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Abstract: Let ,YP~ be the moduli  space of rank r vector bundles with trivial 

determinant on a Riemann surface X.  This space carries a natural line bundle, the 

determinant line bundle S .  We describe a canonical isomorphism of the space 

of  global sections of S k  with the space of  conformal blocks defined in terms 

of  representations of  the Lie algebra 5[~(C((z))). It follows in particular that the 

dimension of H~ y k )  is given by the Verlinde formula. 

Introduction 

The aim of  this paper is to construct a canonical isomorphism between two vector 

spaces associated to a Riemann surface X.  The first of these spaces is the space of  

conformal blocks Bc(r ) (also called the space of vacua), which plays an important 

role in conformal field theory. It is defined as follows: choose a point p E X,  and let 

A X be the ring of algebraic functions on X - p. To each integer c _> 0 is associated 

a representation Vc of the Lie algebra N~(C(z))), the basic representation of level c 

(more correctly it is a representation of the universal extension of  sl~(C((z))) - see 

Sect. 7 for details), The ring A x embeds into C((z)) by associating to a function its 

Laurent development at p; then B~(r) is the space of  linear forms on V c which vanish 

on the elements A(z)v for A(z) E s[~(Ax) ,  v E V~. 

The second space comes from algebraic geometry, and is defined as follows. Let 

5 P ~ x  (r) be the moduli  space of  semi-stable rank r vector bundles on X with trivial 

determinant. One can define a theta divisor on . Y ~ ; x  (r) in the same way one does in 
the rank 1 case: one chooses a line bundle L on X of degree 9 - 1, and considers the 

locus of  vector bundles E ~ Y~4x(r )  such that E | L has a nonzero section. The 

associated line bundle c~  is called the determinant bundle; the space we are interested 

in is H ~  ~cpc). This space can be considered as a non-Abelian version of the 

* Both authors were partially supported by the European Science Project "Geometry of Algebraic 
Varieties," Contract no. SCI-0398-C(A) 
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space of  cth-order theta functions on the Jacobian of X,  and is sometimes called the 

space of  generalized theta functions. We will prove that it is canonically isomorphic 
to Be(r). By IT-U-Y] this implies that the space H~ S c) satisfies the so- 
called fusion rules, which allow to compute its dimension in a purely combinatorial 
way, giving the famous Verlinde formula ([V], see Corollary 8.6). 

The isomorphism Bc(r) _7+ HO(Y~4x(r),S~) is certainly known to the physi- 

cists - see e.g. [W]. Our point it that this can be proved in a purely mathematical way. 
In fact we hope to convince the reader that even in an infinite-dimensional context, 

the methods of  algebraic geometry provide a flexible and efficient language (though 
a little frightening at first glance!). 

Our strategy is as follows. First, by trivializing vector bundles on X - p  and on 

a neighborhood of p, we construct a bijective correspondence between the moduli 

space and the double coset space SL~(Ax)\SL~(C((z)))/SL~(C~z]]) (this is a quite 
classical idea which goes back to Weil). Sections 1 to 3 are devoted to make sense 
of  this as an isomorphism between geometric objects. We show that the quotient 

:= SL~(C((z)))/SL~(C[[z~) as well as the group SL~(Ax) is an ind-variety, 
that is a direct limit of an increasing sequence of  algebraic varieties. The quotient 

SLr(Ax)\~ makes sense as a stack (not far from what topologists call an orbifold), 
and this stack is canonically isomorphic to the moduli stack . 5 ~ x ( r  ) of  vector 

bundles on X with trivial determinant. 
The determinant line bundle S lives naturally on the moduli stack, and the next 

step is to identify its pull back to ~ .  In order to do this we first construct the central 
A 

C*-extension SL~(C((z))) and the ~- function on this group, and show that the T 

function defines a section of a line bundle ~cP x on ~ (Sect. 4). We then prove that 

the pull back of  S to ~ is isomorphic to 5 f  x (Sect. 5). A theorem of Kumar and 

Mathieu identifies the space H ~  ~ s  with the dual V* of the basic representa- 

tion Vc; it follows, almost by definition of  a stack, that H~ ~ )  can be 
identified with the elements of  V* which are invariant under the group SL~(Ax) 
(Sect. 7). This turns out to be the same as the linear forms annihilated by the Lie 

algebra: the key point is that the group SLr(Ax) is reduced (Sect. 6) - a highly 

non-trivial property in our infinite-dimensional set-up. The final step is to prove 
that the sections of ~ c  on the moduli stack and on the moduli space are the same 
(Sect. 8) - this is essentially Hartog's theorem, since the substack of non-stable bun- 

dles is of codimension > 2. 
In the last section we state and prove the corresponding result for the moduli space 

of vector bundles of  rank r and determinant L for any line bundle L on X.  
The methods of this paper should extend to the general case of principal bundles 

under a semi-simple algebraic group G. We have chosen to work in the context of 
vector bundles (i.e. G = SLy(C)) because it is by far the most important case for 
algebraic geometers, and it is easier to explain in so far as it appeals very little to the 
rather technical machinery of  Kac-Moody groups. Also the general case can be to a 
large extent reduced to this one. 

Most of this work was done in the Spring of 1992, and we have lectured in various 

places about it. In July 1992 we heard of  G. Falfings beautiful ideas, which should 
prove at the same time both our result and that of [T-U-Y] (in the more general case 
of principal bundles). These ideas are sketched in [F], but (certainly due to our own 
incompetence) we were unable to understand some of the key points in the proof. We 
have therefore decided after some time to write a complete version of our proof, if 
only to provide an introduction to Falfings' ideas. 
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Part of our results have been obtained independently (also in the context of 
principal bundles) by Kumar, Narasimhan and Ramanathan [K-N-R]. 

1. The Ind-Groups GLT(K) and SLT (K) 

K-Spaces and Ind-Schemes 

(1.1) Throughout this paper we'll work over an algebraically closed field k of 
characteristic 0. A k-algebra will always be assumed to be associative, commutative 
and unitary. Our basic objects will be k-spaces in the sense of [L-MB]: by definition, 
a k-space (resp. a k-group) is a functor F from the category of k-algebras to the 
category of sets (resp. of groups) which is a sheaf for the faithfully flat topology. 
Recall 1 that this means that for any faithfully flat homomorphism /~ ---+ R 1, the 
diagram 

F(R) -+ F(R') ~ F(R' 0 n R I) 

is exact; in most cases the verification that this is indeed the case is quite easy, and will 
be left to the reader. Any scheme X over k provides such a functor (by associating 
to a k-algebra R the set X(R)  of morphisms of Spec(R) into X); in this way we 
will consider the category of schemes over k as a full subcategory of the category of 
k-spaces. A scheme will always be assumed to be quasi-compact and quasi-separated. 

Direct limits exist in the category of k-spaces; we'll say that a k-space (resp. a 
k-group) is an ind-scheme (resp. an ind-group) if it is the direct limit of a directed 
system of schemes. Let (X~)~c I be a directed system of schemes, X its limit in the 
category of k-spaces, and S a k-scheme. The set Mor(S, X) of morphisms of S into 
X is the direct limit of the sets Mot(S, X~), while the set Mor(X, S) is the inverse 
limit of the sets Mor(X~, S). 

The Groups GL~(K) and GL~(G) 

(1.2) Let z be an indeterminate. We will denote by G the formal series ring k~z]] 
and by K the field k((z)) of meromorphic formal series in z. We let GL~(~)  (or 
GL~(k[[z~)) be the k-group R ~-+ GL~(R[[z]I), and GL~(K) (or GL~(k((z)))) be 
the k-group R H GL~(R((z))). We define in the same way the k-groups SLy(O) 
and SLy(K). For N _> 0, we denote by G(N)(R) (resp. S(N)(R)) the set of matrices 
A(z) in GL~(R((z))) (resp. in SL~(R((z)))) such that both A(z) and A(z) -1 have a 
pole of order _< N. This defines subfunctors G (N) and S (N~ of GLr (K)  and SLr(K)  
respectively. 

Proposition 1.2. The k-group GL~(G) (resp. SLy(O)) is an affine group scheme. 
The k-group GL~(K) (resp. SLy(K)) is an ind-group, direct limit of the sequence 
of schemes (G(N))N> 0 (resp. (s(:V))N>0). 

For any k-algebra R, let us denote by Mr(R) the vector space of r-by-r matrices 
with entries in R. The set GL~(R~z~) consists of matrices A(z) = ~ A~z n, with 

n>0 

1 An accessible introduction to Grothendieck topologies and descent theory can be found in the first 
pages of [SGA41]. 
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A o E GL~(R) and A N E Mr(R)  for n _> 1; therefore the group G L r ( G )  is represented 
OO 

by the affine scheme GLr(k)  x I~ Mr(k)" 
1 

Let M(N)(R) be the space of  r-by-r matrices A(z) = ~ A~z ~, with A s E 
n>_--N 

M~.(R). The functor M (N) is represented by the affine scheme ~I Mr(k), and the 
n > - - N  

functor G (N) is represented by a closed (affine) subscheme of M (N) • M (N) (identify 
G(N)(R) with the subset of  M(N)(R) • M(N)(R) consisting of couples (A(z), B(z))  
such that A(z )B( z )  = I). One has GL,~(R((z))) = U G(N)(R), hence the k-group 

N>0 

G L r ( K )  is the direct limit of  the sequence of schemes (G(N))N>_ 0. 

Let N be a non-negative integer. There exist universal polynomials 
P(~N)((A~)~>__N) (m >_ - r N )  on the affine space ~ -Mr(k ) such that the de- 

n_>-N 
terminant of an element A(z)  = ~ A~z ~ of GL~,(R((z))) is given by 

n>-N 

d e t A ( z ) =  Z P(~N)((A~)n>- - N ) z ~ "  
m>_-rN 

It follows that the functor S (N) is representable by a closed affine subscheme of  G (N). 

In particular, S (~ = SLr (~ '  ) is an affine scheme, and SLy(K)  is an ind-scheme, direct 

limit of the sequence (S(N))N_>0. [] 

GL,.(K) and Vector Bundles 

(1.3) We now start the geometric side of  this paper; we fix once and for all a smooth 

(connected) projective curve X over k, and a closed point p of  X.  We put X *  = X - p .  
We denote by G the completion of the local ring of  X at p, and by K its field of 

fractions. We will choose a local coordinate z at p and identify O with kl[z~ and K 

with k((z)). Let R be a k-algebra. We put X R = X • kSpec(R), X ~  = X *  x kSpec(R), 
:~ 2 D R = Spec(R[[z~) and D R = Spec(R((z))) . We consider the cartesian diagram 

D~ ~-+ D R 

xR. 

(1.3) 

When /~ = k, we may think of  f ( D )  as a small disk in X around p, and of 
f (D*)  as the punctured disk f ( D )  - p. We want to say that the ind-group GL~(K) 
parametrizes bundles which are trivialized on X *  and on D. 

We consider triples (E, p, c0, where E is a vector bundle on X R, 0 : ~  ---+ EIx ~ 

--+ a trivialization of  E over D R. We let a trivialization of  E over X~,  ~r : ~DR EI D R 
T(R)  be the set of  isomorphism classes of triples (E,  O, ~r) (with the obvious notion 
of  isomorphism). 

2 The R-algebras Rllzll and R((z)) do not acutally depend on the choice of a local coordinate z at 
p: RIIz]] is the completion of the tensor product R | 0 with respect to the (R | m)-adic topology, 
where m is the maximal ideal of •, and R((z)) is Rllz]]N~K. 
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Proposition 1.4. The ind-Group GL~(K) Represents the Functor T. 

Let (E, 6, or) be an element of T(R). Pulling back the trivializations Q and ~r to 
D~  provides two trivializations 6 '  and cr* of the pull back of E over D~: these 
trivializations differ by an element 7 = 6 *-1 o or* of GL~(R((z))). 

Let us now drop the suffix R to simplify the notation. Let .76" D be the quasi-coherent 
sheaf on D associated to the R[[z~-module R((z)). We have an exact sequence 

0 --+ 0 x --+ j ,  Ox ,  -~ f,(J~f'D/~D) ~ O. 

Tensofing with E and using the trivializations 0 and ~7, we get a commutative diagram 

E ) j , ( E I x .  ) > f , (E ID|  ~ 0 

T ~ 

E ~ j , ~ : .  , f , ( ~ d ' D / ~ D )  r , O. 

with exact rows 

0 

0 ) 

where "~ is the composition of the natural map j ,  O~,  -+ f ,  (~<D) ~, the automorphism 

7 -1 of f , (5{ 'Dy,  and the canonical projection f , ( ~ D )  ~ --+ f , (SSD/GDy.  
Conversely, let us start from an element "y of GL~(R((z))). We claim that the 

homomorphism -): j ,&:~,  --+ f ,(Jd'D/~D)" defined by the above recipe is surjective~ 
and that its kernel E.~ is locally free of rank r. By descent theory it is enough to 

check these assertions after pull back to X* and to D. They are clear over X*,  since 
the exact sequence reduces to an isomorphism O-~ :E7 ~ ~x*-  Over D, we observe 

that the canonical map f*f,(.~D/U~D) -~  . ~ D / ~ D  is an isomorphism (express for 
instance ~ D / O D  as the limit of the direct system 

( . . .  ---+ ~ D / ( Z  n) ~+ ~ D / ( Z  n+l ) --+ . . . ) ) .  

Therefore we get an exact sequence 

p o ~  - 1  

0 -+ f * E  ~ g6"[~ , ( J ~ D / ~ D ) )  r --+ O, 

where p : ~  -+ (HD/OD)) ~ is the canonical map. In other words, 7 induces an 
isomorphism cr : C/~ -+ f * E .  Thus E.y is a vector bundle, so we have associated to 7 
a triple (E.y, 6, ~7) in T(R). The two constructions are clearly inverse of each other, 
hence the proposition. [] 

From this proposition we get immediately 

Proposition 1.5. The ind-group SLr (K  ) represents the subfunctor T o of T which 
associates to a k-algebra t~ the set of isomorphism classes of triples (E, 6, ~7), where 
E is a vector bundle on X R, 6: ~fc~ --~ Elx~ and or'. ~YDR --+ EIDR are isomorphisms 

such that At0 and A~ cr coincide over D~. [] 

Remarks. (1.6) The condition that the trivializations Ar& and Arcr coincide over D~ 
means that they come from a global trivialization of i r E. So we can rephrase 
Proposition 1.5 by saying that To(R ) is the set of isomorphism classes of data 
(E~ 6, ~, 6), where (5 is a trivialization of f r E, ~ and (7 are trivializations of Elx ~ 

and EID R respectively, such that A~& coincide with 6ix ~ and A~a with 61D n. 

