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Abstract

In this paper we study ∗-Conformal η-Ricci soliton on Sasakian manifolds. Here,
we discuss some curvature properties on Sasakian manifold admitting ∗-Conformal
η-Ricci soliton. We obtain some significant results on ∗-Conformal η-Ricci soliton
in Sasakian manifolds satisfying R(ξ,X) ·S = 0, S(ξ,X) ·R = 0, P (ξ,X) ·S = 0,
where P is Pseudo-projective curvature tensor.The conditions for ∗-Conformal η-
Ricci soliton on φ-conharmonically flat and φ-projectively flat Sasakian manifolds
have been obtained in this article. Lastly we give an example of 5-dimensional
Sasakian manifolds satisfying ∗-Conformal η-Ricci soliton.
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1. Introduction

The notion of Ricci flow was first introduced by Hamilton [6] in 1982.The Ricci
flow is an evolution equation for metrics on a Riemannian manifold. The Ricci
flow equation is given by

∂g

∂t
= −2S (1.1)

on a compact Riemannian manifold M with Riemannian metric g.

A self-similar solution to the Ricci flow [6], [15] is called a Ricci soliton [7] if
it moves only by a one parameter family of diffeomorphism and scaling. The
Ricci soliton equation is given by

£V g + 2S + 2λg = 0, (1.2)

where £V is the Lie derivative in the direction of V , S is Ricci tensor, g is Rie-
mannian metric, V is a vector field and λ is a scalar. The Ricci soliton is said to
be shrinking, steady and expanding accordingly as λ is negative, zero and positive
respectively.

1The first author is the corresponding author.
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A.E. Fischer during 2003-2004 developed the concept of conformal Ricci flow
[3] which is a variation of the classical Ricci flow equation that modifies the unit
volume constraint of that equation to a scalar curvature constraint. The confor-
mal Ricci flow on M is defined by the equation [3]

∂g

∂t
+ 2(S +

g

n
) = −pg (1.3)

and r(g) = −1,
where M is considered as a smooth closed connected oriented n-manifold, p is a
scalar non-dynamical field(time dependent scalar field), r(g) is the scalar curva-
ture of the manifold and n is the dimension of manifold.

The notion of Conformal Ricci soliton equation was introduced by N. Basu and
A. Bhattacharyya [1] in 2015 and the equation is given by

£V g + 2S = [2λ− (p+
2

n
)]g, (1.4)

where λ is constant.
The equation is the generalization of the Ricci soliton equation and it also satis-
fies the conformal Ricci flow equation.

In 2009, Jong Taek Cho and Makoto Kimura introduced the notion of η-Ricci
soliton [2], given by the equation:

£ξg + 2S = 2λg + 2µη ⊗ η, (1.5)

for constants λ and µ.
In 2018, Mohd Danish Siddiqi [12] introduced the notion of Conformal η- Ricci
soliton as:

£ξg + 2S + [2λ− (p+
2

n
)]g + 2µη ⊗ η = 0, (1.6)

where £ξ is the Lie derivative along the vector field ξ , S is the Ricci tensor, λ,
µ are contants, p is a scalar non-dynamical field(time dependent scalar field)and
n is the dimension of manifold.
The notion of ∗-Ricci tensor on almost Hermitian manifolds and ∗-Ricci tensor of
real hypersurfaces in non-flat complex space were introduced by Tachibana [14]
and Hamada [5] respectively where the ∗-Ricci tensor is defined by:

S∗(X, Y ) =
1

2
(trace{φ ◦R(X, φY )}), (1.7)

for all vector fields X, Y on Mn and φ is a (1,1)-tensor field.
If S∗(X, Y ) = λg(X, Y ) + µη(X)η(Y ) for all vector fields X, Y and λ, µ are
smooth functions, then the manifold is called ∗ − η-Einstein manifold.
Further if µ = 0 i.e S∗(X, Y ) = λg(X, Y ) for all vector fields X, Y then the
manifold becomes ∗-Einstein.
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In 2014 Kaimakamis and Panagiotidou [9] introduced the notion of ∗-Ricci soliton
which can be defined as:

£V g + 2S∗ + 2λg = 0, (1.8)

for all vector fields X, Y on Mn and λ being a constatnt.

