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Abstract

Friedmann solutions and in higher dimensions 5D Kaluza-Klein so-
lutions using mathematical packages such as Sagemath and Cadabra
are calculated. Modified Friedmann equation powered by Loop Quan-
tum Gravity in higher dimensions is calculated in this work. Loop
quantization in extra-dimensional space is predicted. Modified equa-
tion of state for non-interacting dark matter and dark energy is cal-
culated. It has been predicted that the higher curvature due to phan-
tom density would be a local kind of quantized curvature. The mod-
ified Friedman solutions with Kaluza Klein interpretation is found.
To achieve the conformal exit the non-interacting solutions are dis-
cussed in this work. Obtained results are compared with LCDM and
quintessence models. The work supports the conformal cyclic cosmol-
ogy which predicts the conformal evolution of the universe without
facing any singularity as the consequence of the topological effects.

Keywords Phantom energy , Late time universe, Baby universe, Scale
factor quantization, Loop quantum cosmology , Kaluza Klein cosmology, Non
interacting phantom cosmology , Conformal Cyclic Cosmology.

1 Introduction

In our previous work, we have investigated the final stages of the universe as
conformal cyclic and phantom energy dominated evolution [1]. In that work,
we have discovered that the late time universe will be dominated by phan-
tom energy. And the universe will continue its evolution without completely
ripping off. In such a scenario it has been explained that the future Aeon
will continue its evolution in higher dimensions. To confirm this scenario,
we investigate Kaluza-Klein cosmological solutions for higher dimensions.
Friedman solutions for higher dimensions are reported in this work.

The mathematical structure of loop quantum cosmology is reported in [2].
In loop quantum cosmology the big bang is replaced by a big bounce. The
theory confirms that when the density of the universe approaches the criti-
cal density, then the universe bounces back [3]. The loop quantum gravity
predicts the discreet nature of the space-time at quantum level [4]. Modifica-
tions on Friedmann equations from loop quantum gravity for a universe with
a free scalar field is reported in [5]. A modified version of Friedman equations
provides big bounce solutions. To explain the evolution of the universe the
Conformal Cyclic Cosmological model is predicted by Penrose [6]. In this
formalism, it is predicted that evolution of the universe happens as confor-
mal cycles, which are called Aeons. The formalism attempts to solve many

1

Page 2 of 24

https://mc06.manuscriptcentral.com/cjp-pubs

Canadian Journal of Physics



For Review Only

problems of evolution of the universe [7]. Scalar phantom energy as a cosmo-
logical dynamical system is reported in [8]. The phantom energy is proposed
as the consequence for a big rip in the late time universe. Dark energy is
described with multiscalar fields such as quintessence and phantom ω < −1
and −1 ≤ ω ≤ 0 [9]. Kaluza-Klein cosmology with modified holographic
dark energy is reported in [10]. The authors also discuss the equation of state
parameter as well as the equation of evolution of the modified holographic
dark energy.

The bouncing evolution in the view of loop quantum gravity is discussed
in [11]. The bouncing universe in terms of quintom universe is discussed
in [12]. Relationship between the bouncing universe and the vector field is
discussed in [13]. The bouncing universe scenareo and its various aspects
are analyzed in [14],[15], [16] and [17]. The bouncing cosmology with f(R)
cosmology is studied in [18]. The bouncing universe scenario and cyclic
cosmology scenario is compared and analyzed in [19].

In the present work curvature components and metric component are
reported using mathematical calculations. For these calculations, mathe-
matical packages such as Cadabra [20] and Sagemath [20] is applied. Tensor
calculus with open-source, SageManifolds software project is reported in [21].
Like Sagemath, SageManifolds is also free, opensource and it is based on the
Python programming language. Riemann normal coordinate expansions of
the metric and other geometrical quantities using Cadabra is presented in
[22]. Here in section 2, the 5 dimensional Friedman solutions are reported.
From the metric given, Riemann tensor and Ricci scalar are calculated. In
which first and second Friedman solutions are found. In section 3 Einstein
equations in terms of Kaluza Klein reduction is discussed. Kaluza Klein
reduction using Cadabra software is discussed. The Einstein action is imple-
mented in the Kaluza Klein solution. The Kaluza Klein equation is imple-
mented by the substitution 1−kr2 in g44 and g44. In section 4 evolution of the
late time baby universe by the consequence of phantom energy is discussed.
Friedman solutions which are obtained from the Kaluza Klein solution and
late time phantom energy solutions are compared in section 4. Similarly,
combined solutions of loop quantum gravity and classical evolution for scale
factor are reported. Due to the non-interacting solutions of dark matter and
phantom energy, the universe exit and evolve into higher dimensions by pro-
ducing local curvature. Non-interacting solutions of dark matter and dark
energy which lead to avoid future big bounce is discussed in section 5. The
paper concludes with modified scale factor reduction using loop quantum
cosmology and non-interacting phantom solutions.
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2 5D Friedmann solutions

