizations ofE7(7), E6(6), andF4(4). These truncations
preserve the five grading. More specifically we find that the Lie algebra ofE7(7)

has a five grading of the form:

E7(7) = 1⊕ 32⊕ (SO(6, 6) ⊕D)⊕ 32⊕ 1 (30)

Hence this truncation leads to a nonlinear realization ofE7(7) on a33 dimensional
space. Note that this is not a minimal realization ofE7(7). Further truncation to the
E6(6) subgroup preserving the five grading leads to:

E6(6) = 1⊕ 20⊕ (SL(6, R) ⊕D)⊕ 20⊕ 1 (31)

This yields a nonlinear realization ofE6(6) on a21 dimensional space, which
again is not the minimal realization. Further reduction toF4(4) preserving the five
grading

F4(4) = 1⊕ 14⊕ (Sp(6, R) ⊕D)⊕ 14⊕ 1 (32)

leads to a minimal realization ofF4(4) on a fifteen dimensional space. One can
further truncateF4 to a subalgebraG2(2) while preserving the five grading

G2(2) = 1⊕ 4⊕ (SL(2, R) ⊕D)⊕ 4⊕ 1 , (33)

which then yields a nonlinear realization over a five dimensional space. One can
go even futher and truncateG2 to its subalgebraSL(3, R)

SL(3, R) = 1⊕ 2⊕ (SO(1, 1) ⊕D)⊕ 2⊕ 1 , (34)

which is the smallest simple Lie algebra admitting a five grading. We should per-
haps stress that the nonlinear realizations given above are minimal forG2(2), F4(4),
andE8(8) which are the only simple Lie algebras that do not admit a three grading
and hence do not have unitary representations of the lowest weight type.

The above nonlinear realizations of the exceptional Lie algebras can also be
truncated to subalgebras with a three graded structure, in which case our nonlinear
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realization reduces to the standard nonlinear realization over a JTS. This truncation
we will describe in section 3.2 in more detail.

With respect toE6(6) the quasiconformal realization ofE8(8) (11) decomposes
as follows:

e7e8emb.pst

1 ⊕ 56 ⊕ (133⊕ 1) 1⊕56⊕

⊕
1

27

27

⊕

⊕
1 1

⊕

⊕

⊕
1

1 1

27

27

1

⊕
27

⊕
78

⊕
27

⊕
1

The 27 of grade+1 subspace and the27 of grade−1 subspace close into the
E6(6)⊕D subalgebra of grade zero subspace and generate the Lie algebra ofE7(7).
Similarly 27 of grade +1 subspace together with the27 of grade−1 subspace form
anotherE7(7) subalgebra ofE8(8). Hence we have four differentE7(7) subalgebras
of E8(8):

i) E7(7) subalgebra of grade zero subspace which is realized linearly.

ii) E7(7) subalgebra preserving the 5-grading, which is realized nonlinearly
over a 33 dimensional space

iii) E7(7) subalgebra that acts on the27 dimensional subspace as the generalized
conformal generators.

iv) E7(7) subalgebra that acts on the27 dimensional subspace as the generalized
conformal generators.

Similarly for E7(7) under theSL(6, R) subalgebra of the grade zero subspace
the32 dimensional grade+1 subspace decomposes as

32 = 1 + 15 + 15 + 1 .

The15 from grade+1 (−1) subspace together with15 (15) of grade−1 (+1)
subspace generate a nonlinearly realizedSO(6, 6) subalgebra that acts as the gen-
eralized conformal algebra on the15 (15) dimensional subspace.

ForE6(6), F4(4), G2(2), andSL(3, R) the analogous truncations lead to nonlin-
ear conformal subalgebrasSL(6, R), Sp(6, R), SO(2, 2), andSL(2, R), respec-
tively.
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3.2 Conformal Realization ofE7(7)

As a special truncation the quasiconformal realization ofE8(8) contains a confor-
mal realization ofE7(7) on a space of 27 dimensions, on which theE6(6) subgroup
of E7(7) acts linearly. The main difference is that the construction is now based on
a three-graded decomposition (4) ofE7(7) rather than (10) – hence the realization
is “conformal” rather than “quasiconformal”. The relevant decomposition can be
directly read off from the figure: we simply truncate to anE7(7) subalgebra in such
a way that the grade±2 subspace can no longer be reached by commutation. This
requirement is met only by the two truncations corresponding to the diagonal lines
in the figure; adding a singlet we arrive at the desired three graded decomposition
of E7(7)

