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Abstract. We characterize semi-Riemannian manifolds admitting a global con-

formal transformation such that the difference of the two Ricci tensors is a

constant multiple of the metric. Unless the conformai transformation is homo-

thetic, the only possibilities are standard Riemannian spaces of constant sec-

tional curvature and a particular warped product with a Ricci flat Riemannian

manifold.

We consider semi-Riemannian manifolds (M, g) and conformai diffeomor-

phisms f: (M, g) —► (M, ~g) between them meaning that f*g is pointwise a

positive scalar multiple of g . If this factor is constant / is called a homothety.

A conformai structure on M is a class of conformally equivalent metrics. In

this paper we study the behavior of the Ricci tensor Ricg within one confor-

mai class A classical theorem of Liouville determines all possible conformai

diffeomorphisms between euclidean metrics. As a generalization we call a con-

formal transformation g —> ~g a Liouville transformation if Ric^ - Ric? = 0.

In Theorems 1 and 2 we classify complete semi-Riemannian manifolds (M, g)

admitting a non-homothetic conformai transformation ~g = (p~2g such that

the difference Ricj - Ric^ of the Ricci tensors is a constant multiple of the

metric g or g~. We show that M is Riemannian and that M is either a stan-

dard space of constant sectional curvature or is a warped product R xexp M*

of the real line and a Ricci flat manifold M». As a special case we obtain
in Corollary 1 that a globally defined Liouville transformation is a homothety.

This result is due to Liouville [Liv] in the case of £3, generalized by Lie [Lie]

to the case of En (see also [S, p. 173]) and by Haantjes [H] to the case of

pseudo-euclidean space E£ . For Riemannian manifolds Corollary 1 has been

obtained by Ferrand [Fe], where a Liouville transformation is called a quasi-

similarity. For the compact Riemannian case, compare the recent paper [X]

but be careful with the signs in formula (2) there. In Theorem 3 we show that

for a complete semi-Riemannian manifold admitting a global non-homothetic

concircular transformation between two metrics of constant scalar curvature the

same conclusions as in Theorem 1 hold.
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General assumption. (Mn, g) is a semi-Riemannian manifold of dimension

zz > 3 and of class C3 such that the number of negative eigenvalues of g is

not greater than |.

Notation. %rad<p denotes the gradient of <p,V2tp = Vgradp is the Hessian

of tp, and Ac = trace V2tp is the Laplacian. Let us introduce the notation

[h] for the class of all tensors which are pointwise scalar multiples of a given

(0, 2)-tensor h . This includes the zero tensor—as well as negative multiples—

which is not in the conformai structure itself. (M, g) is called an Einstein

space if [RiCg] = [g]. Two metrics g, g are concircular to one another if

[g] = m = [Ricj-Ric*].

Lemma 1. Two conformally equivalent metrics g and ~g = Xg satisfy the rela-

tion

[Ricj - Ric^] = [g] = [g]

if and only if the function <p satisfies the equation

Proof. This follows from the well-known formula [S, p. 168], [Be, Sect. U],

[Kii, Sect. A]

1 ,
Ric?-Ric„ = —¿[(n -2)<pVz<p + ((pA(p - (n - l)g(gradç?, gradtp))- g]." (p¿

Lemma 1 holds only under the assumption zz > 3 .

Remark. A transformation g -> g~ as in Lemma 1 is called concircular because
it preserves the curves of constant geodesic curvature and vanishing geodesic

torsion (so-called geodesic circles); see [Y]. In this case the conformai geodesies

are geodesic circles; see [Fi, p. 454]. Any conformai transformation between

two Einstein spaces is automatically concircular. A concircular transformation

g —> g~ satisfies RiCg - Ric^ = ¿(4- - S) - g where S, S denote the scalar

curvatures of g, ~g.

Lemma 2. A function tp : M —> R satisfies V2tp = X • g for some X: M —> R in

a neighborhood of a point with g(gradtp, grad <p) ̂  0 if and only if g is locally

a warped product metric ds2 = r\dt2 + tp2(t)ds2, where n £ {+1, -1} denotes

the sign of g(grad tp, grad <p), tp, X are functions depending only on t satisfying

(p" = n • X, and ds2 is independent of t.