Now we define the notion of ∗-Conformal η -Ricci soliton as:

£ξg + 2S∗ + [2λ− (p +
2

n
)]g + 2µη ⊗ η = 0, (1.9)

where £ξ is the Lie derivative along the vector field ξ, S∗ is the ∗- Ricci tensor
and λ, µ, p, n are as defined in (1.6).
The Riemannian-Christoffel curvature tensor R [10], the conharmonic curvature
tensor H [8], the projective curvature tensor P [16] and the Pseudo-projective
curvature tensor P [11] in a Riemannian manifold (M, g) are defined by:

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, (1.10)

H(X, Y )Z = R(X, Y )Z −
1

(n− 2)
[g(Y, Z)QX − g(X,Z)QY

+ S(Y, Z)X − S(X,Z)Y ], (1.11)

P (X, Y )Z = R(X, Y )Z −
1

(n− 1)
[g(Y, Z)QX − g(X,Z)QY ], (1.12)

and

P (X, Y ))Z = aR(X, Y )Z + b[S(Y, Z)X − S(X,Z)Y ]

−
r

n
(

a

n− 1
+ b)[g(Y, Z)X − g(X,Z)Y ], (1.13)

where Q is the Ricci operator, defined by S(X, Y ) = g(QX, Y ), S is the Ricci
tensor, r = tr(S) is the scalar curvature, where tr(S) is the trace of S, a, b 6= 0
are constants and X, Y, Z ∈ χ(M), χ(M) being the Lie algebra of vector fields of
M.

The paper is organized as follows: After introduction, section 2 consists of basic
definitions of Sasakian manifolds. Section 3 devotes ∗-Conformal η-Ricci soli-
ton on Sasakian manifolds. In section 4, we establish some significant results
on ∗-Conformal η-Ricci soliton in Sasakian manifolds satisfying R(ξ,X) · S = 0,
S(ξ,X) · R = 0, P (ξ,X) · S = 0, where P is Pseudo-projective curvature tensor.
Moreover it is shown that the Sasakian manifold, admitting ∗-Conformal η-Ricci
soliton becomes η-Einstein manifold when it satisfies S(ξ,X) ·R = 0 and Einstein
manifold when it satisfies R(ξ,X) · S = 0 and P (ξ,X) · S = 0. We also obtain
the conditions for ∗-Conformal η-Ricci soliton on φ-conharmonically flat and φ-
projectively flat Sasakian manifolds. It is also shown that the Sasakian manifold,
admitting ∗-Conformal η-Ricci soliton becomes η-Einstein manifold when it is
φ-conharmonically flat and Einstein manifold when it is φ-projectively flat. In
last section, we give an example of 5-dimensional Sasakian manifolds satisfying
∗-Conformal η-Ricci soliton.
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2. Preliminaries

Let M be a (2n+1)dimensional connected almost contact metric manifold with
an almost contact metric structure (φ, ξ, η, g) where φ is a (1, 1) tensor field, ξ
is a vector field, η is a 1-form and g is the compatible Riemannian metric such that

φ2(X) = −X + η(X)ξ, η(ξ) = 1, η ◦ φ = 0, φξ = 0, (2.1)

g(φX, φY ) = g(X, Y )− η(X)η(Y ), (2.2)

g(X, φY ) = −g(φX, Y ), (2.3)

g(X, ξ) = η(X), (2.4)

for all vector fields X, Y ∈ χ(M).

A (2n+1) dimensional almost contact manifold M with (φ, ξ, η, g) structure is
said to be a contact metric manifold iff dη(X, Y ) = g(X, φY ).
Also an almost contact metric structure of M is said to be normal if

2dη(X, Y )ξ + [φ, φ](X, Y ) = 0, (2.5)

where [φ, φ] is Nijenhuis tensor.
A normal contact metric manifold is said to be a Sasakian manifold.
In a (2n+1) dimensional Sasakian manifold the following conditions hold:

∇Xξ = −φX, (2.6)

R(X, Y )Z = g(Y, Z)X − g(X,Z)Y, (2.7)

R(X, Y )ξ = η(Y )X − η(X)Y, (2.8)

