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1. Introduction 

On the sphere s2 = { x :  + x i  + x i  = 1 )  with its canonical metric go = 

Ej=, dx: the problem of conformal deformation of metric is to find conditions 
on the function K ( x )  so that K ( x )  is the Gauss curvature of a conformally 
related metric g = e2ugo. In terms of the Laplacian in the canonical metric this 
is expressed by the differential equation 

(1 . I)  Au + Ke2" = 1. 

This equation has a solution when K is an even function; in this case Moser 
[13] showed that there is in fact an even function u solving the differential 
equation. Moser's approach was to maximize a functional within the class of 
even functions in H'. The crucial ingredient for proof of convergence is a 
sharp version of Trudinger's inequality [12]: for an even V1 function u with 
jS2u = 0, and js21~u12 = 1, we have jS2exp(8.rru2) 6 co where co is a univer- 
sal constant. Without the evenness condition the inequality is weakened to 
jS2 exp(4n u 2 ,  < c;. Kazdan and Warner gave in [9] the necessary condition 

where xi  is any of the ambient coordinate functions on S2 .  

In our previous article [4] we have obtained the following 
Theorem. On S 2 ,  let K > 0 be a smooth function with nondegenerate critical 

points, and in addition AK(Q)  # 0 where Q is any critical point. Suppose there 

are at least two local maxima and that at all saddle points of K ,  AK(Q)  > 0. 

Then K admits a solution to equation (1.1). 
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Our approach was to employ the variational functional used by Moser:

F[u] = \ogfKe2u - (/ |Vw|2 + 2/w). It turns out that unless K is identically

constant, F[u] does not have any local maximum in the Sobolev space

Hl(S2). We therefore used a max-min scheme to locate saddle points of F. As

usual, a maximizing sequence of a max-min scheme need not converge, and

there is the possibility of a sequence of masses e2u concentrating at a point.

The main analysis deals with the description of such a concentrating sequence

and the basic tool is a sharpened form of an inequality of Onofri which can be

derived from Moser's inequality.

In this paper we give two results. The first solves a boundary value problem

associated to equation (1.1), the second completes the analysis of [4] and yields

an index counting criteria for solvability of (1.1).

Theorem I. Suppose D is a smooth domain of S2 and K a smooth function

defined on D. Then for the Neumann boundary problem

/-, 2) (AM + Ke2u= 1 onD,
K ' } \ du/dn = 0 on dD

to have a solution w, we have

(a) When Area(D) < 27r, it is sufficient that K be positive somewhere.

(b) When D = hemisphere, it is sufficient that

T T T f KdA > max (K(x)90).
2L(D)JD XG3D

Remarks, (a) In case D = hemisphere H, say H = {(x^ x2, x3) e S2, x3

> 0}, the boundary condition in (1.2) means geometrically that the equator

{x3 = 0} remains a geodesic in the new conformal metric g = e2ug0. We point

out some obvious necessary conditions for the equation to be solvable in this

case, namely (1) K should be positive somewhere and (2) Kazdan-Warner's

implicit condition /^(vA^V-x:,)^" = 0 for / = 1,2 still holds for K satisfying

dK/dn = 0; this can be seen either by reflecting K and u over the lower

hemisphere or by direct computation using the condition du/dn = 0 and

dx/dn = 0 (/ = 1,2) on dH. Of course the function K(x) = 1 + ejq does not

satisfy the hypothesis of our theorem.

(b) Naturally if AT is a function o n S 2 which is reflection symmetric w.r.t the

equator dH = {x3 = 0}, i.e., K(xvx2,x3) = K(xvx2,-x3), and K satisfies

the condition in case (b) of Theorem I, then equation (1.1) allows a solution on

S2 which is also reflection symmetric.

Theorem II. Let K be a positive smooth function with only nondegenerate

critical points, and in addition AK(Q) # 0 where Q is any critical point.

Suppose there are p + 1 local maximum points of K, and q saddle points of K

with &K(Q) < 0. If q =£ /?, then K admits a solution to the equation (1.1).
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We briefly describe the analysis required for these two results. In §2, we

relate (in Proposition 2.1) the best exponent in the Moser-Trudinger inequality

to a constant which appears in an isoperimetric inequality. This relation will

make it clear that for even functions defined on S2, the best exponent in the

inequality is exactly twice the usual exponent for arbitrary functions. We then

apply the proposition to study Moser's inequality for more general domains

and obtain:

Proposition 2.3. Suppose D is a piecewise # 2 , bounded, finitely connected

domain in the plane with finite number of vertices. Let 0D be the minimum

interior angle at the vertices of D. There exists a constant cD such that for all

u e <g\~D) with

(1.3) f \vu\2dx^ 1, f
JD JD

we have

(1.4) f
JD

where /? < 20 D. As in the case of Moser's result, the integral is finite for all

positive /?, but if ft > 20 D it can be made arbitrarily large by appropriate choice

of u.
As mentioned above, the proof of Proposition 2.3 depends on an isoperimet-

ric inequality (Proposition 2.1). We apply the inequality directly to the evalua-

tion of the exponential integral using the distribution of u. This replaces the

symmetrization procedure used by Moser. We make a change of variable which

reduces the inequality to a calculus inequality (see Theorem A in §2) given in

Moser's original paper.

In cases where there are no corners on 3D, then 0D = IT, and we find /? = 2m

which is half the index in case of Moser's Theorem for Dirichlet boundary

condition. Since it will be apparent that the arguments used to derive Proposi-

tion 2.3 for plane domains also apply for domains of S2, as an immediate

corollary of Proposition 2.3 we have:

Corollary. Suppose D is a smooth finitely connected subdomain of S2, there is

a constant CD depending only on D such that for all u e <£l(D) we have

where m(D) denotes the measure of D.

In §3 we give elementary properties of the functionals F[u] and recall the

basic inequality of Onofri as well as the sharpened versions which are used to

describe the concentration phenomenon. We introduce two sets of parameters
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which measure the extent of concentration of masses and prove a concentra-

tion lemma. We apply the results in §2 and the concentration lemma to prove

Theorem I, then recall the asymptotic formula for the integral of a ^ 2

function with respect to concentrated masses. We outline here the argument to

these technical results but refer the reader to [4] for complete details. In §4 we

give an improved version of the lifting lemma in [4]. This will be crucial for

analysis of concentration at saddle points of K. In §5 we define the variational

schemes used to prove Theorem II, and analyze the concentration of a

maximizing sequence if there is no convergence. In §6 we give the proof of

Theorem II. For Theorem II, in case p > q, we use the precise information

about the nature of failure of the one-dimensional max-min scheme to show

that, in a rough sense, there are more one-dimensional schemes available than

those that can fail. Thus we get an index 1 solution of (1.1). In case q > /?, we

first prove in §6 that certain 2-dimensional schemes associated with some

simple closed curves F on S2, which satisfy some conditions to be specified in

§5, cannot have concentrating maximizing sequence. Thus the proof consists in

a counting argument which shows that when q > p, there is always a simple

closed curve T meeting the required conditions and thus we get an index 2

solution of (1.1). In §7, we discuss examples of K with q = p where our

schemes fail as well as examples where our schemes give more than one

solution.

While Theorems I and II and the previously cited work give sufficient

conditions for existence of solutions to equation (1.1), there is another result of

Kazdan-Warner [10] which states that for any K positive somewhere on S2,

there always exists some diffeomorphism <p so that the equation

Aw + Ko(pe
2u= 1

is solvable. It is therefore of interest to find some analytic conditions on the

class of functions K which is topologically simple (e.g., K has only a global

maximum and a global minimum) that ensures existence of a solution of (1.1).

In related developments for the analogous equation of prescribing scalar

curvature on a compact manifold M of dimension «, n > 3, the corresponding

equation becomes

where R{) is the scalar curvature of the underlying metric dsl and R is the

prescribed scalar curvature of the conformally related metric ds2 = u4/(n~2)dsl.

When R = constant, this was Yamabe's problem and is recently solved by

Aubin [1] and Schoen [18]. While for the analogous problem of prescribing R

on 5" (« > 3) with dsl t n e standard metric on Sn, Escobar and Schoen gave
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in [6] the analogue of Moser's theorem, Bahri and Coron [3] have announced

an analogue of our Theorem II on S3.

2. An isoperimetric inequality and Moser's inequality

with Neumann condition

Let D be a bounded, piecewise # 2 finitely connected domain in the plane

with a finite number of vertices, and let 0D be the minimum interior angle at

the vertices of D. In this section we will first establish an isoperimetric

inequality and then apply it to prove the version of Moser's inequality stated in

the introduction.

Let D be as before and consider a curve y separating D into two regions,

say Dx and Z>2, with Area(Z)1) < Area(D2). Define the isoperimetric constant

/ (Z) , ,4) as

y

where A = A(DY) = area of Dx and L(y) = length of y. Then we have

Proposition 2.1. The function I{D, A) satisfies:

(2.1) I(D, A) is bounded from below by a positive constant cx for all

A e [0,i Area(D)],

(2.2) as A -+Owehavel(D,A) > 20D(l + e(A)),

where e(A) < 0, \e(A)\ = O(Al/2\ andXvm^^^IiD, A) = 20D.