(1.7) There is an obvious extension of Proposition 1.5 which will be useful to deal 
with vector bundles with arbitrary determinant. For d E Z, let us denote by SLy(K) (a) 
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the sub-ind-scheme of GL~(K)  parametrizing matrices with determinant z -a. Then 
SLr(K)(g) represents the subfunctor o f t  which associates to a k-algebra R the set of 
isomorphism classes of triples (E,  6, ~7) over X R such that Are and zd /~ r coincide over 

D ~  (thus defining as above an isomorphism ~: ~XR (dp) ~ / ~ r  E). We could clearly 

replace z a by any element of  K in this statement. It follows in particular that the 
determinant of  a vector bundle corresponding to an element 7 of  G L r ( K  ) is ~x(dp) ,  
where d is the order of  the Laurent series det 7. 

Let us specialize Propositions 1.4 and 1.5 to the case R = k: 

Corol la ry  1.8. Let us denote by A x the affine algebra F ( X  - p, Ox).  There is a 
canonical bijective correspondence between the set of isomorphism classes of rank 
r vector bundles on X with trivial determinant (resp. with determinant of the form 
~ x  (nP) for some integer n) and the set of double classes S Lr ( A x ) \ S Lr ( K)  / S L ~ ( O) 
(resp. G L r ( A x ) \ G L r ( K ) / G L ~ ( O ) ) .  

Since two trivializations of  EID differ by an element of  GL~(~) ,  and two 

trivializations of  Eix * by an element of GL~(Ax) ,  we deduce from Proposition 1.4 

a bijection between G L r ( A x ) \ G L ~ ( K ) / G L ~ ( G )  and the set of  isomorphism classes 
of  rank r vector bundles on X which are trivial on X* .  But a projective module over 
a Dedekind ring is free if and only if its determinant is free ([B], Chap. 7, Sect. 4, 
Proposition 24), hence our assertion for GL~. The same proof applies for SLy. [] 

(1.9) Our first goal in the following sections will be to show that the bijection defined 
in Corollary 1.8 comes actually from an isomorphism between algebro-geometric 
objects. Let us observe here that the functor R ~ SL~(A x ) is a k-group, which n 
will play an important r61e in our story; we denote it by SL~(Ax) .  It is actually an 
ind-variety, limit of  the affine varieties F (N) parametrizing matrices A = (aij) with 

de tA = 1 and aij E H~ Ox(Np))  for all i , j .  We shall study this group in more 
detail in Sect. 7. 

Application: The Birkhoff Decomposition 

Let us apply Corollary 1.8 when X = p1, and p = 0. The vector bundles on 
p1 with rank r and trivial determinant are parametrized by sequences of  integers 

d = (d l ,  . . . ,  dr) with d 1 < . . .  _< d r and y~ d i = 0: to such a sequence corresponds 
the vector bundle ~,1 (d 1) �9 . . .  | ~,1 (dr), which is defined by the diagonal matrix 
z d := diag(z dl , . . . ,  zaT). The k-algebra Ap1 is simply k[z-1]. We obtain the Birkhoff 
decomposition 

S L r ( K )  = U SLr(k[z-1]) z~SLr(~,) .  (1.10) 
d 

We shall see that the big cell S L r ( K )  ~ := S L r ( k [ z - 1 ] ) S L r ( O )  is open in SLr (K) .  
More precisely, let us denote (abusively) by SLr(~ '_)  the (closed) sub-ind-group of 

SL~(k[z-1])  parametrizing matrices of the form A(z) = I + ~ Anz  -~. 
n > l  

Proposi t ion 1.11. The multiplication map # : S L r ( O _  ) • S L r ( U  ~) ---+ S L r ( K )  is an 
open immersion. 

Let first S be a scheme and ~ a vector bundle over S • p1; we denote by 
q: S • p1 ___+ S the projection map. Let S o be the biggest open subset of S over which 
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the canonical map q*q ,~  ~ ~ is an isomorphism; this is the locus of points s in 

S such that ~l{~}xl,1 is trivial 3. If  moreover the bundle glsx{0} is trivial, so is the 

restriction of  ~ to S ~ 

We apply these remarks to S = SLy(K).  Let R be any k-algebra. Clearly the map 

SL~(z-tR[z-1]) x SL~(R~z]) -~ SL~(R((z))) is injective, and its image corresponds 
to triples (E,  0, or) over P~, where the vector bundle E is trivial. Therefore p 
induces an isomorphism from SL~(z-~k[z-i]) x SL~(~)  onto the open sub-ind- 

scheme SLy(K)  ~ [] 

2. The Homogeneous Space SL~ (K)/SLr (O) 

In the preceding section we have described (Corollary 1.8) a bijection between the 
set of isomorphism classes of rank r vector bundles on X with trivial determinant 

and the double coset space SL~(Ax) \SL~(K) /SL~(O ). Our aim in this section and 
the following is to show that this gives in fact a description of the moduli space - 
actually of the moduli stack. We therefore need to understand the algebraic structure of  
the set SL~(Ax) \SL~(K)/SL~(O).  We'll start with the quotient SL~(K)/SL~(G) ,  
which will turn out to be as nice as we can reasonably hope, namely a direct limit 

of  projective varieties (Theorem 2.5 below). Let us first recall that such a quotient 
always exists as a k-space - it is simply the sheaf (for the faithfully flat topology) 

associated to the presheaf R ~ SLT(R((z)))/SL~(RI[z]]). 

Proposi t ion 2.1. The k-space ~ := SL~(K)/SLT(~) represents the functor which 
associates to a k-algebra R the set of isomorphism classes of pairs (E, ~), where E is 
a vector bundle over X R and ~ a trivialization of E over X~ such that/~0 extends 
to a triviaIization o f / ~  E. 

Let R be a k-algebra and q an element of  ~ (R) .  By definition there exists a 

faithfully flat homomorphism R ~ R' and an element 7 of  SL~(R~((z))) such that 
the image of  q in ~ ( R  t) is the class of  7. To 3' corresponds by Proposition 1.5 
a triple (E r, d ,  err) over XR,. Let R"  = R~ | Rr, and let (EI,H ~,), (E2," ~2") 

denote the pull-backs of  (E  r, d )  by the two projections of  XRr, onto XR,. Since 
the two images of 7 in SL~(RH((z))) differ by an element of SL~(R'r[[z~), these 

pairs are isomorphic; this means that the isomorphism ~r - -1  * ~2 ~1 over X R. extends to 
an isomorphism u:  El  ~ --+ E~ ~ over XR,,. This isomorphism satisfies the usual cocycle 
condition, because it is enough to check it over X* ,  where it is obvious. Therefore 

(E  ~, 0 ~) descends to a pair (E,  Q) on X R as in the statement of the proposition. 
Conversely, given a pair (E, 6) as above over X R, we can find a faithfully flat 

homomorphism R ---+ R ~ and a trivialization cr / of  the pull back of  E over D R, 
such that / ~ 7  ~ coincides with / ~  over D~r (in fact Spec(R) is covered by open 

subsets Spec(R~) such that E is trivial over DRy,  and we can take R ~ = [ I  R~). 
By Proposition 1.5 we get an element 7 r of  SL~(R'((z))) such that the two images 
of 3`r in SLT(Rr'((z))) (with R r' : / { r  | Rr) differ by an element of  SL~.(R'r[[z~); 
this gives an element of ~ (R) .  The two constructions are clearly inverse one of  each 
other. [] 

3 We are using here (and will use in the sequel) the fact that the standard base change theorems 
for coherent cohomology are valid without any noetherian hypothesis for projective morphisms (see 
[SGA6. Exp. III]). 
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Remark2.2. Instead of the k-group SLy(K)  we might as well consider the k-space 
SLy(K) (a) which parametrizes matrices with determinant z -a (1.6); we obtain exactly 

in the same way that the k-space ~a := SL~(K)(a)/SL~(0) represents the functor 
which associates to a k-algebra R the set of isomorphism classes of pairs (E, 6), 
where E is a vector bundle over X R and 6 a trivialization of E over X ~  such that 
A ~ 6 extends to an isomorphism of Ox R ( dp) o n t o / ~  E. If  3'a is an element of G Lr ( K)  

with determinant z -a, left multiplication by 3'd defines an isomorphism of ~ onto 

The same construction applies also to the case of  the group GL~, giving a k-space 
GL~(K)/GL~(O) which represents the functor associating to a k-algebra R the set 

of  isomorphism classes of pairs (E, 6), where E is a vector bundle over X R and 6 a 
trivialization of E over X~.  This k-space is a disjoint union of  the k-spaces ' 

which parametfize those pairs (E, 6) for which deg(Eix • {t}) = d for all ~ E Spec(R). 

In group-theoretic terms, ~ is the quotient GL~(K)(d)/GL~(O), where GL~(K)  (d) 

is the open and closed sub-ind-scheme of G L r ( K  ) parametrizing matrices A(z) such 
that the Laurent series 4 detA(z)  has order - d  (1.7). One sees easily that the natural 

map ~d(R) --~ ~ ( R )  is bijective when the ring R is reduced, but not in general 
- we'll  see this phenomenon in (2.4) below in another guise. This means that the 

ind-variety G L r ( K ) / G L r ( ~  ) is not reduced (6.3). We will now concentrate on the 
quotient ~ = SL~(K)/SL~(O) ,  which will turn out to be a much nicer object. 

as a Grassmannian 

The quotient space ~ is related to the infinite Grassmannian used by the Japanese 

school (see [S-W]) in the following way. For any k-algebra R, define a lattice in 
R((z)) ~ as a sub-R[[z]l-module W of R((z)) r which is projective of  rank r, and such 
that U z - n W  = R((z))L It is an exercise in algebra to show that this amounts to say 

that W is a sub-R~z]-module of  R((z)) ~ such that 

zN R[[Z]] r C W C z - N  Rgz]] r 

for some integer N,  and such that the R-module z - N R I [ z ~ / W  is projective. Let us 
say moreover that the lattice W is special if the lattice A r W c A r R((z)) ~ = R((z)) 
is trivial, i.e. equal to R[[z]] C R((z)). 

P r o p o s i t i o n 2 . 3 .  The k-space ~ (resp. GLr(K) /GL~(~) )  represents the functor 
which associates to a k-algebra R the set of special lattices (resp. of lattices) 
W C R((z)) ~. The group SLy(K)  acts on ~ by (% W)  ~-+ ~/W (for ~/E GLr(R((z))), 
w c R((z)y) .  

Let us fix the k-algebra R, and consider our diagram (1.3) 

D * ~ _ _ ~ D  

l l 
X * ~ - - ~ X  

where for simplicity we have dropped the suffix R. Let us start with a pair (E, 6) 
over X.  The trivialization ~ gives an isomorphism R((z)) ~ --+ H~ the 

4 A Laurent series ~ E R((z)) is said to be of order d if its image in F((z)) has order d for each 
homomorphism of R into a field F. 
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inverse image W of H~ E[z)) is a lattice in/~((z))  ~, and it is a special lattice if 

A~O extends to a trivialization of A ~ E over x .  

Conversely, given a lattice w in R((z)) r, we define a vector bundle E W on 

X by glueing the trivial bundle over X*  with the bundle on D associated to the 
R[[z~-module W; the glueing isomorphism is the map W | --+/~((z)) ~ 
induced by the embedding W ~ R((z)) ~. By definition E W has a natural trivialization 

~w over X* ,  and if W is a special lattice A ~  extends to a trivialization of  A ~ E 
over X.  It is easy to check that these two constructions are inverse one of  each 
other. 

Let 7 be an element of GL~(R((z))), corresponding to a triple (E, 0, ~7) (1.4). By 
construction the corresponding lattice is ~-lcr(R~z~ ~) = 7(R[[z]]~). This proves the 

last assertion of the proposition. [] 

Recall that we have denoted by S (N) the subscheme of SLy(K) parametrizing 
matrices A(z) such that A(z) and A(z) 1 have a pole of order _< N;  it is stable under 
right multiplication by S (~ = SLy(O).  We will denote by ~(N) its image in ~ ,  i.e. 

the quotient h-space s ( N ) / s  (~ 

Proposi t ion 2.4. Let F N be a free module of rank r over the ring h[z]/(z 2N) (so that 
F N is a k-vector space of  dimension 2rN),  and let G z ( r N  , FN) be the subvariety 
of the Grassmannian parametrizing z-stable rN-dimensional subspaces of F N. The 
k-space ~(lv) = S(N)/S(0) is isomorphic to a closed subvariety of G~(rN, FN) with 

the same underlying topological space. 

It was pointed out to us by Genestier that the variety G z ( r N  , FN) is not reduced, 
even in the case r = N = 1. The variety ~(N) turned out to be reduced in the 
examples we worked out, but we do not know whether this is true in general; this 

will cause us some trouble in the sequel. 

Let R be a h-algebra. An element ~/of SLr(R((z)))  belongs to S (N) if and only if 
the lattice W = 7R[[z]l ~ satisfies zN R[[z~ ~ C W C z - N  R[[z~ r. Therefore ~(ar)(R) 

is the subset of  ~ ( R )  consisting of special lattices with the above property. Let us 
associate to such a lattice its image W in R |  k F N = z NR[[z~/zNR[[z]] ~. We first 

observe that when R is a field, the lattice W is special if and only if dim W = rN:  by 
the elementary divisors theorem the R~z~-module W has a basis (z al e~, . . . ,  z d~ e~), 

where (el, . . . ,  e~) is a basis of/~[[z~ ~, and - N  < d i _< N;  both conditons are then 

equivalent to ~ d~ = 0. 
In general, let W C R((z)) ~ be a lattice such that zNR[[z~ ~ C W C z-NR[[z~ ~. 

Then W is a direct sub-R-module of F N, stable by z; if W is special, W is of  

rank r N  (because dim F F | W = r N  for every homomorphism of R into a 

field F).  Conversely, assume that W is of rank rN .  Locally over Spec(R), one has 

A ~ w = z - r N ~ R ~ z ~  for some element ~? = a o + a~z + . . .  of R[[z]]. We know that 
for each homomorphism of R into a field F ,  the image of ~ in F[[z~ can be written 
z*'Nu, where u is a unit of F[[z~. It follows that the coefficients %, . . . ,  %N-1 of 

are nilpotent, while arN is invertible. It is immediate that the nilpotent ideal I w of 
R spanned by %, . . . ,  % N - J  does not change when ~ is multiplied by a unit, and 
therefore is defined globally over Spec(R). For any ring homomorphism u : R  -+ R' ,  
the lattice R '  | W C R'((z)) ~ is special if and only if U(Iw) = O. 

