CONFORMAL DIFFEOMORPHISMS PRESERVING THE RICCI TENSOR

W. KÜHNEL AND H.-B. RADEMACHER

(Communicated by Christopher B. Croke)

ABSTRACT. We characterize semi-Riemannian manifolds admitting a global conformal transformation such that the difference of the two Ricci tensors is a constant multiple of the metric. Unless the conformal transformation is homothetic, the only possibilities are standard Riemannian spaces of constant sectional curvature and a particular warped product with a Ricci flat Riemannian manifold.

We consider semi-Riemannian manifolds (M, g) and conformal diffeomorphisms $f: (M, g) \to (\overline{M}, \overline{g})$ between them meaning that $f^*\overline{g}$ is pointwise a positive scalar multiple of g. If this factor is constant f is called a homothety. A conformal structure on M is a class of conformally equivalent metrics. In this paper we study the behavior of the Ricci tensor Ricg within one conformal class A classical theorem of Liouville determines all possible conformal diffeomorphisms between euclidean metrics. As a generalization we call a conformal transformation $g \to \overline{g}$ a Liouville transformation if $\mathrm{Ric}_{\overline{g}} - \mathrm{Ric}_g = 0$. In Theorems 1 and 2 we classify complete semi-Riemannian manifolds (M, g)admitting a non-homothetic conformal transformation $\overline{g} = \varphi^{-2}g$ such that the difference $Ric_{\overline{g}} - Ric_g$ of the Ricci tensors is a constant multiple of the metric g or \overline{g} . We show that M is Riemannian and that M is either a standard space of constant sectional curvature or is a warped product $\mathbb{R} \times_{exp} M_*$ of the real line and a Ricci flat manifold M_* . As a special case we obtain in Corollary 1 that a globally defined Liouville transformation is a homothety. This result is due to Liouville [Liv] in the case of E^3 , generalized by Lie [Lie] to the case of E^n (see also [S, p. 173]) and by Haantjes [H] to the case of pseudo-euclidean space E_k^n . For Riemannian manifolds Corollary 1 has been obtained by Ferrand [Fe], where a Liouville transformation is called a quasisimilarity. For the compact Riemannian case, compare the recent paper [X] but be careful with the signs in formula (2) there. In Theorem 3 we show that for a complete semi-Riemannian manifold admitting a global non-homothetic concircular transformation between two metrics of constant scalar curvature the same conclusions as in Theorem 1 hold.

Received by the editors August 25, 1993 and, in revised form, February 3, 1994. 1991 *Mathematics Subject Classification*. Primary 53C20, 53C50; Secondary 53A30, 58G30. Key words and phrases. Semi-Riemannian manifolds, Ricci tensor, conformal mapping, Hessian.

©1995 American Mathematical Society

General assumption. (M^n, g) is a semi-Riemannian manifold of dimension $n \ge 3$ and of class C^3 such that the number of negative eigenvalues of g is not greater than $\frac{n}{2}$.

Notation. grad φ denotes the gradient of φ , $\nabla^2 \varphi = \nabla \operatorname{grad} \varphi$ is the Hessian of φ , and $\Delta \varphi = \operatorname{trace} \nabla^2 \varphi$ is the Laplacian. Let us introduce the notation [h] for the class of all tensors which are pointwise scalar multiples of a given (0, 2)-tensor h. This includes the zero tensor—as well as negative multiples—which is not in the conformal structure itself. (M, g) is called an *Einstein space* if $[\operatorname{Ric}_g] = [g]$. Two metrics g, \overline{g} are concircular to one another if $[g] = [\overline{g}] = [\operatorname{Ric}_{\overline{g}} - \operatorname{Ric}_g]$.

Lemma 1. Two conformally equivalent metrics g and $\overline{g} = \frac{1}{\varphi^2}g$ satisfy the relation

$$[\operatorname{Ric}_{\overline{g}} - \operatorname{Ric}_g] = [g] = [\overline{g}]$$

if and only if the function φ satisfies the equation

$$\nabla^2 \varphi = \frac{\Delta \varphi}{n} \cdot g.$$

Proof. This follows from the well-known formula [S, p. 168], [Be, Sect. 1J], [Kü, Sect. A]

$$\mathrm{Ric}_{\overline{g}} - \mathrm{Ric}_{g} = \frac{1}{\varphi^{2}} [(n-2)\varphi \nabla^{2}\varphi + (\varphi \Delta \varphi - (n-1)g(\mathrm{grad}\,\varphi\,,\,\mathrm{grad}\,\varphi)) \cdot g].$$

Lemma 1 holds only under the assumption $n \ge 3$.