Proof. For the first assertion, in view of the classical isoperimetric inequality

L((3Z)1))2/Area(D1) > 4TT for any domain in Dv it suffices to show that there

exists a constant C such that

length(y) > C l e n g t h ^ / W ? ) •

It suffices to check this inequality for a component yr of the curve y,

length(yr) > C \Qngth(dDl \ y). There are two cases:

(1) If y' joins two different components of the complement of Z), say Bx

and Q2, then length(y') ^ distance(fi1, B2) and the inequality follows.

(2) If yr ends on the same component of 3D, say at Pv P2, then length

(y') ^ distance(/)
1, P2\ the latter is bounded below by a fixed multiple of

length of dD between Px and P2, by a well-known property of chord-arc

relation on a piecewise %>l curve.

To further simplify our consideration, we observe that we may assume Dx

consists of one component, for if Dx = D[ U Z)2' then L = V + L" and

La/A' > 6, L"2/A" > 0 implies that {V + L")2 > La + L/r2 + 2L'L" >
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For the second assertion, we need only consider those Dx with small area,

hence only those y with short lengths. In this case we notice that components

of y must begin and end on the same component of 8Z>, say T. T being a

piecewise #* curve, there is a global constant c such that dist(qvq2)^ c

length (arc on T between q^)- Thus we may assume further that each

component of y begins and ends on points qx, q2 which are close along T.

From the previous paragraph we may without loss of generality assume Dx

consists of one component. Replacing, if necessary, y by yx the shortest

component of 9D1 with end points on dD n dDv we may assume without loss

of generality that y consists of only one component. We assert that we may

assume y is a convex with respect to Dv For if not, we may replace Dx by

(convex hull of Dx) n D (recall diamD1 is small, hence the convex hull of Dx

still has small area). This has the effect of increasing the area and decreasing

the boundary length, hence decreasing the ratio L2/A.

Assume y is a convex curve (with respect to Dx) with the ratio L2(y)/A

close to / (D , A). We may assume also without loss of generality that y meets

the boundary of 3D at two points, say Pv P2. Choose a boundary point

Po e dDl \ y which is equidistant from Pv P2. Then we can represent y as a

graph y: r = r{0), 0 < 0 < a, in the polar coordinates based at Po. Let 0PQ

represents the corner angle of D at Po. Thus

2 ./0

A = Area of Dx = \ F r2d0 + £ ,
2 /

where E represents the area of the excess region of D\ cone over Po. To

estimate L2(y )/A we apply the following lemma.

Lemma 2.2. (a)

ISr2d6 1

(b) E < c2(L(y))3 for some constant c2 > 0.

Assuming the lemma for a moment, we may easily finish the proof of

Proposition 2.1:

- 2ac2L(y)) > 2o(l - 2ac2c\/2Ax/2).
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In the last inequality we have applied statement (1) in Proposition 2.1. We now

claim a = 0P) - 0{Al/1): Let A be the triangle spanned by Po, Pl9 and P2.

Obviously

A > Area(A) >\PX- P2\ sina,

hence

The piecewise ^ 2 condition implies that

Hence a = 6P — O(Al/2) as claimed. Thus we find

To see that \imA ^0I(D, A) = 20D, let P be some vertex in dD with 0p = 0D.

Choose a circle Cp centered at P with radius p, and let y = Cp Pi D. Then

(L(y))2/A = 20D when p is sufficiently small. Thus we have finished the

proof of Proposition 2.1 assuming Lemma 2.2.

Proof of Lemma 2.2. For (a), because of homogeneity of the ratio, we may

consider the variational problem of minimizing (L(y))2 subject to the con-

straint \ for2d0 = 1.

The variational equation for the extremal is

(2)
dr_

dO 0 = 0

dr_

dO
= 0,

where X is the constant of the Lagrange multiplier.

Equation (1) is the equation for a curve y of constant curvature; that is y is

a circular arc while the boundary condition (2) makes y orthogonal to the two

sides of the cone with angle a at Po G dD. Hence the optimal ratio of (a) is

achieved by a circular arc centered at Po, with the value a/2.

For (b), write E = Ex + E2 where £ ; , / = 1,2, is the excess area to each side

of the angle at Po. Each Ei is estimated by length /, of the segment P0Pi

(where P,., / = 1,2, are the end points of the arc y) multiplied by the width w,
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of the area. Because of the piecewise # 2 assumption we have on 3Z>,

H,. = O(/2). Since /, < lQngth(dDl \ y) we find

Ei < ( l e n g t h ^ \ Y ) ) 3 < k(lengthy)3 ,

where c is a constant depending on the # x property of 3D. We have thus

proved (b).

Remarks. (1) The proof of Proposition 2.1 is very likely known, since we

need Proposition 2.1 in its precise form, we give the proof here for the sake of

completeness.

(2) When the domain D is contained in S2, similar arguments as in

Proposition 2.1 also hold. In this case, the isoperimetric inequality becomes

L2 > A(4IT - A). While for two small regions on S2 symmetric under the

antipodal map, we have L = Lx + L2, A — Ax + A2 with Lx = L2, Al = A2,

and L? > A((4ir - At) for i = l ,2 . Thus L2 = 4L2 > 4At(4ir - At) =

A($7T — A). As we will see in the proof of Proposition 2.3 below, this explains

that for even functions defined on S2, the best exponent in the Moser-Trudinger

inequality is 8TT instead of 4m.

As we have stated in the introduction, our proof of Proposition 2.3 depends

on a calculus inequality which also appeared in Moser's paper [12].

Theorem A (Moser). Suppose w(t) is a monotonically increasing function

defined on the real line (-oo, oo) satisfying

(2.3) r w2(t) dt < 1, f°° w(t)p(t) dt =
• ' - o o • ' - o o

with p(t) a positive continuous function satisfying

(2.4) p(O<Coe-"', f° p{t)dt = \

for some constant c0. Then

(2.5)

is uniformly bounded.

Proof of Proposition 2.3. (Proposition 2.3 was stated in §1.) We will break

the proof of the theorem into two steps. First we will prove it for # 2 functions

u defined on D which are Morse functions (i.e., u has only isolated nondegen-

erate critical points on D). This will be established by a change of variable

based on the distribution of u and by applying Theorem A above. In the

second step we will use an approximation argument and prove the theorem for

all ^l functions u defined on D.
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Step I. Assume u is a c€1 Morse function defined on Z). For each real
number M, let

LM = length of the level curve { w = M },

y4M = area of the region {u < Af}.

Now assume w satisfies (1.3), that is

(2.6) f \ux\
2dx^l and f udx = 0.

JD JD

We begin the proof by rewriting (1.3) in terms of LM, AM:

f \ux\
2dx= f* If \du\ds\dM

> r u
T

Mds)[ dM
J-™ fu-M{V\du\)ds

(by Holder's inequality, and the fact that u is a Morse function)

(dAM/dM) aM>

f udx ̂  r MdAM.
JD ^-oo

Thus (2.6) is equivalent to

(2.6)' / 7^
•'-oo ydAM/

(2.6)" f MdAM = 0.
' ' -00

To estimate jDe^u~ dx for 0 < /? < )8D = 2^D, again we rewrite the integral in
terms of M, ,4^:

(2.7) f e^dx-f

Now make a change of variable in (2.6), (2.6)", and (2.7) by choosing
/ G (-oo, oo) as a function of M which satisfies

dA
(2.8) j 8 - ^ =<S>(D,AM)AM(AI>)-AM),

where <j>(D, AM) ^ I(D, AM) is a modification of the function I(D9AM)

defined in Proposition 2.1 for AM e [0, ̂ (D)] (v4(D) denotes the area of D)

which satisfies

(2.9) <f>(D,AM)>c1 f o r ^ E [ 0 , 4 D ) ] ,

(2.10) <t> is a ^ function for ,4M G (Z), A(D))9
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IB
(2.11)

where e(AM) = O(AQ) as AM -* 0 or AM

To show the variable t is well defined in (2.8), notice that by (2.9), we may

define t as

(2.12) lM'

We will postpone the proof that t is well defined (i.e., as AM increases from

0 to A(D), t increases from -oo to oo) until the end of the section. Since u is a

# 2 Morse function, it then follows that AM is a piecewise ^l function of M

and also / is a piecewise #* function of M, hence of AM.

We now define the function w as an increasing function of t by w(t) =

P1/2M. Then

\ dt I \ dt I \ dt ) H\ dt

( d ^ dM (by (2.8)).

Since L2
M > (<(>(/), ^4A/)>4M(^(Z)) - ^ A / ) ) by Proposition 2.1, we have from

(2.6/ and (2.13) that

Finally define p(r) = dAM/dt, then p is a piecewise <^71 function of f and

we can rewrite (2.6)" and (2.7) as

(2.15) f° W ( 0 P ( 0 * = 0,
y
-oo

(2.16) f ePu2dt= r ew2(t)
P(t)dt.

JD ^-oo

From (2.14), (2.15), (2.16), it is clear that we are ready to apply Theorem A,

provided we can verify

dA
(2.17) p(r ) = — T ^ < coe~ul for some constant c0 for all P < 20D.

Thus to finish the proof of the theorem, it remains to verify (2.17) and to

check that the variable t in (2.12) is well defined.

Checking of (2.12). Since AM is an increasing function of M, without

ambiguity we will write A for AM, \D\ for A(D), and <j>(D, AM) as <t>(A).
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Define y = A/{\D\ - A) and integrate (2.12) by part to get t = I + II where

(2.18) l=-£-(lof>y)MA),

(2.19) n-pf (^yHU) d

Since <j>(A) > cx by (2.9), it is clear that as A changes from 0 to |D|, the

value of I ranges from -oo to oo. Thus to check that t is well defined it suffices

to verify that the integral in II is uniformly bounded for all y > 0 and for all

When y > 1, i.e., when A > \D\/2, applying (2.10) and (2.11) we get

MA))1
 \\D\-

as A -> \D\ or y -> oo.