This means that the functor which associates to a h-algebra R the set of  direct 
z-stable sub-R-modules W of R | FN of rank r N  such that the corresponding 
lattice W is special is represented by a closed subvariety of G z ( r N  , FN), defined by 
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a nilpotent ideal. Associating to a special lattice W C R((z)) r its image W defines a 
functorial isomorphism of ~(N) onto this functor, hence the proposition. [] 

Recall that we have denoted by S L r ( ~ _  ) the subgroup of SL~(k[z-1])  parametriz- 

ing matrices ~ A ~ z  - ~  with A 0 = I .  It is an ind-variety. 
n>_0 

The o rem 2.5. The h-space ~ = S L r ( K ) / S L ~ ( G )  is an ind-variety, direct limit o f  
the system of  projective varieties (~?(N))N>0. It is covered by open subsets which are 

isomorphic to SLr(O_ ), and over which the fibration p : S L r ( K  ) ---+ (2 is trivial. 

The first assertion follows from Proposition 2.4. Recall from Proposition 1.11 that 
the ind-group SLy(K)  contains an open subset SLy(K)  ~ which is isomorphic to 
SL~(~_)  • SL,.(G),  the isomorphism being equivariant with respect to the right action 

of SLr(O) .  Since SLy(K)  is covered by the open subsets g S L r ( K )  ~ for g C S L y ( K ) ,  
the second assertion follows. [] 

The (left) action of SLy(K)  on ~ restricts to an action on the variety ~(N) of 
the group scheme SLy(O)  (which actually acts through its finite dimensional quotient 
SL~(k[z]/(z2N))) .  We are going to study the orbits of  this action. Let us denote by 
a~ the class of [ in ~ (k ) ,  and by z a the matrix diag(z dl, . . . ,  zdT). 

Proposi t ion 2.6. a) The orbits o f  S L r ( ~  ) in ~ ( k )  are the orbits o f  the points zaaJ, 
where d runs through the sequences d 1 <_ . . .  < d~ with ~ d i = O. 

b) The orbit o f  zd'w lies in the closure of  the orbit o f  zdw if  and only if  one has 

. . .  / > d l +  + d p f o r l < _ p < r .  d~ + + dp _ . . .  

c) The subset ~(N)(k)  is the union of  the orbits o f  the points zdw, where d runs through 

the sequences with - N < d 1 <_ . . .  < d~ <_ N and ~ d i = O. 
r + l  

d) Let d(N)  denote the sequence d 1 <_ . . .  <_ d r with d i = - N  for  i < ~ - ,  d i = N 
r + l  

for  i > ~ , and dr = 0 when r is odd. Then the orbit o f  zd(N)w is dense in ~(N). 

e) The variety ~(N)  is irreducible. 

Let W be a lattice in k((z)) ~. Since k[[z] is a principal ring, there exists a uniquely 
determined sequence of integers d 1 < . a basis (e~, . . . ,  e~) of k[[z] r such 
that W is the lattice spanned by za~el, ' ' -<, dr and zd~e~; this lattice is special if and only if 

d i = 0. This means that the point W of ~ ( k )  belongs to the orbit of  zdw, which 
proves a). Since the condition W C ~(N) is equivalent to - N  < d 1 _< . . .  < d r _< N ,  
c) follows. 

The formula 

for t E k*, shows that the point za'w belongs to the closure of  the orbit of zdw 
whenever d t is obtained from d by replacing a pair of indices (di, d j )  with d i < dj 
by the pair (d i + 1, d j  - 1). An easy combinatorial argument then shows that every 

sequence d ~ with d~ + . . .  + d~ > d t + . . .  + dp for, 1 <_ p _< r can be obtained from 
d by iterating this operation, w ~ c h  proves the " i f  part of b). To prove the converse, 
observe that any matrix A(z)  in S L ~ ( O ) z a S L r ( ~ )  has the property that zd~ . . ,  z dp 

divides the coefficients of AVA(z) for 1 < p <_ r. So if z d' is a specialization of such 
a matrix one must have d 1 + . . .  + dp  < d] + . . .  + d; for all p, which gives b). 
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The assertion d) is an easy consequence of b) and c). To prove e), it remains to 
show that the group scheme SL~(~)  is irreducible; one way is to observe that the 

group scheme GL~(~)  is irreducible it is isomorphic to GL~(k) • II Mr(k), see 
1 

(1.2)), and maps onto SL~(~)  by the morphism A ~-+ A6(A) -~, where ~(A) is the 
/ 

diagonal matrix diag(detA, 1, . . . ,  1). [] 

Remark 2.7. One can refine the above decomposition of ~ as follows. Let U be the 
subgroup of SL~(~) consisting of matrices A(z) such that A(0) is upper-triangular 
with diagonal coefficients equal to 1. Using the Bruhat decomposition of SL>(k) one 
sees easily that the SL,.(O)-orbit of zdcJ is the disjoint union of the sets uza,,~, where 
d~ runs over all permutations of the sequence (dl, . . . ,  dr). This is the parabolic 
Bruhat decomposition of the Kac-Moody groups theory [Ku, S1]. 

3. The Stack SLr (O)  \ S L r  ( K ) / S L r  ( A x )  

Stacks 

We will need a few properties of stacks. Rather than giving formal definitions (for 
which we refer to [D-M] and especially [L-MB]), we will try here to give a rough 
idea of what stacks are and what they are good for. Many geometric objects (like 
vector bundles on a fixed variety, or varieties of a given type) have no fine moduli 
space because of automorphisms. The remedy is to consider, instead of the set of 
isomorphism classes, the groupoid of such objects (recall that a groupoid is a category 
where every arrow is an isomorphism). 

A stack over k associates to any k-algebra /~ a groupoid F(R), and to any 
homomorphism u:/~ --+ S a functor F(u):F(R) --+ F(S);  these data should satisfy 
some natural compatibility conditions as well as some localization properties. 

By considering a set as a groupoid (with the identity of each object as only arrows), 
a k-space can be viewed in a natural way as a stack over k. Conversely, a stack over 
/; with the property that any object has the identity as only automorphism is a k- 
space. 

Examples. (3.1) The moduli stack . ~ S x ( r  ) of rank r vector bundles on X is de- 
fined by associating to a k-algebra R the groupoid of rank r vector bundles over 
X•. Similarly, one defines a stack .YSf~x(r ) by associating to R the groupoid 
of pairs (E,~5), where E is a vector bundle over X R and ~:~X --+ A ~ E  an 
isomorphism; this is the fibre over the trivial bundle of the mo~fhism of stacks 

det : .~cr -+ .~2~x(1 ). 

(3.2) Let be F a k-group (1.1). Recall that a ]'-torsor (or principal F-bundle) over 
a k-scheme S is a k-space over S with an action of/~,  which after a faithfully flat 
extension S I -+ S becomes trivial, that is isomorphic to F • S I with the action of 
Y by multiplication. Let Q be a k-space with an action o f / ' .  The quotient stack 
F = F\Q is defined in the following way: an object of F(R)  is a Y-torsor P to- 
gether with a F-equivariant morphism a:P  -+ Q; arrows in F(R)  are defined in the 
obvious way, and so are the functors F(u). The stack Y\Q is indeed the quotient 
of Q by F in the category of stacks, in the sense that any F-invariant morphism 
from Q into a stack factors through F\Q in a unique way. If _N acts freely on 
Q (i.e. F(/~) acts freely on Q(]~) for each k-algebra R), then the stack F \ Q  is a 
k-space. 
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When Q = Spec(h) (with the trivial action), F\Q is the classifying stack BF: for 
each k-algebra JR, BF(JR) is the groupoid of F-torsors over Spec(jR). 

Proposit ion 3.4. The quotient stack SL~(Ax)\SL~(K)/SL~(G) is canonically iso- 
morphic to the algebraic stack Y ~ x  (r) of vector bundles on X with trivial determi- 
nant. The projection map 7r :SL~(K) /SL~(~)  -+ .YS~. (X)  is locally trivial for the 
Zariski topology. 

Let us denote as before by ~ the ind-variety SL~(K)/SL~(O) ,  and by ff the group 
SL~(Ax).  The universal vector bundle ~ over X • ~ ,  together with the trivialization 
o f / ~  given by ~ (Proposition 2.1), gives rise to a map 7 r : ~  ~ Y ~ x ( r ) .  This 

map is F-invariant, hence induces a morphism of stacks ~ : F \ ~  ---+ J ~ x ( r ) .  
On the other hand we can define a map . Y ~ x ( r )  --+ F \ ~  as follows. Let JR 

be a k-algebra, /~ a vector bundle over X R and 6 a trivialization o f / ~  E.  For any 
R-algebra ~, let P(S) be the set of trivializations 0 o f / ~ s  over X~ such that /~YO 

coincides with the pull back of 6. This defines a jR-space P on which the group F 
acts; by the lemma below, it is a torsor under F (it is in fact an ind-scheme, but 

we need not worry about that). To any element of P(S) corresponds a pair (Es ,  0), 
hence by Proposition 2.1 an element of ~ (S) .  In this way we associate functorially 

to an object (E,  6) of .Y~CPx(r)(JR) a F-equivariant map a :  P --+ ~ .  This defines a 
morphism of stacks 5 ~ S x ( r )  -+ ! ' \ ~  which is the inverse of  #. 

The second assertion means that for any scheme T and morphism f :T  --+ 

5 ~ x ( r ) ,  the pull back to T of the fibration 7r is (Zariski) locally trivial, i.e. admits 
local sections. Now f corresponds to a pair (E, 6), where E is a vector bundle over 
X x T and 8 a trivialization of  A ~ E.  Let f C T. By the lemma below, we can find 

an open neighborhood U of t in T and a trivialization p of E I x ,  •  modifying 0 by 

an automorphism of ~ ,  •  if necessary, we can moreover assume A ~  = 6ix,  • 

The pair (E,  6) defnes a morphism 9: U --+ ~ (Proposition 2.1) such that 7r o 9 = f ,  
that is a section over U of  the pull back of the fibration 7r. [] 

L e m m a  3.5. Let T be a scheme, and E a vector bundle over X • T with trivial 
determinant. Then there exists an open covering (U~) o f t  such that the restriction of 
E, to X* • Uc~ is trivial. 

We proceed by induction on the rank r of E - the case r = 1 being trivial. Suppose 
r >_ 2. Let us denote simply by p the divisor {p} • T in X • T. There exists an 
integer r~ such that E(r@) is spanned by its global sections and has no H 1. Let t be 

a point of T. An easy count of constants provides a section s of  E(nP)lxx{t} which 

does not vanish at any point of X.  Shrinking T if necessary, we may assume that s 
is the restriction of  a global section of  E(r~p) which vanishes nowhere on X • T. By 
restriction to X*  • T we get an exact sequence 

0 --+ ~ X * •  ---+ E I X * x T  --+ F ---+ O, 

where F is a vector bundle of rank r - 1 over X*  x T. Again by shrinking T if 
necessary, we may assume that this sequence is split and (thanks to the induction 
hypothesis) that F is trivial, so E is trivial over X*  • T. [] 

Remark3.6. The proof of the proposition applies without any modification to the 
case of vector bundles with determinant ~ ( d p ) ,  d E Z: the ind-group SL~(Ax)  
acts by left multiplication on ~d = SLy(K) /SLy(O)  (2.2), and the quotient stack 
SLy (A x) \~a  is canonically isomorphic to the moduli stack 5 Y ~ x  (r, d) parametrizing 

vector bundles on E on X ~  together with an isomorphism ~xR(dp) Z+/~ E. 



Conformal Blocks and Generalized Theta Functions 397 

Let 7a be an element of GL~(K) with det(Td) = z -d. Since left multiplication by 

7a induces an isomorphism of ~ onto ~a  (2.2), we can also describe 5~cPx(r  , d) as 

the quotient stack (72 ISL~(Ax)Td) \~ .  

Line Bundles over k-Spaces and Stacks 

(3.7) Let Q be a h-space. A line bundle (or a vector bundle, or a coherent sheaf) ~ on 
Q can be defined as the data of a line bundle (resp. a vector bundle, resp. a coherent 
sheaf) S u  on T for each morphism # of a scheme T into Q, and of isomorphisms 

9~ f:  f*J fu  Z+ S u o f  for each morphism of schemes f : T  I -+ T; these data must 
sai'~sfy the obvious compatibility conditions. Morphisms of line bundles (resp . . . .  ) 

are defined in an analogous way; in particular, a section of S is a compatible family 

of  sections su ~ H~ S , ) ,  which means g,  f ( f* s~)  = .S~of for all f :T  / ~ T. We 
leave to the reader to check that all the standard constructions for line bundles on 

schemes extend naturally to this situation. 
Of course these definitions coincide with the usual ones when Q is scheme. 

Suppose Q is an ind-scheme, limit of  an increasing sequence Q .  of schemes; then 
a line bundle ~ on Q is determined by the data of  a line bundle (L~) on Q~ 

for each n, and isomorphisms LqiQp Z+ Lp for q _> p, again with the obvious 

compatibility conditions. The space H~ ~ )  is then the inverse limit of  the system 

(H~ Ln))~>l. 
These definffions can be easily generalized to the case of  stacks. A line bundle 

on a stack J is defined as the data of  a line bundle ~ ,  on T for each scheme 

T and object # of the groupoid Y ( T ) ,  and of an isomorphism 9~ : f ' L ,  -+ L ,  

for each morphism f : T  ~ --~ T and each arrow a : f * #  -+ v in .Y(T  ~) - these data 
should satisfy some standard compatibility conditions. A section of  ~ is again given 
by a family of  sections su C H ~  such that 9~(f*su)  = s~ for each arrow 

a: f * #  -~ u in .Y(T~). 

(3.8) Example: the determinant bundle. Let T be a scheme and E a vector bundle on 

X x T. The derived direct image R(prT) , (E) is given by a complex of  vector bundles 
L ~ ~ L 1. The line bundle det(L l) | det(L~ -1 is independent of the choice of  this 

complex, hence canonically defined on T; this is the "determinant of the cohomology" 

de tRPT(E ). Associating to each bundle E on X x T the line bundle detRPT(E)  
defines a line bundle S on the stack J S x ( r  ) (or . ~ x ( r ) ) ,  the determinant line 
bundle. 

