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CONFORMAL η-RICCI SOLITON IN LORENTZIAN-PARA
KENMOTSU MANIFOLD

RAJENDRA PRASAD 1 AND VINAY KUMAR2∗

Abstract. The objective of the present paper is to study conformal η-Ricci
soliton on Lorentzian-Para Kenmotsu manifolds with some curvature condi-
tions. We obtained some results of conformal η-Ricci soliton on Lorentzian
Para-Kenmotsu manifolds satisfying R(ξ,X).S = 0, C(ξ,X).S = 0 and the
condition of quasi conformaly flatness. Finally, we give examples of Lorentzian-
Para Kenmotsu manifold which admits conformal η- Ricci soliton.

1. INTRODUCTION

The concept of Ricci flow was introduced by R.S. Hamilton [7] in 1982 to find
a canonical metric on a smooth manifold. It was formed to giving the answer
of thrustons geometric conjucture, according to this each closed three manifold
admits a geometric decomposition. After which the Ricci flow become one of
the powerful tool to study Riemannian manifolds. The Ricci flow equation for
metrics on a Riemannian manifold is given as follows

∂

∂t
gij(t) = −2Sij. (1.1)

The solution for the Ricci flow equation is known as Ricci soliton in case it
driven only by a one parameter family of diffeomorphism and scaling. M. M.
Tripathi,[20] C.L. Bejan, M. Crasmareanu, [3] analysed Ricci soliton in contact
metric manifolds. A Ricci soliton is a natural generalization of Einstein metric.
A Ricci soliton (g.V, λ) on a Riemannian manifold (M, g) is defined as

LV g + 2S + 2λg = 0 (1.2)

where S is the Ricci tensor, LV is the Lie derivative operator along the vector field
V on M and λ is a real number. The Ricci soliton is said to be shrinking, steady
and expanding according as λ is negative, zero and positive respectivily. In 1972
K. Kenmotsu [9] studied a class of contact Riemannian manifolds satisfying some
special conditions, we call it Kenmotsu manifold.
A.E Fisher [6] in 2004 introduced a new concept known as a conformal Ricci flow
a variation of the classical Ricci flow equation which has revised the unit volume
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constraint of that equation to a scalar curvature constraint. In the classical Ricci
flow equation, the unit volume constraint plays an important role but in the
conformal Ricci flow equation, the scalar curvature r is considered as a constraint.
The conformal Ricci flow on M is defined by the following equation

∂g

∂t
+ 2{Ric(g) +

g

n
} = −pg, (1.3)

r(g) = −1

where r is the scalar curvature of the manifold, p is a scalar non dynamical
field (time-dependent scalar field), p is also known as conformal pressure. For
the study of curvature conditions on Lorentzian para-Kenmotsu and Lorentzian
para-Sasakian manifolds, we request to the reader please refer ([1],[8], [12],[15],
[17][18]).

N. Basu and A. Bhattacharya, [2, 4, 5] in 2015 establish the notion of conformal
Ricci soliton and conformal η-Ricci soliton and both equations are defined in the
following manner

LV g + 2S = [2λ− (p+
2

n
)]g,

LV g + 2S + [2λ− (p+
2

n
)]g + 2µη ⊗ η = 0. (1.4)

Recently, the Ricci soliton on almost contact metric manifolds has been studied
by various authors such as [10, 11, 13, 14, 19].

In this paper, we studied conformal η− Ricci soliton in a Lorentzian-Para Ken-
motsu manifolds. The paper is organized in the following ways. In section 2, we
discribe a brief introduction about Lorentzian-Para Kenmotsu manifold. Section
3, deals with the study of conformal η- Ricci soliton in Lorentzian-Para Kenmotsu
manifolds. In section 4 and 5, we study curvature conditions R.S = 0, C.S = 0 .
In section 6, we discuss quasi conformally flat condition for Lorentzian-Para Ken-
motsu manifold. We also study conformal η− Ricci soliton in Lorentzian-Para
Kenmotsu manifold admitting Codazzi type of Ricci tensor and cyclic parallel
Ricci tensor. At last, we construct two examples of Lorentzian-Para Kenmotsu
manifolds which admits conformal η- Ricci soliton.

