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1 Introduction

In a recent paper [1], here referred to as part I, we examined the conformal block content of
celestial four-gluon amplitudes, that is Mellin transforms of standard amplitudes with respect
to the energies of external particles [2]. Mellin transforms convert the plane wave basis
of external wave functions into the “boost basis” characterized by conformal dimensions,
the variables dual to energies [3].1 After the amplitudes are converted to the boost basis,
they transform under SL(2, C) Lorentz transformations as two-dimensional CFT correlators
of primary fields. The goal of celestial holography [6] is to identify celestial conformal
field theory (CCFT) underlying such correlators, and conformal block decomposition is an
important step in this direction.

1For recent reviews, see refs. [4, 5].
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When viewed as CFT correlators, celestial amplitudes exhibit some unusual properties.
Three-gluon amplitudes vanish on-shell due to kinematic constraints [7]. On the other
hand, three-point correlation functions are the basic building blocks of CFT and should
be determined by the operator product expansions (OPE) of primary fields. Four-point
CFT correlators depend on one complex variable, z, the cross-ratio of four points. In
celestial amplitudes, z is a kinematic variable determined by two angles which determine the
direction of motion of one particle with respect to the plane spanned by the momenta of the
other (three) particles. The scattering processes are planar, as reflected by the constraint
=(z) = 0 implied by momentum conservation. This means that four-point correlators
vanish everywhere on the complex plane of z, with the exception of the real axis. In fact,
four-gluon celestial amplitudes are distribution-valued as δ(z − z̄), which is highly unusual.

Having such a distribution-valued four-point function, one has to make a choice whether
to perform conformal block decomposition “as it is” [8–11] or to consider some extensions
to the entire complex plane of z. In part I [1], we chose the latter route and replaced one
conformal (boost) external wave function by its shadow transform. One reason for studying
such “shadowed” celestial amplitudes is a possible connection between adjoint operators
and shadow fields, which could relate four-dimensional (asymptotic) shadow wave functions
to in and out states of two-dimensional CFT [1, 12–14]. We were able to identify conformal
blocks of primary fields with dimensions ∆ = m + iλ, where m ≥ 2 is an integer, with
various integer spins and in various gauge group representations. There were no blocks with
m = 1 that could describe primary field operators associated with massless gluons.

Four-point CFT correlators obtained from shadowed gluon amplitudes are not com-
pletely satisfactory though. At the leading OPE order, in the limit of the coinciding insertion
points of two unshadowed gluon operators, the gluons fuse into a single gluon [15, 16]
and the four-gluon amplitude degenerates into a three-gluon amplitude. As mentioned
before, the latter one is zero, therefore, as expected, one does not find any trace of the
leading order OPE expansion term in the conformal block decomposition of four-gluon
amplitude. In other words, the block with ∆ = 1 + iλ is missing. This is mathematically
consistent but unsatisfactory because such four-point correlators seem to be disconnected
from well-known OPE coefficients. Another salient feature of shadowed amplitudes is that
in addition to integer spin, they contain conformal blocks with continuous complex spin.
This is a manifestation of a serious problem that can be seen even prior to conformal block
decomposition: the four-point correlator derived in part I has nontrivial monodromies
(branching points), therefore it is not a single-valued function of the cross-ratio z. In this
work, we resolve both problems simultaneously by constructing a single-valued correlation
function that reproduces all known OPEs [15, 16] of gluon operators. In the end, we invert
the shadow transform and obtain a “single-valued” celestial amplitude. It has a form
drastically different from the original Mellin celestial amplitude. It is defined over the entire
complex plane and has correct crossing symmetry, OPE and bootstrap properties.

The paper is organized as follows. In section 2, we start from the four-point correlator
derived in part I and discuss its monodromy properties in the limit of “soft” shadow with
∆ = 1. We show that it can be made single-valued by adding just one function, in a
similar way as in minimal models. We perform conformal block decomposition of the
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resultant correlator in section 3. In section 4, we discuss crossing symmetry and bootstrap
conditions. We find complete agreement with all known OPEs [15, 16]. We also display
some typical contributions to two-gluon OPEs from blocks with ∆ = m+ iλ, m > 1. In
section 5, we discuss two integral representations of the single-valued correlator: one in
terms of integrals over the complex plane and one in terms of single-valued projections
of line integrals. In section 6, we invert the shadow transform and obtain the four-gluon,
single-valued amplitude.

Similar to part I, this paper is heavily loaded with hypergeometric functions and we
use their properties in many places. Whenever possible, we list relevant identities, but
unfortunately some omissions are unavoidable, therefore we refer the reader to chapter 15
of ref. [17] for a complete list of hypergeometric identities used in this paper.

2 Single-valued completion in the soft shadow limit

The conformal correlators discussed in part I were obtained from the celestial four-gluon
amplitude [2] in MHV helicity configuration (−,−,+,+), with gauge indices (a1, a2, a3, a4)
and conformal dimensions (∆1,∆2,∆3,∆4), ∆i = 1 + iλi with

∑4
i=1 λi = 0.2 The shadow

transform was applied to the first gluon, changing its dimension and helicity: ∆1 → ∆̃1 =
1 − iλ1, − → +. As pointed out in part I, such correlators acquire a simple form in the
“soft” shadow limit of λ1 = 0. Here, we consider all correlators in this limit, leaving the
general case for future work.

Our starting point is the correlator written in eq. (I.4.14) of part I,3 which can be
expressed as

G21
34(x, x̄)s,λ1=0 = fa1a2bfa3a4bS1(x)Ī1(x̄) + fa1a3bfa2a4bS̃1(x)Ī1(x̄), (2.1)

where the common (antiholomorphic) factor is given by

Ī1(x̄) = (1− x̄)−1+iλ4 x̄1+iλ2 = x̄1+iλ22F1

(2 + iλ2, 1− iλ4
2 + iλ2

; x̄
)

(2.2)

and

S1(x) = (1− x)1+iλ4x−1+iλ22F1

(2, 1− iλ3
1 + iλ2

;x
)
B(1− iλ3,−iλ4) , (2.3)

S̃1(x) = −(1− x)1+iλ4x−1+iλ22F1

(2,−iλ3
iλ2

; x
)
B(−iλ3,−iλ4) . (2.4)

Note that in the cross-ratio
x = z12z34

z13z24
, (2.5)

2This condition reflects four-dimensional conformal invariance of Yang-Mills theory at the tree level [18].
The amplitudes violating conformal symmetry by loop corrections and/or by gravitational interactions, with
a nontrivial dependence on

∑4
i=1 λi 6= 0, would have to be treated in a different way than the amplitudes

discussed in this paper.
3We add prefix I to equation numbers from part I.

– 3 –



J
H
E
P
1
1
(
2
0
2
1
)
1
7
9

z1 is the position of the shadowed gluon operator.4 We want to discuss the monodromy
properties of the correlator (2.1). We begin with the term associated with the first group
factor, i.e. on S1(x)Ī1(x̄). It is single-valued, ∼ x−2|x|2+2iλ2 near x = 0. In order to examine
monodromy at x = 1, we analytically continue the hypergeometric function to x ≈ 1:

S1(x) = (1− x)1+iλ4xiλ2−1B(1− iλ3,−2− iλ4) 2F1

(2, 1− iλ3
3 + iλ4

; 1− x
)

+ Γ(−iλ4)Γ(2 + iλ4)
x(1− x) 2F1

( −1, iλ3,

−iλ4 − 1; 1− x
)
. (2.6)

Note that the second term is a rational function:

Γ(−iλ4)Γ(2 + iλ4)
x(1− x) 2F1

( −1, iλ3,

−iλ4 − 1; 1− x
)

= Γ(−iλ4)Γ(1 + iλ4)1− iλ2 − iλ3 x

x(1− x) , (2.7)

therefore the respective contribution to S1(x)Ī1(x̄) is

Γ(−iλ4)Γ(1 + iλ4)1− iλ2 − iλ3 x

x(1− x) (1− x̄)−1+iλ4 x̄1+iλ2 , (2.8)

which behaves as ∼ |1 − x|−2(1 − x̄)iλ4 near x = 1 and has a nontrivial monodromy.
Note that the contribution of the first term of eq. (2.6) to S1(x)Ī1(x̄) is single-valued in
this neighborhood. Hence, in order to construct a single-valued correlator, we need to
supplement (2.8) with some other contributions. At first glance, this looks like a vague,
hopeless task, however an important hint comes from minimal models where a similar
problem appears when combining insertions of “charge-screening” operators [19, 20]. In a
minimal model with a Verma module degenerating at level 2, such contributions involve a
single conformal block and its shadow block [21].

In part I, we pointed out [cf. eqs. (I.4.17)–(I.4.19)] that the antiholomorphic part Ī1(x̄)
describes a single chiral conformal block with h̄ = 1 + iλ2

2 . Its shadow block with weight
1− h̄ = − iλ2

2 is given by

Ī2(x̄) = x̄1−h̄−h̄3−h̄4 2F1

(
1− h̄− h̄12, 1− h̄+ h̄34

2− 2h̄ ; x̄
)∣∣∣∣∣

h̄=1+ iλ2
2

= 2F1

(1, iλ3
−iλ2

; x̄
)
. (2.9)

When analytically continued to x ≈ 1, it becomes

Ī2(x̄) = 1 + iλ2
1− iλ4

2F1

( 1, iλ3
2− iλ4

; 1− x̄
)

+ Γ(−iλ2)Γ(1− iλ4)
Γ(iλ3) x̄1+iλ2(1− x̄)−1+iλ4 . (2.10)

We see that the second term shares the Ī1(x̄) factor (2.2) with the unwanted term (2.8).
Now it becomes clear how to cancel this term and construct a single-valued combination.
It is

S1(x)Ī1(x̄) + S2(x)Ī2(x̄) (2.11)
4In a slight change of notation from part I, the shadow point is now denoted by z1 instead of z′1. We will

revert to the original notation in section 6, where we invert the shadow transform.
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with

S2(x) = B(iλ3, iλ4)1− iλ2 − iλ3 x

x(1− x) = B(iλ3, iλ4) 1− iλ2
x(1− x) 2F1

(−1, iλ3
1− iλ2

;x
)
. (2.12)

Indeed, the term with a monodromy at x = 1 is absent in this combination. Finally, by
using well-known properties of hypergeometric functions, we can analytically continue (2.11)
from x to 1/x to verify that, as expected, there is no monodromy at infinity. We conclude
that this combination is single-valued on the entire complex plane.

We can repeat the same procedure for the coefficient of the second group factor in
eq. (2.1), to find the following single-valued combination:

S̃1(x)Ī1(x̄) + S̃2(x)Ī2(x̄), (2.13)

where

S̃2(x) = −B(iλ3, iλ4)2− iλ2 − (1 + iλ3)x
1− x = B(iλ3, iλ4) iλ2 − 2

1− x 2F1

(−1, 1 + iλ3
2− iλ2

; x
)

(2.14)
As a result, we obtain the following single-valued correlator

G21
34(x, x̄)SV = fa1a2bfa3a4b[S1(x)Ī1(x̄) + S2(x)Ī2(x̄)]

+ fa1a3bfa2a4b[S̃1(x)Ī1(x̄) + S̃2(x)Ī2(x̄)] . (2.15)

It is remarkable that a single-valued correlation function can be constructed by adding just
one term for each group factor. Is it a unique completion of the original correlator? In
minimal models, the uniqueness follows from the condition that a Verma module degenerates
at level 2, which is equivalent to a second order differential equation admitting only two
linearly independent solutions [19]. In our case, it is not clear what is the origin of such a
condition, but the antiholomorphic functions Ī1(x̄) and Ī2(x̄) are two solutions of a similar
equation. With this equation assumed to hold, the four-point correlator must have the
form of eq. (2.15). Since the holomorphic functions S1(x) and S̃1(x) originate from the
Mellin transform of four-gluon amplitude, S2(x) and S̃2(x) are uniquely determined by
monodromies. A better understanding of this construction will certainly help in building
rigorous foundations of CCFT.

But this is just the beginning of forthcoming miracles. . .

