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ABSTRACT. We characterize semi-Riemannian manifolds admitting a global con-
formal transformation such that the difference of the two Ricci tensors is a
constant multiple of the metric. Unless the conformal transformation is homo-
thetic, the only possibilities are standard Riemannian spaces of constant sec-
tional curvature and a particular warped product with a Ricci flat Riemannian
manifold.

We consider semi-Riemannian manifolds (M, g) and conformal diffeomor-
phisms f: (M, g) — (M, g) between them meaning that f*g is pointwise a
positive scalar multiple of g . If this factor is constant f is called a homothety.
A conformal structure on M is a class of conformally equivalent metrics. In
this paper we study the behavior of the Ricci tensor Ric, within one confor-
mal class A classical theorem of Liouville determines all possible conformal
diffeomorphisms between euclidean metrics. As a generalization we call a con-
formal transformation g — g a Liouville transformation if Ricz — Ric, = 0.
In Theorems 1 and 2 we classify complete semi-Riemannian manifolds (M, g)
admitting a non-homothetic conformal transformation g = ¢~2g such that
the difference Riczy — Ricg of the Ricci tensors is a constant multiple of the
metric g or g. We show that M is Riemannian and that M is either a stan-
dard space of constant sectional curvature or is a warped product R Xeyp M.
of the real line and a Ricci flat manifold M, . As a special case we obtain
in Corollary 1 that a globally defined Liouville transformation is a homothety.
This result is due to Liouville [Liv] in the case of E3, generalized by Lie [Lie]
to the case of E" (see also [S, p. 173]) and by Haantjes [H] to the case of
pseudo-euclidean space E; . For Riemannian manifolds Corollary 1 has been
obtained by Ferrand [Fe], where a Liouville transformation is called a quasi-
similarity. For the compact Riemannian case, compare the recent paper [X]
but be careful with the signs in formula (2) there. In Theorem 3 we show that
for a complete semi-Riemannian manifold admitting a global non-homothetic
concircular transformation between two metrics of constant scalar curvature the
same conclusions as in Theorem 1 hold.

Received by the editors August 25, 1993 and, in revised form, February 3, 1994.
1991 Mathematics Subject Classification. Primary 53C20, 53C50; Secondary 53A30, 58G30.
Key words and phrases. Semi-Riemannian manifolds, Ricci tensor, conformal mapping, Hessian.

© 1995 American Mathematical Society

2841

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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General assumption. (M", g) is a semi-Riemannian manifold of dimension
n > 3 and of class C3 such that the number of negative eigenvalues of g is
not greater than 5.

Notation. grade denotes the gradient of ¢, V2¢ = Vgradg is the Hessian
of ¢, and Ap = trace V2¢ is the Laplacian. Let us introduce the notation
[h] for the class of all tensors which are pointwise scalar multiples of a given
(0, 2)-tensor A . This includes the zero tensor—as well as negative multiples—
which is not in the conformal structure itself. (M, g) is called an Einstein
space if [Ricg] = [g]. Two metrics g, g are concircular to one another if

[¢] = [g] = [Ricg — Ricy].
Lemma 1. Two conformally equivalent metrics g and g = alfg satisfy the rela-
tion
[Ricz — Ricg] = [g] = [8]
if and only if the function ¢ satisfies the equation

Vip = A7¢ . g.
Proof. This follows from the well-known formula [S, p. 168], [Be, Sect. 1J],
[Kii, Sect. A]

. . 1
Ricz — Ric, = F[(n ~2)pV2¢p + (pAg — (n — 1)g(grad ¢, grad 9)) - gl.

Lemma 1 holds only under the assumption »n > 3.

Remark. A transformation g — g as in Lemma 1 is called concircular because
it preserves the curves of constant geodesic curvature and vanishing geodesic
torsion (so-called geodesic circles); see [Y]. In this case the conformal geodesics
are geodesic circles; see [Fi, p. 454]. Any conformal transformation between
two Einstein spaces is automatically concircular. A concircular transformation
g — g satisfies Ricz — Ricy = %(% —S).g where S,S denote the scalar
curvatures of g,%.