2. PRELIMINARIES

Let M be an n-dimensional Lorentzian metric manifold. If it is endowed with
a structure (φ, ξ, η, g), where φ ia a (1,1) tensor field, ξ ia a vector field, η is a 1-
form on M and g is a Lorentzian metric, satisfying

φ2X = X + η(X)ξ, g(φX, φY ) = g(X, Y ) + η(X)η(Y ), (2.1)

η(ξ) = −1, g(X, ξ) = η(X) (2.2)

for any X, Y ∈ X(M), thus it is called Lorentzian almost paracontact manifold.
In the Lorentzian almost paracontact manifold, the following relations holds:

φξ = 0, η(φX) = 0, (2.3)

Φ(X, Y ) = Φ(Y,X), (2.4)
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where Φ(X, Y ) = g(X,φY ).
If ξ is a killing vector field, the (para) contact structure is called K-(para) contact.
In such a case, we have

∇Xξ = φX. (2.5)

A Lorentzian almost paracontact manifoldM is called Lorentzian-Para Sasakian
manifold if

(∇Xφ)Y = g(X, Y )ξ + η(Y )X + 2η(X)η(Y )ξ, (2.6)

for any vector fields X, Y ∈ X(M).
Now, we define a new manifold called Lorentzian-Para Kenmotsu manifold:

Definition 2.1. A Lorentzian almost paracontact manifoldM is called Lorentzian-
Para Kenmotsu manifold if

(∇Xφ)Y = −g(φX, Y )ξ − η(Y )φX, (2.7)

for any vector fields X, Y ∈ X(M).
In Lorentzian-Para Kenmotsu manifold, we have

∇Xξ = −X − η(X)ξ, (2.8)

(∇Xη)Y = −g(X, Y )− η(X)η(Y ), (2.9)

where ∇ denotes the operator of covariant differentiation with respect to the
Lorentzian metric g.
Further, on a Lorentzian-Para Kenmotsu manifold M, the following relations
holds:

g(R(X, Y )Z, ξ) = η(R(X, Y )Z) = g(Y, Z)η(X)− g(X,Z)η(Y ), (2.10)

R(ξ,X)Y = g(X, Y )ξ − η(Y )X, (2.11)

R(X, Y )ξ = η(Y )X − η(X)Y, (2.12)

R(ξ,X)ξ = X + η(X)ξ, (2.13)

S(X, ξ) = (n− 1)η(X), S(ξ, ξ) = −(n− 1), (2.14)

Qξ = (n− 1)ξ, (2.15)

S(φX, φY ) = S(X, Y ) + (n− 1)η(X)η(Y ). (2.16)

Now we define:

Definition 2.2. A Lorentzian-Para Kenmotsu manifold M is said to be an η-
Einstein manifold if its Ricci tensor S is of the form-

S(X, Y ) = ag(X, Y ) + bη(X)η(Y ), (2.17)

where a and b are scalar functions on M.

Definition 2.3. A Lorentzian-Para Kenmotsu manifold M is said to be a gen-
eralized η- Einstein manifold if its Ricci tensor S is of the form

S(X, Y ) = ag(X, Y ) + bη(X)η(Y ) + cΦ(X, Y ), (2.18)

where a, b and c are scalar functions on M and Φ(X, Y ) = g(φX, Y ). If c = 0,
then the manifold reduces to an η- Einstein manifold.
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Definition 2.4. The Concircular curvature tensor C in an n-dimensional mani-
fold M is defined by [16]

C(X, Y )Z = R(X, Y )Z − r

n(n− 1)
[g(Y, Z)X − g(X,Z)Y ], (2.19)

where R is the Riemannian curvature tensor and r is the scalar curvature of the
manifold.

Definition 2.5. The quasi-conformal curvature tensor C in an n-dimensional
Lorentzian-Para Kenmotsu manifold M is defined by[15]

C(X, Y )Z = aR(X, Y )Z+b{S(Y, Z)X−S(X,Z)Y +g(Y, Z)QX−g(X,Z)QY }

− r

n
{( a

n− 1
+ 2b)(g(Y, Z)X − g(X,Z)Y )}, (2.20)

where a and b are constants such that ab 6= 0 and R, S,Q and r are the Rie-
mannian curvature tensor of type (1,3), the Ricci tensor of type (0,2), the Ricci
operator defined by g(QX, Y ) = S(X, Y ), and the scalar curvature of the mani-
fold respectivily.