3 Conformal block decomposition

The correlator (2.1) was obtained in part I by taking a shadow transform of the celestial
amplitude describing incoming particles 1 and 2 scattering into outgoing particles 3 and
4. In such a process, Mandelstam variables are constrained by s > 0, t < 0, u < 0 and
the integration region of the shadow transform is subject to the respective constraint on
the cross-ratio of celestial coordinates. Thus, the single-valued function (2.15) should be
identified with the following four-gluon correlator:5

G21
34(x, x̄)SV = lim

z1,z̄1→∞
z2

1

〈
φ̃a1,−ε

∆̃1=1,+(z1, z̄1)φa2,−ε
∆2,− (1, 1)φa3,+ε

∆3,+ (x, x̄)φa4,+ε
∆4,+ (0, 0)

〉
, (3.1)

5As mentioned before, all correlators are considered in the limit of λ1 = 0. The shadow gluon field has
(h1, h̄1) = (1, 0).
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where we used the same notation as in part I. In addition, we introduced the indices
±ε to distinguish between outgoing and incoming particles, respectively [16]. We should
stress once again that this correlator describes four-dimensional “s-channel” gluon collisions
12→ 34 and this will remain unchanged throughout the present paper.6 On the other hand,
the choice of the shadow point z1 is arbitrary, therefore the cross-ratio x of eq. (2.5) in not
constrained by kinematics — it can take any value on the complex plane. Thus, we are free
to explore the regions of x ≈ 0 [(12 
 34)2 CFT channel], x ≈ 1 [(14 
 32)2 CFT channel]
and x ≈ ∞ [(13 
 42)2 CFT channel]. To that end, we will expand the correlator (3.1) in
powers of x, 1− x and 1/x, and decompose it into the corresponding conformal blocks.

3.1 (12 
 34)2 blocks

In this channel, a conformal block of a primary field with chiral weights (h, h̄) has the
form [21] (see also (I.4.17)):

K21
34 [h, h̄] = x̄h̄−h̄3−h̄42F1

(
h̄− h̄12, h̄+ h̄34

2h̄ ; x̄
)
xh−h3−h42F1

(
h− h12, h+ h34

2h ;x
)
, (3.2)

where hij = hi − hj . In our case

h12 = 1− iλ2
2 , h̄12 = −1− iλ2

2 , h34 = iλ3
2 −

iλ4
2 , h̄34 = iλ3

2 −
iλ4
2 ,

h3 + h4 = 2 + iλ3
2 + iλ4

2 = 2− iλ2
2 , h̄3 + h̄4 = iλ3

2 + iλ4
2 = − iλ2

2 , (3.3)

where we used λ2 + λ3 + λ4 = 0.
In part I, we performed conformal block decomposition of the original correlator (2.1)

by using Gauß recursion relations and basic properties of hypergeometric functions. In
particular, we showed that its anti-holomorphic part is associated with a single weight: in
the s-channel Ī1 represents a chiral block with h̄ = 1 + iλ2/2. A similar procedure can
be applied to the single-valued completion (2.15). We have already identified Ī2 as the
shadow block with h̄ = −iλ2/2, therefore it remains to rewrite S2 and S̃2 in terms of the
hypergeometric functions present in eq. (3.2). At the end, we find:

G21
34 (x, x̄)SV =

∞∑
m=1

(
am f

a1a2bfa3a4b+ ãm f
a1a3bfa2a4b

)
K21

34

[
m+ iλ2

2 ,1+ iλ2
2

]
(x, x̄)

+
∞∑
m=1

(
bm f

a1a2bfa3a4b+ b̃m f
a1a3bfa2a4b

)
K21

34

[
m− iλ2

2 ,− iλ2
2

]
(x, x̄) , (3.4)

with the following coefficients:

am = m! Γ(−iλ3 +m)Γ(−iλ4)
Γ(iλ2 + 2m− 1) , (3.5)

ãm = −am + (−1)mm! Γ(−iλ4 +m)Γ(−iλ3)
Γ(iλ2 + 2m− 1) , (3.6)

bm = Γ(iλ3)Γ(m+ iλ4)Γ(1− iλ2 +m)
iλ4 Γ(−iλ2)Γ(2m− iλ2 − 1) , (3.7)

b̃m = −bm − (−1)mΓ(iλ4)Γ(m+ iλ3)Γ(1− iλ2 +m)
iλ3 Γ(−iλ2)Γ(2m− iλ2 − 1) . (3.8)

6While in part I, we also considered four-dimensional u- and t-channels.
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In this way, we identify two sets of conformal blocks. The original one has (h, h̄) =
(m+ iλ2

2 , 1 + iλ2
2 ), with m ≥ 1. They have dimensions ∆ = 2 + J + iλ2, where J ≥ 0 is an

integer spin. Its completion comes with (h, h̄) = (m− iλ2
2 ,−

iλ2
2 ), with m ≥ 1. They have

dimensions ∆ = J − iλ2 = J + iλ3 + iλ4, where J ≥ 1 is an integer spin. Note that the
second, new set contains a block with spin J = 1 and dimension ∆ = 1 + iλ3 + iλ4. This is
exactly what one expects from the leading term in the OPE of φa3,+ε

∆3,+ (x, x̄)φa4,+ε
∆4,+ (0, 0). It

appears that the single-valued completion of the correlator restores correct OPEs. This will
be confirmed in section 4 where we discuss crossing symmetry and OPEs.

3.2 (14 
 32)2 blocks

In this channel, a conformal block of a primary field with chiral weights (h, h̄) has the form:

K41
32 [h, h̄](1− x, 1− x̄) = (1− x)h−h3−h22F1

(
h− h14, h+ h32

2h ; 1− x
)

× (1− x̄)h̄−h̄3−h̄22F1

(
h̄− h̄14, h̄+ h̄32

2h̄ ; 1− x̄
)
, (3.9)

where

h14 = − iλ4
2 , h̄14 = − iλ4

2 , h32 = 1 + iλ3
2 −

iλ2
2 , h̄32 = −1 + iλ3

2 −
iλ2
2 ,

h3 + h2 = 1 + iλ3
2 + iλ2

2 = 1− iλ4
2 , h̄3 + h̄2 = 1 + iλ3

2 + iλ2
2 = 1− iλ4

2 . (3.10)

In order to decompose the correlator (2.15) into the blocks (3.9), we need to rewrite it as

G21
34(x, x̄)SV = G41

32(1− x, 1− x̄)SV

= fa1a2bfa3a4bGu(1− x, 1− x̄) + fa1a3bfa2a4bG̃u(1− x, 1− x̄) , (3.11)

where Gu and G̃u are obtained from the single-valued combinations (2.11) and (2.13),
respectively, by analytic continuation to the region of x ≈ 1, as described in the previous
section. We find

Gu =B(1−iλ3,−2−iλ4)xiλ2−1(1−x)1+iλ4 2F1

(
2,1−iλ3
3+iλ4

;1−x
)
x̄1+iλ2(1−x̄)−1+iλ4

+B(iλ4, iλ3)(1+iλ4)(1+iλ2)
1−iλ4

xiλ2−1

(1−x) 2F1

(
−iλ4, iλ2−1
−iλ4−1 ;1−x

)
2F1

(
iλ3,1
2−iλ4

;1−x̄
)
,

(3.12)

and

G̃u =B(−iλ3,−2−iλ4)xiλ2−1(1−x)1+iλ4 2F1

(
2,−iλ3
3+iλ4

;1−x
)
x̄1+iλ2(1−x̄)−1+iλ4

−B(iλ3, iλ4)(1+iλ2)(1+iλ4)
1−iλ4

xiλ2−1

1−x 2F1

(
−iλ4,−2+iλ2
−iλ4−1 ;1−x

)
2F1

(
iλ3,1
2−iλ4

;1−x̄
)
,

(3.13)
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where in addition to the analytic continuation formulas, we used

2F1

(
a, b

c
; 1− x

)
= xc−a−b2F1

(
c− a, c− b

c
; 1− x

)
. (3.14)

From this point, we can proceed with conformal block decomposition in the same way as in
the (12 
 34)2 channel. At the end, we obtain

G21
34(x, x̄)SV =G41

32(1−x,1−x̄)SV

=
∞∑
m=1

(
cm f

a1a2bfa3a4b+c̃m fa1a3bfa2a4b
)
K41

32

[
m+1+ iλ4

2 ,
iλ4
2

]
(1−x,1−x̄)

+
∞∑
m=1

(
dm f

a1a2bfa3a4b+d̃m fa1a3bfa2a4b
)
K41

32

[
m−1− iλ4

2 ,1− iλ4
2

]
(1−x,1−x̄) , (3.15)

where

cm = m! Γ(−2− iλ4)Γ(3 + iλ4)Γ(−iλ3 +m)
Γ(−1 + iλ2)Γ(1 + iλ4 + 2m) , (3.16)

dm = B(iλ3, iλ4) 1 + iλ2
iλ4 − 1

Γ(−iλ4 +m− 1)Γ(iλ2 − 2 +m)
Γ(iλ2 − 1)Γ(−iλ4 − 3 + 2m) , (3.17)

c̃m = (−1)m m! Γ(−iλ3)Γ(3 + iλ4)Γ(−2− iλ4)
Γ(−2 + iλ2)Γ(3− iλ2)

Γ(2− iλ2 +m)
Γ(1 + iλ4 + 2m) , (3.18)

d̃m = (−1)mB(iλ3, iλ4) 1 + iλ2
iλ4 − 1

Γ(−iλ4 +m− 1)Γ(iλ3 +m)
Γ(1 + iλ3)Γ(−iλ4 − 3 + 2m) . (3.19)

Here again, we find two sets of conformal blocks. The first set comes with (h, h̄) =
(m + 1 + iλ4

2 ,
iλ4
2 ), with m ≥ 1. They have dimensions ∆ = J + iλ4, where J ≥ 2 is an

integer spin. The second set has (h, h̄) = (m− 1− iλ4
2 , 1−

iλ4
2 ), with m ≥ 1. They have

dimensions ∆ = J + 2 − iλ4 = J + 2 + iλ2 + iλ3, where J ≥ −1 is an integer spin. The
second set contains a block with ∆ = 1 + iλ2 + iλ3 and J = −1, which represents the
gluon operator appearing in the product φa2,−ε

∆2,− (1, 1)φa3,+ε
∆3,+ (x, x̄) at the leading order of

OPE of as x → 1. Recall that in part I, we also found blocks with continuous, complex
spin. Due to the presence of such exotic states, we called this two-dimensional channel
“incompatible” with the four-dimensional s-channel. Now we see that the single-valued
completion eliminates such exotic states. Actually, all channels are perfectly compatible.

3.3 (13 
 42)2 blocks

In this channel, a conformal block of a primary field with chiral weights (h, h̄) has the form:

K24
31

[
h, h̄

] (1
x
,

1
x̄

)
=
(1
x

)h−h3−h1

2F1

(
h− h42, h+ h31

2h ; 1
x

)
×
(1
x̄

)h̄−h̄3−h̄1

2F1

(
h̄− h̄42, h̄+ h̄31

2h̄ ; 1
x̄

)
, (3.20)
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where

h42 = 1 + iλ4
2 −

iλ2
2 , h̄42 = −1 + iλ4

2 −
iλ2
2 , h31 = iλ3

2 , h̄31 = iλ3
2

h3 + h1 = 2 + iλ3
2 , h̄3 + h̄1 = iλ3

2 . (3.21)

In order to decompose the correlator (2.15) into the blocks (3.20), we need to rewrite it as

x2h3 x̄2h̄3G21
34 (x, x̄)SV = G13

24

(1
x
,

1
x̄

)
SV

= fa1a2bfa3a4bGt

(1
x
,

1
x̄

)
+ fa1a3bfa2a4bG̃t

(1
x
,

1
x̄

)
, (3.22)

where the factor x2h3 x̄2h̄3 , with (h3, h̄3) = (1 + iλ3
2 ,

iλ3
2 ), originates from the conformal

transformation of the respective operator when the coordinate transforms from x to 1/x [19].
The functions Gt and G̃t are obtained from the single-valued combinations (2.11) and (2.13),
respectively, by analytic continuation to the region of x ≈ ∞, using the well-known relations
between the hypergeometric functions at x and 1/x. In this way, we obtain:

Gt =B(−iλ4,−1−iλ3)
(
1− 1

x

)1+iλ4
2F1

(2,2−iλ2
2+iλ3

; 1
x

)(
1− 1

x̄

)−1+iλ4

+ (1+iλ2)iλ3
1−iλ3

B(iλ3, iλ4)x
2+iλ3

1−x 2F1

(−1, iλ2−1
−iλ3

; 1
x

)
x̄iλ3−1

2F1

(1,2+iλ2
2−iλ3

; 1
x̄

)
,

(3.23)

G̃t =−B(−iλ4,−2−iλ3)
(
1− 1

x

)1+iλ4
2F1

(2,3−iλ2
3+iλ3

; 1
x

)(
1− 1

x̄

)−1+iλ4

− (1+iλ2)(1+iλ3)
1−iλ3

B(iλ3, iλ4)x
3+iλ3

1−x 2F1

(−1, iλ2−2
−iλ3−1 ; 1

x

)
x̄iλ3−1

2F1

(1,2+iλ2
2−iλ3

; 1
x̄

)
.