Remark. A transformation $g \to \overline{g}$ as in Lemma 1 is called concircular because it preserves the curves of constant geodesic curvature and vanishing geodesic torsion (so-called geodesic circles); see [Y]. In this case the conformal geodesics are geodesic circles; see [Fi, p. 454]. Any conformal transformation between two Einstein spaces is automatically concircular. A concircular transformation $g \to \overline{g}$ satisfies $\operatorname{Ric}_{\overline{g}} - \operatorname{Ric}_g = \frac{1}{n}(\frac{\overline{S}}{\varphi^2} - S) \cdot g$ where S, \overline{S} denote the scalar curvatures of g, \overline{g} .

Lemma 2. A function $\varphi: M \to \mathbb{R}$ satisfies $\nabla^2 \varphi = \lambda \cdot g$ for some $\lambda: M \to \mathbb{R}$ in a neighborhood of a point with $g(\operatorname{grad} \varphi, \operatorname{grad} \varphi) \neq 0$ if and only if g is locally a warped product metric $ds^2 = \eta dt^2 + \varphi^2(t) ds_*^2$, where $\eta \in \{+1, -1\}$ denotes the sign of $g(\operatorname{grad} \varphi, \operatorname{grad} \varphi)$, φ , λ are functions depending only on t satisfying $\varphi'' = \eta \cdot \lambda$, and ds_*^2 is independent of t.

This lemma can be found in [Fi, Sect. 12] and also in [T] for the Riemannian case. For the special case of Einstein metrics it is due to Brinkmann [Br].

Particular consequences of Lemma 2 are the following:

- 1. If $\nabla^2 \varphi = \lambda g$ and if grad φ is a non-null vector, then the trajectories of grad φ are geodesics (up to parametrization).
- 2. If $\nabla^2 \varphi = \lambda g$, then along every such non-null geodesic $\gamma(t)$ in direction grad φ with $g(\dot{\gamma}, \dot{\gamma}) = \eta$ the function $\varphi(t) := \varphi(\gamma(t))$ satisfies $\varphi'' = \eta \cdot \lambda$. Along a null geodesic this function $\varphi(t)$ satisfies $\varphi'' = 0$ according to the proof of Lemma 3 below.

Definition. A semi-Riemannian manifold (M, g) is called (geodesically) *complete* if every geodesic can be defined over \mathbb{R} [O, p. 68]. It is called *null complete* if this holds for every null geodesic.

Theorem 1. Let (M, g) be complete and admitting a global conformal transformation $\overline{g} = \frac{1}{m^2} \cdot g$ satisfying

$$\operatorname{Ric}_{\overline{g}} - \operatorname{Ric}_{g} = c \cdot (n-1) \cdot g$$

for some constant c. Then one of the following three cases occurs:

- 1. φ is constant.
- 2. (M, g) and (M, \overline{g}) are simply connected Riemannian spaces of constant sectional curvature.
- 3. (M, g) is a warped product $\mathbb{R} \times_{e^t} M_*$ where $\varphi(t) = e^t$ and (M_*, g_*) is a complete Ricci-flat (n-1)-dimensional Riemannian manifold.

Remark. In Theorem 1 case 1 corresponds to c=0, and cases 2 and 3 correspond to c>0. In case 2 \overline{g} must be flat and g must be hyperbolic, and in case 3 $\mathrm{Ric}_{\overline{g}}=0$. A non-constant φ occurs only for Einstein space. Therefore we compare this to another theorem.

Theorem 1*. Let (M, g) be complete and assume that both g and $\overline{g} = \frac{1}{\varphi^2} \cdot g$ are Einstein metrics. Then the same conclusion as in Theorem 1 holds, i.e. one of the cases 1, 2, 3 occurs.

Remark. In Theorem 1* case 2 occurs for various combinations of the signs of the constant curvatures of g and \overline{g} .