Lemma 2. A function ¢: M — R satisfies V¢ = A-g for some i: M — R in
a neighborhood of a point with g(grade, grad¢) # 0 if and only if g is locally
a warped product metric ds* = ndt* + ¢?(t)ds?, where n € {+1, —1} denotes
the sign of g(grad ¢, grad @), ¢, A are functions depending only on t satisfying
9" =n-A, and ds? is independent of t.

This lemma can be found in [Fi, Sect. 12] and also in [T] for the Riemannian
case. For the special case of Einstein metrics it is due to Brinkmann [Br].

Particular consequences of Lemma 2 are the following:

1. If V2p = Ag and if grad¢ is a non-null vector, then the trajectories of
grad ¢ are geodesics (up to parametrization).

2. If V?¢p = Ag, then along every such non-null geodesic y(f) in direction
gradp with g(9,7) = n the function ¢(¢) := ¢(y(¢)) satisfies 9" = n-4.
Along a null geodesic this function ¢(¢) satisfies ¢” = 0 according to the proof
of Lemma 3 below.
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Definition. A semi-Riemannian manifold (M, g) is called (geodesically) com-
plete if every geodesic can be defined over R [O, p. 68). It is called null complete
if this holds for every null geodesic.

Theorem 1. Let (M, g) be complete and admitting a global conformal trans-
formation g = 5‘; - g satisfying

Ricz —Ricg =c-(n-1)-g

for some constant c. Then one of the following three cases occurs:

1. ¢ is constant.

2. (M, g) and (M, g) are simply connected Riemannian spaces of con-
stant sectional curvature.

3. (M, g) is a warped product R x, M, where ¢(t) =e' and (M., g.)
is a complete Ricci-flat (n — 1)-dimensional Riemannian manifold.

Remark. In Theorem 1 case 1 corresponds to ¢ = 0, and cases 2 and 3 corre-
spond to ¢ > 0. In case 2 g must be flat and g must be hyperbolic, and in
case 3 Ricz = 0. A non-constant ¢ occurs only for Einstein space. Therefore
we compare this to another theorem.

Theorem 1*. Let (M, g) be complete and assume that both g and g = 5‘; -g
are Einstein metrics. Then the same conclusion as in Theorem 1 holds, i.e. one
of the cases 1, 2, 3 occurs.

Remark. In Theorem 1* case 2 occurs for various combinations of the signs of
the constant curvatures of g and g.

Theorem 2. Let (M, g) be complete and admitting a global conformal trans-
formation g = 5‘7 - g satisfying

c-(n-1)
02
Jor a constant ¢. Then either ¢ is constant or (M, g) is isometric with the

euclidean space.

Remark. To pass from Theorem 1 to Theorem 2 one just has to interchange
the roles of g and g. However, this is not quite symmetric because at most
one of them can be complete (unless ¢ is constant). In Theorem 2 a constant
¢ corresponds to ¢ = 0; the other case corresponds to ¢ > 0. In particular,
¢ < 0 is impossible in Theorem 1 and in Theorem 2.

Ricz ~Ricy, =c-(n-1)-g= -g

Corollary 1. A globally defined Liouville transformation of a complete semi-
Riemannian manifold is a homothety.

This result is just the case ¢ =0 in Theorems 1 and 2.

Corollary 2. Assume that two semi-Riemannian metrics in the same conformal
class have pointwise the same Ricci tensor. If one of them is complete, then they
are homothetic to one another.

This is a uniqueness result for the problem of prescribing a Ricci tensor in a
conformal class.
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Lemma 3. Let g be a null complete indefinite metric admitting a globally defined
nonconstant solution ¢ of Vi =32 .g. Then ¢ has a zero.

n
Proof. Along any null geodesic y(s) one calculates

2
200 = & g(gradp, )

=g(V;gradg, 7) + g(grad ¢, V;7)

_ (Ap . .
—g<n yyy)
=0.

Therefore ¢(y(s)) is linear in s with j’;(p(y(s)) = g(gradfg, 7). If we choose
y such that g(gradg, 7) # 0 at a point p, then it follows that ¢ has a zero
along 7.