3. Conformal η-Ricci soliton in Lorentzian-Para Kenmotsu
manifold

Let an n-dimensional Lorentzian-Para Kenmotsu manifold admits conformal
η- Ricci soliton, then (1.4) holds, and thus we have

(Lξg)(X, Y ) + 2S(X, Y ) + (2λ− (p+
2

n
))g(X, Y ) + 2µη(X)η(Y ) = 0. (3.1)

We know that

(Lξg)(X, Y ) = −2g(X, Y )− 2η(X)η(Y ). (3.2)

Using (3.2) in (3.1), we get

−2g(X, Y )−2η(X)η(Y )+2S(X, Y )+(2λ− (p+
2

n
))g(X, Y )+2µη(X)η(Y ) = 0.

(3.3)
In vertue of (3.3), we have

S(X, Y ) = {1− λ+
p

2
+

1

n
}g(X, Y ) + (1− µ)η(X)η(Y ), (3.4)

which is of the form S(X, Y ) = ag(X, Y ) + bη(X)η(Y ), where a = (1−λ+ p
2

+ 1
n
)

and b = (1− µ).
Putting Y = ξ in (3.4), we have

S(X, ξ) = (µ− λ+
p

2
+

1

n
)η(X). (3.5)

From equation (2.14) and (3.5), we obtain

(n− 1) = (µ− λ+
p

2
+

1

n
) (3.6)
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which implies,

(λ− µ) = (1 +
p

2
+

1

n
− n). (3.7)

Thus we have the following:

Theorem 3.1. If an n-dimensional Lorentzian-Para Kenmotsu manifold admits
conformal η- Ricci soliton, then the manifold is an η- Einstein manifold of the
form (3.4) and the scalars λ, p and µ are related by (3.7).

4. Conformal η-Ricci soliton in Lorentzian-Para Kenmotsu
manifold satsfying R(ξ,X).S = 0

Let an n-dimensional Lorentzian-Para Kenmotsu manifold admitting confor-
mal η-Ricci soliton and satisfying R(ξ,X).S = 0. Then we have

S(R(ξ,X)Y, Z) + S(Y,R(ξ,X)Z) = 0, (4.1)

for all X, Y, Z ∈ X(M). By using (2.11) in (4.1), we have

S(g(X, Y )ξ − η(Y )X,Z) + S(Y, g(X,Z)ξ − η(Z)X) = 0, (4.2)

taking Z = ξ and using (3.5) in (4.2), we get

S(X, Y ) = (µ− λ+
p

2
+

1

n
)g(X, Y ). (4.3)

Now from (3.4) and (4.3), we get

S(X, Y ) = (1−µ)[g(X, Y )+η(X)η(Y )] = 0. =⇒ S(X, Y ) = (1−µ)[g(φX, φY )] = 0

From which it follows that µ = 1 and g(φX, φY ) 6= 0.
From (4.3), we get

S(X, Y ) = (1− λ+
p

2
+

1

n
)g(X, Y ). (4.4)

Thus we have the following important result:

Theorem 4.1. If an n-dimensional Lorentzian-Para-Kenmotsu manifold admit-
ting conformal η -Ricci soliton satisfies R(ξ,X).S = 0, then the manifold is an
Einstein manifold of the form (4.4).

5. Conformal η-Ricci soliton in Lorentzian-Para Kenmotsu
manifold satsfying C(ξ,X).S = 0

Let an n-dimensional Lorentzian-Para Kenmotsu manifold admitting conformal
η-Ricci soliton and satisfying C(ξ,X).S = 0. Let’s suppose C(X, Y )f = 0, where
f is C∞ function. Then C(ξ,X).S = 0, is defined. Consider C(ξ,X).S(Y, Z) = 0,
which implies

S(C(ξ,X)Y, Z) + S(Y,C(ξ,X)Z) = 0. (5.1)
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From (2.19), we find that

C(ξ,X)Y = (1− r

n(n− 1)
)(g(X, Y )ξ − η(Y )X). (5.2)

Now using (5.2) in (5.1), we have

(1− r

n(n− 1)
)[g(X, Y )S(ξ, ξ)− η(Y )S(X, ξ) + g(X, ξ)S(Y, ξ)− S(X, Y )], (5.3)

which by putting y = ξ and using (3.5) and (2.2), reduces to

(1− r

n(n− 1)
)[S(X, Y )− (µ− λ+

p

2
+

1

n
)g(X, Y )] = 0. (5.4)

Therefore we have, either r = n(n− 1), or

S(X, Y ) = (µ− λ+
p

2
+

1

n
)g(X, Y ). (5.5)

Now from (3.4) and (5.5), we get

S(X, Y ) = (1−µ)[g(X, Y )+η(X)η(Y )] = 0. =⇒ S(X, Y ) = (1−µ)[g(φX, φY )] = 0.