R(ξ,X)Y = g(X, Y )ξ − η(Y )X, (2.9)

η(R(X, Y )Z) = g(Y, Z)η(X)− g(X,Z)η(Y ), (2.10)

(∇Xη)Y = −g(φX, Y ), (2.11)

where R is the Riemannian curvature tensor and ∇ is the Levi-Civita connection
associated with g.
As every Sasakian manifold is K-contact then we have in a Sasakian manifold,

(£ξg)(X, Y ) = 0, (2.12)

where £ξ is the Lie derivative along the vector field ξ which is a Killing vector
field.
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3. ∗-Conformal η-Ricci soliton on Sasakian manifold

Let (M,φ, ξ, η, g) be a (2n+1) dimensional Sasakian manifold.Consider the ∗-
Conformal η-Ricci soliton on M as:

£ξg + 2S∗ + [2λ− (p+
2

2n+ 1
)]g + 2µη ⊗ η = 0, (3.1)

Then from (2.12), we get,

S∗(X, Y ) = −[λ−
1

2
(p+

2

2n+ 1
)]g(X, Y )− µη(X)η(Y ). (3.2)

In paper [4], Lemma 3.1, authors have proved that the ∗-Ricci tensor on a (2n+1)-
dimensional Sasakian manifold (M,φ, ξ, η, g) is given by,

S∗(X, Y ) = S(X, Y )− (2n− 1)g(X, Y )− η(X)η(Y ), (3.3)

for all vector fields X, Y on M .
Using this relation (3.3) we can write (3.2) as,

S(X, Y ) = [2n− 1− λ+
1

2
(p+

2

2n+ 1
)]g(X, Y )− (µ− 1)η(X)η(Y ). (3.4)

From this equation (3.4), we get,

S(X, ξ) = [2n− λ− µ+
1

2
(p+

2

2n+ 1
)]η(X). (3.5)

Again we also know in a (2n+1) dimensional Sasakian manifold the Ricci tensor
field satisfies:

S(X, ξ) = 2nη(X). (3.6)

Then from (3.5) and (3.6), we get,

λ+ µ =
1

2
(p +

2

2n + 1
). (3.7)

Now we know,

(∇XS)(Y, Z) = XS(Y, Z)− S(∇XY, Z)− S(Y,∇XZ), (3.8)

for any X, Y, Z ∈ χ(M).
Then replacing the expression of S from (3.4), we get,

(∇XS)(Y, Z) = −(µ− 1)[η(Y )(∇Xη)Z + η(Z)(∇Xη)Y ]. (3.9)

Using (2.11), we get,

(∇XS)(Y, Z) = (µ− 1)[η(Y )g(φX,Z) + η(Z)g(φX, Y )]. (3.10)

Similarly we can obtain,

(∇Y S)(Z,X) = (µ− 1)[η(Z)g(φY,X) + η(X)g(φY, Z)], (3.11)

and

(∇ZS)(X, Y ) = (µ− 1)[η(X)g(φZ, Y ) + η(Y )g(φZ,X)]. (3.12)

Then adding (3.10), (3.11), (3.12) and using (2.3) we get,

(∇XS)(Y, Z) + (∇Y S)(Z,X) + (∇ZS)(X, Y ) = 0, (3.13)
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for any X, Y, Z ∈ χ(M).
Thus we can state the following theorem:

Theorem 3.1. If a (2n+1) dimensional Sasakian manifold (M,φ, ξ, η, g) ad-
mits ∗-Conformal η-Ricci Soliton then the manifold has cyclic Ricci tensor i.e.
(∇XS)(Y, Z) + (∇Y S)(Z,X) + (∇ZS)(X, Y ) = 0, for any X, Y, Z ∈ χ(M).

Now if ∇S = 0, then taking Z = ξ in the expression of ∇S from (3.10), we
obtain,

(µ− 1)g(φX, Y ) = 0. (3.14)

∀X, Y ∈ χ(M).

Hence µ = 1.

Then from (3.7), we obtain, λ = 1
2
(p+ 2

2n+1
)− 1.