There is a useful way to produce sections of  the line bundle d e t R r T ( E  ) and 
of  its multiples. Suppose for simplicity that T is integral, and that the line bundle 
/ ~ / ~  is the pull back of  some line bundle on X.  Let F be a vector bundle of 

rank s on X ;  let us use the same notation to denote its pull back to X • T. 
Then the line bundle detRPT(t~ | F) is isomorphic to (detJRF, r(E))| (write F 
as an extension to reduce to the case s = 1, then use repeatedly the exact sequence 
0 ~ E --+ E(q) ~ E | (O(q) /O)  --~ 0 to prove that the line bundle det RFT(E(D )) 
is isomorphic to det RDm(E ) for may divisor D on X).  Put E t := Eix• for t E T. 

Choose F such that the vector bundle E t | F has trivial cohomology for some t in T. 

Let L ~ 2+ L1 be a complex of  vector bundles isomorphic to R(prrc). (E | F). Then 
det u is a nonzero section of  det RFT(E |  -~- (det RFm(E))| which is well defined 
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up to an invertible function on T. In particular, its divisor O F is canonically defined 
on T (the support of O F is the set of points t E T such that H~ E t @ F) • 0). 

Example3.9. Let G be a h-group, H a/c-subgroup of G, and • :H  -+ G ~  a character 
of H.  As usual we associate to this situation a line bundle ~ x  on G/H: the group 

Hacts freely on the trivial bundle G x A 1 by h. (9, 0 = (gh,)~(h-1)~) and we define 
S x as the quotient Mspace (G • A1)/H. It is an easy exercise in descent theory to 

prove that the pull back of the fibration ~c~ ___+ G / H  by any morphism # : T  -+ G / H  
is indeed a line bundle (use the fact that # lifts locally to G, and that the pull back 
of ~ to G is the trivial bundle). Again by descent, sections of S z corresponds in a 

one-to-one way to sections of the trivial bundle G • A 1 over G which are H-invariant, 

that is to functions f on G such that f(gh) = )~(h-1) f(9) for any h-algebra/~ and 
elements 9 C G(R), h c H(t~). 

There is a more fancy way to describe the line bundle H)c. Consider the classifying 
stack BG~ over h (3.2). A morphism # : T  ~ B G ~  is given by a G~-torsor over 
T, which defines a line bundle ~,u over T: this defines the universal line bundle ~ 

over B G ~ .  As a stack over BG~, it is simply the quotient A 1/G m. The character 
)~:H -+ G ~  induces a morphism B)c:BH -+ BG~,  hence a line bundle (B;~)*~ on 
t?H. The structural map G -+ Spec(h) induces a morphism of stacks G / H  --+ t3H, 
hence by pull back we get a line bundle on G/H, which is (almost by definition) 

Let G ~ be another Mgroup, H ~ a Msubgroup of G ~ and f : G ~ -+ G a morphism of 
h-groups which maps H ~ into H.  It follows from either of these definitions that the 
pull back of ~ x  by the morphism G~/H ~ -+ G / H  induced by f is the line bundle 

~c~ X, associated to the character )~ := ;~ o f of H ~. 

4. The Central Extension 

Let l r : ~  --+ 5 ~ S x  (r) be the canonical morphism of stacks defined in the preceding 
section, and 2~ the determinant line bundle on 5 ~ x ( r )  (3.8). We want to identify 
the line bundle 7 r*S  on ~ .  

It will turn out that, though it is invariant under the action of SLr(K),  this line 
bundle does not admit an action of SLy(K). But it does admit an action of a canonical 

extension SL,,(K) of SLy(K), which we are now going to describe paraphrasing 

IS-W]. 

The Canonical Extension of the Fredholm Group 

(4.1) Let V be an infinite-dimensional vector space over h. Denote by Endf(V) 
the two-sided ideal of End(V) formed by the endomorphisms of finite rank and by 

.Y(V) the group of units of the quotient algebra End(V)/Endf(V).  The elements of 

.-~2-(V) are classes of equivalence of endomorphisms with finite-dimensional kernel 
and cokernel. We let .Y(V) ~ be the subgroup of classes of index 0 endomorphisms, 
i.e. endomorphisms with dim Keru -- dim Coker u. It is an easy exercise to show 
that the image of the canonical homomorphism Aut(V) --+ ~ ( V )  is /7(V)~ its 

kernel consists of the automorphisms ~ of V such that u -- a r (mod. Endf(V)). 
The determinant of such an endomorphism is naturally defined, e.g. by the formula 
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det(/ + v) = ~ TrA~v. Let us denote by ([ + End/(V))l the subgroup of 
n_>0 

automorphisms of the form I + v with v E Endf(V) and det(I + v) = 1; we get 

an exact sequence 

1 --~ k* --+ A u t ( V ) / ( I  + Endf(V))l --+ 2 ( V )  ~ --+ 1. 

For v E Endf(V), u C Aut(V), one has det(I + uvu  -1) = det( /+ v); this means that 
the element I + v belongs to the center of the group A u t ( V ) / ( I  + Endf(V))l. We 
have thus defined a canonical central extension of the group .ff'(V) ~ by k*. 

(4.2) We want to make sense of this in an algebraic setting, at least at the level 
of k-groups. We define the k-space End(V) in an obvious way, as the functor 
R ~ EndR(V | R), and the k-group Aut(V) as its group of units. We'll say that an 
endomorphism of V | has finite rank if its image is contained in a finitely generated 

submodule; we define Endf(V) (R) as the ideal formed by these endomorphisms, and 

take for .cff~-(V) the group of units of the algebra End(V)/Endf(V).  We don't know a 
good definition for the subgroup 5 ( V )  ~ so we just define it as the image of Aut(V) 
in ~-(V).  We then get again a central extension of k-groups 

(g-)  1 --~ G.~ ---* A u t ( V ) / ( ]  + Endf(g)) l  -~ .~176 --~ 1. 

The Central Extension of  S L y ( K )  

Let us go back to the ind-group GLT(K ). We choose a supplement V of G T in K r. 
For any k-algebra, we get a direct sum decomposition (over k) 

R ( ( z ) y  = VR � 9  ~ , 

with V R := V | R. Let ~/be an element of GL~(R((z))) ,  and let 

( a ( 7 )  b(7)~ (4.2) 
"~= \c(3') d(7)] 

be its matrix with respect to the above decomposition. Let 0~(,,/) denote the class of 

a(7) in End(VR) / EndZ(VR). 

Proposition 4.3. a) The map 7 H ~(~/) is a group homomorphism from GLr(_R((z))) 
into .Y(VR);  it defines a morphism of  k-groups: 

6.: G L r ( K  ) ~ .Y(V).  

b) Let V ~ be another supplement of  0 ~ in K ~ and let ~ : GL~.(K) --~ .Y(V ~) be the 
morphism associated to V ~. Let qo: V --~ V ~ be the isomorphism obtained by restricting 
to V the projector onto V ~. Then (t ~ is equal to pg~9~ -1. 

Since ~, maps R[[z~*" into z - N R ~ z ~  ~ for some N,  the map b('y):R[[z~ ~ ~ V R 
has finite rank. From this and the formula for the product of two matrices follows 
first that the endomorphism a of V R is invertible modulo finite rank endomorphisms, 
then that the map GL(R((z ) ) )  --+ 9 - ( V )  (R) which associates to "~ the class of a(~/) 
is a group homomorphism. This proves a). 

Let p, q be  the projectors of R((z))  ~ onto V~ and R[[z]K relative to the 

decomposition R((z))  ~ = V[~ 0 R[[z~ ~, and let (a'(~/)c,(~/) d~(7)b'(~/)J~ be the matrix of 
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an element "7 E GL~(R((z))) relative to this decomposition. An easy computation 
gives pa(~) = a'(~)p + b~('y)q. Since b1(y) has finite rank, we get the equality 

a'(7 ) -- ~a(7)~ -~ (mod. Endf(V•)). [] 

Proposition 4.4. Let R be a k-algebra and y an element of SL~(R((z))); locally 
on Spec(R) (for the Zariski topology), the endomorphism a('7) of V~t is equivalent 

rood. Endf(VR) to an automorphism. 

By Proposition 4.3b), it is enough to prove the result for one particular choice of 
V; we'll take V = (z- lk[z-1])  y. The assertion is clear when "7 belongs to SLy(R[[z~) 
or to SL~(t~[z-J]): in those cases the matrix (4.2) is triangular, so that a('7) itself 
is an isomorphism. The result then follows when R is a field, since any matrix 
~' E SLy(R((z)))  can be written as a product of elementary matrices I + ),E~j, where 

7~ can be taken either in R~z~ or in R[z-1]. The general case is a consequence of 
the following lemma: 

Lemma 4,5. Locally over Spec(R), any element "7 of SLy(R((z)))  can be written 
",/o',/-3, + , with "7o C SLy(K),  ~ -  E SL~(R[z-1]), "7+ E SLr(]~[[z]]). 

Let us assume first that the k-algebra R is finitely generated. Let t be a closed 

point of Spec(R); put "7o = "7(t). By (1.11) ~7o1"7 can be written in a neighborhood of 
t as "7-'7 + , hence the result in this case. 

In the general case, R is the union of its finitely generated subalgebras R~. Let 
p:SL~(K) -~ #ff = SLy(K) /SLy(~)  be the quotient map. Since ~ is an ind-variety, 
the morphism poT: Spec(R) --+ ~ factors through Spec(/~)  for some c~. Locally over 
Spec(R~), this morphism can be written poT~ for some element ~),,~ of SL~(R~((z))), 
which differ from ~/by an element of SL~(RIIz]]) (Theorem 2.5). Since R~ is of finite 
type, the lemma holds for 7~, hence also for '7. [] 

Corollary 4.6, The image of SLy(K)  by ~ is contained in the subgroup ~ ( V )  ~ [] 
A 

We will denote by SLy(K) ~ SLy(K) the pull back of the central extension (3") 
by O~, so that we get a central extension of k-groups 

(~) 0 ---+ G~ -+ S~L~(N) ~-~ SLy(K) ---+ 0. 

By descent theory any G,~-torsor over a scheme is representable, so the k-group 

SLy(K) is also an in&group. 
i 

(4.7) Let R be a k-algebra; an element of SLy(K) (R) is given, locally on Spec R, by 

a pair (~7, u) with '7 in SL~(R((z))), u in Aut(Va), and u ~= a('7) (rood. Endf(VR)); two 

pairs (% u) and ("7, v) give the same element if u - i v  (which belongs to I+Endf(VR)) 
has determinant 1. In particular, the kernel of ~ consists of the pairs (I, u) with 

u c I + E n J ( V ) ,  modulo the pairs ( I ,u)  with detu = 1; the map u ~ detu 
provides an isomorphism from Ker ~ onto Gin. 

Because of Proposition 4.3b), the extension (~) is independent of the choice of 
the supplement V of ~Y in K y. More precisely, given two such supplements V and 

V ~, there is a canonical isomorphism from the group SLy(K) defined using V onto 

the group SLy(K) defined using Vr: it associates to a pair ("7, u) as above the pair 
(% @u~p-1), where @ is the natural isomorphism fi'om V onto V ~ (loc. cit.). One can 
then define in the usual way a canonical central extension of SLy(K) by taking the 
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projective (or inductive) limit, over the set of all supplements of ~ in K ~', of the 
extensions we have constructed. 

(4.8) Let H be a sub-k-group of SLy(K), such that O r (resp. V) is stable under 
H. Then the extension (~) is canonically split over H. For any element ~, of H(R) 
satisfies b(~,) = 0 (resp. c(-y) = 0), so that the map ,~ ~-~ a(~,) is a homomorphism 
from H(/~) into Aut(VR). Then the map ~, ~ (~,, a(2/)) defines a section of ~ over H. 

In particular, we see that the pull back SLy(G) of SL~(~) is canonically isomorphic 

to SL~(~) • G~. We will denote by ;~0 :SLr(dP) ~ G~ the second projection; if the 

element 5 of S/"L~(O) is represented by a pair (~, v), one has X0(~) = det(a(~5)-%). 
More generally, suppose that there exists an element A C SL,~(K) such that the 

subgroup H preserves the subspace , k ( ~ )  (resp./~(V)). We choose an automorphism 

u of V such that u _= a(A) (mod. Endf(V)), and define a section of ~ over H by 
"), ~ ua( l -12&)u -I .  This section is independent of the choice of u, so once again 

the group H embeds canonically into SLy(K). 

The Lie Algebra of the Central Extension and the Tate Residue 

(4.9) We want to show that at the level of Lie algebras, the extension (~) is the 
universal central extension which appears in the theory of Kac-Moody algebras [K]. 
This is essentially known (see e.g. [A-D-K], where very similar computations appear). 
We have included the computation because it is extremely simple and gives a nice 
generalization of the residue defined by Tate in [T]. 

Let us start from the central extension (S ) .  Since .-2-(V) is the group of invertible 

elements of the associative algebra End(V)/Endf(V),  its Lie algebra is simply 

the quotient of the Lie algebra End(V) by the ideal EndY(V). The Lie algebra of 

(I  + Endf(V))l is the sub-Lie algebra Endf(V)0 of Endf(V) consisting of traceless 
endomorphisms. Therefore the Lie algebras extension corresponding to ( S )  is 

(5) 0 -+ k --~ End(V)/gndf(V)0 --+ End(V)/Endf(V) ---+ 0. 

Let c~ be an element of ~[~(k((z))); it corresponds to the element [ + ec~ of 
SL~.(k[c] ((z))). Since a(I + ca) = [ + ca(a), the tangent map L(0~) at I to 

0~:SL~(K) -+ .~2-(V) associates to a the class of a(a) in End(V)/Endf(V).  By 
construction the extension of s[,.(K) we are looking for is the pull back of ~ by 

A 

L(g). This means that the Lie algebra sI~(K) of SL~(t() consists of pairs (a, u) with 

a E sIT(K), u C End(V), a(a) = u (mod. Endf(V)); two pairs (a, u) and (a, v) give 
the same element if Tr(u - v) = 0. We get a central extension 

(~) o ~ k ---, ~iT(K) L(~)  ~ ( K )  ~ 0 

with L(~) (a ,  u) = a, the kernel of L(~) being identified with k by (0, u) ~ Tru. As 
before, this extension does not depend on the choice of the supplement V of ~ in 
K L  We claim that it is the well-known universal central extension of M~(K). Recall 
that this extension is obtained by defining a Lie algebra structure on ~[~(/() | k by 
the formula 

( [(c~, s), (/3, t)] = [c~, t3], Res 0 Tr ~ / 3  ; 
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the projection p onto the first summand and the injection i of the second one define 

the universal central extension 

i 
(ll) o ~ k -~ s i r (K)  ~ k A s l r (K  ) -~ 0.  