Thus |II| < constant f{(logy)(l + y)~3/2 dy which is uniformly bounded

for all y> 1.

Since a similar argument clearly applies to the estimate in II when y < 1, we

have verified that |II| is uniformly bounded for all y9 hence all A.

Proof of (2.17). We will first assume / > 0, i.e., A > \D\/2 or y > 1. From

the definition of p(t) and the identity (2.8), we have, by (2.18) and (2.19),
A A

4>(A)AK

< constant \^A)A
p y

Thus to verify (2.17) for / large it suffices to check that the term

(l/y^/Vl/Wogy/*(A)) i s bounded for all 0 < 0 < 2BD and for y large. To see

this, we apply (2.9), (2.11) to get

( ) , , ( ^ )_ ,)„,,< ( _ ^ _ - ,)„,,

which is uniformly bounded for all A > \D\/2. Hence (2.17) holds for all

t > 0, / large. Since a similar argument applies for all / < 0, (2.17) is

established, and we have finished the proof of the theorem for # 2 Morse

functions.
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Step II. For a general #* function u defined on D with jD\u\2dx = 1, we

may approximate u by a sequence un of # 2 Morse functions defined on Z>

such that JD\(un - u)\2dx -» 0 and jDundx -> /DWJJC as A -> oo (cf., for

example, [10, Corollary 6.8]). Denote for all /? < 20D,

/

— 2 2

and I(un) = In. Then /w < CD by the proof of Step I above. And if we denote

E = P(u- u)2/fD\u\2dx, En = p(un-un)
2/fD\un\

2dx we may estimate
/(tt)as:

eEdx+\ eEdx *£ CD+ j [(eE - eEn) + eEn] dx

" - I - I (£>E — £>En\ dv <: 1C A- I I /^ — F L ^ E - E n J

Since

f \E - Enfdx

C/S2 f \ u - u - { u n - u n ) \ d x + [ ( \ u n \ 2 d x - f \ u \ 2 d x \
JD \JD JD / J

Q82 /" \(un- u)\2dx

we have I(u) < 2CD.

We have thus finished the proof of Proposition 2.3.

For geometric application, we remark that with suitable modification of

Proposition 2.1, the same proof of Proposition 2.3 gives, in the case of smooth

subdomain D contained in S2, the following corollary:

Corollary 2.4. Suppose u is a <£l function defined on a subdomain D of S2

satisfying

f \vu\2dA < 1 and f udA = 0 .

Then there exists an absolute constant CD such that

f e2«uldA^CD
JD
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where dA is the volume form on D corresponding to the metric ds2 = dx\ + dx\

+ dx\, and |V u\ denotes the gradient of u with respect to this metric.

For a #* function u defined on D let u denote jDudA/m(D). As has been

pointed out in [12], an immediate consequence of Corollary 2.4 based on the

inequality

2(« - 5)

is the following.

Corollary 2.5. Suppose u G <#\D). Then

(2.20) —^-r- f e2udA < CDexpf ^ - /" \vu\2dA + — ^ - /*v ; m(D)JD
 D *\2irJD

l m(D) JD

In §3 below, we will find that the constant CD which appears in (2.20) has

the optimal value 1 when D is a hemisphere.

3. Properties of F[u],J[u]

The standard 2-sphere S2 is usually represented as { x e l R 3 | | x | 2 = l } .

Relative to any orthonormal frame el9 e2, e3 of U3 we have the Euclidean

coordinates xi• = x • et and we call (0,0,1) (respectively (0,0, -1)) the north

pole (respectively south pole). Through the stereographic projection to the

xx,x2 plane we have the complex stereographic coordinates

xx + ix2

which has the inverse transformation

2 « 2 \z\2 - 1
- I m z , * 3 = -L-L .x{ rRez, * 2 ^

l + | z | l + | z | |z | + 1

The conformal transformations of S 2 are thus identified with fractional linear

transformations

w = , ad - be = 1, a,b,c, d, complex numbers,
cz + d

which form a six-dimensional Lie group. For our purpose we need the

following set of conformal transformation: Given P e S2, t G (0, ex)) we

choose a frame ea, e2, e3 = P; then using the stereographic coordinates with P

at infinity we denote the transformation

(3.1) * P i , (z) = /z.
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Observe that <f>P x = id and <t>Pj-i = <!>_/>,„ hence the set of conformal transfor-

mation {<j>Pt | P e S2, t ^ 1} is parametrized by B3 = S2 X [1, oo)/S2 X (1),

where B3 is the unit ball in U3 with each point (Q,t) e S 2 X [1, oo) identified

with(r - l ) ^ - 1 ^ e £3 .

i / 1 = Hl(S2) is the Sobolev space of L2 functions o n S 2 whose gradient lie

in L2 with

1/2

we also denote

We adopt the notation / / to mean average integral (4TT) lffdix9 also written

as//-/.
Definition. For we //'(S2) let

(3.2) S[«]

(3.3) /[«] =

(3.4) F[u] = FK[u] = log / Ke2" - S[u].

For / / = the hemisphere = { x e S 2 , x 3 ^ 0 } w e h a v e similarly

H

e2»-S[ul

F[u] = log f to2" - S[w], where f = (l/2ir) ( .

For functions u e Hl(S2) which are symmetric with respect to the xxx2 plane

we have S[u] = S[u | „], / [« ] = /[w | H ] , and F[u] = F[u | ^ ] .

The critical points of J[u] satisfy the Euler equation

(3.5) Aw + e2" = l ,

where A denotes the Laplacian with respect to the standard metric. All solution

of (3.5) are of the form u = (l/2)logdet|<i<f>|, <j> a conformal map of S2.

Similarly the critical points of FK[u] satisfy the Euler equation

(3.6) Aw + Ke2u= 1.
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The functional S[u] enjoys the following invariance property:

Definition. Given u e Hl and <j> a conformal transformation let

(3.7) u+ = w°<f> + (1 /2 ) logdet|d$\9

also written as Tt(Q)(u) when <j> = <j>Q r

Proposition 3.1. S[u] = Sfw^J, also if <j> leaves dH invariant and u is

symmetric with respect to the xxx2 plane, then so is u^ and S[u \ H] = 5[w^ | H].

The proof is left as an exercise in integration by parts, using the equation

(3.5) for the term (1/2) logdet|J<J>|.

The implicit condition found by Kazdan-Warner [9] is a consequence of

S[u] = S[u<t>]:

Corollary 3.2. If u satisfies (3.6) then

f 7 = 1,2,3.

More generally, Kazdan and Warner [9, p. 33] found the following implicit

consequence by a tricky partial integration. If Av + hev = c, then

(3.8) f eL'vh • vxf. = (2 - c) f evhxt, i = 1,2,3.

Given u e Hl(S2), e2u may be thought of as a mass distribution. So we

define the center of mass of e2u: CM.(e2u) = fxe2u/fe2u.

Definition. #>= {u e H12 |C.M.(e2") = 0}, y o = { M G y | / e 2 H = l } .

For each Q e 5 2 , 0 < / < oo,

For each P G S 2 , 0 < « < 1 ,

The center of mass is a parameter that measures the extent to which the

mass e2u is concentrated. The (Q,i) parameter serves the same purpose, and it

is more natural for our setting because of the invariance property (Proposition

3.1).

Proposition 3.2 [4, Proposition 2.2]. Given a continuous map u: U (or A:

the unit disc in the complex plane) -> Hl(S2), there is a continuous map (Q, t):

U (or A) -> S2 X [1, oo)/S2 X {1} = B\ so that u(s) e &Q{sU{s) for alls e U

(or s e A). If u is symmetric with respect to the xxx2 plane, then Q lies on the

equator: x2 = 0.
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The importance of the class Sf lies in the following:

Proposition 3.3 [1]. Suppose u e Hl with f e2uXj = 0 for j = 1,2,3. Then

for every e > 0, there exists a constant C£ with

(3.9) / e2u < Ceexp[(i + £) j |VM|2 + 2f „] .

Corollary 3.4. Suppose u e ^ 0 . Then j |Vw|2 < 4(S[w] + logC1 /4) where

C1//4 w //ze same constant as in (3.9) vv/YA e = 1/4.

Corollary 3.4 indicates that Sf0 forms a compact family in Hl in the subset

where S[u] stays bounded. This is a key fact which was used in the following

inequality of Onofri:

Proposition 3.5 [14]. Given u e Hl(S2) we then have J[u] < 0 with the

equality holding only for u = (1/2) logdet|d<J>| where <J> is a conformal map of

S2.

By a simple change of variable, we often refer to Onofri's inequality in the

following form:

(3.10) j eCu <exp(iC2/ |vw|2 + C j u\ for any real C.

We state the first important consequence of Corollary (3.4):

Proposition 3.6 (Concentration lemma). Given a sequence of functions Uj e

Hl(S2) with j e2uJ = 1 and S[Uj] < C then either

(i) there exist a constant C such that /|Vwy |2 < C or

(ii) a subsequence concentrates at a point P e S2, i.e., given e > 0 3N large

such that

(1/477)/" e x p 2 i * , > ( l - e ) forj^N,
JB(P,e)

where B(P, e) is the ball in Sz of radius e, centered at P.