(3.24)
After repeating the same steps as in other channels, we obtain the following conformal block
decomposition:

x2h3 x̄2h̄3G21
34 (x, x̄)SV =G24

31

(1
x
,
1
x̄

)
SV

=
∞∑
m=1

(
em f

a1a2bfa3a4b+ ẽm f
a1a3bfa2a4b

)
K24

31

[
m+1+ iλ3

2 ,
iλ3
2

](1
x
,
1
x̄

)

+
∞∑
m=1

(
fm f

a1a2bfa3a4b+ f̃m f
a1a3bfa2a4b

)
K24

31

[
m−1− iλ3

2 ,1− iλ3
2

](1
x
,
1
x̄

)
, (3.25)

where

ẽm = −B(−iλ4,−1− iλ3)m! Γ(2 + iλ3)Γ(2 +m− iλ2)
Γ(1 + iλ3 + 2m)Γ(2− iλ2) , (3.26)

f̃m = −B(iλ3, iλ4)1 + iλ2
1− iλ3

Γ(−iλ3 − 1 +m)Γ(iλ4 +m)
Γ(−3− iλ3 + 2m)Γ(1 + iλ4) , (3.27)

em = −ẽm − (−1)mB(−iλ4,−1− iλ3)m! Γ(2 + iλ3)Γ(m− iλ4)
Γ(1 + iλ3 + 2m)Γ(−iλ4) , (3.28)

fm = −f̃m + (−1)mB(iλ3, iλ4)1 + iλ2
1− iλ3

Γ(−iλ3 +m− 1)Γ(iλ2 +m− 2)
Γ(−3− iλ3 + 2m)Γ(iλ2 − 1) . (3.29)
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Here again, we find two sets of conformal blocks. The first set comes with (h, h̄) =
(m + 1 + iλ3

2 ,
iλ3
2 ), with m ≥ 1. They have dimensions ∆ = J + iλ3, where J ≥ 2 is an

integer spin. The second set has (h, h̄) = (m− 1− iλ3
2 , 1−

iλ3
2 ), with m ≥ 1. They have

dimensions ∆ = J + 2− iλ3 = J + 2 + iλ2 + iλ4, where J ≥ −1 is an integer spin. Note
that when the indices 3 and 4 are interchanged, the spectrum of (13 
 42)2 conformal
blocks in eq. (3.25) becomes identical to the spectrum of (14 
 32)2 blocks in eq. (3.15).
As explained in section 4, this is related to the crossing symmetry of CCFT.

3.4 Channel decomposition of SU(2) group factors

The conformal block decomposition accomplished so far allows identifying dimensions
and spins of primary operators created by gluon fusion. The information about their
group representations is contained in group factors that need to be decomposed in the
corresponding channels. For a given channel (ij 
 kl)2, the goal is to rewrite the group
factors in the form

∑
r αrC

aiaj
r C∗akalr , where Caiajr = 〈r|ai, aj〉 are the Clebsch-Gordan

coefficients for the fusion of gluons with group indices ai and aj into all possible multiplets
r contained in the product of two adjoint representations. The coefficients αr need to be
determined. For a general group, this can be done by using rather advanced techniques,
which are beyond the scope of the present paper. Such a decomposition is very simple,
however, in the case of SU(2). Then gluons are isospin I = 1 triplets, therefore r can be
I = 0 singlet, I = 1 triplet or I = 2 quintuplet and we can use standard Clebsch-Gordan
coefficients.

The SU(2) structure constants fabc = εabc, therefore the relevant group factors are

fabxf cdx = δacδbd − δadδbc. (3.30)

SU(2) Clebsch-Gordan coefficients, which are usually tabulated in the angular momentum
basis with the multiplet components |I, I3 = M〉. In scattering amplitudes, however,
gluons are labeled by a = 1, 2, 3 vector indices. Therefore, in order to perform the desired
channel decomposition, Clebsch-Gordan coefficients need to be converted from the standard
|1,M〉 (M = 0,±1) basis to |a〉 (a = 1, 2, 3). This is done in appendix A, where we give
explicit expressions for Cab2M = 〈2,M |a, b〉 (M = 0,±1,±2), Cab1M = 〈1,M |a, b〉 (M = 0,±1)
and Cab00 = 〈0, 0|a, b〉. Note that Clebsch-Gordan coefficients are symmetric in group indices
a, b for I = 0, 2 and antisymmetric for I = 1. Then, by using eq. (3.30), the group factors
can be decomposed in the (12 
 34)2 channel as

fa1a2xfa3a4x = 2
∑
M

Ca1a2
1M C∗ a3a4

1M , (3.31)

fa1a3xfa2a4x = −
∑
M

Ca1a2
2M C∗ a3a4

2M +
∑
M

Ca1a2
1M C∗ a3a4

1M + 2Ca1a2
00 C∗ a1a2

00 . (3.32)

Similarly, in the (14 
 32)2 channel:

fa1a2xfa3a4x =
∑
M

Ca1a4
2M C∗ a3a2

2M +
∑
M

Ca1a4
1M C∗ a3a2

1M − 2Ca1a4
00 C∗ a3a2

00 , (3.33)

fa1a3xfa2a4x =
∑
M

Ca1a4
2M C∗ a3a2

2M −
∑
M

Ca1a4
1M C∗ a3a2

1M − 2Ca1a4
00 C∗ a3a2

00 (3.34)
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and in (13 
 42)2:

fa1a2xfa3a4x = −
∑
M

Ca1a3
2M C∗ a2a4

2M +
∑
M

Ca1a3
1M C∗ a2a4

1M + 2Ca1a3
00 C∗ a2a4

00 , (3.35)

fa1a3xfa2a4x = 2
∑
M

Ca1a3
1M C∗ a2a4

1M . (3.36)

These expressions can be substituted into eqs. (3.4), (3.15) and (3.25), respectively, to
obtain fully factorized forms of conformal block decompositions.

The block coefficients in the (12 
 34)2 channel, written in eq. (3.4), can be expressed as

fa1a2xfa3a4xam + fa1a3xfa2a4xãm

=
∑
M

Ca1a2
1M C∗a3a4

1M

[
m! Γ (−iλ3 +m) Γ (−iλ4)

Γ (iλ2 + 2m− 1) + (−1)m m! Γ (−iλ4 +m) Γ (−iλ3)
Γ (iλ2 + 2m− 1)

]

+
(

2Ca1a2
00 C∗a3a4

00 −
∑
M

Ca1a2
2M C∗a3a4

2M

)

×
[
−m! Γ (−iλ3 +m) Γ (−iλ4)

Γ (iλ2 + 2m− 1) + (−1)m m! Γ (−iλ4 +m) Γ (−iλ3)
Γ (iλ2 + 2m− 1)

]
, (3.37)

fa1a2xfa3a4xbm+fa1a3xfa2a4xb̃m

=
∑
M

Ca1a2
1M C∗a3a4

1M

[Γ(iλ3)Γ(1−iλ2+m)Γ(m+iλ4)
iλ4Γ(−iλ2)Γ(2m−iλ2−1) −(−1)mΓ(iλ4)Γ(1−iλ2+m)Γ(m+iλ3)

iλ3Γ(−iλ2)Γ(2m−iλ2−1)

]

+
(

2Ca1a2
00 C∗a3a4

00 −
∑
M

Ca1a2
2M C∗a3a4

2M

)
,

×
[
−Γ(iλ3)Γ(1−iλ2+m)Γ(m+iλ4)

iλ4Γ(−iλ2)Γ(2m−iλ2−1) −(−1)mΓ(iλ4)Γ(1−iλ2+m)Γ(m+iλ3)
iλ3Γ(−iλ2)Γ(2m−iλ2−1)

]
. (3.38)

Note that the coefficient of blocks which are even under x→ −x in the small x expansion
are even (symmetric) under 3↔ 4, while odd blocks have odd (antisymmetric) coefficients.
This property is necessary for 3 
 4 crossing symmetry to hold.

The block coefficients in the (14 
 32)2 channel, written in eq. (3.15), can be ex-
pressed as

fa1a2xfa3a4xcm + fa1a3xfa2a4xc̃m

=
∑
M

Ca1a4
1M C∗a3a2

1M

[
−m! Γ (−iλ4 − 1) Γ (2 + iλ4) Γ (−iλ3 +m)

Γ (−1 + iλ2) Γ (1 + iλ4 + 2m)

− (−1)m m! Γ (−iλ3) Γ (−iλ4 − 1) Γ (2 + iλ4) Γ (2− iλ2 +m)
Γ (−1 + iλ2) Γ (2− iλ2) Γ (1 + iλ4 + 2m)

]

+
(

2Ca1a4
00 C∗a3a2

00 −
∑
M

Ca1a4
2M C∗a3a2

2M

)[
m! Γ(−iλ4 − 1)Γ(2 + iλ4)Γ(−iλ3 +m)

Γ(−1 + iλ2)Γ(1 + iλ4 + 2m)

− (−1)mm! Γ(−iλ3)Γ(−iλ4 − 1)Γ(2 + iλ4)Γ(2− iλ2 +m)
Γ(−1 + iλ2)Γ(2− iλ2)Γ(1 + iλ4 + 2m)

]
, (3.39)
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fa1a2xfa3a4xdm+fa1a3xfa2a4xd̃m

=
∑
M

Ca1a4
1M C∗a3a2

1M B (iλ3, iλ4−1)

×
[
−Γ(−iλ4 +m−1)Γ(iλ2 +m−2)

Γ(iλ2−1)Γ(−iλ4 +2m−3) +(−1)m Γ(−iλ4 +m−1)Γ(iλ3 +m)
Γ(1+ iλ3)Γ(−iλ4 +2m−3)

]
+
(

2Ca1a4
00 C∗a3a2

00 −
∑
M

Ca1a4
2M C∗a3a2

2M

)
B (iλ3, iλ4−1)

×
[Γ(−iλ4 +m−1)Γ(iλ2 +m−2)

Γ(iλ2−1)Γ(−iλ4 +2m−3) +(−1)m Γ(−iλ4 +m−1)Γ(iλ3 +m)
Γ(1+ iλ3)Γ(−iλ4 +2m−3)

]
. (3.40)

They are not related in any obvious way to the coefficients of (12 
 34)2 blocks. The
crossing symmetry 2 
 4 interchanges incoming (−ε) and outgoing (+ε) operators, therefore
it is not surprising that it is not manifest at the level of conformal blocks.

The block coefficients in the (13 
 42)2 channel, written in eq. (3.25), can be expressed
as

fa1a2xfa3a4xem+fa1a3xfa2a4xẽm

=
∑
M

Ca1a3
1M C∗a4a2

1M (−1)m
[
m!Γ(−iλ3−1)Γ(2+iλ3)Γ(−iλ4+m)

Γ(−1+iλ2)Γ(1+iλ3+2m)

+(−1)m m!Γ(−iλ4)Γ(−iλ3−1)Γ(2+iλ3)Γ(2−iλ2+m)
Γ(−1+iλ2)Γ(2−iλ2)Γ(1+iλ3+2m)

]

+
(

2Ca1a3
00 C∗a4a2

00 −
∑
M

Ca1a3
2M C∗a4a2

2M

)
(−1)m

[
−m!Γ(−iλ3−1)Γ(2+iλ3)Γ(−iλ4+m)

Γ(−1+iλ2)Γ(1+iλ3+2m)

]
,

+(−1)m m!Γ(−iλ4)Γ(−iλ3−1)Γ(2+iλ3)Γ(2−iλ2+m)
Γ(−1+iλ2)Γ(2−iλ2)Γ(1+iλ3+2m) , (3.41)

fa1a2xfa3a4xfm + fa1a3xfa2a4xf̃m

=
∑
M

Ca1a3
1M C∗a4a2

1M B (iλ4, iλ3 − 1) (−1)m

×
[
−Γ (−iλ3 +m− 1) Γ (iλ2 +m− 2)

Γ (iλ2 − 1) Γ (−iλ3 + 2m− 3) + (−1)m Γ (−iλ3 +m− 1) Γ (iλ4 +m)
Γ (1 + iλ4) Γ (−iλ3 + 2m− 3)

]
+
(

2Ca1a3
00 C∗a4a2

00 −
∑
M

Ca1a3
2M C∗a4a2

2M

)
B (iλ4, iλ3 − 1) (−1)m

×
[Γ (−iλ3 +m− 1) Γ (iλ2 +m− 2)

Γ (iλ2 − 1) Γ (−iλ3 + 2m− 3) + (−1)m Γ (−iλ3 +m− 1) Γ (iλ4 +m)
Γ(1 + iλ4)Γ(−iλ3 + 2m− 3)

]
.