This lemma can be found in [Fi, Sect. 12] and also in [T] for the Riemannian

case. For the special case of Einstein metrics it is due to Brinkmann [Br].

Particular consequences of Lemma 2 are the following:
1. If V2tp = Xg and if grad^ is a non-null vector, then the trajectories of

gradtp are geodesies (up to parametrization).

2. If V2tp — Xg, then along every such non-null geodesic y(t) in direction

grades with g(y, y) = n the function tp(t) := <p(y(t)) satisfies tp" = n-X.
Along a null geodesic this function <p(t) satisfies tp" - 0 according to the proof

of Lemma 3 below.
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Definition. A semi-Riemannian manifold (M, g) is called (geodesically) com-

plete if every geodesic can be defined over K [O, p. 68]. It is called null complete

if this holds for every null geodesic.

Theorem 1. Let (M, g) be complete and admitting a global conformai trans-

formation g = X • g satisfying

Ricj - RiCg — c • (n - I) • g

for some constant c. Then one of the following three cases occurs:

1. tp is constant.

2. (M, g) and (M,~g) are simply connected Riemannian spaces of con-
stant sectional curvature.

3. (M, g) is a warped product 1 xe, Mt where tp(t) = el and (M*, g»)

is a complete Ricci-flat (n - l)-dimensional Riemannian manifold.

Remark. In Theorem 1 case 1 corresponds to c = 0, and cases 2 and 3 corre-

spond to c > 0. In case 2 g must be flat and g must be hyperbolic, and in

case 3 Ricj = 0. A non-constant tp occurs only for Einstein space. Therefore
we compare this to another theorem.

Theorem 1 *. Let (M, g) be complete and assume that both g and g = X - g

are Einstein metrics. Then the same conclusion as in Theorem 1 holds, i.e. one

of the cases 1, 2, 3 occurs.

Remark. In Theorem 1 * case 2 occurs for various combinations of the signs of

the constant curvatures of g and g.

Theorem 2. Let (M, g) be complete and admitting a global conformai trans-

formation g = X_- g satisfying

t,-        x,-             ,       .x  —     c - (n - I)
Ricj - Ricg = c-(n-l)-g =-—2—'- - g

for a constant c. Then either tp is constant or (M, g) is isometric with the
euclidean space.

Remark. To pass from Theorem 1 to Theorem 2 one just has to interchange

the roles of g and ~g. However, this is not quite symmetric because at most

one of them can be complete (unless tp is constant). In Theorem 2 a constant

q> corresponds to c = 0 ; the other case corresponds to c > 0. In particular,
c < 0 is impossible in Theorem 1 and in Theorem 2.

Corollary 1. A globally defined Liouville transformation of a complete semi-

Riemannian manifold is a homothety.

This result is just the case c - 0 in Theorems 1 and 2.

Corollary 2. Assume that two semi-Riemannian metrics in the same conformai

class have pointwise the same Ricci tensor. If one of them is complete, then they
are homothetic to one another.

This is a uniqueness result for the problem of prescribing a Ricci tensor in a
conformai class.
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Lemma 3. Let g be a null complete indefinite metric admitting a globally defined

nonconstant solution tp of V2tp = ^ • g. Then tp has a zero.

Proof. Along any null geodesic y(s) one calculates

■¿¿(V(y(s))) = j~sg(%radtp, y)

= g(Vj,grad<p,y) + g(%radtp, Vyy)

= 8{T'y'y

= o.

Therefore <p(y(s)) is linear in s with j¿ tp (y (s)) = g (gradftp, y). If we choose

y such that g(grad tp, y) ^ 0 at a point p , then it follows that tp has a zero

along y.

Corollary 3. The only globally defined concircular transformations of a null com-

plete indefinite metric are the homotheties.