Corollary 3. The only globally defined concircular transformations of a null com-
plete indefinite metric are the homotheties.

Theorem 3. Let (M, g) be complete and admitting a globally defined concircular
transformation g = # - g. Assume that S, S are constant. Then one of the
three cases 1, 2, 3 as in Theorem 1 occurs.

Proof of Theorem 1. By assumption ¢: M — R is a function which is positive
everywhere. By Lemma 3 we may assume that ¢ is a non-constant function
on a manifold with positive definite metric g. Let p € M be a point with
grad p(p) # 0. By Lemma 1 the equation

c(n—1)- g =Ricz — Ric,

1
= aln=2e- V29 + (pAp — (n — 1)|igrad ¢|1%) - g]

implies

1) 2= D pap — (n - Dligrad o) ~ c(n — 1)g? = 0.

By Lemma 2 along the unit speed geodesic y(¢) in the direction of grade¢ =
¢’ - 2 we have

(2) 209" — 9" —cp? = 0.

Differentiating once more we get

(3) 209" = 299’ =0

or, since ¢ #0,

(4) " =c-9'.

Therefore there is a constant a satisfying

() 9" =c-9+a.
¢’(p) # 0 implies equivalently

(6) (0% =c-(p?) +2ag'.
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This means that there is a constant b satisfying

7 9p?=c-p*+2ap+b.
Now (5), (7), and (2) together imply b = 0; thus
(8) 9" =9(c- ¢ +2a).

Casel: ¢c=0. By (5) ¢ is a polynomial of degree at most 2. Then (8) reduces
to ¢'? = 2ap, which implies that ¢ is quadratic and that ¢ and ¢’ have a
common zero along y. By the completeness of g the metric g = ;‘; -g hasa

singularity there, a contradiction. Alternatively, if ¢(f) = At + Bt + C, then
(8) implies that the discriminant 44C — B? is zero. Therefore ¢(f) is the
square of a linear function.

Case II: ¢ < 0. In this case every solution ¢ of (5) is periodic and therefore
attains its minimum and maximum. At each of these points the equation 0 =
@(co + 2a) is satisfied by (8). Hence ¢ =0 and c¢ + 2a = 0 must be satisfied
at the minimum and maximum, respectively. This leads to a contradiction as
in Case L. :

Alternatively, the general solution of (5)

@(t) = acos(v—ct) + B sin(v/—ct) — %
satisfies
2 2 a?
« +B = C—z-

by (8). A typical solution looks like ¢(¢) =cost+ 1.

Case III: ¢ > 0. In this case the general solution of (5) is
@(t) = acosh(v/ct) + Bsinh(v/ct) — fcl—.

Then (8) implies
2 ) _ @

a”— p°= w2
in particular o? > g2.

If o2 > B2, then ¢ has a critical point along y. This implies that y has
a point ¢ with gradg(q) = O (note that grade = ¢’ - ;9‘9—,). Furthermore
¢ satisfies globally V2p = (cp +a)-g with ¢ > 0. A result of Tashiro
[T] implies that (M, g) is isometric with the hyperbolic space of constant
sectional curvature —c. Roughly the argument is the following: In geodesic
polar coordinates around ¢ the metric g looks like ds? = dr2+sinh?(\/ct)-ds?
where ds12 is the metric of a round sphere of appropriate radius; compare [Kii,
Lemma 18].

If o2 = B2, then a=0 and ¢(t) = a-e¥Ve! is a solution without a critical
point along y. This implies that

9) ds? = dt* + 2V ds?

is a complete metric on M = R x M, . It follows that § = e 2V¢g is the
product metric dt? + ds? on (0, oo) x M, . For an arbitrary tangent vector
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X in the direction of M, the standard formulas for the curvature of warped
products imply

c(n—1)g(X, X) = (Ricz — Ricg)(X, X)
= (1 —c-e?*)Ric,, (X, X) +c(n—1)g(X, X),

which is impossible unless Ricg, = 0. This completes the proof of Theorem 1.