(3.42)

As mentioned before, upon interchanging 3 and 4, the blocks of this channel match the
blocks of (14 
 32)2. The coefficients have the same property: they can be obtained from
eq. (3.40) by 3↔ 4 [modulo (−1)m]. Here again, these properties are necessary for 3 
 4
crossing symmetry — while 2 
 4 is not manifest.
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4 Crossing symmetry and OPE

In the previous section, we used analytic continuation to extend the single-valued correla-
tor (3.1) to the entire complex plane. The conformal block decomposition was based on the
implicit assumption of crossing symmetry between the channels. Namely, by construction,

G41
32(1− x, 1− x̄)SV = G21

34(x, x̄)SV , G24
31

(1
x
,

1
x̄

)
SV

= x2h3 x̄2h̄3G21
34(x, x̄)SV . (4.1)

Analyticity and crossing symmetry are two pillars of CFT, therefore they should be subjected
to as many independent consistency checks as possible. A standard check is to prove the
equivalence of OPEs extracted from distinct channels. Such self-consistency requirements
are usually called the bootstrap conditions and often used for constructing CFT correlators.
We can also compare OPEs with already known leading terms derived in refs. [15, 16].7 The
channel (12 
 34)2 probes directly (in the limit of x→ 0) the product of two outgoing gluon
operators, φ+εφ+ε, while the channels (14 
 32)2 and (13 
 42)2, in the limits of x→ 1
and x → ∞, respectively, probe, among other things, the OPEs φ+εφ−ε of one incoming
gluon and one outgoing gluon. The fact that, as pointed out in the previous section, 3 
 4
crossing symetry is manifest in conformal block decomposition and that the blocks include
gluon primary fields with ∆ = 1 + iλ, J = ±1 indicate that we are starting off on the right
foot.

4.1 OPE at the leading order

We begin by extracting leading OPEs from the (12 
 34)2 channel, that is from the conformal
block decomposition given in eq. (3.4). The block with J = 1 and dimension ∆ = 1+iλ3+iλ4
originates from the m = 1 term in the second line. As x = (z12z34)(z13z24)−1 → 0, it is the
leading term with K21

34
[
1 + iλ3

2 + iλ4
2 ,

iλ3
2 + iλ4

2
]
(x, x̄) ∼ 1/x. According to eq. (3.38), the

coefficient is

fa1a2xfa3a4xb1 +fa1a3xfa2a4xb̃1 = fa1a2xfa3a4x(1− iλ2)B(iλ3, iλ4)

= −fa1a2x

Γ(2−∆2−∆3−∆4)B(∆2−1,2−∆2−∆3−∆4)
[
fa3a4xB(∆3−1,∆4−1)

]
, (4.2)

where ∆i = 1 + iλi. The constant [Γ(2 − ∆2 − ∆3 − ∆4)]−1 = [Γ(∆1 − 2)]−1 is to be
understood as limλ1→0[Γ(−1 + iλ1)]−1 and is formally zero in this limit. It is present in all
blocks and can be incorporated into the definition of the (soft) shadow field.

The block coefficient (4.2) can be factorized into the OPE coefficients in the following
way. In the limit of x→ 0 (z3 → z4), the leading OPE term is [15, 16]

φa3,+ε
∆3,+ (z3, z̄3)φa4,+ε

∆4,+ (z4, z̄4) ∼ −if
a3a4x

z34
B(∆3 − 1,∆4 − 1)φx,+ε∆3+∆4−1,+(z4, z̄4) . (4.3)

The coefficient of the above OPE accounts for the last factor on the r.h.s. of eq. (4.2),
enclosed in square brackets. In the next step, we use the OPE of the resultant operator

7Note that in ref. [15], gluon operators are normalized in a different way than in ref. [16]. Here, it is
more convenient to use the normalization of ref. [16].
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with the remaining gluon, incoming at z2 [16]:

φa2,−ε
∆2,− (z2,z̄2)φx,+ε∆3+∆4−1,+(z4, z̄4)

∼ ifa2xy

z̄24

[
B(∆2 − 1, 2−∆2 −∆3 −∆4)φy,+ε∆2+∆3+∆4−2,+(z4, z̄4)

−B(∆3 + ∆4, 2−∆2 −∆3 −∆4)φy,−ε∆2+∆3+∆4−2,+(z4, z̄4)
]

+ . . . , (4.4)

where we omitted negative helicity gluon operators because their two-point functions with
the (positive helicity) shadow field vanish due to conformal invariance. At this point, we
are left with the correlator of the shadow field with one gluon operator. The coordinate
dependence of this correlator is fixed by conformal invariance, c.f. eq. (I.2.8). Here, in
order to produce the remaining factor in the block coefficient (4.2), we need to make one
additional assumption, that non-vanishing correlators must involve one incoming and one
outgoing operator:

〈φ̃a1,−ε
∆̃1=1,+(z1, z̄1)φy,−ε∆2+∆3+∆4−2,+(z4, z̄4)〉 = 0 , (4.5)

〈φ̃a1,−ε
∆̃1=1,+(z1, z̄1)φy,+ε∆2+∆3+∆4−2,+(z4, z̄4)〉 = 〈φ̃a1,−ε

∆̃1=1,+(z1, z̄1)φy,+ε2−∆1,+(z4, z̄4)〉

= −δa1y

Γ(∆1 − 2)z2
14
. (4.6)

Under this assumption, from the r.h.s. of eq. (4.4), only the first term contributes, and the
product of the OPE coefficients yields the block coefficient (4.2). Indeed, after substituting
the sequence (4.3)–(4.6) into eq. (3.1), we obtain the leading 1/x term with the right
coefficient (4.2).

We now proceed to the (14 
 32)2 channel, with the conformal block decomposition
given in eq. (3.15). Here, we encounter a gluon block with ∆ = 1 + iλ2 + iλ3 and J = −1,
which originates from m = 1 in the second line of eq. (3.15). As 1−x = (z14z23)(z13z24)−1 →
0, it is the leading term with K41

32
[ iλ2

2 + iλ3
2 , 1+ iλ2

2 + iλ3
2
]
(1−x, 1− x̄) ∼ 1/(1−x). According

to eq. (3.40), the coefficient is

fa1a2xfa3a4xd1 + fa1a3xfa2a4xd̃1 = fa4a1xfa2a3x(1 + iλ4)B(iλ3,−iλ2 − iλ3 − 1)

= fa1a4x

Γ(2−∆2 −∆3 −∆4)B(∆2 + ∆3 − 2, 2−∆2 −∆3 −∆4)

×
[
fa2a3xB(∆3 − 1, 1−∆2 −∆3)

]
. (4.7)

The block coefficient (4.7) can be factorized into OPE coefficients in the following way.
In the limit of x→ 1 (z2 → z3), the leading OPE terms are [16]

φa2,−ε
∆2,− (z2, z̄2)φa3,+ε

∆3,+ (z3, z̄3) ∼ −if
a2a3x

z23

[
B(∆3 − 1, 1−∆2 −∆3)φx,−ε∆2+∆3−1,−(z3, z̄3)

−B(∆2 + 1, 1−∆2 −∆3)φx,+ε∆2+∆3−1,−(z3, z̄3)
]

+ −if
a2a3x

z̄23

[
B(∆3 + 1, 1−∆2 −∆3)φx,−ε∆2+∆3−1,+(z3, z̄3)

−B(∆2 − 1, 1−∆2 −∆3)φx,+ε∆2+∆3−1,+(z3, z̄3)
]
. (4.8)
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Note that this OPE contains both 1/z23 ∼ 1/(1− x) and 1/z̄23 ∼ 1/(1− x̄) poles, while the
latter ones are absent in the conformal blocks of eq. (3.15). Hence, we need to show two
things: that the conformal block ∼ 1/(1−x) emerging from the 1/z23 terms in eq. (4.8) has
the right coefficient and that the 1/z̄23 terms do not contribute to the four-point correlator.

We begin with the 1/z23 terms of eq. (4.8). The OPEs of the respective operators with
the gluon outgoing at z4 are [15, 16]:

φa4,+ε
∆4,+ (z4, z̄4)φx,−ε∆2+∆3−1,−(z2, z̄2)

∼ −if
a4xy

z̄24

[
B(∆2 + ∆3 − 2, 2−∆2 −∆3 −∆4)φy,+ε∆2+∆3+∆4−2,+(z4, z̄4)

−B(∆4 + 1, 2−∆2 −∆3 −∆4)φy,−ε∆2+∆3+∆4−2,+(z4, z̄4)
]

+ . . . , (4.9)

φa4,+ε
∆4,+ (z4, z̄4)φx,+ε∆2+∆3−1,−(z2, z̄2)

∼ ifa4xy

z̄24
B(∆2 + ∆3 − 2,∆4 + 1)φy,+ε∆2+∆3+∆4−2,+(z4, z̄4) . (4.10)

Here again, we omitted negative helicity operators on the r.h.s. because their two-point
functions with the shadow field are vanishing. Furthermore, the two-point correlator (4.6)
contains the normalization constant [Γ(∆1 − 2)]−1, which is formally zero in the limit of
λ1 = 0. Therefore, the second OPE (4.10), which is finite in this limit, will not contribute to
the four-point function. Taking into account that the two-point correlator with an incoming
field is zero, we conclude that the leading 1/(1− x) pole originates from the first terms of
eqs. (4.8) and (4.9). In this way, we obtain the coefficient (4.7).

It remains to be proven that the 1/z̄23 pole terms of the OPE (4.8) do not contribute
to the four-point function. The OPEs of the respective operators with the gluon outgoing
at z4 are [15, 16]:

φa4,+ε
∆4,+ (z4, z̄4)φx,−ε∆2+∆3−1,+(z2, z̄2)

∼ −if
a4xy

z24

[
B(∆2 + ∆3 − 2, 4−∆2 −∆3 −∆4)φy,+ε∆2+∆3+∆4−2,+(z4, z̄4)

−B(∆4 − 1, 4−∆2 −∆3 −∆4)φy,−ε∆2+∆3+∆4−2,+(z4, z̄4)
]
, (4.11)

φa4,+ε
∆4,+ (z4, z̄4)φx,+ε∆2+∆3−1,+(z2, z̄2)

∼ ifa4xy

z24
B(∆2 + ∆3 − 2,∆4 − 1)φy,+ε∆2+∆3+∆4−2,+(z4, z̄4) . (4.12)

All these OPEs are finite in the limit of λ1 = 0, therefore they do not contribute to the
four-point function, for the same reason as (4.10).

Finally, we turn to the (13 
 42)2 channel, with the conformal block decomposition given
in eq. (3.25). Here, we encounter a gluon block with ∆ = 1 + iλ2 + iλ4 and J = −1, which
originates from m = 1 in the second line of eq. (3.25). As 1/x = (z13z24)(z12z34)−1 → 0, it
is the leading term with K24

31
[ iλ2

2 + iλ4
2 , 1 + iλ2

2 + iλ4
2
]( 1
x ,

1
x̄

)
∼ x. According to eq. (3.42),
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the coefficient is

fa1a2xfa3a4xf1 + fa1a3xfa2a4xf̃1 = fa1a3xfa2a4x(1 + iλ3)B(iλ4,−iλ2 − iλ4 − 1)

= −fa1a3x

Γ(2−∆2 −∆3 −∆4)B(∆2 + ∆4 − 2, 2−∆2 −∆3 −∆4)

×
[
fa2a4xB(∆4 − 1, 1−∆2 −∆4)

]
. (4.13)

We see that it is equal to (4.7) with 3 ↔ 4, therefore in order to factorize it into OPE
coefficients, we can repeat the same sequence of steps as in the (14 
 32)2 channel. We
conclude that crossing symmetry is consistent with OPE at the leading order. The leading
OPE terms, derived in refs. [15] and [16], yield the same coefficients of leading blocks as
the single-valued correlator. Therefore, the single-valued completion restores agreement
with OPE and crossing symmetry at the same time.