This leads to the following:

Theorem 3.2. If a (2n+1) dimensional Sasakian manifold (M,φ, ξ, η, g) is Ricci
symmetric i.e ∇S = 0 and admits ∗-Conformal η-Ricci Soliton then µ = 1 and
λ = 1

2
(p+ 2

2n+1
)− 1.

4. Curvature properties on Sasakian manifold satisfying

∗-Conformal η-Ricci soliton

The condition R(ξ,X) · S = 0 implies that,

S(R(ξ,X)Y, Z) + S(Y,R(ξ,X)Z) = 0, (4.1)

for any X, Y, Z ∈ χ(M).
Replacing the expression of S from (3.4) and from the symmetries of R we get,

(µ− 1)[g(X, Y )η(Z) + g(X,Z)η(Y )− 2η(X)η(Y )η(Z)] = 0, (4.2)

for any X, Y, Z ∈ χ(M).
For Z = ξ we have,

(µ− 1)[g(X, Y )− η(X)η(Y )] = 0, (4.3)

for any X, Y ∈ χ(M).
Then using (2.2) we have,

(µ− 1)g(φX, φY ) = 0, (4.4)

for any X, Y ∈ χ(M).
It follows that (µ− 1) = 0 i.e,

µ = 1. (4.5)
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Then from (3.7) we get,

λ =
1

2
(p+

2

2n+ 1
)− 1. (4.6)

So we can state the following theorem:

Theorem 4.1. If a (2n+1) dimensional Sasakian manifold (M,φ, ξ, η, g) sat-
isfies R(ξ,X) · S = 0 and admits ∗-Conformal η-Ricci Soliton then µ = 1 and
λ = 1

2
(p+ 2

2n+1
)− 1.

Now from (4.5), (4.6) and (3.4) we obtain,

S(X, Y ) = 2ng(X, Y ). (4.7)

for any X, Y ∈ χ(M).
Then we have,
Corollary 4.2. If a (2n+1) dimensional Sasakian manifold (M,φ, ξ, η, g) satis-
fies R(ξ,X) · S = 0 and admits ∗-Conformal η-Ricci Soliton then the manifold
becomes Einstein manifold.

Again the condition S(ξ,X) · R = 0 implies that,

S(X,R(Y, Z)W )ξ−S(ξ, R(Y, Z)W )X+S(X, Y )R(ξ, Z)W−S(ξ, Y )R(X,Z)W

+S(X,Z)R(Y, ξ)W −S(ξ, Z)R(Y,X)W +S(X,W )R(Y, Z)ξ−S(ξ,W )R(Y, Z)X

= 0, (4.8)

for any X, Y, Z,W ∈ χ(M).
Taking the inner product with ξ,the above equation becomes,

S(X,R(Y, Z)W )− S(ξ, R(Y, Z)W )η(X) + S(X, Y )η(R(ξ, Z)W )

− S(ξ, Y )η(R(X,Z)W ) + S(X,Z)η(R(Y, ξ)W )− S(ξ, Z)η(R(Y,X)W )

+ S(X,W )η(R(Y, Z)ξ)− S(ξ,W )η(R(Y, Z)X) = 0, (4.9)

for any X, Y, Z,W ∈ χ(M).
Replacing the expression of S from (3.4) and taking Z = ξ, W = ξ we get,

[4n− 1− 2λ− µ+ (p+
2

2n+ 1
)][g(X, Y )− η(X)η(Y )] = 0, (4.10)

for any X, Y ∈ χ(M).
Then using (2.2) we have,

[4n− 1− 2λ− µ+ (p+
2

2n+ 1
)]g(φX, φY ) = 0, (4.11)

for any X, Y ∈ χ(M).
Now using (3.7) the above equation becomes,

[4n− 1− λ+
1

2
(p+

2

2n+ 1
)]g(φX, φY ) = 0, (4.12)
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for any X, Y ∈ χ(M).
It follows that 4n− 1− λ+ 1

2
(p+ 2

2n+1
) = 0 i.e,

λ = 4n +
1

2
(p+

2

2n + 1
)− 1. (4.13)

and then from (3.7), we obtain,

µ = 1− 4n. (4.14)

This leads to the following:

Theorem 4.3. If a (2n+1) dimensional Sasakian manifold (M,φ, ξ, η, g) sat-
isfies S(ξ,X) · R = 0 and admits ∗-Conformal η-Ricci Soliton then µ = 1 − 4n
and λ = 4n + 1

2
(p+ 2

2n+1
)− 1.