The Friedman solutions predict the equation of the motion of the universe. In
higher dimensions, the Kaluza-Klein analysis offers the solutions for Einstein
field equations. To calculate higher dimensional Friedmann solutions, (which
are inspired by Kaluza Klein equations [23], [24], [25] ) the metric is to be
defined. The 5 dimensional Lorentz manifold consists the elements such as,

(M, (t, r, θ, φ, ψ)) (1)

The metric representation of the Kaluza Klein universe [26] is given by

ds2 = −dt⊗ dt+

(
− a (t)2

kr2 − 1

)
dr ⊗ dr + r2a (t)2 dθ ⊗ dθ

+r2a (t)2 sin (θ)2 dφ⊗ dφ+
(
−kr2 + 1

)
dψ ⊗ dψ

(2)

The connection components are required to understand the curvature,
which exists in the manifold. The Riemann tensors are computed for each
component of the metric, with the help of the above connections. The Sage-
math is applied to calculate Riemann tensor. Riemann module of Sagemath
calculates the curvature tensor of the metric g. Riemannian tensor field of
type (1,4) on the 5-dimensional Lorentzian manifold M [27] is computed.

Even for the negative curvatures, the curvature tensor behave as

Rψ
r r ψ =

−1

r2 − 1
(3)

For the negative and positive curvatures, it is observed that the resultant
curvature remain positive for both. Also, it states that the smaller scale
factors produce high curvatures, which seems to be local curvature in the
late time evolution of the universe. Once the curvature reaches maximum
scale factor value, then there will the conformal evolution of the universe in
higher dimensions instead of big bounce. ( The conformal evolution of the
universe is the idea, that is proposed by Penrose [6] [28] [29]. In this model, he
suggests that the universe evolves as conformal cycles. The initial and final
singularities can be replaced by topological smooth surfaces.) Similarly, the
higher curvature values lead to the exit of the universe into higher dimensions.
Those results are confirmed by the equation 92. Like Riemann tensor, the
Ricci tensor also does not change for variable curvatures.

Hence, the curvature prolongs to quantum scales. The curvature and
scale factor are replaced by quantized curvature variables, which are driven
by loop quantum gravity [30]. Hence, conformal evolution of a higher di-
mensional baby universe is plausible. Very high curvature consequences big
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bounce for the universe during its evolution [31] [32]. Similarly, from the
Ricci scalar calculated above, it is also observed that the fourth component
of the Ricci scalar increases when the scale factor is increased. The curvature
attains maximum magnitude for the maximum scale factor as suggested from
equation 91. The field is calculated, which is in the form of

R (t, r, θ, φ, ψ) →
6
(

(ȧ)2 + a (t) ∂2 a
∂t2

+ 2 k
)

a (t)2 (4)

Stress energy Field of symmetric bilinear forms on the 5-dimensional
Lorentzian manifold M is derived as,

T = ρ (t) dt⊗ dt

+

(
− 4 a (t)2

kr2 − 1

)
dr ⊗ dr + 4 r2a (t)2 dθ⊗

dθ + 4 r2a (t)2 sin (θ)2 dφ⊗ dφ+
(
−4 kr2 + 4

)
dψ ⊗ dψ

(5)

First Friedmann equation is computed as

−8 πGρ (t)− Λ +
3 ȧ (t)2

a (t)2 +
6 k

a (t)2 = 0 (6)

For k = 0 the solution behaves like ordinary Friedman solution. For k =
±1 the solution behaves differently than the previously obtained solutions.

Second Friedmann equation is computed as

−4 πGρ (t)− 64 πG+ Λ−
3 ∂2

(∂t)2
a (t)

a (t)
= 0 (7)

Similarly Second Friedman equation is also verified by the Higher dimensional
interpretation.

3 Einstein equation with Kaluza Klein reduc-

tion

The Einstein equation is derived from Kaluza Klein solutions. Calculation of
Connection, Riemann tensor and Ricci scalar are reported in the Appendix.

A scalar field introduced in the action. It is calculated as
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S =

∫ √
−g (

1

2
κ−1(R− 2Λ) + Lmat + φ(x)) dx (8)

The right hand side of the equation is included with matter Lagrangian.

S =

∫
(
1

2

√
−gκ−1R−

√
−gκ−1Λ +

√
−gLmat +

√
−gφ(x)) dx (9)

Variation in metric is defined as

δ
√
−g = −1

2

√
−ggµνδgµν (10)

The energy-momentum tensor and matter Lagrangian invariant is calcu-
lated as

√
−ggµνδgµνLmat − 2

√
−gδLmat =

√
−gTµνδgµν (11)

The covariant derivative is calculated below.