Proposi t ion 4.10. There exists a Lie algebra isomorphism ~'[~.(K) -% s[~(K) | k 
inducing an isomorphism of the extension ~ onto the universal central extension of 
~[~(K). 

It is enough to prove the proposition for one particular choice of V; it will 

be convenient to choose for V the subspace ~_~, where ~ denotes the subspace 

z - l k [ z  -1] of K.  

Let us define a map ~:~'[~(K) ~ s[~(K) | k by qD(c~,u) = (c~,Tr(u - a(c~))). 
One has p o p = L(~) and ~ induces an isomorphism of Ker L@) onto i(k); this 

implies that ~ is bijective. It remains to check that ~ is a Lie algebra homomorphism. 
Since ~ maps K e r L @ )  into the center i(k), it is enough to prove the equality 
~p([~,/~]) = [~(Sz), ~p(/3)] for 5~ = (c~, a(a)), /~ = (/3, a(/3)). This amounts to the 

following formula: 

L e m m a  4.11. Let a,/3 be two matrices in M~(K). One has 

Tr([a(a),  a(/~)] - a([a,/3])) = Res0Tr ~ z / 3  . 

This is precisely Tate's definition of the residue [T] in the case r = 1; we will 

actually reduce the proof to the rank 1 case. 
Assume first that for some integer N one has c~ E z N§ M~(O), /3 ~ z - N M r ( ~ ) .  

For p > 0, let us denote by Vp the subspace V N z - P O  ~ of V. Then (Vp)p>_o is 
an increasing filtration of V, and for each p _> 0, the endomorphism [a(a), a(/3)] - 

a([a,r maps Vp into Vp_ 1. This implies that its trace is zero, which gives the 

formula in this case. 
By bilinem'ity, we can therefore assume that c~ and /3 are polynomial in z, and 

even of the form zPA for some integer p and some matrix A C M~(k). Let us identify 
K ~ with K | k~" The direct sum decomposition K ~ = V G ~ is induced by tensor 
product from the decomposition K = &~_ O O.  It follows that a(z p | A) is a 1 (z p) | A, 
where al(ZP ) is the endomorphism of O_ associated to z p. Since the trace of u | M,  

for u E Endf(G_)  and M E M~(k), is (Tru ) (TrM) ,  and since the endomorphisms 

z p and z q of K commute, we obtain 

Tr([a(zP A), a(zq B)] - a([zP A, zq B]) = Tr A B  Tr[al (ZP), al (zq)] . 

It remains to compute the trace of  the (finite rank) endomorphism u = [al(zP), al(zq)] 
of ~_ ,  which we do using the basis (z-'~)n>l of ~ .  One has u(z ~) = ~ z  p + q - n  , 

with e E { - 1 , 0 ,  1}; therefore T ru  is zero except when p + q = 0. Assume q = - p  
and, say, p >_ 0; then we find u(z -~)  = 0 for n > p, and n(z -~) = z -~  for 
1 _< n _< p. We conclude that Tr[al(zP), al(zq)] = @ _ q p  = Reso(pzP-lzq), from 

which the proposition follows. [] 

(4.12) The above computations extend in a straightforward way when the base field k 
is replaced by an arbitrary k-algebra R. In particular, the kernel of  the homomorphism 

SLy(K)  (R[~]) ~ SLy(K) (R) is the Lie algebra s[~(R((z))) = s[~(R((z)))| where 
the Lie bracket is defined by formula (4.10). This defines an adjoint action of the 

A 

group SL~(R((z)))  onto z[r(R((z))), which is trivial on the center and induces on the 
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quotient Nr(R((z)))  the usual action by conjugation. We claim that it is given by the 
following formula: 

~z  a . (4.12) 

In fact, let 2/ ~ SL~(R((z))), and let 1 be a R-linear form on s[~,(R((z))). The 
condition for the map (a, s) ~ (2/a'7 -1, s + l(c0) to be a Lie algebra homomorhism 

) is l([a,/3]) = Res 0 Tr \ dz 2//37-1 - -~z/3/" Since the Lie algebra ~[~(S), for 

any ring S, is equal to its commutator algebra, this condition determines I uniquely. 

On the other hand, it is checked readily that the linear form a ~-~ Res 0 Tr (2/-  1 d7  a~  
has the required property. \ dz ] 

The ~- Function 

Let R be a k-algebra, and 5/an element of SLy(K)  (R). Locally on Spec(R) we can 

write 5/= (2/, u) with 2/in SL~(R((z))), u in Aut(VR) and u -- a(2/) (rood. Endf(Vn)). 
We associate to this pair the element Tv(2/, u) := det(ua(2/-1)) of R. This is clearly 

well-defined, so we get an algebraic function 7 v on SLy(K).  

Proposi t ion4.13.  Let R be a k-algebra, 5/ an element of SL~(K)(R) .  One has 

7-v (5/~) = Xo (~)'rv (5/) for all ~ in S~'Lr (~ )  (R). 

Let us choose representatives (2/, u) of 5/ and (6, v) of 5. Since b(6 -1) = 0, one 
has a(6-12/-1) = a(8-1)a(2/-1), and 

~-v(5/~) = det(uva(6-l)a(2/-1)) 

= det(va(~-l))det(ua(2/-1))  = Xo(~)Tv(5/). [] 

(4.14) Let us denote by X the character Xo I of S~'L~(&). The function 7- v thus defines 

a section of the line bundle ~ x  on the ind-variety ~ = SL~(K) /SL~(O)  (3.8). 

More generally, let 5 E SLy(K),  and let ~ be a lift of 5 in S"-L~(K); the function 

5/~+ Tv(6-15/) still defines an element of H ~  2~x), whose divisor is ~(div(Tv)). 
To conclude this section, let us mention that one gets slightly more natural 

conventions by having the group SLy(G) acting on the left on SL,,(K): in particular 
the twist 2/~+ 2/-1 in the definition of the ~- function disappears, and the ~- function 
becomes a section of Yxo" We have chosen instead to follow the standard conventions 

of Kac-Moody theory. 

5. The Determinant Bundle 

We will now compare the pull back over ~ of the determinant line bundle ~ on the 
moduli stack with the line bundle S x we have just described. 

Proposition 5.1. Let R be a k-algebra, 2/ an element of GL~(R), and (E, ~, ~) the 
corresponding triple over X• (1.4). There is a canonical exact sequence 

o -~ H~ E) ~ A~x | R ~ (R((z))/R~z~y ~ HI(XR, •) -~ O, 
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where ~ is the composition o f  the injection A~x | R ~-+ R((z))  ~ deduced from the 

restriction map A x --~ k((z)), the automorphism 7-1 :R( ( z ) )  ~ -+ R((z) )  ~, and the 

canonical surjection R((z ) )  ~ -+ (R ( ( z ) ) /  R[[z~) ~. 

In fact this is the cohomology exact sequence associated to the exact sequence 

0 ---+ E ~ j . O f ; ,  ~ f , (3;CD/OD) r ---+ 0 

defined in (1.4). [] 

(5.2) Let us choose an element % in G L ~ ( K )  such that the associated bundle E,7 ~ 

has trivial cohomology. According to what we have just seen, this means that the 

map %:A~;  --+ ( K / O )  ~ is an isomorphism, or in other words that the subspace 

V := 7o1(A~)  is a supplement o f G  ~ in K ~. Let us identify A )  to V with the help 
of  7o, and the quotient map K ~ --+ ( K / ~ )  ~ to the projection of K ~ onto V; we 

,-/ 1,70 
obtain that ? is the composition of the mappings V ~ K ~ ~ K ~ ~ V. In 
other words, ~ is the coefficient a(7-170) of the matrix of  7-170 with respect to the 
decomposition K ~ = V | ~'~ (Sect. 4). We have thus obtained: 

Proposi t ion 5.2. Let 7 be an element o f  GL~.(R((z))), and let E be the associated 

vector bundle over X R. There is a canonical exact sequence 

a(o '-  170) 
0 --~ H ~  E)  ---+ V R ~ V R ---+ H ~ ( X ~ ,  E)  ---+ O. [] (5.2) 

Corol lary  5.3. Assume that there exists an automorphism u o f  V R such that u = 

a(7o17) (mod. Endf(VR)). Then there is an exact sequence 

vo 

0 --+ H ~  ---+ V o ---+ V o --+ H I ( X R , E )  --+ O, (5.3) 

where V o is a free finitely generated R-module, and det(vo) = ~-v(7o17, u). 

Let v = u a ( 7 - 1 % )  E I + EndI(VR), and let V 0 be a free finitely generated 

direct factor of  V R containing Im(v - I).  We denote by v o the restriction of v to 
V 0. The matrix of v relative to a direct sum decomposition V R = V 0 (9 V 1 is of  the 

f o r m (  v0 * )  0 I , from which one gets at once detv o = detv = ~-v(7olT, u). It also 

follows that Ker v 0 = Kerv and that the inclusion V 0 ~-~ V R induces an isomorphism 

Cokerv 0 & Cokerv,  so we deduce from (5.2) the exact sequence (5.3). [] 

The order of detT0 is r( 9 - 1) (1.7), so we can choose 7o so that 6 = z-(g- l )70 
belongs to S L y ( K ) .  

Proposi t ion 5.4. Let T be an integral scheme, and E a vector bundle on X • T,  with 

a trivialization ~ over X *  x T,  such that A~p extends to a trivialization o f  A r E. 

Let # : T  --~ ~ be the corresponding morphism (2.1). Assume that f o r  some t E T, 

the bundle EI x • {t}((g - 1)p) has trivial cohomology. Then the determinant bundle 

det R F T ( E  ) (3.8) is isomorphic to the line bundle # *~c~ x, and the theta divisor O(g_l) p 
is the pull  back o f  the divisor ~5(div Tv). 

Since Y x  = @(g (d i v  Tv)) (4.13), the first assertion follows from the second one, 
which is local over T. Therefore we may assume that T = Spec(R), and that # 
is defined by an element 7 of SL~(R( (z ) ) )  (2.5). The vector bundle E((  9 - 1)p) is 
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defined by the element zg- l ' , /of  GL~(R((z))). By shrinking Spec(R) if necessary, we 

may assume that there exists an automorphism u of V R such that u = a(zg-l"/ol~/) 

(mod. EndI(VR)) (4.4); the result then follows from Corollary 5.3. [] 

Corollary 5.5. The pull back 7r*~/~ is the line bundle ~4~ on ~ associated to the 
character X. 

By Proposition 6.4 below we can write ~ as a direct limit of integral subvarieties 
Q~. For n large enough, some points of Q~ will correspond to vector bundles E on 
X such that E(( 9 - 1)p) has trivial cohomology. Therefore by (5.4) the line bundles 
7 r*~  and ~ x  have isomorphic restrictions to Q~ for n large enough, hence they are 
isomorphic. [] 

6. The Group SLr(Ax) 

The next sections will be devoted to descend from the ind-variety ~ to its quotient 
S L r ( A x ) \ ~ ,  which is isomorphic to the moduli stack J ~ x ( r ) .  In order to do this 
we will need an important technical property of the ind-varieties ~ and SL~(Ax), 
namely that they are integral. We first study a particular case (from which we will 
deduce the general case): the group SL~(Ax) when X = p1 and p : 0. This is 
simply the k-group SL~(k[t]) with t = z -1. 

Proposition 6.1. The k-group SLr(k[t]) is the direct limit of an increasing sequence 
(F(N))N>I of subvarieties which are integral, normal, and locally complete intersec- 
tions. 

For any k-algebra R, define F(N)(R) as the set of matrices of degree < N in 
SL~(R[t]). The k-space F (N) is represented by a closed subvariety of M~(k) N+I, 

defined by the equation det ~ Ant ~ = 1. In other words, F (N) is the fibre over 
r~=0 

1 of the map det :M~(k) N§ ~ SrN (we denote by Sa the space of polynomials in 
t of degree _< d). 

N 

Let F(o N) be the open subset of F (N) consisting of matrices A(t) = ~ AnU with 
n=0 

rk(A N) = N -  1 (the equality det A(t) = 1 forces rk(AN) < N -  1). Let us first prove 

that the map det : M~(k) N*I ~ S~N is smooth along I~(oN). Let A(t) E F(o N), and 

let M(t) = A(t) -1. The differential of det at A(t) is the map B(t) H TrM(t)B(t).  
The minor Mij(~) is of degree _< (r - 1)N, and its highest degree coefficient is the 

corresponding minor for the matrix A N. Since A(t) belongs to F(o N) there exist indices 
i, j such that Mij(t ) has degree exactly ( r -  1)N. Then the minors Mid(t), . . . ,  Mi~(t), 

viewed as elements of H~ 1, ~ , l ( ( r -  1)N)), have no common zeros: this is clear 
at infinity, because Mij(t ) does not vanish, and on the affine line it follows from the 

formula ~ Mik(t)Aki(t ) = 1. Therefore the usual resolution for the ideal spanned 
k 

by the maximal minors of a matrix of type (r, r - 1) gives an exact sequence 

0 ~ ~ ; i  - I  A[i] (Mil ,  ..., Mir)  
~ ( N y  ~ ~ (rN) -~ O, 

where A[i] is obtained by deleting the ith column of A(t) (see e.g. [P-S], Lemma 3.1). 
Taking cohomology we see that the map (Pj) H ~ PkMik of S ~  into S~N is 

k 
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surjective, which implies the surjectivity of  TA(t)(det ). Therefore /,~N) is smooth, 

with the expected dimension r2(N + 1) - ( r N  + 1). 

We will now prove that F (N) is irreducible, and that 1 "(N) -17(o N) is of  codimension 

> 2. An element A(~) of/~(N) can be viewed as an homomorphism A ( t ) : @  

Op1 (N) ~, which is bijective over p1 _ {oc}. Let us denote as before by ~ = h[[z]] 
the complete local ring of p1 at ec. Then the cokernel of A(t)  is of the form 
O / ( z  dl) | . . .  | G/(za~),  with 0 _< d 1 < . . .  <_ d~ and ~ d i = rN .  The elements 
z al, . . . ,  z a~ are the invariant factors of the matrix A(t) at oc (i.e. of  the matrix 
z N A ( z  -~) over the ring h[[z]]). In particular the case (0, . . . ,  0, r N )  corresponds 

exactly to FO(N). 