133 = 27⊕ (78⊕ 1)⊕ 27 (35)

under itsE6(6) ×D subgroup.
The Lie algebraE6(6) has USp(8) as its maximal compact subalgebra. It is

spanned by a symmetric tensorG̃ij in the adjoint representation36 of USp(8) and
a fully antisymmetric symplectic traceless tensorG̃ijkl transforming under the42
of USp(8); indices1 ≤ i, j, . . . ≤ 8 are now USp(8) indices and all tensors with a
tilde transform under USp(8) rather then SU(8). G̃ijkl is traceless with respect to
the real symplectic metricΩij =−Ωji =−Ωij (thusΩikΩkj =δj

i ). The symplectic
metric also serves to pull up and down indices, with the convention that this is
always to be done from the left.

TheE6(6) generators are most simply recovered from those ofE7(7): we have

Gijkl =: G̃ijkl + 3iΩ[ijV kl] + Ω[ijΩkl]H̃
70 → 42 + 27 + 1

(36)

and (withGij := ΩikGk
j)

Gij =: G̃ij +iU ij

63 → 36 + 27
, (37)

whereG̃ij is symmetric andU ij antisymmetric; by definition all antisymmetric
tensors on the r.h.s. are thus symplectic traceless. The generatorsG̃ijkl, G̃ij form
a E6(6) subalgebra;H̃ is the extra dilatation generator. The translation genera-

tors Ẽij and the nonlinearly realized generatorsF̃ ij, transforming as27 and27,
respectively, are defined by taking the following linear combinations of the remain-
ing generatorsU ij andV ij :

Ẽij := U ij + V ij ,

F̃ ij := U ij − V ij .

Unlike for E8(8), there is no need here to distinguish the generators by the position
of their indices, since the corresponding generators are linearly related by means
of the symplectic metric.
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The fundamental27 of E6(6) (on which we are going to realize a nonlinear

action ofE7(7)) is given by the traceless anti-symmetric tensorZ̃ij transforming as

G̃i
j(Z̃kl) = 2 δk

j Z̃il ,

G̃ijkl(Z̃mn) = 1
24εijklmnpqZ̃pq , (38)

where

Z̃ij := ΩikΩjlZ̃
kl = (Z̃ij)∗ .

Likewise, the27 representation transforms as

G̃i
j(Z̄kl) = 2 δk

j Z̄il ,

G̃ijkl(Z̄mn) = − 1
24εijklmnpqZ̄pq . (39)

Because the product of two27’s contains no singlet, there exists no quadratic in-
variant ofE6(6); however, there is a cubic invariant given by

N3(Z̃) := Z̃ijZ̃jkZ̃
klΩil . (40)

As we already mentioned, both the27 and the27 are contained in the56 of E7;
we have

Zij =: Z̃ij + i Z̄ij + ΩijZ̃ + iΩijZ̄
56 → 27 + 27 + 1 + 1

,

where, of course

ΩijZ̃
ij = ΩijZ̄

ij = 0 .

We are now ready to give the conformal realization ofE7(7) on the 27 di-

mensional space spanned by theZ̃ij. As the action of the linearly realizedE6(6)

subgroup has already been given, we list only the remaining variations. As before
Ẽij acts by translations:

Ẽij(Z̃kl) = −Ωi[kΩl]j − 1
8ΩijΩkl (41)

andH̃ by dilatations

H̃(Z̃ij) = Z̃ij . (42)

The27 generators̃F ij are realized nonlinearly:

F̃ ij(Z̃kl) := −2 Z̃ij(Z̃kl) + Ωi[kΩl]j(Z̃mnZ̃mn) + 1
8 ΩijΩkl(Z̃mnZ̃mn)

+ 8 Z̃kmZ̃mnΩn[iΩj]l−Ωkl(Z̃imΩmnZ̃nj) (43)

The norm form needed to define theE7(7) invariant “light cones” is now con-

structed from the cubic invariant ofE6(6). ThenN3(X̃− Ỹ ) is manifestly invariant
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underE6(6) and under the translations̃Eij (observe that there is no need to intro-

duce a nonlinear difference unlike forE8(8)). UnderH̃ it transforms by a constant

factor, whereas under the action ofF̃ ij we have

F̃ ij
(
N3(X̃ − Ỹ )

)
= (X̃ij + Ỹ ij)N (X̃ − Ỹ ) . (44)