Theorem 2. Let (M, g) be complete and admitting a global conformal transformation $\overline{g} = \frac{1}{\varphi^2} \cdot g$ satisfying

$$\operatorname{Ric}_{\overline{g}} - \operatorname{Ric}_{g} = c \cdot (n-1) \cdot \overline{g} = \frac{c \cdot (n-1)}{\varphi^{2}} \cdot g$$

for a constant c. Then either φ is constant or (M,g) is isometric with the euclidean space.

Remark. To pass from Theorem 1 to Theorem 2 one just has to interchange the roles of g and \overline{g} . However, this is not quite symmetric because at most one of them can be complete (unless φ is constant). In Theorem 2 a constant φ corresponds to c=0; the other case corresponds to c>0. In particular, c<0 is impossible in Theorem 1 and in Theorem 2.

Corollary 1. A globally defined Liouville transformation of a complete semi-Riemannian manifold is a homothety.

This result is just the case c = 0 in Theorems 1 and 2.

Corollary 2. Assume that two semi-Riemannian metrics in the same conformal class have pointwise the same Ricci tensor. If one of them is complete, then they are homothetic to one another.

This is a uniqueness result for the problem of prescribing a Ricci tensor in a conformal class.

Lemma 3. Let g be a null complete indefinite metric admitting a globally defined nonconstant solution φ of $\nabla^2 \varphi = \frac{\Delta \varphi}{n} \cdot g$. Then φ has a zero.

Proof. Along any null geodesic $\gamma(s)$ one calculates

$$\frac{d^2}{ds^2}(\varphi(\gamma(s))) = \frac{d}{ds}g(\operatorname{grad}\varphi,\dot{\gamma})$$

$$= g(\nabla_{\dot{\gamma}}\operatorname{grad}\varphi,\dot{\gamma}) + g(\operatorname{grad}\varphi,\nabla_{\dot{\gamma}}\dot{\gamma})$$

$$= g\left(\frac{\Delta\varphi}{n}\cdot\dot{\gamma},\dot{\gamma}\right)$$

$$= 0.$$

Therefore $\varphi(\gamma(s))$ is linear in s with $\frac{d}{ds}\varphi(\gamma(s))=g(\operatorname{grad} \varphi,\dot{\gamma})$. If we choose γ such that $g(\operatorname{grad} \varphi,\dot{\gamma})\neq 0$ at a point p, then it follows that φ has a zero along γ .

Corollary 3. The only globally defined concircular transformations of a null complete indefinite metric are the homotheties.

Theorem 3. Let (M, g) be complete and admitting a globally defined concircular transformation $\overline{g} = \frac{1}{\varphi^2} \cdot g$. Assume that S, \overline{S} are constant. Then one of the three cases 1, 2, 3 as in Theorem 1 occurs.

Proof of Theorem 1. By assumption $\varphi: M \to \mathbb{R}$ is a function which is positive everywhere. By Lemma 3 we may assume that φ is a non-constant function on a manifold with positive definite metric g. Let $p \in M$ be a point with grad $\varphi(p) \neq 0$. By Lemma 1 the equation

$$c(n-1) \cdot g = \operatorname{Ric}_{\overline{g}} - \operatorname{Ric}_{g}$$

$$= \frac{1}{\varphi^{2}} [(n-2)\varphi \cdot \nabla^{2}\varphi + (\varphi\Delta\varphi - (n-1)\|\operatorname{grad}\varphi\|^{2}) \cdot g]$$

implies

(1)
$$\frac{2(n-1)}{n}\varphi\Delta\varphi - (n-1)\|\operatorname{grad}\varphi\|^2 - c(n-1)\varphi^2 = 0.$$

By Lemma 2 along the unit speed geodesic $\gamma(t)$ in the direction of grad $\varphi = \varphi' \cdot \frac{\partial}{\partial t}$ we have