4.2 Examples of non-leading OPE terms

In the first example, we consider ∆ = 2 + iλ3 + iλ4, J = 2 primaries that appear in the
(12 
 34)2 channel. The corresponding block K21

34
[
2 + iλ3

2 + iλ4
2 ,

iλ3
2 + iλ4

2
]
∼ 1 when x→ 0.

According to eq. (3.38), the coefficient is

fa1a2xfa3a4xb2 + fa1a3xfa2a4xb̃2

=
∑
M

Ca1a2
1M C∗ a3a4

1M iλ2
[
B(iλ4, 1 + iλ3)−B(iλ3, 1 + iλ4)

]
+ (−

∑
M

Ca1a2
2M C∗ a3a4

2M + 2Ca1a2
00 C∗a3a4

00 )(iλ2 − 2)B(iλ3, iλ4) . (4.14)

Note that the above expression is symmetric under 3↔ 4 because I = 1 Clebsch-Gordan
coefficients are antisymmetric under this transposition, while I = 0 and I = 2 are symmetric.
The conformal block coefficient of I = 0 group singlet,

2Ca1a2
00 C∗a3a4

00 (iλ2 − 2)B(iλ3, iλ4)
= −C̃

√
2Ca1a2

00 B(∆2 − 2, 2−∆2 −∆3 −∆4)
[√

2C∗a3a4
00 B(∆3 − 1,∆4 − 1)

]
, (4.15)

where C̃ ≡ −[Γ(∆1 − 2)]−1, can be obtained from the following OPE terms

φa3,+ε
∆3,+ (z3, z̄3)φa4,+ε

∆4,+ (z4, z̄4) ∼ −
√

2C∗a3a4
00 B(∆3 − 1,∆4 − 1)O00,+ε

∆3+∆4,+2(z4, z̄4) + . . . ,

(4.16)

φa2,−ε
∆2,− (z2, z̄2)O00,+ε

∆3+∆4,+2(z4, z̄4)

∼
√

2Ca2x
00

z24z̄24
B(∆2 − 2, 2−∆2 −∆3 −∆4)φx,+ε∆2+∆3+∆4−2,−(z4, z̄4) + . . . , (4.17)

where O00,+ε
∆,+2 is an outgoing primary operator with I = 0, J = 2. The coefficient of J = 2,

I = 2 quintuplet follows from similar OPEs. On the other hand, the coefficient of J = 2,
I = 1 triplet,∑
M

Ca1a2
1M C∗a3a4

1M iλ2
[
B(iλ4,1+ iλ3)−B(iλ3,1+ iλ4)

]
=−C̃

∑
M

Ca1a2
1M B(∆2,2−∆2−∆3−∆4)C∗a3a4

1M
[
B(∆4−1,∆3)−B(∆3−1,∆4)

]
, (4.18)
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can be obtained from

φa3,+ε
∆3,+ (z3, z̄3)φa4,+ε

∆4,+ (z4, z̄4)

∼ −
∑
M

C∗a3a4
1M

[
B(∆4 − 1,∆3)−B(∆3 − 1,∆4)

]
O1M,+ε

∆3+∆4,+2(z4, z̄4) + . . . , (4.19)

φa2,−ε
∆2,− (z2, z̄2)O1M,+ε

∆3+∆4,+2(z4, z̄4)

∼ Ca2x
1M

z24z̄24
B(∆2, 2−∆2 −∆3 −∆4)φx,+ε∆2+∆3+∆4−2,+(z4, z̄4) + . . . (4.20)

Note that 3 ↔ 4 symmetry of the conformal block coefficient (4.14) is necessary for
self-consistent OPE of φa3,+ε

∆3,+φ
a4,+ε
∆4,+ .

In the second example, we consider ∆ = 2 + iλ3 + iλ4, J = 0 primaries that appear
in the (14 
 32)2 channel. The corresponding block K41

32
[
1 + iλ2

2 + iλ3
2 , 1 + iλ2

2 + iλ3
2
]
∼ 1

when x→ 1. According to eq. (3.40), its coefficient is

fa1a2xfa3a4xd2 + fa1a3xfa2a2xd̃2

=
(∑
M

Ca1a4
2M C∗a3a2

2M − 2Ca1a4
00 C∗a3a2

00

)
B(iλ3, iλ4 − 1)iλ4

+
∑
M

Ca1a4
1M C∗a3a2

1M B(iλ3, iλ4 − 1)(2 + iλ3 − iλ2) . (4.21)

The conformal block coefficient of I = 0 group singlet,

−2Ca1a4
00 C∗a3a2

00 B(iλ3, iλ4 − 1)iλ4

= −C̃
√

2Ca1a4
00 B(∆2 + ∆3 − 1, 2−∆2 −∆3 −∆4)

√
2C∗a3a2

00 B(∆3 − 1, 1−∆2 −∆3)
(4.22)

can be factorized into OPE coefficients in a similar way as in the (12 
 34)2 channel:

φa3,+ε
∆3,+ (z3, z̄3)φa2,−ε

∆2,− (z2, z̄2)∼−
√

2C∗a3a2
00 B(∆3−1,1−∆2−∆3)O00,−ε

∆2+∆3,0(z2, z̄2)+ . . . ,

(4.23)

φa4,+ε
∆4,+ (z4, z̄4)O00,−ε

∆2+∆3,0(z2, z̄2)

∼
√

2Ca4x
00

z24z̄24
B(∆2 +∆3−1,2−∆2−∆3−∆4)φx,+ε∆2+∆3+∆4−2,+(z2, z̄2)+ . . . (4.24)

The case of I = 1 triplet, however, is more complicated because its coefficient∑
M

Ca1a4
1M C∗a3a2

1M B(iλ3, iλ4 − 1)(2 + iλ3 − iλ2) (4.25)

contains the factor (2 + iλ3 − iλ2), which cannot be written as a Beta function that could
represent a single OPE coefficient, as it was in the case of all previous examples. It can be
written though as a sum of (at least three) Beta functions, each of them attributed to an
OPE coefficient of a distinct primary with the same dimensions, spin, and isospin. The
conformal block spectrum must contain a certain degree of degeneracy in order to allow for
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the splitting of block coefficients into sums of products of OPE coefficients associated with
distinct Verma modules, all with the same conformal dimension and spin and in the same
group representation. This is an indication of another quantum number that could possibly
distinguish between such modules.

As pointed out in ref. [16], the OPE coefficients of CCFT are constrained by super-
translational invariance under which primary operators transform as

δPO
±ε
∆ = ±O±ε∆+1 , (4.26)

where P is the supertranslation generator [18]. For an OPE of the form

O±ε∆1
O±ε∆2

∼ C(∆1,∆2) f(z12, z̄12)O±ε∆1+∆2+n , (4.27)

this constraint reads

± C(∆1 + 1,∆2)± C(∆1,∆2 + 1) = ±C(∆1,∆2) (4.28)

and must be respected when extracting OPEs from conformal blocks. It is easy to check
that all OPE coefficients written above satisfy this constraint.

5 Integral representations of the single-valued correlator

In the Coulomb gas formulation of minimal models, the correlators of primary fields (vertex
operators) can be represented as complex integrals [19, 20] over the positions of “charge-
screening” vertices. The single-valued correlator (2.15) bears a striking resemblance to
the four-point correlator in minimal models with Verma modules degenerating at level
2. Therefore, we expect it to be represented by a single integral. In this section, we
construct this integral by following the classic approach of Dotsenko and Fateev [20, 23, 24].
The integrand involves insertions of charged vertices on a (celestial) sphere, therefore
the correlator has a form similar to a Koba-Nielsen amplitude in closed string theory,
with Coulomb charges (related to conformal dimensions) mapped to momenta of external
string states and a celestial sphere mapped to a string world-sheet.8 It is well known
that closed string amplitudes can be obtained from open string amplitudes — given by
integrals iterated over the segments of R1 — by the so-called single-valued projection. By
following this approach, we will rewrite the correlator (2.15) as a single-valued projection of
a real-line integral.

5.1 Complex integrals in Dotsenko-Fateev form

Our goal is to express the correlator (2.15) in terms of single-valued complex integrals. The
integrals considered by Dotsenko and Fateev [20, 23, 24] in the context of minimal models
have the form

I(x, x̄) =
∫
d2w wâ+a w̄â+ā (w − 1)b̂+b (w̄ − 1)b̂+b̄ (w − x)ĉ+c (w̄ − x̄)ĉ+c̄ , (5.1)

8This mapping appears naturally in the large conformal dimension limit of Mellin-transformed string
amplitudes [22].
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with the parameters a, b, c, ā, b̄, c̄ ∈ Z, where Z is the set of integers, and non-integer
â, b̂, ĉ /∈ Z. The integral (5.1) can be evaluated through analytic continuation by disentan-
gling holomorphic and antiholomorphic parts [20, 23, 24]:9

I(x, x̄) = s(b̂)s(â+ b̂+ ĉ)
s(â+ ĉ) I1(â+ a, b̂+ b, ĉ+ c;x) I1(â+ ā, b̂+ b̄, ĉ+ c̄; x̄)

+ (−1)b+b̄+c+c̄ s(â)s(ĉ)
s(â+ ĉ) I2(â+ a, b̂+ b, ĉ+ c;x) I2(â+ ā, b̂+ b̄, ĉ+ c̄; x̄) , (5.2)

with s(x) ≡ sin(πx) and

I1(a, b, c;x) =
∫ ∞

1
dw wa (w − 1)b (w − x)c

= B(−a− b− c− 1, b+ 1) 2F1

(−c,−a− b− c− 1
−a− c

;x
)
, (5.3)

I2(a, b, c;x) =
∫ x

0
dw wa (1− w)b (x− w)c

= x1+a+c B(a+ 1, c+ 1) 2F1

(−b, 1 + a

a+ c+ 2;x
)
. (5.4)

To get explicit relations, we restricted ourselves to 0 < x < 1. The general case is obtained
by analytic continuation.

In order to recast the correlator (2.15) in a form similar to (5.2), we observe that the
single-valued combination (2.11) derived in section 2 can be written as

S1(x)Ī1(x̄) + S2(x)Ī2(x̄)

= 1
x(1− x)

{
(1− iλ2)B(iλ3, iλ4) 2F1

(−1, iλ3
1− iλ2

;x
)

2F1

(1, iλ3
−iλ2

; x̄
)

+B(1− iλ3,−iλ4)xiλ22F1

(−1 + iλ2,−iλ4
1 + iλ2

;x
)
x̄1+iλ22F1

(2 + iλ2, 1− iλ4
2 + iλ2

; x̄
)}

.

(5.5)

Now it becomes clear that

S1(x)Ī1(x̄) + S2(x)Ī2(x̄) = 1
π

(1 + iλ2) B(iλ3, iλ4) I(x, x̄)
x(1− x) , (5.6)

with the following parameters:

I(x, x̄) :


â = −iλ4 , a = −1 , ā = 0 ,
b̂ = −iλ2 , b = 1 , b̄ = −2 ,
ĉ = −iλ3 , c = 0 , c̄ = 0 .

(5.7)

9This procedure is also known as the Kawai-Lewellen-Tye (KLT) method [25]. Holomorphic and anti-
holomorphic coordinates w, w̄ become independent coordinates ξ, η, respectively. The latter are integrated
from −∞ to +∞ subject to phase factors rendering the integrand single-valued when the branch points
w ≡ ξ = 0, x, 1 and w̄ ≡ η = 0, x̄, 1 are crossed.
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Similarly,

S̃1(x)Ī1(x̄) + S̃2(x)Ī2(x̄)

= − 1
1− x

{
(2− iλ2)B(iλ3, iλ4) 2F1

(−1, 1 + iλ3
2− iλ2

;x
)

2F1

(1, iλ3
−iλ2

; x̄
)

+B(−iλ3,−iλ4) x−1+iλ2 2F1

(−2 + iλ2,−iλ4
iλ2

;x
)
x̄1+iλ22F1

(2 + iλ2, 1− iλ4
2 + iλ2

; x̄
)}

.