∂σδΓ
µ
νρ = −Γµ σαδΓ

α
νρ + Γα σνδΓ

µ
αρ + Γα σρδΓ

µ
να +∇σδΓ

µ
νρ (12)

Variation in Riemann tensor is calculated as

δRρ
σµν = −Γρ µαδΓ

α
νσ + Γα µνδΓ

ρ
ασ + Γα µσδΓ

ρ
να +∇µδΓ

ρ
νσ + Γρ ναδΓ

α
µσ

−Γα νµδΓ
ρ
ασ − Γα νσδΓ

ρ
µα −∇νδΓ

ρ
µσ + Γλ νσδΓ

ρ
µλ

+Γρ µλδΓ
λ
νσ − Γλ µσδΓ

ρ
νλ − Γρ νλδΓ

λ
µσ

(13)

By simplifying the above relation, it is obtained as

δRρ
σµν = Γα µνδΓ

ρ
ασ +∇µδΓ

ρ
νσ − Γα νµδΓ

ρ
ασ −∇νδΓ

ρ
µσ (14)

Variation in Ricci tensor is calculated as

δRσν = δRρ
σρν (15)

δRσν = ∇ρδΓ
ρ
νσ −∇νδΓ

ρ
ρσ (16)

(17)
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Variation on scalar curvature is calculated as

δR = ∇ν(δΓ
ν
ρσg

ρσ)−∇ν(δΓ
ρ
ρσg

νσ) +Rνσδg
νσ (18)

Substituting the action into δgµν , matter Lagrangian invariant and scalar
curvature, then the action becomes

δS =

∫
(
1

2
δ
√
−gκ−1R +

1

2

√
−gκ−1δR− δ

√
−gκ−1Λ

+δ
√
−gLmat +

√
−gδLmat + δ

√
−gφ(x)

+
√
−gδφ(x)) dx

(19)

The action and Einstein field equations are obtained as

2κ(−1

4
gµνκ

−1R +
1

2
κ−1Rµν +

1

2
gµνκ

−1Λ− 1

2
Tµν −

1

2
gµνφ(x)) = 0 (20)

−1

2
gµνR +Rµν + gµνΛ− κgµνφ(x) = κTµν (21)

Gµν + gµνΛ− κgµνφ(x) = κTµν (22)

To obtain higher dimensional reduction via Kaluza-Klein solutions, the
following terms to be calculated.

X = gm1 mR
m1

4 n 4 + g4 mR
4

4 n 4 (23)

In terms of field strength, the Kaluza-Klein solution can be discussed as,

X = −1

4
∂mφ∂nφφ

−1 +
1

4
∂pφ∂nhmqh

pq

−1

2
∂mnφ+

1

4
FmpFnqφ

3hpq +
1

4
∂pφ∂qφφ

−1hmnh
pq

−1

4
∂pφ∂qhmnh

pq +
1

4
∂pφ∂mhnqh

pq

(24)

Such a resolution can be combined with the late time universe. For
ω < −1 the universe appears to have phantom dominance in the latter times
of its evolution [33]. As per the classical evolution, such universe will face
the big rip singularity in future. But there exists a possibility of avoidance
of big rip singularity, which is driven by the loop quantum cosmology. LQG
resolves the singularities exist in the evolution of the universe. It suggests
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that the universe will bounce back once the density parameter attains the
critical density ρ ∼ ρcrit. The late time universe can attain such densities due
to increase in the phantom energy density. Hence, the future universe will
bounce back instead of stopping its evolution by facing the big rip singularity.
The resolution of the big rip also shows some glimpse on higher dimensional
evolution of the universe. They are all discussed in the next section.

4 Late time universe and higher dimensions

from Six bidimensional dark energy parameterisations are studied and tested
with SNeIa and BAO data [34]. Results obtained from such data are in favor
of the LCDM model.The dark energy can be generalized as

ρde = ρ0(de)f(z), (25)

where,

f(z) = exp

[
3

∫ z

0

1 + ω(z̃)

1 + z̃
dz̃

]
(26)

For quintessence (ω=constant), the solution of f(z) is

f(z) = (1 + z)1+ω (27)

For cosmological constant ω = −1 and f = 1
from By having only dark matter and cosmological constant late time

phantom like accelleration will be a consequence on the evolution of the uni-
verse [35]. Though such model does not require any phantom dominated
scenereo, presence of quintessence will lead to avoid phantom dividing line
ω = 1. Based on the absence of cold dark matter (Ωm ' 0). The Raychoud-
huri equation becomes [36],

2Ḣ = −(1 + ωeff )ρeff (28)

The phantom energy effects in higher dimensions too. This effect con-
sequences the value of the cosmological constant might be larger than the
observational limit predicted by the LCDM cases.