In case u is symmetric with respect to the xxx2 plane in case (ii), we have the

point of concentration P lying on the equator x3 = 0.

Proof. Since uj e &Q.%t., then v} = (wy)^ ^ ^0> where fy = <f>Q t and S[uj]

= S[vj] < C. It follows from Corollary 3.4 above that / \VVj\2 < ' c r . We have

two possibilities. Either all ty lie in a compact set, i.e., tj < C", in which case

it follows easily that / |Vwy|
2 < C(C',C") or the tj do not remain bounded, in

which case a subsequence still denoted Uj has tj -> oo and Qj -> P. Further

since / | V ^ | 2 < C, a subsequence converges weakly to v^ e ^ 0 . Since

exp2w = / exp2u.,
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the right-hand side converges to /^ - i^p £))exp2i;00, which for j large is greater

than 1 — e. This proves the concentration lemma in the general case.

In case uj is symmetric in the xxx2 plane, Qj lies on the equator, hence the

point of concentration P = limQj must also lie on the equator x3 = 0.

Proof of Theorem I. In case (a), Area(D) <2m. Consider the functional

FD(u) = \ogfDKe2u - (/D|Vw|2 + 2fDu). We maximize the functional FD

subject to the constraint fD u = 0, then its maxima satisfy the Euler equation

(i.2) A M + ^ A, £ < > :

Integrating the equation yields X = 1, and shifting u by a constant v = u + c

gives the solution of (1.2). Thus it suffices to show sup^M=0 FD[u] is achieved. It

follows immediately from Corollary (2.5) that FD[u] is bounded from above:

< log(max A:) + logCD + [ l /2ir - l/meas(Z>)] j \vu\2

< log(max AT) + logCD.

And for a maximizing sequence, FD[uj] > C\ hence

C + [ l /meas(D) - 1/277] f \vu\2 ^ log(max/0 + logQ,
JD

gives immediately the compactness, hence the existence of maximum of FD.

In case (b), D is the hemisphere H, we maximize the functional FH subject

to the constraint fH u = 0. We define the symmetric extension w, K of u, K to

the entire sphere and we find that F[u] = FH[u]. According to the concentra-

tion lemma, a maximizing sequence { Uj} for FH either stays bounded in the

Hl norm, hence achieves a maximum for FH or concentrates at a boundary

point P. In the latter case we find fHKe2uJ converges to K(P), hence

lim F[iij] < logK(P). However, according to the assumption ^ [ 0 ] = log /K

> log max{ AT(P),0}, this is a contradiction. This finishes the proof of Theo-

rem I.

In preparation for the proof of Theorem II we recall a few facts from [4].

First we recall a sharpened form of Onofri's inequality.

Proposition 3.7 [4, Proposition B]. These exists some a < 1 such that for all

u ey\

(3.11) j elu < explaf |Vw|2 + l j uY
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Since (1 — a)f\Vu\2 = S[u] — {aj\Vu\2 + 2/w), we have as a direct conse-

quence:

Corollary 3.8. Ifu e STQy then / |Vw|2 < (1 - a)~lS[u].

The corollary says that S[u] serves as a "norm" for the class of function in

3fQ9 and more generally, for u e Hl with / e 2 " = 1, it measures the deviation

of u from a solution of (3.5) with the same (Q, t) parameters. The following

asymptotic formula is based on this idea:

Proposition 3.9 [4, Proposition D]. Suppose u e &>Qt with S[u] = O(t~a)

for a > 0 and t sufficiently large. Then u e CPS where 8 = 4t~2lnt + O(t~2)

and \P — Q\ = O(t~l), and for every W2 function f defined on S2 we have

(3.12) / fe2»=f(P) + 2A/(P)r2log* + O(r2)

We also want to remark that we can run the above parameter changes from

(Q, t) to (P , S) backwards, and obtain:

Corollary 3.10. Suppose u e CPS with S[u] = O(SP) for some ft > 0 and 8

sufficiently small. Then u G ^ w/im? S = 4 r 2 l o g f + 0(f~2) anrf \P - Q\

= O(rl), and (3.12) holds for any V2 function f.

Corollary 3.11. Suppose u e SfQj with S[u] = O(t~a) for some a > 0 and

t large. Then for any f e ^2{S2) we have

(3.12)'

4. A Lifting Lemma

When a function M G Z/1 or a parametrized family of functions us e Z/1

with /e2 M v = 1 is sufficiently concentrated, namely u e ^ , with r ̂  /0, we

can compare the functional F[u] with / [« ] . In fact we can compare F'[u]

with J'[u] to construct a continuous lifting process which increases the value

of F[u] and J[u] simultaneously until S[u] becomes suitably small while

leaving fixed the class SPQj to which u or us belongs. We formulate this

process as the following Lifting Lemma:

Proposition 4.1 [4, Proposition C]. Given us a continuous family in i/1 ,

where us e SfQ t with ts large and S[us] < Cv there exists a continuous path
wv,r Ye[°'Yo]» with w,,o = W5» us,y^^Qs,ts for al1 YG[0>Yol such that
J[us,yl

 F[us,y] both increase in yandS[usyo] = O(t;\logts)
2).



CONFORMAL DEFORMATION OF METRICS ON S2 277

It turns out that in order to handle the concentration behavior of a sequence
{us} in Hl near a point P e S2, which is a saddle point of K with
AAT(P) < 0, we need to improve the above lifting process till the order of
S[usyJ reaches O(\vK(Qs)\

2t;2logts). We state this as:
Proposition 4.2. Given u0 e SfQj with t large and S[u0] ^ TJ, there exists a

continuous path u: [0, y0] -> H1 with w(0) = w0, uy G <£^, /or a// y G [0,y0],

and J[uy], F[uy] both increasing functions of y and with S[uyJ =
O(\vK(Q)\2t-2\ogt + O(r2)).

To prove Proposition 4.2, we first observe that applying Proposition 4.1 we
may assume that we have lifted uy up to S[uy] = O(t~l(logt)2). Thus it
suffices to continue the lifting process assuming S[u] is sufficiently small. As
in the case in the proof of Proposition 4.1 the key step in establishing the
proposition is to verify the following lemma:

Lemma 4.3. There exists some TJ > 0, given u G £fQt with t large and with

S[u] < TJ. Then there exists some vu G H1 with \\vu\\ < 1 and such that:

(4.1) J'[u](vu)>C(V)(S[u]f/2,

(4.2) F'[u](vu) > CM{S[u]l/2) - 0{\vK(Q)\rl(l0gt)1/2 + O(r')),

(4.3) ^ ( / exp [2 r (G) (« + roll)]*>)|,_o = 0 forj = 1,2,3,

for some constant C(TJ), depending only on TJ.

Assuming Lemma 4.3, the lifted path uy required in Proposition 4.2 could
be constructed by solving the ordinary differential equation (d/dy)(uy) = vu

with w0 given and normalizing the solution by setting /exp(2wy) = 1 for all y.
To prove Lemma 4.3, we first recall some facts from [4] (Lemma 4.3 in [4]).

For the sake of completeness of this paper, we will also outline the proofs of
these facts in the following lemma:

Lemma 4.4. There exists a constant TJ > 0 {sufficiently small). Whenever

w G 5fQ with S[w] < TJ, then for the function vw defined as

(4.4)

where /? = {0.) satisfies A{w){t = y with A{w) = (A/y(w)), A/y(w) =
fe^XjXj, y = (y,), y, = fe2wxh we have the following:

(4.5)

(4.6) j Vw- Ww= f |Vw|2+ O(S[w])2,
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(4.7) j e 2 X< CiWf |Vw|2 for some C^v) < 1,

(4.8) JW(vw)/\\vJ>C(r,)(S[w])l/2
9

for some constant C(TJ) depending only on rj.
Proof. Fix w G ̂ 0 , and let vw be as in (4.4). Denote S = S[w], and

ay = jwxp j = 1,2,3. Then

(4.5/ / \VvS = / |vw|2 - 4 £ /?,.«, + | £ # ,
7 = 1 7 = 1

(4.6)' J vw • ww = J |vw|2 - 2 X! jfya,-.
7

Thus to verify (4.5) and (4.6) it suffices to verify that a7 = 0(S) and
/?7 = O(5) for all j = 1,2,3. To do this, we apply the sharpened form of the
Onofri inequality (3.11) to the function w e 5?0 and conclude

l«yl < - / w < i / | V w | 2 < (2(1 - ^ ) )"^[w] ,

hence ay = 0(5). To estimate )8y, we notice that

e2* - l)xiXj if i *j,

2 % ^ = j (e2w - l)x? + 1/3 for i = 1,2,3,

and applying Onofri's inequality and (3.11) we have

(4.9) < e xp( 2 / lv>vi2 + 2 s [ w l ) " l\

Hence for w G y() we conclude A/y(w) = O(51/2) for i ±j, Al7(w) = 1/3 +
O(5'1/2) for / = 1,2,3, and j6 = A^y = (3 + O(Sl/2))y. Thus to estimate fy
it suffices to estimate yy. To do so, we may rewrite

7/ = a/ + T/- ~ a/ = aj +

1/2/ \1/2

( / 2 )
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Apply the estimate in (4.9) to get \yj\ < \<Xj\ + O(S) = O(S) and /?y. = 0(5) as
well. We have thus obtained the desired estimates as in (4.5) and (4.6).