Theorem 3. Let (M, g) be complete and admitting a globally defined concircular

transformation ~g = X_ • g ■ Assume that S, S are constant. Then one of the

three cases 1, 2, 3 as in Theorem 1 occurs.

Proof of Theorem 1. By assumption tp: M —► R is a function which is positive

everywhere. By Lemma 3 we may assume that (p is a non-constant function

on a manifold with positive definite metric g. Let p £ M be a point with

grad (p(p) ,¿ 0. By Lemma 1 the equation

c(zz - 1) • g = RiCg - RiCg

J

implies

(1) 2("~ %Af?-(zz- l)||gradçz||2-c(zz- l)tp2 = 0.
n

By Lemma 2 along the unit speed geodesic y(t) in the direction of grad tp =

tp' • §-t we have

(2) 2<p<p" - tp'2 - op2 = 0.

Differentiating once more we get

(3) 2tptp'" - 2c(pq>' = 0

or, since tp / 0,

(4) tp'" = c-tp'.

Therefore there is a constant a satisfying

(5) tp" = c-(p + a.

<P'(P) ¥" 0 implies equivalently

(6) (tp'2)' = c-(<p2)' + 2atp'.

2 [(zz - 2)tp ■ Vztp + (tpAtp - (zz - l)\\grad tp\\z) ■ g]
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This means that there is a constant b satisfying

(7) tp'2 = c - tp2 + 2atp + b.

Now (5), (7), and (2) together imply b = 0; thus

(8) (p'2 = tp(c-tp + 2a).

Case I: c = 0. By (5) <p is a polynomial of degree at most 2. Then (8) reduces

to tp'2 — 2atp, which implies that tp is quadratic and that tp and tp' have a

common zero along y . By the completeness of g the metric ~g = X • g has a

singularity there, a contradiction. Alternatively, if tp(t) = At2 + Bt + C, then

(8) implies that the discriminant 4^C - B2 is zero. Therefore tp(t) is the

square of a linear function.

Case II: c < 0. In this case every solution tp of (5) is periodic and therefore

attains its minimum and maximum. At each of these points the equation 0 =

tp(ctp + 2d) is satisfied by (8). Hence q> = 0 and ctp + 2a = 0 must be satisfied

at the minimum and maximum, respectively. This leads to a contradiction as

in Case I.
Alternatively, the general solution of (5)

<p(t) = a COS(yf^Ct) + ß sin(yf^Ct)-

satisfies

by (8). A typical solution looks like <p(t) = cosí + 1.

Case III: c > 0. In this case the general solution of (5) is

<p(t) = Qcoshiv^z") + ßsinh(yfct)-.

Then (8) implies

in particular a2 > ß2.

If a2 > ß2, then tp has a critical point along y. This implies that y has

a point q with gradtp(q) - 0 (note that gradçz = tp' • §-t). Furthermore

tp satisfies globally V2<p = (op + a) • g with c > 0. A result of Tashiro

[T] implies that (M, g) is isometric with the hyperbolic space of constant

sectional curvature -c. Roughly the argument is the following: In geodesic

polar coordinates around q the metric g looks like ds2 = dt2 + sinh (yfct)-ds2

where ds2 is the metric of a round sphere of appropriate radius; compare [Kii,

Lemma 18].
If a2 = ß2, then a = 0 and tp(t) = a • e*^'' is a solution without a critical

point along y . This implies that

(9) ds2 = dt2 + e2^c'ldsl

is a complete metric on M = R x M*.   It follows that g = e~2^'g is the

product metric dt2 + ds2 on (0, oo) x M».  For an arbitrary tangent vector
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X in the direction of M* the standard formulas for the curvature of warped

products imply

c(zz - l)g(X, X) = (Ric?-Ricg)(X, X)

= ( 1 - c. e^ORic*.(X,X) + c(n-I)g(X,X),

which is impossible unless Ricg, = 0. This completes the proof of Theorem 1.

Note that in the case of an indefinite metric (9) does not define a complete

warped product metric; compare [O, p. 209]. Compare also [Kb] for global

solutions of V2tp = c • tp • g , c > 0, in the indefinite case if tp has at least one

critical point.