$$(2) 2\varphi\varphi'' - \varphi'^2 - c\varphi^2 = 0.$$

Differentiating once more we get

$$(3) 2\varphi\varphi''' - 2c\varphi\varphi' = 0$$

or, since $\varphi \neq 0$,

$$\varphi''' = c \cdot \varphi'.$$

Therefore there is a constant a satisfying

$$\varphi'' = c \cdot \varphi + a.$$

 $\varphi'(p) \neq 0$ implies equivalently

(6)
$$(\varphi'^2)' = c \cdot (\varphi^2)' + 2a\varphi'.$$

This means that there is a constant b satisfying

(7)
$$\varphi'^2 = c \cdot \varphi^2 + 2a\varphi + b.$$

Now (5), (7), and (2) together imply b = 0; thus

(8)
$$\varphi'^2 = \varphi(c \cdot \varphi + 2a).$$

Case I: c=0. By (5) φ is a polynomial of degree at most 2. Then (8) reduces to ${\varphi'}^2=2a\varphi$, which implies that φ is quadratic and that φ and φ' have a common zero along γ . By the completeness of g the metric $\overline{g}=\frac{1}{\varphi^2}\cdot g$ has a singularity there, a contradiction. Alternatively, if $\varphi(t)=At^2+Bt+C$, then (8) implies that the discriminant $4AC-B^2$ is zero. Therefore $\varphi(t)$ is the square of a linear function.

Case II: c < 0. In this case every solution φ of (5) is periodic and therefore attains its minimum and maximum. At each of these points the equation $0 = \varphi(c\varphi + 2a)$ is satisfied by (8). Hence $\varphi = 0$ and $c\varphi + 2a = 0$ must be satisfied at the minimum and maximum, respectively. This leads to a contradiction as in Case I.

Alternatively, the general solution of (5)

$$\varphi(t) = \alpha \cos(\sqrt{-c}t) + \beta \sin(\sqrt{-c}t) - \frac{a}{c}$$

satisfies

$$\alpha^2 + \beta^2 = \frac{a^2}{c^2}$$

by (8). A typical solution looks like $\varphi(t) = \cos t + 1$.

Case III: c > 0. In this case the general solution of (5) is

$$\varphi(t) = \alpha \cosh(\sqrt{c}t) + \beta \sinh(\sqrt{c}t) - \frac{a}{c}.$$

Then (8) implies

$$\alpha^2 - \beta^2 = \frac{a^2}{c^2},$$

in particular $\alpha^2 > \beta^2$.

If $\alpha^2 > \beta^2$, then φ has a critical point along γ . This implies that γ has a point q with $\operatorname{grad} \varphi(q) = 0$ (note that $\operatorname{grad} \varphi = \varphi' \cdot \frac{\partial}{\partial t}$). Furthermore φ satisfies globally $\nabla^2 \varphi = (c\varphi + a) \cdot g$ with c > 0. A result of Tashiro [T] implies that (M, g) is isometric with the hyperbolic space of constant sectional curvature -c. Roughly the argument is the following: In geodesic polar coordinates around q the metric g looks like $ds^2 = dt^2 + \sinh^2(\sqrt{c}t) \cdot ds_1^2$ where ds_1^2 is the metric of a round sphere of appropriate radius; compare [Kü, Lemma 18].

If $\alpha^2 = \beta^2$, then a = 0 and $\varphi(t) = \alpha \cdot e^{\mp \sqrt{c} \cdot t}$ is a solution without a critical point along γ . This implies that

(9)
$$ds^2 = dt^2 + e^{2\sqrt{c} \cdot t} ds_*^2$$

is a complete metric on $M=\mathbb{R}\times M_*$. It follows that $\overline{g}=e^{-2\sqrt{c}t}g$ is the product metric $dt^2+ds_*^2$ on $(0,\infty)\times M_*$. For an arbitrary tangent vector

X in the direction of M_* the standard formulas for the curvature of warped products imply

$$c(n-1)g(X, X) = (\operatorname{Ric}_{\overline{g}} - \operatorname{Ric}_{g})(X, X)$$

= $(1 - c \cdot e^{2\sqrt{c}t})\operatorname{Ric}_{g_{\bullet}}(X, X) + c(n-1)g(X, X),$

which is impossible unless $\operatorname{Ric}_{g_*} = 0$. This completes the proof of Theorem 1.

Note that in the case of an indefinite metric (9) does not define a complete warped product metric; compare [O, p. 209]. Compare also [Kb] for global solutions of $\nabla^2 \varphi = c \cdot \varphi \cdot g$, c > 0, in the indefinite case if φ has at least one critical point.

Proof of Theorem 1*. In the case of indefinite metrics φ is constant by Lemma 3, using the same argument as in Theorem 1. The Riemannian case has been treated in [Kü, Theorem 27]. The local considerations in this case are due to Brinkmann [Br]. Compare also [Be, 9.110].