To see (4.7), notice that, by definition, vw = j vw = 0 and w e Sfo\ thus

(4.7)' / e2»vw = / e2»(vw - vw) = / e2»(w - w) = / * 2 "(M/ - w'),

where w' = w — 3Y?J^IOLJXJ with j w'xj = 0. Since the next eigenvalue of -A
on S2 greater than 2 is 6, we have

(4.10) j (wr - w')2 < ( 1 / 6 ) / |vw' |2 < ( 1 / 6 ) / |v»v|2.

Thus from (4.9) and (4.10) we get

[/
|vw|2)exp((2/(l -

It is then obvious that if S[w] < i\ is small, we may choose C^TJ) =
2(6)~1/2exp[(2/(l - a))t]] < 1. We have thus established inequality (4.7).

Finally since 2J'[w](vw) = j Vw • vvw - j e2wvw and for w e 5^, it follows
from Corollary 3.8 that /|Vw>|2 - S[w]. Inequality (4.8) is a direct conse-
quence of the estimates in (4.5), (4.6), and (4.7) with C(TJ) any positive
constant less than 1 - C\(T7). We have thus finished the proof of Lemma 4.3.

We are now ready to verify the main Lemma 4.2.
Proof of Lemma 4.2. Given u e SfQt with t large and with S[u] < TJ (with

7] as in Lemma 4.3), we may choose the desired function vu as follows: Let
w = T\Q){u)\ then w e y o and S[w] = S[u]. Choose vw as in Lemma 4.3
and let vu = vw ° <j>Ql

t and vu = yM/||̂ M||. Then by a direct computation we have:

J'[u](vu) = J'[w](vw)-2[(A1/B1)- f

(4.11)

where

K' = K°$Qn A = j K'e2wvw, B = j K'e2w,

A, = K(Q)j e2»vw, B, = K{Q) j e2".

It is then clear that since /|VtfJ2 = / |V#J2 , (4.1) in Lemma 4.2 follows
directly from inequality (4.8) in Lemma 4.3 and the equality in (4.11).
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To verify (4.2) in view of (4.1), it suffices to estimate the difference between
F'[u\(vu) and J'[u](vu), i.e., the term ((A/B) - (A^BJ). For this purpose
we write

(4.12) \(A/B)-(Al/Bl)\^\Al/Bl\\(B1-B)/B\+\B\'l\A-A1\

and observe \B\ > infK > 0, and reduce the estimates to that of \A — Ax\9

\B - Bx\, and \AX/BX\. To do so, we first compute / \K ° <j>Qt - K(Q)\2 using
the Taylor series expansion of K around Q, we obtain (this can be done either
by a direct computation or by applying Lemma 5.1 in [4])

(4.13) / |K °$QJ - K(Q) |2 = O(\VK{Q) |V2log?) + O(r2).

Thus

/ 2 \ 1 / / 2 / \ 1 / / 2

= o(\vK(Q)\(rHogt)1/2) + 0(r*) (by (4.13)),

\A — Ax\ =

v 1/2/ M \ l / 2 / ^ x l /4

(4-15)

It also follows directly from (4.7) and (4.5) that

(4.16)

/
J ^

\1 / 2

\2)

Combining (4.14), (4.15), and (4.16) into (4.11) we get

F'[»]{vu) > J'[u](vu)-\A/B - AMWvJ1

which establishes inequality (4.2) in the lemma.
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Finally to verify (4.3), we observe that for w e yo, we can choose vw satisfy

/ elwvwxj = 0 for all j = 1,2,3. Thus for <j> = <j>Qn

-o

= 2J exp(2w)vwXj = 0 for all j = 1,2,3.

We have thus finished the proof of Lemma 4.3, and hence Proposition 4.2.

5. Analysis of concentration near critical points

In this section we apply §3 and §4 to analyze the phenomenon of concentra-

tion near critical points of K. We will consider the concentration which occurs

in two types of variational schemes, Var(Pa, Pp) and Var(F), which we now

define.

Given two points Pa, Pp on S2, we formulate the one-dimensional scheme

Var(Pa, Pfi) as follows. Let 0>(Pa, Pp) = { u: (-oo, oo) ^ Hl(S2), up: -oo < p

< oo is a continuous one-parameter family of functions in Hl(S2) with

fexp(2up) = 1 and satisfy:

( l )S[n / , ] ->Oas | /> | -> oo,

(2) lim^00C.M.(exp2W/ ,) = Pa9 lim^_00CM.(exp2w / ?) = P^}.

Let c = sup{minpF[up]\u G ^ ( P a , Pp)}. Clearly if a maximizing path w(/c)

which assumes its minimum at pk is denoted by up
k
k\ then if up

k^ converges

weakly in Hl, the limit u will satisfy weakly the Euler equation (1.1).

Consequently by the regularity theory for elliptic equations u will be a smooth

solution of (1.1).

For Theorem II we require in addition to Var(Pa, Pp) & two-dimensional

scheme Var(F), which we now define. Let F be a simple closed curve on S2

satisfying the following condition:

min{ K(Q) \ Q e F} is achieved only at saddle points Qy of K

with &K(Qy) < 0, so that near Qy, F is a <^1 curve of the

(5.1) following form: rotate coordinates to arrange to have Qy =

(0,0,1) and K has the following Taylor expansion in (xx, x2)

near Qy.

K(Xl,x2,x3) = K{Qy)+Axl - Cx\ + O((x2 + JC | ) 3 / 2 ) , 0 < A < C.

We require that F be tangent to xx axis at Qy. We

parametrize F by y: 3A -> F where A = (z e C | \z\ < 1}.
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Definition. &>(T) = {u: A -> H\S2) a continuous map with /e2up = 1,
p e A; and satisfying the asymptotic conditions: for all p0 e 3A (1)
limp-.PoeaAS[ii |,] = 0, (2) l i m ^ ^ C . M . (exp 2K,) = y(/><>).} Let c =
SUP« G^(D m i n ^ F[up\. As previously, if a maximizing sequence of minima u^

converges weakly, the limit will be an index 2 saddle point solution of the
equation (1.1).

We first remark that in either problem Var(Pa, Pp) or Var(T), we may
restrict the class of competing paths in such a way that if concentration occurs
along the paths then the functional S must be small at such points, so that we
may apply the lifting results of §4. More precisely we define the following class
of paths:

=* S[up] < c\vK(Q)\2r2logt + O(r2)},

;o(T) = {u e 0>(T) \up e STQJ, t > 2t0

Choose t0 and a constant C large so that the lifting Proposition C" holds for
all u^£fQr t > t0. For each us^SfQn there exists uST, 0 < T < r(w5),
continuous in T with us0 = us, uST eSfQtt9 F[uST] and J[uST] both mono-
tone increasing in T, and such that at T = r(us) we have 5[w5 T] <

Let p(t) = min{l,(? - to)/to} for t e [/0, oo). For us G 6?Q , define

lus,P(l)T(us) HO'o'

if t < t0.

Then u's e ^ ( P t t , P^) or u's e ^/o(r) while F[M^] > F[wJ. Hence it follows
that

sup minF[wJ= sup minF[w5].

In view of the equality above, we will assume all paths u in both schemes
belong to the lifted path class 0>,'o(Pa, Pp) or &t'o(T).

Assuming uk is an unbounded sequence in Hl and is a max-mini sequence
for either the scheme Var(Pa, Pp) or Var(F), it then follows from Proposition
3.2 (the concentration lemma) that the masses exp(2wA:) (uk = u^) converge
(perhaps on a subsequence) to a delta function concentrated at ^ G S2. By
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constructing suitable variations of the max-mini sequence we have managed to

show:

Proposition 5.1 [4, Propositions G, F\ In either problem Var(Pa, Pp), where

Pa, Pp are local maxima of K, or Var(F), where T is a simple closed curve

satisfying condition (5.1), if a maximizing sequence of paths uw e &t'Q(Pa, Pp)

or w(A) G ̂ ' ( F ) has minima exp(2w^)) concentrating at a point P^, then

without loss of generality we may assume that

(a) P^ must be a critical point of K\

(b) P^ cannot be a local maximum of K;

(c) P^ cannot be a local minimum or a saddle point of K where kK(PO0)> 0.

We consider the remaining possibility that concentration occurs at a saddle

point P^ where AA'(/)
00) < 0. Assume P^ = (0,0,1), and that Taylor expan-

sion for K near P is of the form

(5.2)
K(Xl,x2,x3) = K(Pj+Axf - Cxi + O(\x'\3),

A,C>0,A-C=(l/2)AK(Pj<0.

For 50 = 4f0-2log/0, let
Definition.

(5.3)

+ A > 0}.

, \xl/X2

= {

0<8l<8,

x\ = 8,Xl< 0 } .

In the next proposition we show that for the variational problem Var(.Pa, p),

if concentration occurs at a saddle point Px where kK(Px) < 0, we can
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arrange to have good control of the location of the concentration parameter Q

for functions up when up is close to the minima up
k\

Proposition 5.2. For the variational scheme Var(Pa, P^), if a maximizing

sequence of minima up
k) concentrates at a saddle point P^ with hK(P00) < 0,

then there exists some 80 small and constant c large but fixed, such that we can

find a competing sequence w(/c) achieving their minima at p = 0, and that over the

interval [-1,1], we have

(i) the associated (Q, t) parameter ofup
k) denoted by (Qp

k\ t^k)) belongs to

(ii) at the endpointsp = 1, - 1 , we have Q[k\ Q^ e 2c
+

5 U 2^5 , and

(iii) S[M{A )] , 5 [ W ^ } ] can be made as small as wanted so that F[u[k^\

F[u(ki\> log K(PO0) + C8Q for k large and C8Q > 0 depends only on 80.