Now from (4.13), (4.14) and (3.4) we obtain,

S(X, Y ) = −2ng(X, Y ) + 4nη(X)η(Y ), (4.15)

for any X, Y ∈ χ(M).
Then we have,

Corollary 4.4. If a (2n+1) dimensional Sasakian manifold (M,φ, ξ, η, g) satis-
fies S(ξ,X) · R = 0 and admits ∗-Conformal η-Ricci Soliton then the manifold
becomes η-Einstein manifold.

The condition P (ξ,X) · S = 0 implies that

S(P (ξ,X)Y, Z) + S(Y, P (ξ,X)Z) = 0. (4.16)

for any X, Y, Z ∈ χ(M), where P is the Pseudo-projective curvature tensor in
M .
Now in a (2n+1) dimensional Sasakian manifold,

P (ξ,X)Y = aR(ξ,X)Y + b[S(X, Y )ξ − S(ξ, Y )X ]

−
r

2n+ 1
(
a

2n
+ b)[g(X, Y )ξ − g(ξ, Y )X ], (4.17)

where a, b 6= 0 are constants.
Then using (2.9), (3.4) and (3.5) we get,

P (ξ,X)Y = [a−
r

2n+ 1
(
a

2n
+ b)][g(X, Y )ξ − η(Y )X ]

+ b[2n− 1− λ+
1

2
(p+

2

2n+ 1
)][g(X, Y )ξ − η(Y )X ]

+ b(µ− 1)[η(Y )X − η(X)η(Y )ξ]. (4.18)
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Replacing the expression of S from (3.4) and using (4.18), we obtain,

S(P (ξ,X)Y, Z)

= [2n− 1−λ+
1

2
(p+

2

2n+ 1
)][a−

r

2n + 1
(
a

2n
+ b)][g(X, Y )η(Z)− g(X,Z)η(Y )]

+ b[2n− 1− λ+
1

2
(p+

2

2n+ 1
)]2[g(X, Y )η(Z)− g(X,Z)η(Y )]

− b(µ− 1)[2n− 1− λ+
1

2
(p+

2

2n+ 1
)][g(X, Y )η(Z)− g(X,Z)η(Y )]

− (µ− 1)[a−
r

2n + 1
(
a

2n
+ b)][g(X, Y )η(Z)− η(X)η(Y )η(Z)].

(4.19)

for any X, Y, Z ∈ χ(M).
As from (3.4) we have S(X, Y ) = S(Y,X) for any X, Y ∈ χ(M), then we can
write,

S(Y, P (ξ,X)Z) = S(P (ξ,X)Z, Y ) (4.20)

for any X, Y, Z ∈ χ(M).
Then similarly from (4.19) by interchanging Y, Z, we get,

S(P (ξ,X)Z, Y )

= [2n− 1−λ+
1

2
(p+

2

2n+ 1
)][a−

r

2n + 1
(
a

2n
+ b)][g(X,Z)η(Y )− g(X, Y )η(Z)]

+ b[2n− 1− λ+
1

2
(p+

2

2n+ 1
)]2[g(X,Z)η(Y )− g(X, Y )η(Z)]

− b(µ− 1)[2n− 1− λ+
1

2
(p+

2

2n+ 1
)][g(X,Z)η(Y )− g(X, Y )η(Z)]

− (µ− 1)[a−
r

2n + 1
(
a

2n
+ b)][g(X,Z)η(Y )− η(X)η(Y )η(Z)].

(4.21)

for any X, Y, Z ∈ χ(M).
Now using (4.19), (4.20) and (4.21), (4.16) becomes,

(µ−1)[a−
r

2n+ 1
(
a

2n
+ b)][g(X, Y )η(Z)+g(X,Z)η(Y )−2η(X)η(Y )η(Z)] = 0.