Remark. Geodesic mappings of the same kind as in Theorem 1 have been studied in [V]. For the case of conformal vector fields on Einstein spaces compare [YN] and [Kan] in the Riemannian case and [Ke1], [Ke2] in the non-Riemannian case. Brinkmann describes in [Br, §4] indefinite Einstein metrics (M,g) carrying a non-constant positive function φ such that the conformally equivalent metric $\overline{g} := \varphi^{-2}g$ is also Einstein and the gradient grad φ is everywhere null. Then it follows that $\mathrm{Ric}_{\overline{g}} = \mathrm{Ric}_g = 0$ and $\nabla^2 \varphi = 0$, i.e. $\mathrm{grad}\,\varphi$ is parallel. By Lemma 3 (M,g) cannot be null complete.

In general relativity these metrics were studied in several papers. They are called *pp-waves* or *gravitational plane waves*; see e.g. [Hf].

Locally all the considerations in the proofs of Theorems 1-3 remain valid also in the case of an indefinite metric. This includes a local classification and the existence of various examples which, however, cannot be null complete.

Proof of Theorem 2. This follows the pattern of the proof of Theorem 1. In particular g must be positive definite if φ is not constant. We start with the equation

$$\frac{c \cdot (n-1)}{\varphi^2} \cdot g = \operatorname{Ric}_{\overline{g}} - \operatorname{Ric}_{g} = \frac{1}{\varphi^2} [(n-2)\varphi \cdot \nabla^2 \varphi + (\varphi \Delta \varphi - (n-1) \| \operatorname{grad} \varphi \|^2) \cdot g]$$

which implies

(10)
$$\frac{2(n-1)}{n}\varphi\Delta\varphi - (n-1)\|\operatorname{grad}\varphi\|^2 - c(n-1) = 0.$$

If grad $\varphi \neq 0$ at p, then along the geodesic γ in direction grad φ we have

(11)
$$2\varphi\varphi'' - \varphi'^2 - c = 0,$$

which implies

$$(12) 2\varphi\varphi''' = 0$$

or

(13)
$$\varphi(t) = At^2 + Bt + C.$$

If we put this into (11) we get

$$4AC - B^2 = c.$$

The case c=0 leads to a zero of φ as in the proof of Theorem 1; the case c<0 leads to two zeros of φ , a contradiction. If c>0, then φ has no zero but it has a critical point along γ . This is a critical point for φ on M. φ satisfies the equation $\nabla^2 \varphi = 2A \cdot g$. By a theorem of Tashiro [T] this implies that (M, g) is isometric with the euclidean space. Around the critical point the geodesic polar coordinates coincide with the euclidean polar coordinates.

In particular, if φ is non-constant, then c must be positive and \overline{g} is a space of constant sectional curvature c.

Proof of Theorem 3. The case of an indefinite metric can be ruled out by Lemma 3. In the Riemannian case the equation

(15)
$$\operatorname{Ric}_{\overline{g}} - \operatorname{Ric}_{g} = \frac{1}{n} \left(\frac{\overline{S}}{\varphi^{2}} - S \right) \cdot g$$

implies

(16)
$$2\varphi \varphi'' - \varphi'^2 + \frac{S}{n(n-1)} \cdot \varphi^2 - \frac{\overline{S}}{n(n-1)} = 0$$

along a unit speed geodesic in direction $\operatorname{grad} \varphi$. Differentiating once more leads to

$$2\varphi\varphi''' + \frac{2S}{n(n-1)}\varphi\varphi' = 0$$

or

$$\varphi''' + \rho \cdot \varphi' = 0$$

where $\rho := \frac{S}{n(n-1)}$ denotes the normalized scalar curvature.

As in the proof of Theorem 1 we conclude

(18)
$$\varphi'^2 = -\rho \varphi^2 + 2a \cdot \varphi - \overline{\rho}$$

for a certain constant a.

In any case the solution φ of (17) and (18) either has a zero (which is impossible because φ is a conformal factor) or a critical point, except for solutions of the type

(19)
$$\varphi'(t) = \alpha \cdot e^{\sqrt{-\rho}t}$$

leading to the same warped product metric as in (9). If there is a critical point, then the levels around it are round spheres and thus (M, g) is a standard space of constant sectional curvature [T], [Kü, Lemmas 13 and 18]. This completes the proof of Theorem 3.