Proof. We will construct such a sequence in two steps. The first step uses

the flow associated to the gradient flow vK. Let p e ^1((B(2(c80)
l/2) X

[t0, oo)) be a function with 0 < p < 1, p = 1 on the region (B((c80)
1/2) —

B((c-l80)
l/2)) X [2tO9 oo), decreasing linearly in (|JCX|2 + \x2\

2)1/2 to zero at

dB(2(c80)
l/2) and 35(2-1(c-180)1/2), as well as decreasing in / to zero at

/ = t0. For each u e SfQ%t with Q e ^(2(c80)1/2), / > /0, let RQ$ denote the

rotation in the plane determined by the span of Q and vK(Q) in the direction

Q,VK(Q) with angle of rotation 6. Consider the 1-parameter flow ^ ( w ) = us

given by solutions of the ordinary differential equation:

d d , .

ds s dr T=o s Qa~Te'

where us e <?Q t and 03 = p(Qs, ts)\vK(Qs) |.

The motion of the Q parameter Qs under this flow corresponds to exactly

the motion of the flow ^ 5 associated to the gradient field p • VK on the

(xl,x2) plane, and the t parameter being preserved under the flow. We require

the following qualitative result on the gradient flow p • vK in the disk

Lemma 5.3. For 80 sufficiently small and c large, given a curve X: [-1,1] -»

B((C8Q)1/2), there exists ro> 0 so that for r > r0, denoting by ^ r ° X = Xr the

segment of the curve lying in B((c80)
1/2), say X~\B((c80)

l/2) = [p_l9 px], then

one of the following holds:

(i) Xr([P-i> Pi]) c toc*0.c-% ™*h Xr(P-i% XAPi) e 2c
+

ao U 2 ; v

(ii) ^.([-1,1]) c i?(2(c8o)1/2) " *((c
(iii) There exists a point p0 G [-1,1] swc/i

- B((c-\)l/2))n{\Xl/x2\
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Proof. Suppose in a neighborhood of P^ = (0,0,1), K is of the form

K(xY, x2,x3) = ̂ ( P j + Ax\ - Cxi, 0 < A < C.

Then it is easy to check the result of the lemma. In general when K has the

power series expansion in a neighborhood of P^,

(5.4) K(xl9x29x3) = K(Pj+Ax2 - Cx\ + o(|x'|3)

(x' = (xl9x2))9

we can apply a perturbation argument based on the linearization theorem for

vector fields (cf., [7, Chapter 9]).

We now apply Lemma 5.3 to prove claims (i) and (ii) in the statement of

Proposition 5.2. To do so, we apply the lemma to each segment u^k\ p e

[ak%bk], of a maximizing sequence u(k) which concentrates with its (Q>t)

parameter in B((c80)
l/2) X [/0, oo), we will first verify that along the flow 4rs9

F is nondecreasing: (us = ^ (w) , S[us] — S[u])

k] l

= p(0s9tM)\vK(Q,)\[f(Ps) + W(Ps)ds + O(dt)]9 f Kexp(2us)

where u e £fQ^ n CPA, Ss = 4t;2logts + O(t;2% and

Since \PS - Qs\ = 0{t~l) = O^logSJ1/2), we have for p(0s9 ts) * 0,

f(Ps) -f(Qs) + O ( ^ ) =|VAT(G,)| 4- 0( / ; i ) - ( c A ) 1 7 2 +

Thus

0, f Kexp2us

and ^ V ( M ( A ) ) yields a competing maximizing sequence of paths. We will now

apply Lemma 5.3 to the sequence u(k) and indicate that only case (i) of the

lemma could happen.

If for a maximizing sequence u(k) we are in case (ii) of Lemma 5.3, then we

have a competing sequence of paths which do not concentrate at P^, con-

tradicting our hypothesis.

If for some maximizing sequence u{k) we have u{
s
k) = 4rs(u

ik)) for some

subsequence in case (iii) for Lemma 5.3, denote by pk the point such
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that it^^<?QkJk with Qk e (B((c80)
1/2) - B((c-%)1/2)) n {\Xl/x2\

2-\C/A)l/2}, and tk > t0. Thus

u^] = log f

^ ) {by(3.12Y)

<\og[K(Qk)+(A-C)8k

^ \og[K(Pj + Ax2{Qk) - Cx2(Qk) + *(**)]

^ log[ A " ( O - (3AC80)/c(4A + C)] for A: sufficiently large.

Hence min^FI^**] < l o g ^ P ^ ) - O(80)] < log #(7^), contradicting our

hypothesis that supMmini7[w] = logA^P^). Thus case (iii) of Lemma 5.2

cannot occur.

If for a maximizing sequence u(k) we are (after applying 4rs) in case (iv), we

may estimate i^w^0], the first point of entry of the (Q, t) parameter into the

region B{(c~\)l/2) X [t0, oo), as follows:

\og[K(Pk) +(l/2)AK(Pk)80 + o(80)]

log[K(Pj+\K(Pj - K(Qk)\ +\K(Qk) - K(Pk)\

\og[K(Pj +(1/2)(A - C)80 + c-% + o(80)]

where u^ G SfQ tQ n CP 8; and c is chosen so that c"1 <^ (A - C) /2 , then

by the same reasoning as in case (iii), we see that case (iv) cannot occur.

Thus we must be in the remaining case (i) of Lemma 5.3 for all large k. By

reparametrizing u{k) = $5(w(/°), we may arrange to have their Q parameter

curve Q(
p
k) entering the region Qc8o C-ISQ in the segment [-1,1] so that Q[k\

Q^ e 2f
+

5) U 2£7fio and achieving their minima at p = 0, this establishes (i)

and (ii) of Proposition 5.2.

Our next step is to perform a second deformation on the part of the curve

u{k) whose Q parameter falls into the region Qca c-i$ to ensure that u[k) and

M(_V have their t parameter as large as we wish, thus S^w^] and S l w ^ ] could

be made as small as needed. To do so, let p be a function 0 < p < 1 supported
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in Qc*0,c.-i«0 X [r0, oo) with p = 1 on ( 2 i o U 2 ^ ) X [2f0, oo), and let wu =
(d/ds)T\Q)(u)\s=l and vu be the function associated with u as in Lemma
4.3. Define the flow 4> by solving the ordinary differential equation for
<J>Jw] = us with (/exp2w5 = 1) (d/ds)us = wUs + vu/ Observe that if u e SfQt

then us G ̂  r and

-{d/ds)S[us\ = (d/ds)J[us\ = J'[us](wUs) +J'[u,](vJ

= J'[»A(vu,)>c(V)(S[us])1/2 (by (4.1)).

Hence S[us] < e"rvS[w0] for 5 > 0. Also we have

(5.5) j-sF[us] = F'[us](wUs) + F'[us](vUs)

where

( / ) l f ( x • Q))e2"'

+ 0((S[us])
Vys

/2Wf(Q)\)

where/= <V/C,V(x • Q)>, Ss = 4/;2log?,.
Taking Taylor series expansion of K as in formula (5.4) and compute

V(x • Q) around Px = (0,0,1) we find

VK(Xl,x2) = (2AXl + 0( |^ ' |2) ,-2Cx2 + O(\x'\2)), x' = (xx,x2),

x-Q = xl(Q)x1 + x2(Q)x2 + x3(Q){\ - xl - xl)W\

V(x • Q) = (Xl(Q) - x3(Q)Xl + 0{\x'\2),x2(Q) - x3(Q)x2 + o(\x'\2)),

(VK,v(x • Q)) = 2AXl(Q)Xl - 2Cx2(Q)x2 - 2Ax3(Q)x2

+ 2Cx3(Q)x2
2 + 0{\x'\2).

We have /(£>) = 0 (by definition of / )

\vf(Q)\ = O(\x'(Q)\),

= (-4A+4C)x3(Q) + O(\x'\).

Thus

*"K1K)
(/ j \ - A)SS + o(8s)

Also we have by Proposition 4.2,

(5.7) F'[ux](vJ >(l- c 1 ( 1 ) ) ) ( S [ « J ) 1 / 2 - O(\VK(Q) l ^ 2 )
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for some ^ ( T J ) < 1, TJ the same constant as in Lemma 4.3. From (5.5), (5.6),

and (5.7) we conclude that we may apply Proposition 4.2 to fixed function us

until S[us] = O(\vK(Q)\28s). Then (5.6) implies that (d/ds)F[us] > 0.

Evaluating F[us] for s » 1 (so that 8S <̂c 80), u e SfQv Q e 2+So U 2 ^ o

we find by using the asymptotic formula (3.12)' that for us e &}
Qsts

F[u,] = log/ Ke2us-S[us]

-O(\VK(Q)\»,)]-O(\VK(Q)\\)

> log[tf(Pj +(3/4)^C(l +(i4/4C))"1c«0 + O(«j] - 0(*<A)

^ log[ tf(Pj + 2"UC(1 +(^/4C))"1c80] as s -> oo.

This establishes (iii) and finishes the proof of Proposition 5.2.