(5.8)

By comparing this expression with eq. (5.2), we see that

S̃1(x)Ī1(x̄) + S̃2(x)Ī2(x̄) = − 1
π

(1 + iλ2) B(iλ3, iλ4) I
′(x, x̄)
1− x , (5.9)

with the assignments:

I ′(x, x̄) :


â = −iλ4 , a = −1 , ā = 0 ,
b̂ = −iλ2 , b = 2 , b̄ = −2 ,
ĉ = −iλ3 , c = −1 , c̄ = 0 .

(5.10)

In this way, we obtain the following integral representation:

G21
34(x, x̄)SV = 1

π
(1+iλ2) B(iλ3, iλ4) 1

x(1−x)

×
{
fa1a2bfa3a4b

∫
d2ww−1−iλ4w̄−iλ4(w−1)1−iλ2(w̄−1)−2−iλ2(w−x)−iλ3(w̄−x̄)−iλ3

−x fa1a3bfa2a4b
∫
d2ww−1−iλ4w̄−iλ4(w−1)2−iλ2(w̄−1)−2−iλ2(w−x)−1−iλ3(w̄−x̄)−iλ3

}
.

(5.11)

This correlator has a form of a “heterotic” Coulomb gas correlator: the holomorphic factors
have exponents differing by integers from the antiholomorphic ones.

5.2 Complex integrals as single-valued projections

The complex integral (5.1) can be expressed as a linear combination (with rational coefficients
in â, b̂, ĉ) of a basis of real (iterated) integrals subject to the single-valued projection sv.10

For a given choice of integers a, b, c, ā, b̄, c̄, this is achieved by first expressing (5.1) in terms
of the four basis elements (B.16) and then applying the relation (B.14).

For the two cases (5.7) and (5.10) (with ā, c̄ = 0, b̄ = −2), by partial integrating
and partial fractioning in the anti-holomorphic part, we may first cast (5.1) into a linear
combination of two complex integrals:

I(x, x) ā,c̄=0
b̄=−2

= âx̄

1− b̂
I(x, x) b̄=0

ā,c̄=−1
+ â(1− x̄) + ĉ

1− b̂
I(x, x) ā=0

c̄,b̄=−1
. (5.12)

Now the rational anti-holomorphic parts of the two integrals assume either of the two
forms 1

z̄(z̄−x̄) and 1
(z̄−1)(z̄−x̄) , respectively, and match those of the basis elements (B.16).

10See appendix B for a short review and references.
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Performing similar manipulations in the holomorphic sector allows expressing the complex
integral (5.12) in terms of the four basis elements (B.16) and to apply (B.14):

1
π
I(x, x̄) ā,c̄=0

b̄=−2
= â

1− b̂
sv
∫ x

0
dw |w|â+a |1− w|b̂+b |w − x|ĉ+c

+ â(1− x̄) + ĉ

(1− x̄)(1− b̂)
sv
∫ 1

x
dw |w|â+a |1− w|b̂+b |w − x|ĉ+c . (5.13)

The integrands in (5.13) can be expanded w.r.t. small â, b̂, ĉ. According to appendix B, the
sv map is then applied on each period integral in the expansion.

For (5.6) with a = −1, b = 1, c = 0 the two real integrals of (5.13) are related to S1(x)
and S2(x) of eqs. (2.3) and (2.12). More precisely, we define the following two functions

Ŝ1(x) := x(1− x) S1(x) =
∫ x

0
dw wâ−1 (1− w)b̂+1 (x− w)ĉ

= xâ+ĉ (1− x)2+b̂+ĉ B(â, 1 + ĉ) 2F1

(
2 + â+ b̂+ ĉ, 1 + ĉ

1 + â+ ĉ
;x
)
, (5.14)

Ŝ2(x) := x(1− x) S2(x) B(−â,−ĉ)−1 = 1 + b̂+ ĉx , (5.15)

which are related through the following identity:

s(â) Ŝ1(x)− π Ŝ2(x) = s(b̂)
∫ 1

x
wâ−1 (1− w)b̂+1 (w − x)ĉ (5.16)

= s(b̂) x−b̂(1− x)2+b̂+ĉ B(2 + b̂, 1 + ĉ) 2F1

(
2 + â+ b̂+ ĉ, 1 + ĉ

3 + b̂+ ĉ
; 1− x

)
.

The latter follows from the monodromy relation (9.80) of [19] for ã = 1+b̂, b̃ = −1+â, c̃ = −2

s(b̃+ c̃) I1(ã, b̃, c̃;x) + s(c̃) I2(b̃, ã, c̃; 1− x) = s(ã) I1(b̃, ã, c̃; 1− x) ,

subject to ã + b̃ + c̃ = −2 − ĉ with the integrals (5.3) and (5.4). We may apply11 the
single-valued map on (5.16):

â sv Ŝ1(x)− sv Ŝ2(x) = b̂ sv
∫ 1

x
wâ−1 (1− w)b̂+1 (w − x)ĉ , (5.17)

to cast (5.13) into the form

1
π
I(x, x̄) = 1

(1− x̄)
1

b̂(1− b̂)

{
âĉ x̄ sv Ŝ1(x)− [â(1− x̄) + ĉ] sv Ŝ2(x)

}
. (5.18)

Eventually, with â = −iλ4, b̂ = −iλ2, ĉ = −iλ3 given in (5.7) we can write (5.6) as follows:

S1(x)Ī1(x̄) + S2(x)Ī2(x̄) = B(iλ3, iλ4)
iλ2

1
x(1− x)

1
1− x̄

×
{
λ3λ4 x̄ sv Ŝ1(x) + i(λ2 + x̄λ4) sv Ŝ2(x)

}
. (5.19)

11Note that, strictly speaking the sv-map is only defined for period integrals. Hence, eq. (5.17) may also
be understood as defining equation for sv Ŝ2(x).

– 21 –



J
H
E
P
1
1
(
2
0
2
1
)
1
7
9

On the other hand, for (5.10) with a = −1, b = 2, c = −1 the two real integrals of (5.13)
are related to S̃1(x) and S̃2(x) of eqs. (2.4) and (2.14). More precisely, we define the
following two functions:

Ŝ′1(x) := (1− x) S̃1(x) = −
∫ x

0
dw wâ−1 (1− w)b̂+2 (x− w)ĉ−1 , (5.20)

Ŝ′2(x) := (1− x) S̃2(x) B(−â,−ĉ)−1 = −[2 + b̂+ (ĉ− 1)x] , (5.21)

which are related through the same type of identity as (5.16):

s(â) Ŝ′1(x)− π Ŝ′2(x) = s(b̂)
∫ 1

x
wâ−1 (1− w)b̂+2 (w − x)ĉ−1 . (5.22)

Consequently, we may repeat the steps from above to write (5.9) as follows:

S̃1(x)Ī1(x̄) + S̃2(x)Ī2(x̄) = B(iλ3, iλ4)
iλ2

1
(1− x)

1
1− x̄

×
{
λ3λ4 x̄ sv Ŝ′1(x) + i(λ2 + x̄λ4) sv Ŝ′2(x)

}
. (5.23)

In this way, we obtain the following sv integral representation:

G21
34(x, x̄)SV = B(iλ3, iλ4)

iλ2

1
x(1− x)

1
1− x̄

×
{
fa1a2bfa3a4b

[
λ3λ4 x̄ sv Ŝ1(x) + i(λ2 + x̄λ4) sv Ŝ2(x)

]
+ xfa1a3bfa2a4b

[
λ3λ4 x̄ sv Ŝ′1(x) + i(λ2 + x̄λ4) sv Ŝ′2(x)

]}
. (5.24)

6 Single-valued celestial amplitudes from inverted shadows

Recall that the correlator (3.1), now written as a complex integral in eq. (5.11), was
constructed by a single-valued completion of the shadow transform of a four-gluon celestial
amplitude with respect to gluon number 1. This prompts the immediate question whether
this integral can be interpreted as a shadow transform of certain “single-valued” celestial
amplitude. In this section, we construct such an amplitude, thus closing the loop and
reaching “another side” of the starting point of part I.

At this point, it is convenient to return to the notation of part I, where the position of
the shadow gluon operator was denoted by z′1. Therefore, eq. (2.5) now reads

x = z1′2z34
z1′3z24

, (6.1)

while z1 is reserved for the position of the original “unshadowed” gluon operator, and the
cross-ratio

z = z12z34
z13z24

. (6.2)

Up to this point, we have been considering the four-point shadow correlator〈
φ̃a1,−ε

∆̃1=1,+(z′1, z̄′1)φa2,−ε
∆2,− (z2, z̄2)φa3,+ε

∆3,+ (z3, z̄3)φa4,+ε
∆4,+ (z4, z̄4)

〉
= z1−iλ2

1′2 z−1
24 z−1−iλ4

1′4 z−2−iλ3
1′3 z̄−1−iλ2

1′2 z̄−1
24 z̄1−iλ4

1′4 z̄−iλ3
1′3 G21

34(x, x̄)SV , (6.3)
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where we used conformal invariance in order to recover dependence on individual points
from the limit given in eq. (3.1).

In order to rewrite the integrals (5.11) as shadow transforms with respect to z1, we
need to find a relation between the integration variable w and z1. As a hint, we note that in
the original celestial amplitude written in eq. (I.3.3) of part I, there was a relative factor of
z between the contributions associated with two color factors. A comparison with eq. (5.11)
indicates that

x
w − 1
w − x

= z = z12z34
z13z24

, (6.4)

therefore

w = z14z21′

z11′z24
. (6.5)

Furthermore,

w − 1 = −z12z1′4
z11′z24

, w − x = z21′z13z1′4
z24z11′z1′3

. (6.6)

We can substitute above relations into the integrals (5.11) and change the integration
variables from w to z1. The corresponding Jacobian is |dw/dz1|2, with

dw

dz1
= z1′2z1′4
z2

11′z24
. (6.7)

In this way, we obtain

1
x(1− x)

∫
d2ww−1−iλ4w̄−iλ4(w − 1)1−iλ2(w̄ − 1)−2−iλ2(w − x)−iλ3(w̄ − x̄)−iλ3

= z24
z23z34

z−1+iλ2
1′2 z2+iλ3

1′3 z1+iλ4
1′4 z̄24 z̄

1+iλ2
1′2 z̄iλ3

1′3 z̄
−1+iλ4
1′4

×
∫
d2z1
z2

11′
z1−iλ2

12 z−iλ3
13 z−1−iλ4

14 z̄−iλ2−2
12 z̄−iλ3

13 z̄−iλ4
14 , (6.8)

− 1
1− x

∫
d2ww−1−iλ4w̄−iλ4(w − 1)2−iλ2(w̄ − 1)−2−iλ2(w − x)−1−iλ3(w̄ − x̄)−iλ3

= − 1
z23

z−1+iλ2
1′2 z2+iλ3

1′3 z1+iλ4
1′4 z̄24 z̄

1+iλ2
1′2 z̄iλ3

1′3 z̄
−1+iλ4
1′4

×
∫
d2z1
z2

11′
z2−iλ2

12 z−1−iλ3
13 z−1−iλ4

14 z̄−iλ2−2
12 z̄−iλ3

13 z̄−iλ4
14 . (6.9)

Now we see that indeed the correlator (6.3) has the form of a shadow transform:

〈
φ̃a1,−ε

∆̃1=1,+(z′1, z̄′1)φa2,−ε
∆2,− (z2, z̄2)φa3,+ε

∆3,+ (z3, z̄3)φa4,+ε
∆4,+ (z4, z̄4)

〉
=
∫
d2z1
z2

11′

〈
φa1,−ε

∆1=1,−(z1, z̄1)φa2,−ε
∆2,− (z2, z̄2)φa3,+ε

∆3,+ (z3, z̄3)φa4,+ε
∆4,+ (z4, z̄4)

〉
SV
, (6.10)

– 23 –



J
H
E
P
1
1
(
2
0
2
1
)
1
7
9

with the celestial single-valued amplitude given by〈
φa1,−ε

∆1=1,−(z1, z̄1)φa2,−ε
∆2,− (z2, z̄2)φa3,+ε

∆3,+ (z3, z̄3)φa4,+ε
∆4,+ (z4, z̄4)

〉
SV

=− 1
π

(1 + iλ2)B(iλ3, iλ4)z2−iλ2
12 z−iλ3

13 z−iλ4
14 z̄−2−iλ2

12 z̄−iλ3
13 z̄−iλ4

14

×
{
fa1a2bfa3a4b 1

z12z23z34z41
+ fa1a3bfa2a4b 1

z13z32z24z41

}
. (6.11)

Note that the above correlator is manifestly covariant under conformal transformations,
with correct weights of external gluon operators. We end up with a rather surprising
conclusion, that in the λ1 = 0 soft limit, the single-valued MHV amplitude is given by the
so-called Parke-Taylor (PT) denominators “dressed” by conformal factors. The denominator
part is the same as in the MHV amplitude [26] and in Nair’s superamplitude [27].12 The
corresponding CCFT correlator is given by

G21
34(z, z̄) = lim

z1→∞,z̄1→∞
z̄2

1

〈
φa1,−ε

∆1=1,−(z1, z̄1)φa2,−ε
∆2,− (1, 1)φa3,+ε

∆3,+ (z, z̄)φa4,+ε
∆4,+ (0, 0)

〉
SV

= (1 + iλ2)B(iλ3, iλ4)
πz(1− z)

(
fa1a2bfa3a4b − zfa1a3bfa2a4b

)
. (6.12)

From this point, we will proceed in a similar way as in the earlier part of the paper, by
performing conformal block decompositions of the single-valued amplitude and exhibiting
the factorization chains from four-point to two-point correlation functions.