Proof of Theorem I*. In the case of indefinite metrics tp is constant by Lemma

3, using the same argument as in Theorem 1. The Riemannian case has been

treated in [Kü, Theorem 27]. The local considerations in this case are due to

Brinkmann [Br]. Compare also [Be, 9.110].

Remark. Geodesic mappings of the same kind as in Theorem 1 have been stud-

ied in [V]. For the case of conformai vector fields on Einstein spaces com-

pare [YN] and [Kan] in the Riemannian case and [Kel], [Ke2] in the non-

Riemannian case. Brinkmann describes in [Br, §4] indefinite Einstein metrics

(M, g) carrying a non-constant positive function tp such that the conformally

equivalent metric g~:=<p~2g is also Einstein and the gradient grad tp is every-

where null. Then it follows that Ricj = Ricg = 0 and V2tp = 0, i.e. grad tp is
parallel. By Lemma 3 (M, g) cannot be null complete.

In general relativity these metrics were studied in several papers. They are

called pp-waves or gravitational plane waves; see e.g. [Hf].

Locally all the considerations in the proofs of Theorems 1-3 remain valid

also in the case of an indefinite metric. This includes a local classification and
the existence of various examples which, however, cannot be null complete.

Proof of Theorem 2. This follows the pattern of the proof of Theorem 1. In

particular g must be positive definite if tp is not constant. We start with the

equation

C'{"~l).g = Ricg-Ricg = -±2-[(n-2)tp-V2<p + (<pAtp-(n-l)\\grad<p\\2)-g]
tp*- tp'-

which implies

(10) 2("~%Açz - (zz - l)||gradçz||2 - c(zz - 1) = 0.

If grad tp ît 0 at p , then along the geodesic y in direction grad <p we have

(11) 2<ptp" - tp'2 - c = 0,

which implies

(12) 2tptp'" = 0

or

(13) <p(t) = At2 + Bt + C.

If we put this into (11) we get

(14) 4AC-B2 = c.
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The case c = 0 leads to a zero of tp as in the proof of Theorem 1 ; the case

c < 0 leads to two zeros of tp , a contradiction. If c > 0, then tp has no zero

but it has a critical point along y. This is a critical point for tp on M. tp

satines the equation V2tp — 2A • g. By a theorem of Tashiro [T] this implies
that (M, g) is isometric with the euclidean space. Around the critical point

the geodesic polar coordinates coincide with the euclidean polar coordinates.

In particular, if tp is non-constant, then c must be positive and g is a space

of constant sectional curvature c.

Proof of Theorem 3. The case of an indefinite metric can be ruled out by Lemma

3. In the Riemannian case the equation

(15) Rkfr-Ri*-±fë-sV*

implies

(16) 2tptp" - tp'2 + -r^— • tp2 - -¡-Ü— = 0
zz(zz - 1) zz(« - 1)

along a unit speed geodesic in direction grad tp . Differentiating once more leads

to

2tptp'" + -^--tptp' = 0
n(n - I)

or

(17) (p"' + p-tp' = 0

where p :— n{nf_X) denotes the normalized scalar curvature.

As in the proof of Theorem 1 we conclude

(18) tp'2 = -ptp2 + 2a-tp-p

for a certain constant a.

In any case the solution tp of ( 17) and (18) either has a zero (which is impos-

sible because tp is a conformai factor) or a critical point, except for solutions

of the type

(19) <p'(t) = a-e^
-pi

leading to the same warped product metric as in (9). If there is a critical point,

then the levels around it are round spheres and thus (M, g) is a standard space

of constant sectional curvature [T], [Kü, Lemmas 13 and 18]. This completes

the proof of Theorem 3.

The local part of this calculation is due to Tachibana [Tb, Theorem 8.1]. In

the compact case the following holds: a compact Riemannian manifold with

constant scalar curvature admitting a non-constant solution of

^2        Ac»V> = — • g
n

is isometric with a round sphere [Kü, Theorem 24].
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