(4.22)

for any X, Y, Z ∈ χ(M).
Taking Z = ξ in the above equation, we get,

(µ− 1)[a−
r

2n+ 1
(
a

2n
+ b)][g(X, Y )− η(X)η(Y )] = 0. (4.23)

for any X, Y ∈ χ(M).
Then by using (2.2) we obtain,

(µ− 1)[a−
r

2n + 1
(
a

2n
+ b)]g(φX, φY ) = 0. (4.24)
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for any X, Y ∈ χ(M).

Hence we get, (µ− 1)[a− r
2n+1

( a
2n

+ b)] = 0.

Then either µ− 1 = 0,or a− r
2n+1

( a
2n

+ b) = 0.

Which implies that, either,

µ = 1. (4.25)

or,

r =
2n(2n+ 1)a

a+ 2nb
. (4.26)

As in (1.3), r = −1, then from (4.26), we get,

[2n(2n+ 1) + 1]a+ 2nb = 0. (4.27)

Now if µ = 1 then from (3.7) we get,

λ =
1

2
(p+

2

2n+ 1
)− 1. (4.28)

Then we can state the following theorem:

Theorem 4.5. If a (2n+1) dimensional Sasakian manifold (M,φ, ξ, η, g) sat-
isfies P (ξ,X) · S = 0 and admits ∗-Conformal η-Ricci Soliton then either µ = 1
and λ = 1

2
(p+ 2

2n+1
)−1 or [2n(2n+1)+1]a+2nb = 0, where a, b 6= 0 are constants.

Now if µ = 1 and λ = 1
2
(p+ 2

2n+1
)− 1 then from (3.4) we get,

S(X, Y ) = 2ng(X, Y ). (4.29)

So we have,
Note: If a (2n+1) dimensional Sasakian manifold (M,φ, ξ, η, g) satisfies P (ξ,X)·
S = 0 and admits ∗-Conformal η-Ricci Soliton then the manifold becomes Ein-
stein manifold, provided [2n(2n+1)+1]a+2nb 6= 0, where a, b 6= 0 are constants.

Definition 4.6. A differentiable manifold (Mn, g), n > 3, satisfying the con-
dition

φ2H(φX, φY )φZ = 0

is called φ-conharmonically flat [13], where H is the conharmonic curvature ten-
sor of Mn.
Let (M,φ, ξ, η, g) be a (2n+1) dimensional φ-conharmonically flat Sasakian man-
ifold.
Now it is obvious that φ2H(φX, φY )φZ = 0 iff

g(H(φX, φY )φZ, φW ) = 0, (4.30)

for any X, Y, Z,W ∈ χ(M).
As the manifold is a (2n+1) dimensional φ-conharmonically flat, then using (1.11)
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and (4.30) we get,

g(R(φX, φY )φZ, φW ) =
1

2n− 1
[g(φY, φZ)S(φX, φW )

− g(φX, φZ)S(φY, φW ) + g(φX, φW )S(φY, φZ)

− g(φY, φW )S(φX, φZ)]. (4.31)

Let {e1, e2, ....e2n, ξ} be a local orthonormal basis of Tp(M).
Putting X = W = ei and summing over i = 1, 2, ....(2n+ 1), we get,

g(R(φei, φY )φZ, φei) =
1

2n− 1
[g(φY, φZ)S(φei, φei)

− g(φei, φZ)S(φY, φei) + g(φei, φei)S(φY, φZ)

− g(φY, φei)S(φei, φZ)]. (4.32)

Now in a (2n+1) dimensional Sasakian manifold, we have,

g(φei, φei) = 2n, (4.33)

S(φei, φei) = r − 2n, (4.34)

g(φei, φZ)g(φY, φei) = g(φY, φZ), (4.35)

g(φei, φZ)S(φY, φei) = S(φY, φZ), (4.36)

and

g(R(φei, φY )φZ, φei) = S(φY, φZ)− g(φY, φZ). (4.37)

Now using (4.33)-(4.37) in (4.32), we get,

S(φY, φZ)− g(φY, φZ) =
1

2n− 1
[(r − 2n)g(φY, φZ)− S(φY, φZ)

+ 2nS(φY, φZ)− S(φY, φZ)]. (4.38)

which implies that,

S(φY, φZ) = (r − 1)g(φY, φZ). (4.39)