Thus the light cones inR27 with base point̃Y

N3(X̃ − Ỹ ) = 0 (45)

are indeed invariant underE7(7). They are still curved hypersurfaces, but in con-
trast to theE8(8) light-cones constructed before, they are no longer deformed as

one varies the base point̃Y .
The connection to the Jordan Triple Systems of appendix A can now be made

quite explicit, and the formulas that we arrive at in this way are completely analo-
gous to the ones given in the introduction. We first of all notice that we can again
define a triple product in terms of theE6(6) representations; it reads

{X̃ Ỹ Z̃}ij
= 16 X̃ ikZ̃klỸ

lj +16 Z̃ ikX̃klỸ
lj +4Ωij(X̃klỸlmZ̃mnΩkn)

+4 X̃ij Ỹ klZ̃kl + 4 Ỹ ijX̃klZ̃kl + 2 Z̃ijX̃klỸkl . (46)

This triple product can be used to rewrite the conformal realization. Recalling
that a triple product with identical properties exists for the 27-dimensional Jordan
algebraJOS

3 , we now now consider̃Z as an element ofJOS
3 . Next we introduce

generators labeled by elements ofJOS
3 , and define the variations

Ua(Z̃) = a ,

Sab(Z̃) = {a b Z̃} ,

Ũc(Z̃) = = −1
2{Z̃ c Z̃} , (47)

for a, b, c ∈ JOS
3 . It is straightforward to check that these reproduce the commu-

tation relations listed in the introduction with the only difference thatJC2 has been
replaced byJOS

3 .
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Appendix A Jordan Triple Systems

Let us first recall the defining properties of a Jordan algebra. By definition these
are algebras equipped with a commutative (but non-associative) binary product
a ◦ b = b ◦ a satisfying the Jordan identity

(a ◦ b) ◦ a2 = a ◦ (b ◦ a2) . (A.1)

A Jordan algebra with such a product defines a so-called Jordan triple system (JTS)
under the Jordan triple product

{a b c} = a ◦ (b̃ ◦ c) + (a ◦ b̃) ◦ c− b̃ ◦ (a ◦ c) ,

where˜ denotes a conjugation inJ corresponding to the operation† in g. The triple
product satisfies the identities (which can alternatively be taken as the defining
identities of the triple system)

{a b c} = {c b a} ,

{a b {c d x}} − {c d {a b x}} − {a {d c b} x} + {{c d a} b x} = 0 .
(A.2)

The Tits-Kantor-Koecher (TKK) construction [24, 13, 17] associates every JTS
with a 3-graded Lie algebra

g = g−1 ⊕ g0 ⊕ g+1 , (A.3)

satsifying the formal commutation relations:
[
g+1 , g−1

]
= g0 ,[

g+1 , g+1
]

= 0 ,[
g−1 , g−1

]
= 0 .

With the exception of the Lie algebrasG2, F4, andE8 every simple Lie algebra
g can be given a three graded decomposition with respect to a subalgebrag0 of
maximal rank.

By the TKK construction the elementsUa of the g+1 subspace of the Lie al-
gebra are labelled by the elementsa ∈ J . Furthermore every such Lie algebrag

admits an involutive automorphismι, which maps the elements of the grade+1
space onto the elements of the subspace of grade−1:

ι(Ua) =: Ũa ∈ g−1 (A.4)

To get a complete set of generators ofg we define

[Ua, Ũb] = Sab ,

[Sab, Uc] = U{abc} , (A.5)

whereSab ∈ g0 and{abc} is the Jordan triple product under which the spaceJ is
closed.
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The remaining commutation relations are

[Sab, Ũc] = Ũ{bac} ,

[Sab, Scd] = S{abc}d − Sc{bad}, (A.6)

and the closure of the algebra under commutation follows from the defining iden-
tities of a JTS given above.

The Lie algebra generated bySab is called the structure algebra of theJTS J ,
under which the elements ofJ transform linearly. The traceless elements of this
action ofSab generate the reduced structure algebra ofJ . There exist four infinite
families of hermitian JTS’s and two exceptional ones [23, 19]. The latter are listed
in the table below (whereM1,2(O) denotes1× 2 matrices over the octonions, i.e.
the octonionic plane)

J G H

M1,2(OS) E6(6) SO(5, 5)

M1,2(O) E6(−14) SO(8, 2)

JOS
3 E7(7) E6(6)

JO3 E7(−25) E6(−26)

Here we are mainly interested in the real formJOS
3 , which corresponds to the split

octonionsOS and hasE7(7) andE6(6) as its conformal and reduced structure
group, respectively.
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