Let d = (dl, . . . ,  dr) be a sequence of integers satisfying the above properties. 
Let us denote by C a the ~ -modu le  |  Using the local coordinate z 
we can identify the k-vector space H o m ( @ 1 ( N )  r, Cd) with C~. Let H d be the 
open subset of this vector space consisting of those homomorphisms qo such that 
~ ( - 1 )  H ~  - 1) ~) --+ C a is bijective. This means that the vector bundle 
K e r ~  is trivial; it admits a unique trivialization ~- such that the composite map 

A ~ ( t ) : ~ l  Z+ K e r ~  ~-+ @ t ( N )  ~ is the identity at 0. Let us consider the map 

Pd:Hd • SL~(k)  --+ 1 ~(N) defined by Pd(~, B)  : A~( t )B .  The image of Pd is the 

locally closed subvariety of P (N) consisting of matrices A(t)  with invariant factors 
at infinity (z dl , . . . ,  zd~). We see that these subvarieties are irreducible; in particular, 

the open subset _N0(N) is irreducible. 
The automorphism group G d := Aut~(Cd) acts freely on H a, and p clearly factors 

through this action. The group G d is an affine algebraic group, which can be realized 

as an open subvariety of the space (~  H o m ~ ( G / ( z  d~), ~(zdJ)) .  An easy computation 

gives d i m G  a = (2r - 1)d 1 + (2r - 3)d 2 + . . .  + d r >_ r N  + 2 if dr_ 1 / O. Since 

dim H a = reN,  we conclude that 

dim P (N) - FO(N) <_ (raN + r e - 1) - ( r N  + 2) = dim 1~ N) - 2. 

Since P (N) is defined by r N  + 1 equations in k r:(N+l) , every component of P (2v) 

has dimension _> re (N + 1) - ( r N  + 1) = dimFg N). We conclude that P (N) is 

irreducible, and is a (global) complete intersection in N+I M~(h) . In particular it is 
locally complete intersection, hence Cohen-Macaulay, and normal by Serre's crite- 
rion. ~3 

Remark6.2. Let /~d (lv) be the image of Pd; it follows easily from the proof that Pd 

induces an isomorphism of (Ha/Ga) x SL~(h) onto Fa (N). So we get a stratification 

of/--(N) by the smooth subvarieties F (N), which admit a very explicit description. 

One sees easily for instance that the variety/ , (N) is rational. 

(6.3) We now come back to the general case. Let us say that an ind-scheme is reduced 
(resp. irreducible, resp. integral) if it is the direct limit of an increasing sequence of 
reduced (resp. irreducible, resp. integral) schemes. 

L e m m a  6.3. Let X be an ind-scheme, limit of  an increasing sequence of  schemes. 

a) I f  X is reduced, and is the direct limit of  an increasing sequence (Xn)  of  schemes, 
then X = ~ ( X , ~ ) ~ d .  

b) I f  X is covered by reduced open sub-ind-schemes, X is reduced. 
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c) X is integral if and only if it is reduced and irreducible. 

d) Let V be a scheme. If V >< X is integral, X is integral. 

Let us prove a). Let (Yn) be an increasing sequence of reduced schemes such that 
X = h Y ~ .  We have to prove that any morphism f from an affine scheme into 

X factors through some (X~)re d. But f factors through some Yv' and the inclusion 
~-+ X factors through some Xq. Since Yp is reduced, f factors through (Xq)rea. 

YP Let us prove b). Write X = limX~; we want to show that given p C N, the 

inclusion Xp ~ X~ factors through (X,~)re d for n large enough. Since Xp is quasi- 
compact it is enough to prove this statement locally over Xp, so we are reduced to 
the case where X is reduced; then it follows from a). 

The assertion c) follows from a). Let us prove d). Let (T~) be an increasing 
sequence of reduced schemes such that V x X = limT~. Let p: V x X ---+ X denote 

the second projection. Choose a point v C V(k), and let s v : X --+ V x X be the section 
of p defined by s~(v) = (v, y). Since X is and ind-variety, the induced morphism 
p: T~ ---+ X factors through a subvariety T~ of X, which we may assume to be reduced 
(resp. irreducible) if T~ is reduced (resp. irreducible). Let S be an affine scheme, and 
f : S  -+ X a morphism; writing f = p o sv o f we see that f factors through T~ for 
some n. Therefore X is the direct limit of the varieties T~. [] 

Proposition 6.4. The ind-varieties (2 and SL~(A x )  are integral. 

The ind-variety ~ is reduced by Theorem 2.5, Proposition 6.1 and Lemma 6.3b), 
and irreducible by Proposition 2.6e). To prove the result for SL~(Ax), we'll use the 
well-known fact that the open substack Y . ~ x ( r )  ~ of J ~ x ( r )  parametrizing stable 
bundles is the quotient of a smooth variety H by a group GLM(k) (see Sect. 8 for 
an explicit construction). Consider the cartesian diagram 

y' 

'1 + 7r 7r 

f 
H > Y ~ x  (r) 

with H ~ = H x y s x ( ~  ) ~ .  Reducing H if necessary we may assume that H ~ is 

isomorphic to SL~(Ax) x H (Proposition 3.4). The ind-variety ~ is integral and the 
morphism ff  is smooth with connected fibres (it makes H ~ a GLM(k)-torsor over 
~ ) ;  therefore H ~ is integral, and so is SL~(Ax) by Lemma 6.3d). [] 

Corollary 6.5. ~ is the direct limit of the integral projective varieties/O(N) 
r e d  " 

This follows from Proposition 6.4 and Lemma 6.3a). [] 

Corollary 6.6. Every character x:SL~(Sx)  --+ G ~  is trivial. 

We claim that the derivative of X (considered as a function on SL~(Ax)) is 
everywhere 0. In fact, since X is a homomorphism, this is equivalent to saying that 
the Lie algebra homomorphism L(X):s[~(Ax) -+ k is zero. But for any commutative 
ring R the Lie algebra s[(R) is equal to its commutator algebra, so any Lie algebra 
homomorphism of s[(Ax) into k is trivial. 

Let us write SLr(Ax) as the limit of a sequence V,~ of integral varieties. The 
restriction of X to V~ has again zero derivative, hence is constant. Since 1 belongs to 
V n for n large enough, one has Xlvn = 1 for all n, that is X = 1. [] 
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This has the following interesting consequence: 

Proposition6.7. There is a unique embedding of SL~(Ax)  in SLy(K)  lifting the 

inclusion SL~(Ax) C SLy(K).  The corresponding embedding i :~[~(Ax) ~ ~'[~(K) 
A A 

is given in terms of the decomposition M~(K) = M~(K) @ k (4.10) by i(c~) = (c~, 0). 

The unicity of the lifting follows from 6.6. To prove the existence, choose an 
element ~ in SLy(K) such that the bundle E6((9 - 1)p) has trivial cohomology. The 
subspace V := z-(O-1)~-l(A~x) is a supplement of ~ in K ~ (5.2), and the elements 
of  SL~(Ax) preserve 6(V), so the universal extension splits over SL~(Ax) (4.7). 
To prove the assertion about the Lie algebras, the simplest way is to notice that the 

embedding of M~(Ax) in ~'i~(K) will also be unique, so it is enough to check that 

i is a Lie homomorhism. By Proposition 4.10, we must prove Res 0 Tr ~zz/3 = 0 

for c~,/3 in M~(Ax); but this is a consequence of the residue theorem. [] 

7. The Space of Sections of the Determinant Bundle 

(7.1) The aim of this section is to identify the space of sections of  the (powers of) 
the determinant bundle over the moduli stack Y S  x (r) in group-theoretic terms. We 
first need some general formalism about descent. We will consider a k-space Q and 
a k-group F acting on Q (on the left). This means that we are given a morphism 
r a : F  • Q -~ Q satisfying the usual conditions of a group action. Let F\Q be the 
quotient stack (3.2), and 7r:Q --4 F\Q be the canonical map. 

We suppose given a line bundle J /d 0 on F\Q (3.7). Its pull back . /~  = 7r*./~ 0 

to Q has a canonical F-linearization, that is an isomorphism ~: m*~/~ 2+ pr~,/~ 
satisfying the usual cocycle condition. Though we will not need it, let us observe 
that conversely, any line bundle on Q with a /Minear iza t ion  comes by descent theory 
from a uniquely determined line bundle on F\Q. 

We'll  say that a section s E H~ ./~) is F-invariant if ~( ra*s)  = pr~s. We will 
need the following formal lemma about quotient stacks: 

Lemma 7.2. The map 7r* : H ~  J~'0) --~ H~ J~) induces a isomorphism of 
H~ ~ o )  onto the space of F-invariant sections of ~/~. 

Since 7r o m = 7r o q, the pull back of a section of J~0  is F-invariant. Conversely, 
let s be a F-invariant section in H~ J/d), and let # be a morphism of a scheme S 
in to /~ \Q .  Recall (3.2) that # corresponds to a diagram 

# 
P ~ Q 

l l 
/z 

s ~ c \ Q  

where P is a F-torsor over S and the map/2  is F-equivariant. By construction the 
section/2*s over P is F-invariant (in the preceding sense); we want to show that it is 
the pull back of a unique section s~ over S. By standard descent theory, it is enough 
to check this locally for the faithfully flat topology, so we can suppose P = F • S. 
Saying that #*s  is F-invariant means that for any map u:T -+ F, where T is a 
scheme, the section (y • l s )*/2*s  on T • S satisfies the usual descent condition with 



Conformal Blocks and Generalized Theta Functions 409 

respect to the projection T x S -~ S. Therefore this section descends to a unique 
section s~ E H~ #*J~o), which is clearly independent of T, and satisfies the 

required property. [] 

(7.3) In this situation, each element of  F(R) gives an automorphism of the k-space 
Q• := Q • Spec(R), hence acts on the space H ~  we get in this way a 
representation of the (abstract) group F(k) in the space V := H~ SZ). If  Q is 
a scheme, the space H~ J~R) is canonically isomorphic to V R, so the above 
representation is algebraic in the sense that it is given by a morphism of k-groups 
F --~ Aut(V). This is no longer true when Q is only an ind-scheme, because inverse 
limits do not commute with tensor products. They do however commute with tensor 
products by finite-dimensional algebras over k, so what we get is a morphism of F 
into Aut(V) viewed as functors on the category of finite-dimensional k-algebras. In 
particular the homomorphism F(k[e])  --4 Autkk](V | k[c]) defines in the usual way 
a representation of the Lie algebra Lie(F)  on V. 

Proposi t ion 7.4. Suppose F and Q are integral ind-varieties (6.3). Let s E V = 
H ~ J~). The following properties are equivalent: 

(i) The section s is F-invariant; 

(ii) The element s of V is invariant under the action ofF(k); . 

(iii) s is annihilated by Lie(F).  

(i) implies that for every k-algebra R the image of s in H~ ~ R )  is invariant 
under F(R) ;  taking R = k (resp. R = k[r gives (ii) (resp. (iii)). 

Suppose (ii) holds. Then the section ~7 = ~(m*s) - p r o s  on F x Q vanishes by 
restriction to {'7} x Q for all 7 C F(k) ;  in particular, its value at any k-point of  F x Q 
is zero. Since F • Q is reduced, this implies cr = 0, hence (i). 

Suppose (iii) holds. Let q E Q(k), and let iq:F ~-+ F • Q denote the injection 

"Y ~ (7, q). The line bundle i ~ J ~  is trivialized once we choose a generator of . ~  at 

q, so we may consider i*cr as a function over F: its value at a point 7 E F(R) is 

obtained by evaluating the section 7*s  - s at q. The hypothesis (iii) means that the 
derivative of this function is identically zero. As in the proof of  Corollary 6.6 this 
implies that c~ vanishes on F x {q} for all q in Q(k), which implies as before ~r = 0. 
[] 

(7.5) Let G be a k-group, H a subgroup of G, and Q the quotient G/H. The group G 
acts on Q by left multiplication. Recall that we have associated to each character X of 
H a line bundle ~cP x on Q (3.9). We claim that this line bundle admits a canonical G- 

linearization. The easiest way to see that is to notice that the quotient stack G\Q can 
be canonically identified with the classifying space BH, with the morphism Q --+ B H  
induced by the structural map G --+ Spec(k). We have seen in (3.9) that ~ x  is the 
pull back of a line bundle on BH,  hence our assertion. 

(7.6) Let us now go back to our situation, and consider the action of the ind-group 

SLy(K)  on the ind-variety ~ .  According to (7.5) the line bundle -~x on ~ admits 

a canonical SL~(K)-linearization. We therefore obtain an action of the Lie algebra 

s'[,,(K) on the space H ~  and similarly on the spaces H ~ 1 6 3  for all 
c C N. The identification of this representation is an important result of Kumar and 
Mathieu [Ku, M]. Before stating it, we need to recall a few facts about representations 
of Kac-Moody algebras, for which we refer to [K]. 
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Let us introduce the triangular decomposition ~[~(K) = r~_ | ~ @ n+, where ~? is 
the Cartan algebra of diagonal matrices in 5[~(k) and n+ (resp. n_) the Lie subalgebra 

of matrices ~ A~z ~ ( resp. ~ A~z-~'~ such that the matrix A 0 is strictly upper 
n_>0 \ n>0 / 

(resp. lower) triangular. The most interesting representations of the Lie algebra ~'[~(K) 
are the so-called integrable highest weight representations 5; they are associated to a 
dominant weight A of the simple Lie algebra s[~(k) and an integer c _> (A, c~}, where 
6z is the highest root of ~[~(k). The highest weight representation V~, c corresponding 
to the weight )~ and the integer c is characterized by the following properties ([K], 

9.10): it is irreducible, and element t of the central factor k C ~[~(K) acts as the 
homothety of ratio ct, and there exists a vector v E V~,~ which is annihilated by n§ 
and satisfies Hv = A(H)v for all H in b. The vector v, which is uniquely determined 
up to a scalar, is called a highest weight vector of the representation. 

We will be mainly interested in the case A = 0; the corresponding representation 
V c (c > 0) is sometimes called the basic representation of level (or charge) c. In this 
case the annihilator of a highest weight vector vc E V c is ~[~(~). 

Theorem 7.7 (S. Kumar, Mathieu). The space H~ ~ )  is isomorphic (as a z'[~(K)- 

module) to the dual of the basic representation V~ of level c of ~[~(K). 