Corollary 5.4. Given ul9 u2 e H\S2) with w, e ^ . , , . , 2 / G 2 * v '< ̂  *o»

S[w,] < c^~2log^, <z«<i F[wJ > ^ ^ ( i ^ ) + c5 /or / = 1,2, //ier^ exists a

1-parameter family of functions us, 1 < s < 2, so that us G 5 ^ t where Qs ^

Proof. By rotation along the curve if necessary, we may assume without

loss of generality that ux ^ 6fQ t with a common Q e 2^5o. Applying the flow

<l>5 of Proposition 5.2, we have constructed a continuous family 4>s(w,) along

which (1) the Q parameter is fixed, (2) ^[^(w,)] becomes arbitrarily small,

and (3) F [ $ 5 ( M / ) ] > logK(P00) + cS0. Thus by the conformal invariance of the

functional S and the asymptotic formula (3.12)' applied to evaluate /Ke 2 u , it

suffices to prove the following elementary lemma to establish the corollary.

Lemma 5.5. There exists some f) > 0 so that for given vo,vx ^ S?o with

S[Vj] < TJ there is a continuous curve vs ^ 5^, 0 < s < 1, such that S[vs] < cji,

ca is a constant depending on the constant of Proposition 3.7.

Proof. Let e2v* = se2vi + (1 - s)elv\ Then v0, vx e ^ 0 implies that y5 e

^ n for all 0 < 5 < 1. Furthermore

Thus

2(1 - a r^Sluo] + Sluj]) (Corollary 3.8)

4(1 - a)~\

2 _i

7vs\ < 4(1 — a) T).
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Corollary 5.6. Suppose a maximizing sequence u(k) of minima for Var(Pa, Pp)

concentrates at a saddle point P^ with AK(Po0) < 0. Then there is a competing

sequence of paths u{k) satisfying the conclusion of Proposition 5.2 and in addition

we have for U{±\ e SPQ t that either

(l)QW^X,Q(fi2;8oor
(2) Qfl e 2 ; v g<*> e 2 Jo.
/Vw/. Suppose g(+] e 2c

+
fio. Then Corollary 5.4 allows us to construct a

new path ¥k) by joining u^ to u[k) so that the new path either achieves its

minimum outside the interval [-1,1] or in [-1,1], but the value of F on the

path is greater than log A^P^); in either case we do not have concentration at

P^. (Actually along each path u(k) there may be several intervals, but finite in

number, in which concentration occurs at perhaps several distinct saddle

points P^ with &K(PO0) < 0 and K(POO) have the same value, but the same

analysis would eliminate all such intervals.)

The next proposition eliminates the possibility that a maximizing sequence

for Var(F) can concentrate anywhere.

Proposition 5.7. / / F is a simple closed curve on S2 satisfying condition

(5.1), then the variational problem Var(F) does not have maximizing sequence

u{
p
k) of minima which concentrates at a saddle point P^ with hK(PQ0) < 0.

Proof. It suffices to prove the following two statements:

(i) A maximizing sequence of minima for Var(F) cannot concentrate at a

saddle point P ^ G T with Aii:(P00) < 0,

(ii) The same max-min sequence cannot occur in the interior y(A) of F.

To prove (i), assume the contrary, then we observe that (by the max-min

procedure) such a saddle point P^ can only occur where min{ A^P) | P ^ F}

is attained. Thus it follows from condition (5.1) that we may assume (by taking

80 sufficiently small) that F n B((c80)
l/2) lies in ficgo and that F Pi 2c

+
6o,

F Pi 2c7g) are single points. We also observe the following topological fact:

Lemma 5.8. For each u e ^ ( F ) , there exists p0 e A where C.M.(e2up<>) e

Ks = the part of the circle in the x2x3 plane centered at

(5.8) (0,0,1) of radius 8 that is contained in the unit ball B =

{x2 + x\ 4- x\ < 1}.

Proof of Lemma 5.8. The center of mass surface CM.: A -> B given by

C.M.(/?)= fxe2up is a continuous map which extends continuously to A,

mapping 9A to F, agreeing with the parametrization y. Let Pl9 P2 denote the

end points of the circular arc KcS . Making a conformal transformation <j> of

U3 sending Px to (0,0,1) and P2 to (0,0,-1) and <J>y to the diameter

{(0 ,0 ,x 3 ) , - l < x3< 1}, then <j>(£((c8o)
1/2) covers the hemisphere xx > 0.

Taking projection of <j>(T) to the xxx2 plane it follows that index (<HF), 0) # 0.
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Therefore every continuous extension of the map y: 3A -> F to A -» 5 must

meet F as claimed.

Take p0 e A given by the above lemma; we compute F[upo] using the

asymptotic formula

Po
F[upJ = l o g / Kexp2upo - S[upo] < l o g / Kexp2u

^ \og[K(P) + 2-^K(P)S + 0(8)] , where uPo e

Since JC^P) = 0 and P e X ^ , it follows that

F[upo]< logK(pJ-cSo,

which contradicts our assumption that sup M € ^ minp ^AF[up] =

This finishes the proof of claim (i) in Proposition 5.7.

To prove (ii), we assume that the maximizing sequence u(k) with minima

up
k) occur in the interior of A; hence by reparametrizing, we may assume

pk = 0 for all k. Restricting u(k) to each diameter ue p: p = rei0
9 - 1 < r < 1,

we may apply Proposition 5.2 to each path u^k) and obtain a competing path

u^k) which may be reparametrized so that Q(u^kll/2) G 2c^o. Since the path ue

was obtained from ue by a. flow which is a continuous process depending

continuously on initial data, we see that we must have either both Q parame-

ters of u{
e
kll/2 lying in 2£

+
5) or both lying in 2c7fio. In either case, we apply the

procedure of Corollary 6.1 to obtain a map w: 5(1/2) -> Hl(S2), such that

w(A) 135(1/2) = uik) 135(1/2) and Q(u(
p
k)) e 2c

+
5o for all p e 5(1/2) so that

^["j>A)] ^ l°g^(^oo) "*" cs0- This contradicts our assumption that up
k) is a

maximizing sequence for Var(F). We have thus proved statement (ii) and

hence finished the proof of Proposition 5.7.

6. Proof of Theorem II

First we label the local maxima of K by P0,Pl9-—9Pp according to the

increasing order of the value of K. Group the saddle points of K according to

whether A K is positive or negative. For those saddle points with A K < 0, we

label them as Qx,- • •,Qq (the order of Qj in terms of the value of K(Qj) will

be fixed later.)

We divide the proof into two cases according to whether p > q or q > p. In

the first case, we will show that some one-dimensional scheme Var(Pa, P^),

0 < a, (S < /?, succeeds. In the second case we will show that it is possible to

select a simple closed curve T which satisfies condition (5.1) so that the

2-dimensional scheme Var(F) succeeds.
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Proof of Theorem II for the case p > q. For the p > q case, we begin by

analyzing when a scheme Var(Pa, Pp) fails. According to Proposition 5.1, a

max-min sequence for such a scheme must concentrate at a saddle point with

AK(Qy) < 0. Let us label the Q's according to increasing values of K:

i ( i ) = • • • = K(Qj <K2 = K(

= • • • < K m = K ( Q q i + ... + J , q x + •" +qm = q.

We define the following equivalence relations on the set of local maxima

{Po, P^'.Pp) indexed by the K/s.

Definition. We say Pa ~ y Pp if there exists a path up e ^ (P t t , i^) so that

inf F[up] > \ogKj. Denote by [Pa]j the ~y. equivalence class containing Pa.

Declare Pa ~ 0 Pfi and Pa -,/>„.

Assume that there are no solutions to all schemes Var(Pa, Pp), and set

n j = number of - ; equivalence classes. Then we claim:

(6.2) ttj ^ qx + ^ 2 + ••• + q j + 1 , O ^ j ^ q .

We proceed to prove (6.2) inductively. The statement for y = 0 is trivially true.

For the inductive step, assume Sv • • •, Sn are the ~ j equivalence classes, then

the ~ y-+1 equivalence classes are partitions of the - y equivalence classes. We

need to count the number of new ~ j+\ equivalence classes each ~ j

equivalence class can contain. To do this it will be convenient to introduce

ideal points ()+ , Q~ into our consideration and to extend the notion of ~ .

equivalence. For each saddle point Q with &K(Q) < 0, fix a coordinate

system (xl,x2,x3) with Q = (0,0,1). In a neighborhood of Q, K has the

Taylor expansion

\K(xux2^x3) = K(Q) +Ax2
x - Cx\ + o ( | ^ | ) , ( ^ = ( ^ , x 2 ) )

with

e + = ((c50)1 / 2 ,0 ,( l - c80)1 / 2), Q= ( -(c50)1 / 2 ,0 ,( l - c50)1 / 2),

so that £ + e 2c
+

5o(g), g~G 2 ^ o ( g ) as in Proposition (5.2) and Corollary

(5.6). We extend the notion of ~ J+i equivalence to that of ~ J+i equivalence

on the set

where we say Pa » j+xPp if Pa ~7-+1 Pp as before, and Qy ~ 7 + 1 Pa if there

exists a path ŵ  e &((Qy , Pa) such that inf ^[w^] > log ATy+1; and similarly

define Q~ « y + 1 Pa as well as 0+ * y + 1 g " .
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Lemma 6.1. Assume that there are no solutions to the equation (1.1). Then

for any Pa ~ y 7^, Pa ~ j+l Pfi with K(Pa\ K(P^) > KJ+l, we can find a test

function up e ^(Pa9 Pp) such that there is at most a finite number of disjoint

intervals 7y, 1 < y < N9 a corresponding set of Qy with K(Qy) = KJ+l so that

up has its Q, t parameter lying in the region Scg c-i5(gy) X [t0, oo) over the

intervals 7y, and that over the complement U7' = (U7y)
c, F[up] > KJ+1 + e(S0),

where e(80) > 0.