In the (12 
 34)2 channel, conformal blocks have the same form as in eq. (3.2), but
now with

h12 = − iλ2
2 , h̄12 = − iλ2

2 , h34 = iλ3
2 −

iλ4
2 , h̄34 = iλ3

2 −
iλ4
2 ,

h3 + h4 = 2 + iλ3
2 + iλ4

2 = 2− iλ2
2 , h̄3 + h̄4 = iλ3

2 + iλ4
2 = − iλ2

2 , (6.13)

where we used λ2 + λ3 + λ4 = 0. In order to expand the correlator (6.11) in this channel,
we formally rewrite it, first as

G21
34(z, z̄) = 1

π
(1 + iλ2)B(iλ3, iλ4)

{
fa1a2bfa3a4b

z(1− z) 2F1

( 0, iλ3
1− iλ2

; z
)

2F1

(0, iλ3
−iλ2

; z̄
)

− fa1a3bfa2a4b

1− z 2F1

(0, 1 + iλ3
2− iλ2

; z
)

2F1

(0, iλ3
−iλ2

; z̄
)}

, (6.14)

and then proceed in the same way as in section 3. As a result, we obtain

G21
34(z, z̄) =

∞∑
m=1

(smfa1a2bfa3a4b + s̃mf
a1a3bfa2a4b)K21

34

[
m− iλ2

2 ,− iλ2
2
]
(z, z̄) , (6.15)

12This correlator has another interesting property. It satisfies the differential equation derived in ref. [28] for
MHV gluon amplitudes in Mellin space (see also ref. [29]). This is rather unexpected because the single-valued
amplitude (6.11) does not seem to be related to the original Mellin amplitude in any simple way.
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where

sm = 1
π

(1 + iλ2)B(iλ3, iλ4) Γ(−iλ2 +m)Γ(iλ4 +m)
Γ(1 + iλ4)Γ(−iλ2 + 2m− 1) , (6.16)

s̃m = −sm −
1
π

(−1)m(1 + iλ2)B(iλ3, iλ4) Γ(−iλ2 +m)Γ(iλ3 +m)
Γ(1 + iλ3)Γ(−iλ2 + 2m− 1) . (6.17)

When compared with the block decomposition of the shadow correlator (3.4), the present
one contains only one subset of primaries, with (h, h̄) = (m − iλ2

2 ,−
iλ2
2 ). The spectrum

starts at m = 1 with a primary associated to a gluon with helicity +1 and dimension
∆ = 1− iλ2 = 1 + iλ3 + λ4. Its coefficient is

s1f
a1a2bfa3a4b + s̃1f

a1a3bfa2a4b = 1
π

(1 + iλ2)B(iλ3, iλ4)fa1a2bfa3a4b

= B(∆3 − 1,∆4 − 1)B(∆2 + 1, 2−∆2 −∆3 −∆4) fa1a2bfa3a4b

πΓ(2−∆2 −∆3 −∆4) . (6.18)

The corresponding operator appears at the leading order of the OPE of outgoing gluons [15,
16], as seen in eq. (4.3), which we repeat here for completeness:

φa3,+ε
∆3,+ (z3, z̄3)φa4,+ε

∆4,+ (z4, z̄4) ∼ −if
a3a4x

z34
B(∆3 − 1,∆4 − 1)φx,+ε∆3+∆4−1,+(z4, z̄4) . (6.19)

Still at the leading order, we can fuse the resultant operator with the incoming gluon
operator at z2 [16]:

φa2,−ε
∆2,− (z2, z̄2)φx,+ε∆3+∆4−1,+(z4, z̄4)

∼ ifa2xy

z24

[
B(∆2 + 1, 2−∆2 −∆3 −∆4)φy,+ε∆2+∆3+∆4−2,−(z4, z̄4)

−B(∆3 + ∆4 − 2, 2−∆2 −∆3 −∆4)φy,−ε∆2+∆3+∆4−2,−(z4, z̄4)
]

+ ifa2xy

z̄24

[
B(∆2 − 1, 2−∆2 −∆3 −∆4)φy,+ε∆2+∆3+∆4−2,+(z4, z̄4)

−B(∆3 + ∆4, 2−∆2 −∆3 −∆4)φy,−ε∆2+∆3+∆4−2,+(z4, z̄4)
]
. (6.20)

This factorization chain ends with a two-point function of φa1,−ε
∆1=1,−(z1, z̄1) with the oper-

ators on the r.h.s. of the above OPE. By invoking the principle proposed in section 4,
that a non-vanishing two-point function must necessarily involve one incoming and one
outgoing operator [see eqs. (4.5), (4.6)], and conformal invariance, we conclude that the
only non-vanishing contribution comes from the first operator on the r.h.s. of eq. (6.20),
φy,+ε∆2+∆3+∆4−2,−(z4, z̄4). Indeed, with ∆2 + ∆3 + ∆4 − 2 = 2−∆1 = 1,

〈
φa1,−ε

∆1,− (z1, z̄1)φy,+ε2−∆1,−(z4, z̄4)
〉

= δa1y

πΓ(∆1 − 2) z̄2
14

(∆1 = 1). (6.21)

The normalization factor [πΓ(∆1−2)]−1 = [πΓ(2−∆2−∆3−∆4)]−1 ensures that its product
with the OPE coefficient of (6.19) and the coefficient of the first term in (6.20) reproduces
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the conformal block coefficient (6.18). We conclude that the single-valued amplitude (6.11)
and the corresponding CCFT correlator properly factorize in the (12 
 34)2 channel, at
least at the leading OPE order.

The analysis of other channels is very similar. In the (14 
 32)2 channel, the conformal
block expansion reads

G21
34 (z, z̄) = G41

32 (1−z,1− z̄)

=
∞∑
m=1

(
umf

a1a2bfa3a4b+ ũmf
a1a3bfa2a4b

)
K41

32

[
m−1− iλ4

2 ,1− iλ4
2

]
(1−z,1− z̄) ,

(6.22)

where

um = 1
π

(1 + iλ2)B(iλ3, iλ4)Γ(−iλ4 +m− 2)Γ(iλ2 +m− 2)
Γ(iλ2 − 1)Γ(−iλ4 + 2m− 3) , (6.23)

ũm = 1
π

(1 + iλ2)B(iλ3, iλ4)(−1)m Γ(−iλ4 +m− 2)Γ(iλ3 +m)
Γ(1 + iλ3)Γ(−iλ4 + 2m− 3) . (6.24)

Here, the expansion starts at m = 1 with a primary associated with a gluon with helicity
−1 and dimension ∆ = 1− λ4 = 1 + λ2 + λ3. The corresponding coefficient is

u1f
a1a2bfa3a4b+ ũ1f

a1a3bfa2a4b =−fa1a4bfa2a3b 1
π

(1+ iλ2)B(iλ3, iλ4)

=−fa1a4bfa2a3b 1
π

(1− iλ4)B(iλ3, iλ4−1)

=−B(∆3−1,1−∆2−∆3)B(∆2 +∆3,2−∆2−∆3−∆4) fa1a4bfa2a3b

πΓ(2−∆2−∆3−∆4) . (6.25)

In this case, we can start factorizing by taking the limit of z2 → z3, with the leading OPE
terms given in eq. (4.8). This can be followed by z4 → z2 = z3, which is described by a
similar OPE. One ends up with sixteen two-point correlators involving φa1,−ε

∆1=1,−(z1, z̄1) and
one of the remaining operators, but by following the same arguments as in section 4, one
finds that only one of them is non-vanishing. The product of the corresponding OPE and
two-point coefficients does indeed yield the conformal block coefficient (6.25).

The conformal block expansion in the (13 
 42)2 channel can be obtained in the same
way, with the following result:

z2h3 z̄2h̄3G21
34 (z, z̄) = G24

31

(1
z
,

1
z̄

)
=
∞∑
m=1

(
tmf

a1a2bfa3a4b + t̃mf
a1a3bfa2a4b

)
K24

31

[
m− 1− iλ3

2 , 1− iλ3
2

](1
z
,

1
z̄

)
, (6.26)

where

tm = −t̃m − (−1)m 1
π

(1 + iλ2)B(iλ3, iλ4)Γ(iλ2 − 2 +m)Γ(−iλ3 +m− 2)
Γ(iλ2 − 1)Γ(−iλ3 + 2m− 3) , (6.27)

t̃m = 1
π

(1 + iλ2)B(iλ3, iλ4) Γ(iλ4 +m)Γ(−iλ3 +m− 2)
Γ(1 + iλ4)Γ(−iλ3 + 2m− 3) . (6.28)
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These conformal block spectrum and block coefficients match the (14 
 32)2 channel expan-
sion, eqs. (6.22)–(6.24), upon exchanging 3↔ 4 and using Jacobi identity. Therefore, similar
to (14 
 32)2, at the leading OPE order, this channel has correct factorization properties.

To summarize, the single-valued amplitude (6.11) and the corresponding CCFT cor-
relator (6.12) enjoy crossing symmetry and satisfy all bootstrap conditions, at least at
the leading order of the OPE. In addition to helicity ±1 gluon operators with dimensions
∆ = 1+iλ, the conformal block spectrum consists of primary field operators with dimensions
∆ = m+ iλ, with integer m > 1. At each level, two spin values, J = m and J = m− 2, are
possible. For m > 1, the primary fields appear in all group representations contained in the
product of two adjoint representations. Extrapolating from the results of part I, we expect
a larger, but always integer spin spectrum, to contribute to the celestial amplitude beyond
the soft limit of λ1 = 0.

The case of λ1 6= 0 is more difficult because the correlators involve Appell’s functions [1]
with rather complicated monodromy properties. Nevertheless, it is very important to
understand it because this would allow addressing some important questions, for example
how supertranslation symmetry is realized in single-valued amplitudes and in the amplitudes
involving shadow fields. It would also clarify the role of shadow fields, with dimensions
∆ 6= 1, in the OPEs of gluon primary field operators.

7 Summary and conclusions

In the last section, we closed the loop and returned to where we started in part I — to
the four-gluon celestial amplitude. Defined as the Mellin transform of standard scattering
amplitude, it is ill-defined as a CFT correlator because the positions of primary field
operators are constrained by four-dimensional kinematics. Four-particle scattering events
are planar, therefore the conformally invariant cross ratio of four complex coordinates is
real. Such Mellin amplitude has no crossing symmetry and disagrees with the OPE of
gluon operators. On the other hand, the single-valued amplitude derived in the last section
is a “good” CFT correlator because it enjoys crossing symmetry and satisfies bootstrap
self-consistency conditions in agreement with all known OPEs. Let us outline in more detail
the path that led us to the end point so drastically different from the beginning of part I.