From which it follows that µ = 1 and g(φX, φY ) 6= 0. Using µ = 1 in (5.5), we
get

S(X, Y ) = (1− λ+
p

2
+

1

n
)g(X, Y ). (5.6)

Thus we have the following important result:

Theorem 5.1. If an n-dimensional Lorentzian-Para-Kenmotsu manifold admit-
ting conformal η- Ricci soliton satisfies C(ξ,X).S = 0, then either the scalar
curvature r is constant or the manifold becomes an Einstein manifold of the form
(5.6).

Definition 5.2. A Lorentzian-Para-Kenmotsu manifolld is said to have Codazzi
type of Ricci tensor if its Ricci tensor S of type (0,2) is non zero and satisfies the
following condition

(∇ZS)(X, Y ) = (∇XS)(Y, Z), (5.7)

for all X, Y, Z ∈ X(M).
Taking covariant derivative of (3.4) along any vector field Z and using (2.9), we
get

(∇ZS)(X, Y ) = (1−µ){−g(Z,X)η(Y )−g(Z, Y )η(X)−2η(X)η(Y )η(Z)}. (5.8)

If the Ricci tensor S is of Codazzi type, then we have from (5.7) and (5.8)

(1− µ){g(X, Y )η(Z)− g(Z, Y )η(X)} = 0, (5.9)

putting Z = ξ, in (5.9), we obtain

(1− µ){g(X, Y ) + η(X)η(Y )} = 0. (5.10)
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From which, it follows that µ = 1. (since g(X, Y ) + η(X)η(Y ) 6= 0).
Putting µ = 1 in (3.4), we get

S(X, Y ) = (1− λ+
p

2
+

1

n
)g(X, Y ). (5.11)

Therefore the manifold becomes an Einstein manifold. Thus we have the follow-
ing:

Theorem 5.3. An n-dimensional Lorentzian-Para Kenmotsu manifold whose
Ricci tensor is of Codazzi type admitting conformal η- Ricci soliton is an Einstein
manifold of the form (5.11).

Corollary 5.4. An n-dimensional Lorentzian-Para Kenmotsu manifold whose
Ricci tensor is of Codazzi type admitting conformal η- Ricci soliton is a manifold
of constatnt curvature.

Definition 5.5. A Lorentzian-Para Kenmotsu manifold is said to have cyclic
parallel Ricci tensor if its Ricci tensor S of type (0,2) is non zero and satisfies the
following condition

(∇ZS)(X, Y ) + (∇XS)(Y, Z) + (∇Y S)(X,Z) = 0, (5.12)

for all X, Y, Z ∈ X(M).

Let an n-dimensional Lorentzian-Para Kenmotsu manifold admiting conformal
η- Ricci soliton and the manifold has cyclic parallel Ricci tensor, So (5.11) holds.
By taking covariant derivative of (3.4) along vector field Z and using (2.9), we
get

(∇ZS)(X, Y ) = (1−µ){−g(Z,X)η(Y )−g(Z, Y )η(X)−2η(X)η(Y )η(Z)}, (5.13)

simillarly, we have

(∇XS)(Y, Z) = (1−µ){−g(X, Y )η(Z)−g(X,Z)η(Y )−2η(X)η(Y )η(Z)}, (5.14)

and

(∇Y S)(Z,X) = (1−µ){−g(Y, Z)η(X)−g(Y,X)η(Z)−2η(X)η(Y )η(Z)}. (5.15)

Now using (5.13), (5.14) and (5.15) in (5.12), we get

(1−µ){g(X, Y )η(Z)+g(Y, Z)η(X)+g(Z,X)η(Y )+3η(X)η(Y )η(Z)} = 0. (5.16)

Putting Z = ξ and using (2.2) in (5.16), we get

(1− µ){g(X, Y ) + η(X)η(Y )} = 0, =⇒ (1− µ)g(φX, φY ) = 0.