This theorem is proved in [Ku] and [M], with one important difference. Both S. 
Kumar and Mathieu define the structure of ind-variety on SL~(K)/SL~(~)  in an 
ad hoc way, using representation theory of Kac-Moody algebras; we must show that 
it coincides with our functorial definition. For instance Kumar, following Slodowy 
IS1], consider the representation Vo for a fixed c, and a highest weight vector vc. The 
subgroup SLy(O) is the stabilizer of the line kv~ in P(Vc), so the map g ~ gv~ 
induces an injection i~:SL~(K)/SL~(~) ~ P(V~). Let U be the subgroup of 
SL~(~) consisting of matrices A(z) such that A(0) is upper-triangular with diagonal 
coefficients equal to 1; to each element w of the Weyl group is associated a "Schubert 
variety" X w which is a finite union of orbits of U. It turns out that the image under 
ic of X~ is actually contained in some finite-dimensional projective subspace P~ 
of P(V~), and is Zariski closed in P~. This defines on Xzo a structure of reduced 
projective variety, and a structure of ind-variety on SL~(K)/SL~(~)  = limX~. 

To check that this ind-variety coincides with ~ ,  we will use the fact that the 
map i~ is actually a morphism of ind-schemes of ~ into P(V~) (which is the direct 
limit of its finite-dimensional subspaces). In fact, we will prove in the Appendix 

below, following G. Faltings, that the integrable representation V~ of ~'[~(K) can be 

"integrated" to an algebraic projective representation of SLy(K), that is a morphism 

of k-groups SLy(K) ---+ ZPGL(V~). We claim that i c is an embedding. It is injective 
by what we said above; let us check that it induces an injective map on the tangent 

spaces. Since it is equivariant under the action of SLy(K) it is enough to prove this 
at the origin cu of ~ ;  then it follows from the fact that the annihilator of v c in the 

Lie algebra s[~(K) is s[~(~). 
Therefore the restriction of i~ to each of the subvarieties ~(N) is proper, injective, 

and injective on the tangent spaces, hence is an embedding (in some finite-dimensional 
projective subspace of P(V~)). Each X,o is contained in some ~ ( N )  and therefore is 

5 In [K] they are defined as representations of ~,(h[z, z t]), but we will see in (A.1) below that 
they extend to Laurent series: 
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a closed subvariety of ~'~(N)red ' Each orbit of U is contained in some X~; since the 

X w's define an ind-structure, each ~(N) is contained in some X~, so that /.~(N) is red 

a subvariety of X~o. Since ~ is the direct limit of the /o(N) the two ind-structures ' ~ red  , 
coincide, and the theorem follows from the Kumar-Mathieu theorem. [] 

It remains to descend to the quotient F \ ~ ,  i.e. to apply Proposition 7.4 in the 
case where Q is the ind-variety ~ ,  and F the ind-group SL~(Ax). The quotient stack 
F \ ~  is the moduli stack J Y x ( r )  (3.4); we take for J/d 0 a power ~ c  (e 6 N) of the 
determinant bundle Y on Y ~ x  (r). What corresponds to J ~  is the line bundle S s  

on ~ (Corollary 5.5). Since cS x is the pull back of S ,  it has a canonical SL~(Ax)- 

linearization; on the other hand, it has a natural SL~(K)-linearization (7.5), and we 
know that the inclusion of SLT.(Ax) in SLy(K) lifts canonically to an embedding of 

SL~(Ax) in SLy(K) (6.7), which gives another SL~(Ax)-linearization of ~x"  We 
claim that these two linearizations are the same. Actually there is no choice: 

Lemma 7.8. The line bundle . .~ admits a unique SL~( A x )-linearization. 

Let us write F = SL~(Ax). Two D-linearizations differ by an automorphism of 
P*Yx' i.e. by an invertible function on /" x ~ .  Since ~ is the direct limit of the 

integral projective varieties/~(N) (6.5), this function is the pull back of an invertible ~ r e d  
function f on F; the cocycle conditions on the linearization imply that f is a character, 
hence f = 1 by (6.6). [] 

Therefore the action of the Lie algebra ~[~(Ax) on H ~  S x )  is the restriction 

via the natural embedding (6.7) of the action of ~'[~(K) on H ~  S x )  --~ V* 

(Theorem 7.7). Since the ind-varieties ~ and SL~.(Ax) are integral (Proposition 6.4), 
we can apply Lemma 7.2 and Proposition 7.4, and we get: 

Theorem 7.9. The space H ~  ~cpc) is canonically isomorphic to the space 
of conformal blocks t~(r), that is the subspace of V* annihilated by the Lie algebra 
~E~(Ax). [] 

Example 7.10. The only case where a direct computation seems possible is the case 
9 = 0. We take as before X : pI, p = 0, so that Ap1 = k[z-1]. The space B~(r) is 
the dual of l/'JfS + V~, where ~+  is the augmentation ideal of the enveloping algebra 

of s[~(k[z-1]). By definition of a highest weight module, V~ is generated as a ~4- 
module by a highest weight vector v~, and one has Vc =/~v~ �9 ~(+ v~ =/~v o | ~-+ V~. 
We conclude that the space H~ (r), ~%~c) is one-dimensional for all c. 

Remark 7.11. One can deduce from the results of Mathieu that the Picard group of 
is generated by the line bundle ~ x  (see [M, Proposition 5]). It then follows from 

Lemma 7.8 that the Picard group of S P S x  (r) is generated by the determinant bundle 
Y (the corresponding statement for the moduli space &~4x(r  ) is proved in [D-N]). 

Appendix to Sect. 7: Integration of Integrable Highest Weight Modules 
(According to Faltings) 

In this appendix we want to show that integrable highest weight representations of 

the Lie algebra ~I~(K) can be integrated to algebraic representations of the group 

SLy(K). We will actually content ourselves with a projective representation of this 
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group, since this is sufficient for our purpose and that the complete result requires 
some more work. 

(A.1) Let us denote by ~'[~(k[z,z-1]) the sub-Lie algebra s[r(k[z,z-1])  | k of 
A 

s[~(K) = ~[r(k(((z)))| k (4.10). Let V be an integrable highest weight module 

for s[~(k[z, z -1]). The integrability property has the following consequence: 

For each vector v in V there exists an integer p such that A(z)v = O for every element 
A(z) = ~ Anz  n of Nr(k[z,z-1]).  

n>_p 

This means that the homomorphism ~r:~'[~(k[z, z - I ] )  ~ End(V) is continuous when 

s'[~(k[z, z - l ] )  is endowed with the z-adic topology, V with the discrete topology, 
and End(V) with the topology of pointwise convergence. It implies that ~r extends 
to a continuous homomorphism - still denoted by ~r - from the z-adic completion 

s'[~(K) of ~[~(k[z,z-1]) to End(V): one has \ ( ~ > - N  ] : 7r ~ A n z ~  1r(A~z~), 
n>_-N 

where the second sum is Iocallyfinite, i.e. on each vector, all but finitely many of the 
endomorphisms in the sum are zero. More generally, for any k-algebra R, one gets 

by tensor product a homomorphism 7r R :s'[~(k[z, z - l ] ) |  R ---+ End(VR), which by 
A 

continuity extends to M~(R((z))) (4.12). 
Suppose 7r is the derivative of an algebraic representation (i.e. a morphism of k- 

groups SLr(K) --+Aut(V)), such that the center of SLy(K) acts on V by homotheties. 
Then we get a projective representation of SLy(K) in V, that is a homomorphism 
0 of SLy(K) into the quotient k-group P G L ( V )  := Aut(V)/G,~, whose derivative 
L(0 ) :s[~(K) ---+ End(V) /k l  v coincides with 7r up to homotheties. We claim that we 
can always find such a representation: 

Proposition A.2. Let 7r :~'[~(K) ---+ End(V) be an integrable highest weight represen- 
tation. There exists a (unique)projective representation 0:SLy(K) ~ P G L ( V )  whose 
derivative coincides with 7r up to homotheties. 

The proof which follows has been shown to us by G. Faltings. 

Lemma A.3. Let R be a k-algebra and "7 an element of SL~(R((z))). Locally over 
Spec(R), there exists an automorphism u of V R, uniquely determined up to an invertible 
element of R, satisfying 

UTFR(O[)U -1 - =  7rR(Ad(7 ) (o~)) (A.4) 

for any ct E ~'[~(R((z))) (cf (4.12)for the definition of the adjoint action). 

We'll say for short that an automorphism u satisfying the above condition is 
associated to "7. 

Let us show first that this lemma implies the proposition. Thanks to the unicity 
property, the automorphisms n associated locally to ~, glue together to define a 
uniquely determined element 0('7) in P G L ( V ) ( R ) .  Still because of the unicity 

property, 0 is a homomorphism of k-groups of SLy(K) into PGL(V) .  Let/3 c ~'[~(K); 
the element 0(exp c/3) of PGL(Vk[~]) can be written as the class of an automorphism 

I + eu~ of Vk[~], where u~ is an endomorphism of V whose class in End(V) /k l  v 
is L(~)(/3). Formula (A.4) applied to R = k[e] and "y = exp e/3 gives [u/3, ~r(c0] = 

[7c(/3), 7r(c~)] for each c~ in ~'[~(K). Since 7r is irreducible this implies that u/~ coincides 
with 7c(/3) up to homotheties [K, Lemma 9.3], hence the proposition. [] 
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We will prove Lemma A.3 in several steps. 

a) Let us prove first the unicity assertion;, We just need to observe that an endomor- 

phism u of V R which commutes with zcR(s[~(R((z))) ) is a homothety: for each k-linear 

form q):R ~ k, the endomorphism (1 v | ~) o u of  V commutes with ~r(s'[~(K)), 
hence is a homothety, from which it follows that u is a bomothety. 

b) Assume that 7 is the exponential of  a matrix u E sl~(R((z))) which is either 
nilpotent, or of  pos i t iveorde r  (so that its exponential is well-defined). Then the 

automorphism Ad(7) of s[~(R((z))) is the exponential of  the derivation ad u. Because 
of the continuity property of 7c R (A.1), the series exp(~rR(u)) is locally finite, hence 
defines an automorphism u of VR; one has 

7CR(Ad('~) (c0) = exp(ad 7rR(u) ) (c0 = uTrR(c~)u-1, 

so u satisfies (A.4). 

c) Let us observe that if two elements 7, ~ of  SL~(R((z))) have associated automor- 
phisms u and v, then uv  is associated to 75. If  R is a field, so is R((z)), hence any 
element of  SL~(R((z))) is a product of  elementary matrices I + AE~j = exp(AE~9. 
The result then follows from b). 

d) The exponential mapping is a bijection from the space of matrices ~ A~z n with 
n > l  

zero trace onto the group of matrices B(z) = I + ~ B~z ~ with determinant 1 (the 
n > l  

inverse bijection is given by the logarithm), so b) gives the result for the matrices 
B(z). Let now 7 E SLy(R); locally over Spec(R) we can again write 7 as a product 
of  elementary matrices, so the result follows as in c). Finally we see that the result 
holds for 7 in SL,.(R[[z]]). 

e) Assume now that the ring R is local artinian; let ra be its maximal ideal 
and ~ its residue field. The quotient map R ~ ec has a section, so the group 
SL~(R((z)) is a semi-direct product of  SL~(t~((z)) by the kernel N of the map 
SL~(R((z))) --+ SL~.(~c((z)). The lemma holds for 7 ~ SL~(~((z))) by c). The 
elements of  N are of  the form [ + A(z), where all the coefficients of  A(z) belong 
to mR((z));  since m is nilpotent, I + A(z) is the exponential of  a nilpotent matrix, 
hence the lemma holds for the elements of N by c) and therefore for all elements of  
SL~(R((z))). 

f) We now arrive at the heart of the proof, the case 7 ~ SL~(R[z-1]). Let us observe 
that in this case one can normalize the automorphism u of V R in the following way. 
Let ~4(n_) be the enveloping algebra of  n (7.6), and ~4*(n_) its augmentation ideal. 
The space V is spanned as a ~4(n_)-module by a highest weight vector v, and the 

quotient V/~*(n_)V  is one-dimensional. Therefore the R-module VR/~;*(n_)V a 
is free of rank 1. Since 7 normalizes n | R, u induces an automorphism of this 
R-module,  so we can choose u (in a unique way) so that it induces the identity 
mod. ~4*(n_)V R. 

Since the group SL~(~_)  is an ind-variety, we may assume that the k-algebra R 
is finitely generated. We will prove the existence of an associated automorphism u 
by induction on dim(R). 

Let Pl, - - . ,  P~ be the minimal prime ideals of R, and S = R - Upi. Over the 
arthinian ring S - ~ R  (isomorphic to [ I  Rp~) we can construct by e) an automorphism 

"5; S of  VS-I R associated to 7. Let us denote by ~ the enveloping algebra of ~'[~(/(). 
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Observe that (A.4) is equivalent to saying that u is a semi-linear endomorphism of 
the O-module V• relative to the automorphism Ad@) of O.  Since the O-module 
V is finitely presented ([K], 10.4.6), we can find an element f of S such that f u  s 
comes fi'om a ( O  | R, Ad(7))-linear endomorphism uf  of V R (chase denominators 

in generators and relations). Then the class of uf(v) f v  in VR/O*(n_)V R is 
annihilated by some element s of S, so repalacing f by f s  we may assume 

uf(v) =_ v (mod. O*(n_)VR). Moreover we can modify f so that fu~ I also comes 

uf u ~ from an endomorphism u'  of V R, such that the endomorphisms -~- and ~- of VRs 

are inverse of each other. 
Since f E S, one has dim(R/f~M) < dim(R) for each n, hence the induction 

hypothesis provides a normalized automorphism of V=R/Z~ a satisfying (A.4). These 

automorphisms define an autom0rphism ~2 of the f-adic completion 19 R of V R. On the 

other hand, u I extends to an endomorphism gf  of I?R; one has ~21 _= f ~  (rood. f~f/R) 
for all n, hence ~21 = f~2. 

Unfortunately VR is bigger than V~ := V | if we choose a basis (e~)~ r of V, 

the elements of Va are formal sums ~ r~e~, where for every n > 0, f~  divides all 

but finitely many of the v~'s. However, since/~ is noetherian, there exists an integer 

n such th~at Ann~(f  ~) = Ann~(f  ~+1 ), which implies f~/~ n Ann~(f)  = 0; therefore 

an element x of VR such that f x  C V~ belongs itself to V~. Coming back to our 
situation, we deduce from the formula ~2f = f~2 that ~2 induces an endomorphism 

of V~; using the same construction with u~ I shows that ~-1 also preserves V~, 
so that g is an automorphism. It acts trivially on VrJO*(n_)V~, because it does 
mod. f~  for all n. 

uf By the unicity property, the automorphisms -7- of VRI and ~2 of V~ have the 

same image in Aut(V~| Since the homomorphism R ---+ Rf  x /~ is faithfully 

flat, they can be glued together to define an automorphism u of V R, which satisfies 

2Zf (A.4) because both ~ -  and ~2 do. 

g) Finally the general case follows from Lemma (4.5) and cases c), d) and f). [] 

8. From the Moduli Stack to the Moduli Space 

The last step is to compare the sections of the determinant bundle (or of its powers) 
over the moduli space and over the moduli stack. Throughout this section we assume 
g -> 1 (by Example 7.10 there is essentially nothing to say in the case g = 0). 