In part I, we extended the definition of Mellin amplitude to the entire complex plane
by performing a shadow transformation on one of gluon operators. The conformal block
decomposition of the shadow correlator revealed the presence of blocks with continuous
complex spin. This was a sign of a much deeper problem. In its own way, the shadow
correlator inherits the problems of the original Mellin amplitude, by being a multi-valued
function of the cross ratio. In general, it is given by one of Appell’s functions and has rather
complicated monodromy properties, therefore it is difficult to use it as a starting point for
constructing a single-valued correlator. Some significant simplifications occur, however, in
the limit of the “soft” shadow operator with conformal dimension ∆ = 1. Then all primary
fields propagating in one of two-dimensional channels have the same antiholomorphic weight
(although an infinite spectrum of holomorphic weights). The correlator reduces from Appell’s
to a hypergeometric function and bears a striking resemblance to the correlators of minimal
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models with null states at level 2. By following a procedure similar to minimal models, it is
possible to construct a single-valued correlator by adding just one compensating function
involving the shadow of the aniholomorphic block. In this way here, in part II, we obtained
a single-valued completion of the shadow transform of celestial amplitude. Its conformal
block spectrum consists of primary field operators with dimensions ∆ = m+ iλ, with integer
m ≥ 1 and various, but always integer spin. Starting from m = 2, the blocks appear in all
group representations contained in the product of two adjoint representations.

It is not surprising that the single-valued completion eliminates states with complex spin.
What is the most surprising, however, and somehow miraculous result of this work, is that
the single-valued correlator is perfectly compatible with all known OPEs of gluon operators.
It enjoys crossing symmetry and has correct factorization properties in all two-dimensional
channels, i.e. it is fully “bootstrapped.” In the special case of SU(2) gauge group, we also
discussed some non-leading OPEs, with two gluons fusing into SU(2) singlets, triplets and
quintuplets and with the respective OPE coefficients including Clebsch-Gordan coefficients.

The connection to minimal models facilitates one more step. In the Coulomb gas
formulation of minimal models, the correlators of primary fields (vertex operators) can
be represented as complex integrals over the positions of “charge-screening” vertices. In
minimal models with Verma modules degenerating at level 2, they can be represented
by a single integral. We followed the approach of Dotsenko and Fateev and constructed
such integral representation of the celestial correlator. We also made a connection to
string theory, where complex, closed string world-sheet integrals can be related to open
string integrals via so-called single-valued projection. In this way, we constructed another
integral representation of the celestial correlator, as a single-valued projection of a real-line
integral. In this context, kinematic invariants (exponents of Koba-Nielsen factors) are tied
to conformal dimensions of primary fields.

Recalling the beginning of part I, the shadow transform was computed by integrating
the celestial amplitude over the complex position of one of the gluon operators on a celestial
sphere, with an appropriate integration factor determined by conformal weights. Now this
shadow correlator has been completed to a single-valued function and further represented
by a complex integral. By a suitable change of the integration variable, we brought it to
a form of a shadow transform of a function with the conformal transformation properties
appropriate for a four-gluon celestial amplitude. Undoing this shadow transform leads to a
new correlation function, which we defined as the “single-valued” celestial amplitude. It has
a form drastically different from the original “Mellin” celestial amplitude. It is defined over
the entire complex plane and has correct crossing symmetry, OPE and bootstrap properties.

The single-valued amplitude is given by a simple expression. It consists of PT denomi-
nators “dressed” by the factors ensuring correct conformal transformation properties. The
PT denominator part is the same as in the MHV amplitude [26] and in Nair’s superam-
plitude [27]. It is unlikely that the single-valued amplitude can be obtained by a simple
“improvement” of the Mellin amplitude, in a more direct way than our “shadowy” detour.
The superamplitude appears, however, in a natural way in Witten’s formulation of string
theory in twistor space [30]. This indicates that twistor space may be helpful in constructing
celestial conformal field theory underlying single-valued amplitudes. Understanding the
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origin of single-valued amplitudes would also help in extending our results to the correlators
involving more than four external particles.
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A SU(2) Clebsch-Gordan coefficients in vector basis

Clebsch-Gordan coefficients are usually written in the angular momentum basis as

〈J,M | ·
(
|j1,m1〉 ⊗ |j2,m2〉

)
≡ Cj1,m1;j2,m2

J,M (A.1)

In our case, gluons are in the adjoint (vector) representation of SU(2), with j1 = j2 = 1,
therefore J = 0, 1, 2. On the other hand, in Feynman diagrams, gluon SU(2) states |a〉 are
usually labelled by vector indices a = 1, 2, 3. The angular momentum and vector bases are
related by a unitary transformation:

|a〉 =
3∑

n=1
Uan|j = 1,m = 2− n〉. (A.2)

The matrix U can be constructed by requiring that J3 transforms from the diagonal matrix
J kl3 = diag(1, 0,−1) to the vector rotation matrix J ab3 = −iε ab3 . It is given by

U =


i√
2 0 − i√

2
1√
2 0 1√

2
0 −i 0

 . (A.3)

In the vector basis, Clebsch-Gordan coefficients are given by

CabJ,M ≡ 〈J, M |a, b〉 =
3∑

k=1

3∑
l=1

UakUblC
1,2−k;1,2−l
J,M . (A.4)

By using Clebsch-Gordan coefficients, listed for example in https://pdg.lbl.gov/2002/clebrpp.
pdf, we obtain:

C2,2 =

−
1
2

i
2 0

i
2

1
2 0

0 0 0

 , C2,−2 =

−
1
2 − i

2 0
− i

2
1
2 0

0 0 0

 , (A.5)

C2,1 =

 0 0 1
2

0 0 − i
2

1
2 − i

2 0

 , C2,0 =


1√
6 0 0

0 1√
6 0

0 0 −
√

2
3

 , C2,−1 =

 0 0 −1
2

0 0 − i
2

−1
2 − i

2 0

 , (A.6)
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C1,1 =

 0 0 1
2

0 0 − i
2

−1
2

i
2 0

 , C1,0 =


0 i√

2 0
− i√

2 0 0
0 0 0

 , C1,−1 =

 0 0 1
2

0 0 i
2

−1
2 − i

2 0

 , (A.7)

C0,0 =


1√
3 0 0

0 1√
3 0

0 0 1√
3

 . (A.8)

Note that C2,M and C0,M are symmetric in vector indices a, b, while C1,M is antisymmetric.
Furthermore, C∗abJ,M = (−1)J−MCabJ,−M .

B The single-valued projection

In this appendix, we briefly review the single-valued map sv [31]. Based on [32], this map
represents a direct relation between complex sphere and real iterated integrals [33]. For a
review, we refer to [34] and for a rigorous mathematical proof to [35]. In particular, complex
sphere integrals describing closed string amplitudes can be written as some projection of
iterated real integrals representing open string amplitudes [33]. The simplest example arises
for four-point scattering yielding the relation

1
π

∫
C
d2w

|w|2â |1− w|2b̂

|w|2(1− w̄) = sv
(∫ 1

0
dx xâ−1 (1− x)b̂

)
, (B.1)

with parameters â, b̂ chosen such that both integrals converge. While the integral on
the l.h.s. of (B.1) describes a four-point closed string amplitude, the integral on the
r.h.s. describes a four-point open string amplitude. The projection sv is understood to act
on the period integrals that arise after expanding both integrands w.r.t. small â, b̂, e.g. at
the leading order in b̂ we have:13

1
π

∫
C
d2w

ln |1− w|2

|w|2(1− w̄) = sv
∫ 1

0
dx

ln(1− x)
x

= −sv(ζ2) = 0 . (B.2)

In fact, all periods appearing in (B.1) are Riemann zeta functions

ζn =
∑
k>0

k−n , n ≥ 2 , (B.3)

on which the sv-map acts as:

sv :

ζ2n+1 7→ 2 ζ2n+1, n ≥ 1 ,
ζ2 7→ 0 .

(B.4)

This map represents the single-valued projection sv. It is called projection since, e.g. ζ2-
terms are projected out. More generally, sv represents a morphism acting on the space of

13Such relations also arise in the world-sheet sigma-model comparison of heterotic and type I open string
gauge couplings [36].
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multiple zeta values (MZVs)

ζn1,...,nr := ζ(n1, . . . , nr) =
∑

0<k1<...<kr

r∏
l=1

k−nll , nl ∈ N+ , nr ≥ 2 , (B.5)

mapping the latter to a subspace of MZVs, namely the single-valued multiple zeta values
(SVMZVs) [31]:

ζsv(n1, . . . , nr) ∈ R . (B.6)

The numbers (B.6) can be obtained from the MZVs (B.5) by generalizing the map (B.4) to
the full space of MZVs [31]:

sv : ζ(n1, . . . , nr) 7→ ζsv(n1, . . . , nr) . (B.7)

The map (B.7) has been constructed14 by Brown in ref. [31], where also SVMZVs have
been studied from a mathematical point of view. For instance, we have ζsv(5, 3) = sv ζ5,3 =
−10ζ3ζ5 and ζsv(7, 3) = sv ζ7,3 = −28ζ3ζ7 − 12ζ2

5 .
A generalization of (B.1) is the relation

− z̄

π

∫
C
d2w

|w|2â |1− w|2b̂ |w − z|2ĉ

|w|2(w̄ − z̄) = sv
(∫ z

0
dx xâ−1 (1− x)b̂ (z − x)ĉ

)
, (B.8)

with z ∈ C, which reduces to (B.1) for z=1. Again, the complex integral can be computed
by the single-valued map sv acting on the period integrals after expanding the integrand of
the r.h.s. (B.8) w.r.t. to small â, b̂, ĉ. This expansion gives rise to Q-linear combinations of
MZVs (B.5) and (Goncharov) multiple polylogarithms (MPLs) G depending on z:

G(a1, a2, . . . , aw; z) =
∫ z

0

dt

t− a1
G(a2, . . . , aw; t) , nj ∈ N, nr > 1, aj , z ∈ C, (B.9)

with G(; z) = 1. The single-valued projection on MPLs has been constructed15 by Brown
in [37], e.g.

sv G(a1; z) = G(a1; z) +G(a1; z) ,
sv G(a1, a2; z) = G(a1, a2; z) +G(a1; z) G(a2; z) +G(a2, a1; z) , etc. , (B.10)

with ai ∈ {0, 1}, i.e.

sv G(0; z) = sv ln z = ln |z|2 , sv G(1; z) = sv ln(1− z) = ln |1− z|2 , (B.11)

and
sv G(0, 1; z) = G(0, 1; z) +G(0; z) G(1; z̄) +G(1, 0; z̄) , etc. (B.12)

14Strictly speaking, the map sv is defined in the Hopf algebra H of motivic MZVs ζm. In this algebra H
the homomorphism sv : H→Hsv, with ζm(n1, . . . , nr) 7→ ζmsv(n1, . . . , nr) and ζmsv(2) = 0 can be constructed,
cf. [31] for details.

15In fact, SMVZs can also be defined as single-valued MPLs at argument z=1.
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Thus, at leading orders in b̂ (B.8) yields

− 1
π

∫
C
d2w

z̄ ln |1− w|2

|w|2(w̄ − z̄) = sv
∫ z

0
dx

ln(1− x)
x

= sv G(0, 1; z)

= −L2(z) + L2(z̄) + ln(1− z̄) ln |z|2 , (B.13)

with G(0p−1, 1; z) = −Lp(z), p ≥ 1. To summarize, the single-valued map sv projects the
MZVs onto the space of SVMZVs (via (B.7)) and MPs onto single-valued MPs. It can be
applied separately for each factor in the power series expansion w.r.t. small â, b̂, ĉ.

Generalizing (B.1) leads to higher-point closed string amplitudes described by a matrix
J of multi-dimensional complex integrations. Then, the single-valued projection can be
applied on a matrix F of Euler integrals comprising a basis of real iterated integrals
representing open string amplitudes and leading to the following matrix relation [33]:

J = sv(F ) . (B.14)

Recently, the relation (B.14) has been extended to also include unintegrated points z [38, 39].
For the example (B.8), this amounts to considering the following matrix comprising a basis
of real iterated integrals:

F =


∫ z

0
dw

1
w

∫ z

0

1
1− w∫ 1

z
dw

1
x

∫ 1

z

1
1− w

× |w|â |1− w|b̂ |w − z|ĉ . (B.15)

On the other hand, the complex integral (B.8) is an element of the following basis matrix:

J =− 1
π


∫

C
d2w

1
w

z̄

w̄(w̄− z̄)

∫
C
d2w

1
1−w

z̄

w̄(w̄− z̄)∫
C
d2w

1
w

1− z̄
(w̄−1)(w̄− z̄)

∫
C
d2w

1
1−w

1− z̄
(w̄−1)(w̄− z̄)

×|w|2â |1−w|2b̂ |w−z|2ĉ .
(B.16)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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