From which it follows that µ = 1. Since ( g(φX, φY ) 6= 0 ). Now using µ = 1, in
(3.4), we get

S(X, Y ) = (1− λ+
p

2
+

1

n
)g(X, Y ). (5.17)

Thus, we have the following:

Theorem 5.6. If an n-dimensional Lorentzian-Para Kenmotsu manifold admits
conformal η-Ricci soliton and the manifold has a cyclic parallel Ricci tensor, then
the manifold is an Einstein manifold of the form (5.17).
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6. Conformal η-Ricci solitons on quasi conformally flat
Lorentzian-Para-Kenmotsu manifolds

Lets assume that the manifoldM admitting the conformal η- Ricci solitons is
quasi conformally flat, that is, C = 0, then from (2.20), it follows that,

R(X, Y )Z = − b
a
{S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY }+

r

n
(

a

n− 1
+ 2b)(g(Y, Z)X − g(X,Z)Y ). (6.1)

Taking the inner product of (6.1) with ξ and using equation (2.2), (3.4) and (3.5),
we get

η(R(X, Y )Z) = − b
a

[(1− λ+
p

2
+

1

n
)(g(Y, Z) + (1− µ)η(X)η(Z))η(X)−

(1− λ+
p

2
+

1

n
)(g(X,Z) + (1− µ)η(X)η(Z))η(Y )+

(µ− λ+
1

n
+
p

2
)(g(Y, Z)η(X)− g(X,Z)η(Y )]+

r

n
(

a

n− 1
+ 2b)(g(Y, Z)η(X)− g(X,Z)η(Y )), (6.2)

which takes form,

η(R(X, Y )Z) = − b
a
{(g(Y, Z)η(X)− (g(X,Z)η(Y ))(1− λ+

p

2
+

1

n
)+

(µ− λ+
p

2
+

1

n
)(g(Y, Z)η(X)− g(X,Z)η(Y ))}+

r

n
(

a

n− 1
+ 2b)(g(Y, Z)η(X)− g(X,Z)η(Y )), (6.3)

after some straight forward calculation, we get

η(R(X, Y )Z) = {(1− µ)b

a
+
r

n
(

a

n− 1
+ 2b)}(g(Y, Z)η(X) − g(X,Z)η(Y )),

(6.4)

using equation (2.10), (6.4) become

{(1− µ)b

a
+
r

n
(

a

n− 1
+ 2b)− 1}(g(Y, Z)η(X)− g(X,Z)η(Y )) = 0. (6.5)

Putting X = ξ, we get

{(1− µ)b

a
+
r

n
(

a

n− 1
+ 2b)− 1}(−g(Y, Z)− η(Z)η(Y )) = 0,

=⇒ {(1− µ)b

a
+
r

n
(

a

n− 1
+ 2b)− 1}g(φY, φZ) = 0, (6.6)
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from which it follows that

{(1− µ)b

a
+
r

n
(

a

n− 1
+ 2b)− 1} = 0 becouse [g(φY, φZ) 6= 0].

Thus, we can state the following theorem:

Theorem 6.1. A quasi-conformally flat Lorentzian-Para-Kenmotsu manifold ad-
mits a conformal η- Ricci soliton then λ = {2− a

b
+ ar

bn
( a
n−1+2b

) + p
2

+ 1
n
− n} and

µ = {1− a
b

+ ar
bn

( a
n−1+2b

)}.

Corollary 6.2. If we take scalar curvature r = n(a−b)(2b+n−1)
a2

, then µ = 0 and

λ = (1 + p
2

+ 1
n
− n).

7. Examples

Example 7.1. We consider the 5-dimensional manifold

M = {(x1, x2, x3, x4, z) ∈ R5, z > 0}, (7.1)

where (x1, x2, x3, x4, z) are the standard coordinates in R5. Let e1, e2, e3, e4 and
e5 be the vector fields on M given by

e1 = z ∂
∂x1

, e2 = z ∂
∂x2

, e3 = z ∂
∂x3

e4 = z ∂
∂x4

, e5 = z ∂
∂z

= ξ,

which are linearly independent at each point p of M, and hence form a basis
of TpM . Define a Lorentzian metric g onM defined by g(ei, ej) = 0, i 6= j where
i, j = 1, 2, 3, 4, 5 and

g(e1, e1) = g(e2, e2) = g(e3, e3) = g(e4, e4) = 1 and g(e5, e5) = −1.
Let η be the 1-form onM defined by η(X) = g(X, e5) = g(X, ξ) for all X ∈ X(M)
and let φ be the (1,1)-tensor field on M.