Note that in the case of an indefinite metric (9) does not define a complete
warped product metric; compare [O, p. 209]. Compare also [Kb] for global
solutions of VZp =c-¢-g, ¢ > 0, in the indefinite case if ¢ has at least one
critical point.

Proof of Theorem 1* . In the case of indefinite metrics ¢ is constant by Lemma
3, using the same argument as in Theorem 1. The Riemannian case has been
treated in [Kii, Theorem 27]. The local considerations in this case are due to
Brinkmann [Br]. Compare also [Be, 9.110].

Remark. Geodesic mappings of the same kind as in Theorem 1 have been stud-
ied in [V]. For the case of conformal vector fields on Einstein spaces com-
pare [YN] and [Kan] in the Riemannian case and [Kel], [Ke2] in the non-
Riemannian case. Brinkmann describes in [Br, §4] indefinite Einstein metrics
(M, g) carrying a non-constant positive function ¢ such that the conformally
equivalent metric g := ¢~2g is also Einstein and the gradient grad ¢ is every-
where null. Then it follows that Ricz = Ricg = 0 and V29 =0, ie. gradg is
parallel. By Lemma 3 (M, g) cannot be null complete.

In general relativity these metrics were studied in several papers. They are
called pp-waves or gravitational plane waves, see e.g. [Hf].

Locally all the considerations in the proofs of Theorems 1-3 remain valid
also in the case of an indefinite metric. This includes a local classification and
the existence of various examples which, however, cannot be null complete.

Proof of Theorem 2. This follows the pattern of the proof of Theorem 1. In
particular g must be positive definite if ¢ is not constant. We start with the
equation

c-(n-1)
02
which implies

. . 1
- & = Ricg —Ricg = @[(n -2)p-V2p+(pAp — (n—1)||grad ¢||?) - £]

(10 2= Doap—(n - 1lgrad gl ~ et~ 1) =0,

If gradp # 0 at p, then along the geodesic y in direction grad ¢ we have
(11) 209" — 9% —c=0,

which implies

(12) 200" =0

or

(13) o(t) = At> + Bt + C.

If we put this into (11) we get

(14) 44C - B* =c.
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The case ¢ = 0 leads to a zero of ¢ as in the proof of Theorem 1; the case
¢ < 0 leads to two zeros of ¢, a contradiction. If ¢ > 0, then ¢ has no zero
but it has a critical point along y. This is a critical point for ¢ on M. ¢
satifies the equation V2¢ = 24 - g. By a theorem of Tashiro [T] this implies
that (M, g) is isometric with the euclidean space. Around the critical point
the geodesic polar coordinates coincide with the euclidean polar coordinates.

In particular, if ¢ is non-constant, then ¢ must be positive and g is a space
of constant sectional curvature c.

Proof of Theorem 3. The case of an indefinite metric can be ruled out by Lemma
3. In the Riemannian case the equation

: . 1(S
(15) RngT—Rng=7—1(P—S) - g
implies
(16) 2¢¢l/_¢/2+ 2 S =0

n(n—l)'(p Cn(n-1)

along a unit speed geodesic in direction grad ¢ . Differentiating once more leads

to ’
n I=
209" + 2=’ 0
or
(17) " +p-9'=0

where p = ;,ﬁ denotes the normalized scalar curvature.
As in the proof of Theorem 1 we conclude

(18) 9 =—pp*+2a-9-p

for a certain constant a.

In any case the solution ¢ of (17) and (18) either has a zero (which is impos-
sible because ¢ is a conformal factor) or a critical point, except for solutions
of the type

(19) 9'(1)=a-e/™”

leading to the same warped product metric as in (9). If there is a critical point,
then the levels around it are round spheres and thus (M, g) is a standard space
of constant sectional curvature [T], [Kii, Lemmas 13 and 18]. This completes
the proof of Theorem 3.

The local part of this calculation is due to Tachibana [Tb, Theorem 8.1]. In
the compact case the following holds: a compact Riemannian manifold with
constant scalar curvature admitting a non-constant solution of

Ag
2 = —
Vw—n g

is isometric with a round sphere [Kii, Theorem 24].
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