Now from (3.4), we have,

S(φY, φZ) = [2n− 1− λ+
1

2
(p+

2

2n+ 1
)]g(φY, φZ). (4.40)

Using (3.7) the above equation (4.40) becomes,

S(φY, φZ) = [2n+ µ− 1]g(φY, φZ). (4.41)

Again from (3.4), we have,

r =
2n+1∑

i=1

S(ei, ei) = (2n+ 1)[2n− 1− λ+
1

2
(p+

2

2n+ 1
)]− µ+ 1. (4.42)

Using (3.7) the above equation (4.42) becomes,

r = 2n(2n+ µ). (4.43)

Then using (4.41) and (4.43), (4.39) reduces to,

[2n+ µ− 1]g(φY, φZ) = [2n(2n+ µ)− 1]g(φY, φZ). (4.44)
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for any Y, Z ∈ χ(M), and it follows that,

[(2n + µ− 1)− (2n(2n+ µ)− 1)] = 0, (4.45)

which implies that,
µ = −2n. (4.46)

Then using (3.7), we get,

λ =
1

2
(p +

2

2n + 1
) + 2n. (4.47)

This leads to the following:
Theorem 4.7. If a (2n+1) dimensional Sasakian manifold (M,φ, ξ, η, g) is φ-
conharmonically flat and admits ∗-Conformal η-Ricci Soliton then µ = −2n and
λ = 1

2
(p+ 2

2n+1
) + 2n.

Now using (4.46), (4.47) and (3.4), we obtain,

S(X, Y ) = −g(X, Y ) + (2n+ 1)η(X)η(Y ). (4.48)

Then we have,
Corollary 4.8. If a (2n+1) dimensional Sasakian manifold (M,φ, ξ, η, g) is φ-
conharmonically flat and admits ∗-Conformal η-Ricci Soliton then the manifold
becomes η-Einstein manifold.

Definition 4.9. A differentiable manifold (Mn, g), n > 3, satisfying the con-
dition

φ2P (φX, φY )φZ = 0

is called φ-projectively flat [13], where P is the Projective curvature tensor of
Mn.
Let (M,φ, ξ, η, g) be a (2n+1) dimensional φ-projectively flat Sasakian manifold.
Now it is obvious that φ2P (φX, φY )φZ = 0 iff

g(P (φX, φY )φZ, φW ) = 0, (4.49)

for any X, Y, Z,W ∈ χ(M).
As the manifold is a (2n+1) dimensional φ-projectively flat, then using (1.12)
and (4.49) we get,

g(R(φX, φY )φZ, φW ) =
1

2n
[g(φY, φZ)S(φX, φW )

− g(φX, φZ)S(φY, φW )]. (4.50)

Let {e1, e2, ....e2n, ξ} be a local orthonormal basis of Tp(M).
Putting X = W = ei and summing over i = 1, 2, ....(2n+ 1), we get,

g(R(φei, φY )φZ, φei) =
1

2n
[g(φY, φZ)S(φei, φei)

− g(φei, φZ)S(φY, φei)]. (4.51)

Now using (4.33)-(4.37), the above equation (4.51) becomes,

S(φY, φZ)− g(φY, φZ) =
1

2n
[(r − 2n)g(φY, φZ)− S(φY, φZ)], (4.52)
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which implies that,

S(φY, φZ) =
r

2n + 1
g(φY, φZ). (4.53)

Using (4.41) and (4.43) in the above equation (4.53), we get,

µ = 1. (4.54)

Then from (3.7), we obtain,

λ =
1

2
(p+

2

2n+ 1
)− 1. (4.55)

Then we can state the following theorem:
Theorem 4.10. If a (2n+1) dimensional Sasakian manifold (M,φ, ξ, η, g) is
φ-projectively flat and admits ∗-Conformal η-Ricci Soliton then µ = 1 and λ =
1
2
(p+ 2

2n+1
)− 1.

Now using (4.54), (4.55) and (3.4), we obtain,

S(X, Y ) = 2ng(X, Y ). (4.56)

Then we have,
Corollary 4.11. If a (2n+1) dimensional Sasakian manifold (M,φ, ξ, η, g) is
φ-projectively flat and admits ∗-Conformal η-Ricci Soliton then the manifold be-
comes Einstein manifold.