The local part of this calculation is due to Tachibana [Tb, Theorem 8.1]. In the compact case the following holds: a compact Riemannian manifold with constant scalar curvature admitting a non-constant solution of

$$\nabla^2 \varphi = \frac{\Delta \varphi}{n} \cdot g$$

is isometric with a round sphere [Kü, Theorem 24].

REFERENCES

- [Be] A. L. Besse, Einstein manifolds, Ergebnisse Math. Grenzgeb., 3. Folge, Band 10, Springer, Berlin, Heidelberg, and New York, 1987.
- [Br] H. W. Brinkmann, Einstein spaces which are mapped conformally on each other, Math. Ann. 94 (1925), 119-145.
- [Fe] J. Ferrand, Sur une classe de morphismes conformes, C. R. Acad. Sci. Paris 296 (1983), 681-684.
- [Fi] A. Failkow, Conformal geodesics, Trans. Amer. Math. Soc. 45 (1939), 443-473.
- [H] J. Haantjes, Conformal representations of an n-dimensional euclidean space with a non-dimensional euclidean space with a non-definite fundamental form on itself, Proc. Kon. Nederl. Akad. Amsterdam 40 (1937), 700-705.
- [Hf] W. D. Halford, Brinkmann's theorem in general relativity, Gen. Relativity Gravitation 14 (1982), 1193-1195.
- [Kan] M. Kanai, On a differential equation characterizing a Riemannian structure of a manifold, Tokyo J. Math. 6 (1983), 143-151.
- [Kb] Y. Kerbrat, Transformations conformes des variétés pseudo-Riemanniennes, J. Differential Geom. 11 (1976), 547-571.
- [Ke1] M. G. Kerckhove, Conformal transformations of pseudo-Riemannian Einstein manifolds, thesis, Brown Univ., 1988.
- [Ke2] _____, The structure of Einstein spaces admitting conformal motions, Classical Quantum Gravity 8 (1991), 819-825.
- [Kü] W. Kühnel, Conformal transformations between Einstein spaces, Conformal Geometry (R. S. Kulkarni and U. Pinkall, eds.). Aspects of Math., vol. E12, Braunschweig, 105-146, Vieweg-Verlag, 1988, pp. 105-146.
- [Lie] S. Lie, Komplexe, insbesondere Linien und Kugelkomplexe mit Anwendung auf die Theorie partieller Differentialgleichungen, Math. Ann. 5 (1872), 145-246.
- [Liv] J. Liouville, Extension au cas des trois dimensions de la question du tracé géographique, Note VI, Applications de l'Analyse à la Géométrie (G. Monge, ed.), Paris, 1850, pp. 609-617.
- [O] B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983.
- [S] J. A. Schouten, Der Ricci-Kalkül, Springer-Verlag, Berlin, 1924.
- [Tb] S. Tachibana, On concircular geometry and Riemann spaces with constant scalar curvatures, Tôhoku Math. J. 3 (1951), 149-158.
- [T] Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc. 117 (1965), 251-275.
- [V] P. Venzi, Klassifikation der geodätischen Abbildungen mit $\overline{\text{Ric}} \text{Ric} = \Delta \cdot g$, Tensor (N.S.) 37 (1982), 137–147.
- [X] X. Xu, Prescribing a Ricci tensor in a conformal class of Riemannian metrics, Proc. Amer. Math. Soc. 115 (1992), 455-459; corrigenda, ibid. 118 (1993), 333.
- [Y] K. Yano, Concircular geometry I-V, Proc. Imperial Acad. Japan 16 (1940), 195-200, 354-360, 442-448, 505-511; ibid. 18 (1942), 446-451.
- [YN] K. Yano and T. Nagano, Einstein spaces admitting a one-parameter group of conformal transformations, Ann. of Math. (2) 69 (1959), 451-460.

FACHBEREICH MATHEMATIK, UNIVERSITÄT DUISBURG, 47048-DUISBURG, GERMANY Current address: Mathematisches Institut B, Universität Stuttgart, 70550 Stuttgart, Germany E-mail address: kuehnel@morse.physik.uni-stuttgart.de

Institut für Mathematik, Universität Augsburg, 86135-Augsburg, Germany Current address: Mathematisches Institut, Universität Leipzig, 04009 Leipzig, Germany E-mail address: rademacher@uni-augsburg.de