(8.1) We first review briefly the standard construction of the moduli space (or stack) of 
vector bundles. For each integer N, we will denote by . 5 ; ~ x ( r ) N  the open substack 
of Y S x ( r )  parametrizing vector bundles E on X such that H~(X, E(Np)) is 0 and 
H~ E(Np)) is generated by its global sections. Let h(N) = dim H~ E(Np)) 
(= r(N + 1 - q)). Choosing an isomorphism k h(N) -+ H~ E(Np)) realizes E as 
a quotient of the bundle ~>x(-Np) h(x). The stack which parametrizes such quotients 
is represented by a smooth scheme K~v. Let ~Y be the universal quotient bundle over 
X •  and let q : X x K N -+ K N denote the second projection. The sheaf q , / ~  
is the sheaf of sections of a line bundle on KN: let H N be the complement of the 
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zero section in this line bundle. By construction H N parametrizes quotients E of 
G x ( - N p )  h(N) together with a trivialization o f / ~  E. The group GL(h(N))  acts on 

H N, and the quotient stack is .Y~G'JX(r)N. 
We'll denote by 5 r ~ x ( r )  ~ the open substack of 5 ~ S x ( r )  parametrizing semi- 

stable bundles, and by H ~  the corresponding open subset of H N. We'll assume 
N _> 29, which implies that J S x ( r )  ss is contained in .SP~x(r )N.  

Lemma  8.2. The codimension of H N - H~v ~ in H N is at least 2. 

For each pair of integers (s, d) with 0 < s < r and d > 0, let us define a stack 

.Y~cP)d(r) by associating to a k-algebra R t h e  groupoid of triples (E, F, ~) where 
E is a rank r vector bundle over X R, F a rank s subbundle of degree d, and 

a trivialization o f / ~  E. Forgetting F gives a morphism of stacks of 5 ~ ) d ( r )  to 
5 ~ S x  (r); the (reduced) substack 5 P ~ x  ( r ) - . S  CSx (r) ~ is the union of these images 

(for variable s, d). According to [L, Corollary 2.10], the dimension of 5 P S ) d ( r )  is 
(9 - 1) (r 2 -- 1 + s 2 - rs) - rd, so the codimension of its image is at least rd, which 
is > 2. Since H N is a torsor over J~CPx(r)m the lemma follows. [] 

Proposition 8.3. For any integer c, the restriction map 

H ~  x(r) ,  S ~) -+ H~ (J~C~x(r)8~ ' Y ~ )  

is an isomorphism. 

Let 2V _> 2 9. Consider the diagram 

i l 
Y Y x ( r )  ~ Y Y x ( r ) N  

By Lemma7.2, the sections of ~ c  over . Y S x ( r )  88 (resp. Y ~ X ( r ) N )  are the 
invariant sections of the pull back of 55 ~c over H~f (resp. HN). But any section 
over H~v 8 extends to H N by (8.2), so the restriction map H ~  cP~) -~ 
H 0 ( . y G f x ( r ) ~  ' ~cP~) is an isomorphism for each N. Since any map from a scheme 
to . ~ c P x ( r  ) factors through Y~CPx(r)N for some N, the proposition follows. [] 

Let Y ~ , f x ( r )  be the moduli space of semi-stable rankr  vector bundles on X 
with trivial determinant (the notation is meant to remind that these correspond to 
unitary representations). It is usually constructed as the geometric invariant theory 
quotient of K ~  (8.1) by the group PGL(h(N)) .  We have a forgetful morphism 

9~:SPSN(r) ~ --+ J G g x ( r ) .  It is known that the determinant bundle ~ is the pull 
back of a line bundle (that we will still denote by S )  on . Y ~ ; x  (r) (see [D-N], and 
[Tu] for the case 9 = 1). 

Proposition 8.4. Let c E N. The map 

~* : H O ( j ~ x ( r ) ,  ~ c )  __+ HO(YGPx(r),~ ' ~ )  

is an isomorphism. 

Let us choose an integer N _> 2 9. We claim that both spaces can be identified 
with the space of GL(h(N))-invariant sections of the pull back of Y~ to H ~  ~. For 
H ~  ~, S t ) ,  this follows from Lemma 7.2. 
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Let us consider the space H ~  We will write simply H,  K and 
Y for H~) ~, K ~  and J~4x(r) .  By definition of the GIT quotient, the quotient map 
p:K ~ J is affine and the sheaf ~) ,  is the subsheaf of local PGL(h(N))-invariant 
sections in p , O  K. On the other hand, since the map q:H ~ K is a k*-fibration, the 
subsheaf of local k*-invariant sections of q ,G H is U)c. Putting things together we 
conclude that the sheaf of GL(h(N))-invariant sections of p , q , O  H is ~ j .  Therefore 
for any sheaf .,~ on Y the space H ~  is the space of GL(h(N))-invariant 
sections of the pull back of .Y to H. [] 

Putting together Proposition 8.3 and 8.4 and Theorem 7.9, we obtain: 

Theorem 8.5. For all c E N, the space H~ S c )  is canonically isomorphic 
to the space of conformal blocks t3 c(r ). [] 

It follows from [T-U-Y] that the dimension of the space Be(r) can be computed 
in terms of the representation theory of SLy(k) - more precisely in terms of the 
fusion algebra associated to this group. In the case (of interest here) of SLy(k), 
this computation has been done in [G]; the reader will find a treatment valid for all 
classical groups (and possibly more accessible to mathematicians) in the Appendix of 
[F]. The outcome is the following formula6: 

Corollary 8.6 (Verlinde formula). One has 

dim H ~  ( r ) ' y ~ )  = ~ Z f l  sinTr r + c " [] 
SC[1,r+c] s c S  

9. Arbitrary Degree 

In this last section we will extend our results to the case of vector bundles of arbitrary 
degree. We fix an integer d, and let Y ~ x  (r, d) be the moduli stack parametrizing 

vector bundles E on X of rankr  with an isomorphism ~:~x(dp) ~ / ~  E. This 
stack depends only on the class of d mod. r, so we'll loose no generality by assuming 
0 < d < r. We will still use the letter c~ to denote the determinant bundle on 

.Y=~x(r, d) (3.8). 
Recall that the fundamental weights wl, . . . ,  w~_~ of s[~(k) are the linear forms 

k 

on the Cartan algebra ~ C s[r.(k) defined by (wk, H} = ~ Hii. Using the notation 
/=1 

of (7.6), we can state the main result of this section: 

Theorem9.1.  Let 0 < d < r. The space H ~  czr is canonically 
isomorphic to the subspace of Vf~T_d, c annihilated by the Lie algebra s[r(Ax).  

The proof follows the same lines as in the degree zero case. We choose once and 
for all an element ~/d of GL~(K) with determinant z -a .  Then Y S x ( r ,  d) can be 

described as the quotient stack (7~tSL~(Ax)Td)\~ (3.6). Let 7rd:/~-+ J ~ x ( r ,  d) 
be the canonical morphism. 

Proposition 9.2. One has 7r~ S =~ ~ .  

6 This slightly exotic formulation has been shown to us by D. Zagier. 
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We will reduce this assertion to the case d = 0 by using the following trick. The 

line bundle ~ x ( - d p )  has natural trivializations ~0 over X *  and cr 0 over D such that 

the element ~olcr0 of K *  is equal to z a (1.5). Let R be a k-algebra, and E a vector 

bundle on X R, of  rank r and degree d, with trivializations ~ over X ~  and (7 over 
D R, corresponding to an element 5 of GL~(R((z))) (Proposition 1.4). Then the triple 0) 
( E |  ~)@t)0, o@o0) corresponds to the matrix (detTa)_ 1 . If  (5 = 7d3', 

with y ~ SL,.(R((z))), this matrix is the product of  3/4 := (det,~d)_ 1 with 

the matrix t(7) := ( 70 01) W e h a v e t h e r e f ~ 1 7 6 1 7 6  

use a ~ when we replace r by r + 1 in the objects defined in Sects. 3 and 4): 

f 

8 

J S x ( r ,  d) ~ Y~,~x(r + 1) 

where f is induced by the map 2/ ~-+ 7~t(7) from SLy(K)  into SL,.+I (K),  and s 
associates to a vector bundle E on X R the vector bundle E | ~ x ( - d p ) .  

Let us denote by E and E '  the universal bundles on X • Y ~ x ( r , d )  and 
X x Y~C~x(r + 1) respectively. By construction the pull back of E '  by 1 x x s is 
E |  x ( - dp ) .  Let p be the projection from X x J ~  x (r, d) onto Y Y x ( r ,  d). One has 
Rp,(E | ~x(-dp))  ~ Rp,(E) | Rp , (~x( -dp)  ) and the bundles Rip,(Ox(-dp)) 
are trivial, so we get s * S '  -~- detRp,(E| -~- detRp,(E) = 4 .  Therefore 
our assertion is equivalent to f * Y x  ~ 2~ x t ~ 

The group morphism t:SL~(K) --+ SLy§ 1 (K)  extends in a straightforward way 

to ~ :SL~(K)  ---, S'L~+I (K):  from the decomposition K" = V (9 &'~ and an arbitrary 

decomposition K = V 0 | O one gets K ~+1 = (V | V0) (9 O~+1; then ~ is defined 

( ( ~  0 1 ) ( u  0 ) ) .Th i smorph i smmapsS~-L~(O) in toS~-L~+l (O  ) 
by t'(7, u ) =  ' 0 l v0 

and satisfies t(7, a(7)) = (t(7), a(t(7))) for 7 E SL~(R((z))), from which one deduces 
X' o ~ = X. By (3.9) this implies that the pull back of ~x '  by the morphism 

/~ --+ ~ deduced from ~ is isomorphic to ~ .  Since ~'~x' is invariant under the 

action of SLy+ 1 (K), we conclude that f *~x ,  is isomorphic to 2~ x, which proves the 
proposition. [] 

It follows from the proposition that the line bundle 2~ x on ~ has a 

(7~lSL~(Ax)Td)-linearization (7.1), which means that the map ~ ~ 7~-1~7d of 

SL~.(Ax) into SLy(K)  lifts to SL,.(K).  It is not difficult to describe explicitly this 
lifting (use the same trick as in the above proof), but we need only to know the 

corresponding Lie algebra map id:sI~(Ax) -~ s[~(K). As in (6.7) we just have to 

exhibit one homomorphism which coincides with c~ ~-+ 72la',/d modulo the center of  

2~AK). 

Recall (4.12) that the adjoint action of SLy(K) on ~'[~(K) is given by 

ad("/)(c~'s) = (3 'c~- i ' s  + Reso Tr ( ~/-' d~/ ) )  a . (9.3) 
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We observe that the formula makes sense for ~ E GL~(K) ,  and defines a group 
homomorphism GL~(K)  -+ Aut(s[~(K)), that we still denote by Ad. Then the 

homomorphism Ad(~/~ u)  e i, where i is the canonical embedding of ~[~(Ax) into 

~'I~(K) (6.7), satisfies the required conditions and is therefore equal to i d. 

Let us denote by 7r the homomorphism ~'[~(K) --+ End(V~). By Proposition 7.4 
and Theorem T.7, the space H ~  d ) , ~  ~) is canonically isomorphic to the 
space of linear forms on V~ which vanish on the image of rc(id(OZ)) for every oe in 
s[~(Ax),  i.e. of linear forms killed by s[~(Ax)  acting on Vo through the representation 

rc o Ad(~ydl). Therefore Theorem 9.1 will be a consequence of the following lemma: 

L e m m a g . 3 .  The representation 7r o Ad(,Td 1) is isomorphic to the highest weight 
representation Vc~,~_d,c. 

By Lemma (A.3), the representations rc and 7r e Ad(2/) are isomorphic for 

~/ E SLy (K) ,  so the representation ~r o Ad(,'/d -1) doesn' t  depend (up to isomor- 
phism) of the choice of  the particular element ~/d; we choose for ~/d the matrix 
diag(1, . . . ,  1,z,  . . . ,  z), where z appears d times, and denote by rcd the represen- 

tation rc o Ad(q/dl). Let c~ = ~ A,~z ~ E s[~(K); an easy computation [using (9.3)] 
gives 

Ad(Td 1) (c~, s) = ("/dlo~")/d, 8 + @Ur_d, A0}). 

This implies Ad(3,~ -1) (n+) C s[~.(&'), and therefore the highest weight vector v c of 
Vc is annihilated by rca(n +) (7.6). Let H E I), and s E k; the above formula gives 
?r a((H , s))% = c(s + (v:r~_a, H} )vc. Moreover the representation 7r a is irreducible. 
Therefore rc a is isomorphic to the highest weight representation Vc~ ~ d,~ (9.6). [] 

Let J q J x ( r ,  d) be the moduli space of semi-stable vector bundles on X of 
rank r and determinant Ox(dp  ). As in Sect. 8 we have a forgetful morphism 
g ) : Y Y x ( r , d )  s~ -+ . Y ~ J x ( r ,  d). According to [D-N], the determinant bundle 
itself does not descend in general to a line bundle on .Yg~4x(r , d); the pull back of the 
ample generator ~ , a  of  P i c ( . Y ~ x ( r ,  d)) is the line bundle det RDj.~.x(~,d)(g ~ | F )  

(3.8), where g~ is the universal bundle over X • d) and F a vector bundle on 
7" 

X of rank s := ( r , ~ "  By (3.8) we get P * ~ , a  --~ c j s .  Now the proof of Theorem 8.5 

applies almost without modification to this situation; the only point which requires 
some care is Lemma 8.2, where one gets cod im(H N - H~r ~) = 1 in the case g = 1, 
(r, d) = 1. Assuming g >- 2 for simplicity, we obtain 

r 
T he o rem 9.4. Assume 0 < d < r and g >_ 2; let s - The space 

(r, d)" 

H~ d), ~ d )  

is canonically isomorphic to the subspace Of Ve*~_a,c s annihilated by the Lie algebra 

~ ( A x ) .  [] 
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