By applying the linearty of φ and g, we have

η(ξ) = g(ξ, ξ) = −1, φ2X = X + η(X)ξ, η(φX) = 0,

g(X, ξ) = η(X), g(φX, φY ) = g(X, Y ) + η(X)η(Y ),

for all X, Y ∈ X(M).

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g.
So, we have

[e1, e2]=[e1, e3]=[e1, e4]=[e2, e3]=[e2, e4]=[e3, e4]=0,

[e1, e5] = −e1, [e2, e5] = −e2, [e3, e4] = −e3, [e4, e5] = −e4.
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The Riemannian connection ∇ of the metric g is given by

2g(∇XY, Z) = Xg(Y, Z) +Y g(Z,X)−Zg(X, Y )− g(X, [Y, Z]) + g(Y, [Z,X]) +
g(Z, [X, Y ]),

which is known as Koszul’s formula. Using Koszul’s formula we easily calculate

∇e1e1 = e5,∇e1e2 = 0,∇e1e3 = 0,∇e1e4 = 0,∇e1e5 = −e1, (7.2)

∇e2e1 = 0,∇e2e2 = e5,∇e2e3 = 0,∇e2e4 = 0,∇e2e5 = −e2,

∇e3e1 = 0,∇e3e2 = 0,∇e3e3 = e5,∇e3e4 = 0,∇e3e5 = −e3,

∇e4e1 = 0,∇e4e2 = 0,∇e4e3 = 0,∇e4e4 = e5,∇e4e5 = −e4,

∇e5e1 = 0,∇e5e2 = 0,∇e5e3 = 0,∇e5e4 = 0,∇e5e5 = 0.

Also one can easily verify that

∇Xξ = −X − η(X)ξ, and (∇Xφ)Y = −g(φX, Y )ξ − η(Y )φX.

Hence the manifold is Lorentzian para-Kenmotsu manifold of dimension 5.
Now let

X =
5∑
i=1

X iei = X1e1 +X2e2 +X3e3 +X4e4 +X5e5,

Y =
5∑
i=1

Y iei = Y 1e1 + Y 2e2 + Y 3e3 + Y 4e4 + Y 5e5,

Z =
5∑
i=1

Ziei = Z1e1 + Z2e2 + Z3e3 + Z4e4 + Z5e5.

It is known that

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z. (7.3)

From (7.2) and (7.3), we can be easily calculate that

R(e1, e2)e1 = e2, R(e1, e3)e1 = e3, R(e1, e4)e1 = e4, R(e1, e5)e1 = e5, (7.4)

R(e2, e3)e1 = R(e2, e4)e1 = R(e2, e5)e1 = 0,

R(e3, e4)e1 = R(e3, e5)e1 = R(e4, e5)e1 = 0,

R(e1, e2)e2 = −e1, R(e2, e3)e2 = e3, R(e2, e4)e2 = e4, R(e2, e5)e2 = e5, (7.5)

R(e1, e3)e2 = R(e1, e4)e2 = R(e1, e5)e2 = 0,

R(e3, e4)e2 = R(e3, e5)e2 = R(e4, e5)e2 = 0,

R(e1, e3)e3 = −e1, R(e2, e3)e3 = −e2, R(e3, e4)e3 = e4, R(e3, e5)e3 = e5, (7.6)
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R(e1, e3)e2 = R(e1, e4)e2 = R(e1, e5)e2 = 0,

R(e3, e4)e2 = R(e3, e5)e2 = R(e4, e5)e2 = 0,

R(e1, e4)e4 = −e1, R(e2, e4)e4 = −e2, R(e3, e4)e4 = −e3, R(e4, e5)e4 = e5, (7.7)

R(e1, e2)e4 = R(e1, e3)e4 = R(e1, e5)e5 = 0,

R(e2, e3)e4 = R(e2, e5)e5 = R(e3, e5)e4 = 0,

R(e1, e5)e5 = −e1, R(e2, e5)e5 = −e2, R(e3, e5)e5 = −e3, R(e4, e5)e5 = −e5,
(7.8)

R(e1, e2)e5 = R(e1, e3)e5 = R(e1, e4)e5 = 0,

R(e2, e3)e5 = R(e2, e4)e5 = R(e3, e4)e4 = 0.