Proof. Take a max-min sequence of test functions u(k) for the scheme

Var(Pa, Pp) which must concentrate at (perhaps several) Qy with K(Qy) =

Kj+l. The Q,t parameter of the test functions u(k) will fall into the regions

^•«0,c-180(8Y) x Uo> °°) o v e r a corresponding interval 7y. In the complemen-

tary intervals U7' = (Iy)
c either / ^ t0 or if t > t0, the Q parameter lies in the

region {K(Q) > Kj+1 - e} -\JyticSo^c-iSo(Qy). Consider the gradient flow

associated to the functional F'[u]. We claim that | F ' [ K ] | > CtQ > 0 for u e

&Q%n t < t0, and F[u] ^ Constant. For if not, then there exists a sequence

Uj G yQjtr tj < t0, with F'[My] -> 0. Set wj = w .̂ with ^ = ^ r / Then we

have S[ufj] = S[uj] < Constant, hence it follows from the Onofri's inequality

that a subsequence Uj -> M^. From the compactness of the family of conformal

transformations we have a subsequence Uj converging weakly in H1 to w^.

This means that F'[uao] = lim F'[wy] = 0, contradicting the hypothesis.

Hence we may combine the flow <J>5, associated to F'[u] for those u with

their (Q,t) parameter t < tQ, with the flow ^ associated to VA' as in

Proposition (5.2) to those u with t ^ f0, Q lying in the set {K(Q) > Jf/+1 -

e} - UyQcao,c-l80(Qy)> arranged with a suitable cutoff function in t to yield a

test path with the required properties. This finishes the proof of the lemma.

Each - j equivalence class Sk is thus partitioned into sets

S>-\J((skn[Q;]J+l)\j[skn[Q;]J+l)),
y

and we say Qy separates Sk if [g^ly+i ^ [G;]y+ i and [Q^]j+l nSK* 0

(hence [|2Y"] /+1n Sk # 0 ) . It is clear that Qy cannot separate two distinct

Sk's. Let Q(Sk) = {Q\K(Q) = KJ+1 and Qy separates Sk). To prove (6.2) it

suffices to show each Sk is decomposed into at most \Q(Sk)\ + 1 ~J+l

equivalence classes.

To see this, associate to Sk the connected graph G: the vertices of G are

~ y + i equivalence classes and the edges are the saddle points that separate Sk.

Two « / + 1 equivalence classes, say vertices S/ and sy, are joined by an edge

^ if there is a variational scheme Var(P/, P/), P/ G 5/ and Pj e 5/ with a

maximizing sequence concentrating only at <g, thus 5/ = [<2 + ]7+i> ^/ =

[ 2 ~ ] / + 1 o r v i c e versa.
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Since we assume no variational scheme produces a convergent solution, it

follows that G is connected. Thus # {vertices} < # {edges} + 1, and this is

the inequality (6.2) claimed, for it follows that nJ+l ^ qJ+l + rij < qx + q2

+ ••• + ? y + 1 + l.

Applying this inequality for j = m, we conclude that for p > q, there is a

pair of maxima Pa, Pp which are ~ m equivalent. For such a pair, Var(Pa, Pp)

will clearly yield a solution of (1.1).

Proof of Theorem II for the case p > p. We will use the two-dimensional

scheme Var(F) with F satisfying condition (5.1). We will prove that under the

hypothesis q > p, such a curve F exists. Recall that Proposition 5.7 indicates

that for such F, Var(F) has a convergent max-min sequence.

Since K is nondegenerate, the level sets are points which are local maxima or

minima or smooth curves whose intersections occur only at saddle points

where exactly two level curves meet transversally. The superlevel sets Uc =

{P e S2\K(P) ^ c) consist of several components each of which is bounded

by level sets Lc = {P (= S2\K(P) = c}. Listing the critical points {Qj} with

< 0 according to decreasing values of K:

x X) = ••• = K(Qj >K2 = K(Qq+1) = • • • = A"(g f t + f t )
(6-3)

> ... > K m = ••• = K { Q q x + ... + J , 9 l + ••• + q m = q .

We proceed to count the number Nj of components in the super-level sets UK.

We claim:

, . If there is no curve F satisfying condition (5.1) with

^ ' m\n{K(P)\P & T) > Kj then

NJ<#{Pa\K(Ptt)>KJ}-#{Qy\K(Qy)>KJ}.

Proof of claim (6.4). We do this inductively. For j = 1, the superlevel set

Uk + f has at most #{Pa\K(Pa) > Kx] components. Since there are no F

satisfying (5.1) with min K(P) > K1 at each Qi with ^ ( g , ) = Kv when we

reach the superlevel set UK disjoint components are attached at the saddle

points Qv- - ,Qq, hence the assertion (6.4) for j = 1, where we have taken

into account the possibility that some K(Pa) = Kx as well.

Assuming (6.4) for the y'th level, there are at the next level Kj+l 4- e at most

N -I- #{Pa\Kj+l < K(Pa) < Kj} components which are then joined at the

level Kj+l to qj+l saddle points (under the assumption that there is no curve

satisfying (5.1) with min{K(P) | ? G T } > KJ+l\ verifying (6.4) for the j + 1

stage.

It follows from claim (6.4) that since q > p there will be some level Kj

where Af = 0; this is a contradiction (Nj^ 1 for each j). Thus at some saddle
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point Q with hK(Q) < 0 a path satisfying (5.1) can be constructed, which as

we have stated before, gives a solution of equation (1.1) by Proposition (5.7).

We have thus finished the proof of Theorem II.

7. Examples and remarks

As we have mentioned in §1, although the hypothesis of Theorem II is

satisfied by an open set of functions K in the # 2 topology, it will only be

sufficient but not necessary for the existence of solution of equation (1.1). It is

apparent, as the Kazdan-Warner theorem [10] indicates, that some condition of

analytic nature would be necessary conditions.

In this section, we will describe several examples, the first two examples

indicate that when \p - q\is large, our method can give more than one distinct

solution of equation (1.1). The last example gives a plausible argument, which

indicates that, for our variational method to work, p # q may be a necessary

condition in Theorem II.

Examples. (1) When q = 1, p = 3, and the relevant critical points of K (in

Theorem II) satisfy

(l.a) K(P0) < K(Q) < K(PX) < K(P2) < #(P3) and
(l.b) for any pair (Pi9 Py), 1 < i, j < 3, there exist a path on S2 joining Pt

to Pj along which K > K(Q),

Picture for the level curve of such a
K: (4- denotes the increasing direction of the value of K).

Then obviously, the scheme VSLT(P0, PX) yields a solution u0 with F[u0] <

logJ^(P0). Now under the assumption (l.b), the scheme Var(Pz, Py) has

optimal value > log^(Q). Thus we have [Q+] U [Q~] = {P1? P2, P3}, hence

at least one of the schemes Var(Pz, Pj), 1 < i, j < 3, produces a solution ux

with F [ M J > log K(Q\ which is therefore distinct from w0.

(2) When p = 0, q = 2 with
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(2.a) the level set structure given in the figure with the unique maximum Po

at infinity and

Then the variational schemes Var(I\) and Var(F2), where I\, F2 are the
pictured dotted curves, both produce convergent solutions, say ul9 u2. Under
assumption (2.b) we have F[ux] < logK(QX) < F[u2]. Hence uvu2 are dis-
tinct solutions.

Naturally the above examples can be modified to give functions K with any
desired number of index 1 or index 2 solutions.

(3) When p = q = 1, we will present a plausible argument that both
variational schemes in our paper would concentrate at some saddle point Q

with MC(Q) < 0.
We remark that when p = q = 0, the Kazdan-Warner type example K(x) =

1 + EXX indicates that in this situation we cannot anticipate a solution.
When p = q = 1, say, the function K has exactly two local maxima Pl9 P2,

a saddle point Q with &K{Q) < 0, and a global minimum M. We picture its
level set through Q as in the figure (as a narrow figure 8) in the plane with the
point M identified with the point at infinity. After a conformal mapping
sending Px to the south pole S, P2 to the north pole N, Q to a point on the
equator, the figure 8 becomes a narrow curve approximating a longitudinal
line. Analytically 1 - e < K < 1 inside the figure 8 with K{PX) = K(P2) = 1,
K(Q) = I - e and outside a S-neighbourhood (S «: e) of the figure 8, we have
0 < K < e. For such a function K and any u e i / 1 ^ 2 ) with area of exp(2w)
normalized to 1 we have S[u] > 0, and if / Kexp(2u) > 1 - e, exp(2w) will
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have its mass concentrated inside the figure 8, hence any path in ^(Pv P2)

with F[u] > log(l - e) should be a concentrated path moving within the

figure 8. Thus if &K(Q) < 0, we would expect the max-min sequence to

concentrate at Q.

Added in proof. 1. Since the submission of the manuscript, we were informed

that Chen and Ding [5] have obtained results which partially overlapped with

our Theorem 1 in [4].

2. Recently, Osgood, Phillips and Sarnak [16] have given another interesting

proof of the Onofri's inequality in their work [16], [17] on the isospectral

problem.
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