5. Example of a 5-dimensional Sasakian manifold:

We consider the 5-dimensional manifold M = {(x, y, z, u, v) ∈ R
5}, where

(x, y, z, u, v) are standard coordinates in R
5. Let e1, e2, e3, e4, e5 be a linearly

independent frame field on M given by,

e1 = 2(y
∂

∂z
−

∂

∂x
), e2 =

∂

∂y
, e3 = −2

∂

∂z
, e4 = 2(v

∂

∂z
−

∂

∂u
), e5 = −2

∂

∂v
.

Let g be the Riemannian metric defined by,

g(ei, ej) = 0, i 6= j, i, j = 1, 2, 3, 4, 5,

g(e1, e1) = g(e2, e2) = g(e3, e3) = g(e4, e4) = g(e5, e5) = 1.

Let η be the 1-form defined by η(Z) = g(Z, e3), for any Z ∈ χ(M),where χ(M)
is the set of all differentiable vector fields on M and φ be the (1, 1)-tensor field
defined by,

φe1 = e2, φe2 = −e1, φe3 = 0, φe4 = e5, φe5 = −e4.

Then, using the linearity of φ and g, we have η(e3) = 1, φ2(Z) = −Z + η(Z)e3
and g(φZ, φU) = g(Z, U) − η(Z)η(U), for any Z, U ∈ χ(M). Thus for e3 = ξ,
(φ, ξ, η, g) defines a Sasakian structure on M .
Let ∇ be the Levi-Civita connection with respect to the Riemannian metric g.
Then we have,
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[e1, e2] = 2e3, [e4, e5] = 2e3, and [ei, ej ] = 0 for others i, j.
The connection ∇ of the metric g is given by,

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X, Y )

− g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X, Y ]),

which is known as Koszuls formula.
Using Koszuls formula, we can easily calculate,

∇e1e1 = 0,∇e1e2 = e3,∇e1e3 = −e2,∇e1e4 = 0,∇e1e5 = 0,

∇e2e1 = −e3,∇e2e2 = 0,∇e2e3 = e1,∇e2e4 = 0,∇e2e5 = 0,

∇e3e1 = −e2,∇e3e2 = e1,∇e3e3 = 0,∇e3e4 = 0,∇e3e5 = e4,

∇e4e1 = 0,∇e4e2 = 0,∇e4e3 = −e5,∇e4e4 = 0,∇e4e5 = e3,

∇e5e1 = ∇e5e2 = ∇e5e3 = ∇e5e4 = ∇e5e5 = 0.

It can be easily seen that for e3 = ξ, (φ, ξ, η, g) is a Sasakian structure on M .
Consequently, (M,φ, ξ, η, g) is a Sasakian manifold.
Also, the Riemannian curvature tensor R is given by,

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Hence,

R(e1, e2)e1 = 3e2, R(e1, e3)e1 = −e3, R(e2, e4)e1 = −e5, R(e2, e5)e1 = e4,

R(e4, e5)e1 = 2e2, R(e1, e2)e2 = −e1, R(e1, e4)e2 = e5, R(e2, e3)e2 = −e3

R(e4, e5)e2) = −2e1, R(e1, e3)e3 = e1, R(e2, e3)e1 = −e3, R(e3, e4)e3 = −e4,

R((e4, e5)e4 = 2e5, R(e1, e2)e5 = −2e4, R(e1, e4)e5 = e2, R(e2, e4)e5 = e1,

R(e4, e5)e5 = −2e4, R(e1, e4)e5 = −e2.

Then, the Ricci tensor S is given by,

S(e1, e1) = −2, S(e2, e2) = 3, S(e3, e3) = S(e4, e4) = 4, S(e5, e5) = −1.

From (3.4) we have, S(e3, e3) = 4− λ− µ+ 1
2
(p+ 2

5
).

Therefore we get,

4− λ− µ+
1

2
(p+

2

5
) = 4,

which implies that,

λ+ µ =
1

2
(p+

2

5
).

Hence λ and µ satisfies equation (3.7) and so g defines a ∗-Conformal η-Ricci
Soliton on the 5-dimensional Sasakian manifold M .
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