With the help of above expressions of the curvature tensors, it follows that

R(X, Y )Z = g(Y, Z)X − g(X,Z)Y. (7.9)

From which, we get S(Y, Z) = 4g(Y, Z) =⇒ r = 20.
Now, from equation (3.4), we get

5∑
i=1

εiS(ei, ei) = {1− λ+
p

2
+

1

n
}

5∑
i=1

εig(ei, ei)−
5∑
i=1

εiη(ei)η(ei), (7.10)

after some calculation, we get

λ− µ

5
=
p

2
− 3. (7.11)

Now, from equation (3.7) and (7.11), we get µ = 1 and λ = (p
2
− 14

5
).

Hence, the data (g, ξ, λ, µ) for µ = 1 and λ = (p
2
− 14

5
), defines a conformal η−

Ricci soiton on a Lorentzian-Para-Kenmotsu manifold M.

.

Example 7.2. We consider the 3-dimensional manifold

M = {(x, y, z) ∈ R3, z > 0},

where (x, y, z) are the standard coordinates in R3. Let e1, e2, and e3 be the
vector fields on M given by

e1 = z ∂
∂x

, e2 = z ∂
∂y

, e3 = z ∂
∂z

= ξ,

which are linearly independent at each point p ofM and hence form a basis of
TpM. Define a Lorentzian metric g on M such that

g(e1, e1) = g(e2, e2) = 1 and g(e3, e3) = −1.

Let η be the 1-form on M defined by η(X) = g(X, e3) = g(X, ξ), for all
X ∈ X(M) and let φ be the (1,1)-tensor field on M defined as
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φe1 = −e2, φe2 = −e1, φe3 = 0.

By applying linearty of φ and g, we have

η(ξ) = g(ξ, ξ) = −1, φ2X = X + η(X)ξ, η(φX) = 0,

g(X, ξ) = η(X), g(φX, φY ) = g(X, Y ) + η(X)η(Y ),

for all X, Y ∈ X(M).

Let ∇ be the Levi Civita connection with respect to the Lorentzian metric g.
So, we have

[e1, e2]=[e2, e1]=0, [e1, e3]= −e1, [e3, e1]= e1, [e2, e3]= −e2, [e3, e2]= e2.

The Riemannian connection ∇ of the metric g is given by

2g(∇XY, Z) = Xg(Y, Z) +Y g(Z,X)−Zg(X, Y )− g(X, [Y, Z]) + g(Y, [Z,X]) +
g(Z, [X, Y ]),

which is known as Koszul’s formula. Using Koszul’s formula, we easily calculate

∇e1e1 = −e3,∇e1e2 = 0,∇e1e3 = −e1,∇e2e1 = 0, (7.12)

∇e2e2 = −e3,∇e2e3 = −e2,∇e3e1 = 0,∇e3e2 = 0,∇e3e3 = 0.

Also one can easily verify that

∇Xξ = −X − η(X)ξ, and (∇Xφ)Y = −g(φX, Y )ξ − η(Y )φX.

Hence the manifold is Lorentzian para-Kenmotsu manifold of dimension 3.
Now, let

X =
3∑
i=1

X iei = X1e1 +X2e2 +X3e3,

Y =
3∑
i=1

Y iei = Y 1e1 + Y 2e2 + Y 3e3+,

Z =
3∑
i=1

Ziei = Z1e1 + Z2e2 + Z3e3

it is known that

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z. (7.13)

From equation (7.12) and (7.13), we easily verified that

R(e1, e2)e1 = −e2, R(e1, e3)e1 = −e3, R(e2, e3)e1 = 0, (7.14)



66 RAJENDRA PRASAD AND VINAY KUMAR

R(e1, e2)e2 = −e1, R(e1, e3)e2 = −0, R(e2, e3)e2 = e3,

R(e1, e2)e3 = 0, R(e1, e3)e3 = −e1, R(e2, e3)e3 = e2.

With the help of above exression of the curvature tensors, it follows that

R(X, Y )Z = g(Y, Z)X − g(X,Z)Y,

from which, we get
S(Y, Z) = 2g(Y, Z). (7.15)

The Ricci tensor S is given by

S(e1, e1) = S(e2, e2) = 2 and S(e3, e3) = −2. (7.16)

From (3.4) and (7.16), we get
λ = (p

2
− 2

3
) and µ = 1. Thus the data (g, ξ, λ, µ) for λ = (p

2
− 2

3
) and µ = 1,

defines conformal η-Ricci soliton on the Lorentzian-para Kenmotsu manifoldM.

.
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