The cosmological constant can be replaced with quintessence in LDGP
cases [37].

For ω < −1 the dark energy crosses the phantom divide line, it behaves
like phantom energy. The modified scale factor of EiBI late time universe as
suggested form [1]

7
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a =

(
3

4
ρct

2 + 1

) 1
3

[1 + tan2(

(
3

4
ρct

2 + 1

) 1
3

)η] (29)

When scale factor reaches such magnitudes, instead of attaining the big
rip the universe will face future bounce. The bounce will occur in higher
dimensions. Modified Friedman equation is obtained for the EiBi model as

H2 =
1

3k

[
kρ− 1 +

1

3
√

3

√
(kρ+ 1)(3− kρ)3

]
×
[

(kρ+ 1)(3− kρ)3

(3− k2ρ2)2

] (30)

Comparing equation 6 and 30 leads to the Friedmann solution,

1

3k

[
kρ− 1 +

1

3
√

3

√
(kρ+ 1)(3− kρ)3

]
×
[

(kρ+ 1)(3− kρ)3

(3− k2ρ2)2

]
=

8 πGρ (t)

3
+

Λ

3
− 2 k

a (t)2

(31)

Hence, the scale factor becomes

 2k

1
3k

[
kρ− 1 + 1

3
√

3

√
(kρ+ 1)(3− kρ)3

]
×
[

(kρ+1)(3−kρ)3

(3−k2ρ2)2

]
− 8πGρ(t)

3
− Λ

3

 1
2

= a (t)

(32)
On higher dimensions, the Friedmann equation 6 behaves as(

ȧ

a

)2

=
VN−3 ρ (t)

3
+

Λ

3m2
pl

− 2 k

a (t)2 (33)

When the scale factor approaches amb the critical density will be ρ→ ρcrit.
From the Loop Quantum Gravity, the Ricci scalar is found as

R = 6

(
4πG

3
(ρ+ 3p) +

k

a2
+

8πG

3
(
ρ

ρcrit
+ kχ)(ρ+ 3p)

+
kχ

γ2∆
− 2ξk
γ2∆

(
ρ

ρcrit
+ kχ− 1

ρ
)

) (34)
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Equations 34 and 92 are compared to obtain curvature in higher dimen-
sions. The obtained result is a combined solution of higher dimensional
approach and loop quantum formalism.

R = − 2 a(t)2

k2r2 − 1

(
4πG

3
(ρ+ 3p) +

k

a2
+

8πG

3
(
ρ

ρcrit
+ kχ)(ρ+ 3p)

+
kχ

γ2∆
− 2ξk
γ2∆

(
ρ

ρcrit
+ kχ− 1

ρ
)

) (35)

The scale factor which is derived by supersymmetric cosmology is

a(t) = e2t0 +

3

√κ2 ˙ϕ2
0e

4t0

6
+
κ4

32

 (t− t0)


1
3

(36)

In equation 36 the scale factor is derived from supersymmetric cosmology.
Equation 29 tells the scale factor from the Eddington inspired Born infield
model. The scale factor relation tells the phantom dominated late time
universe can be modified with the EiBI model. The equation 32 comes with
scale factor, that consists of the solutions from the Friedmann equation of
EiBI model. The equations 29, 32 and 36 provide a scale factor for various
scenarios.During the very late time of evolution, these scale factors can be
distinguished in their natural manner.

From higher dimensional solutions one can understand that the funda-
mental constraints can be written as following way.

8πG =
VN−3

m2
pl

(37)

Here VN−3 is the volume of the extra-dimensional space. Hence, the action
is modified for N = 5.

S =
m2
pl

V2

∫
d5x
√
gR5 (38)

In higher dimensional brane world cosmology, the action can be expressed
as ([38], [39])

S = εM3
pl

[∫
Bulk

(R− 2Λb)− 2

∫
Brane

K

]
+

∫
Brane

(m2
plR−2σ)+

∫
Brane

L(hab+φ)

(39)
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Here R is scalar curvature of the metric gab in five dimensional bulk. R
is scalar curvature. hab = gab − nanb in the Brane. na is a vector normal to
the plane. K = Kabh

ab is the trace of metric tensor of extrinsic curvature
Kab = hcaTcnb of the Brane. The symbol L(hab, φ) is Lagrangian density
of four dimensional matter field φ. The integrals are taken over bulk and
Brane with volume elements

√
−gd5x and

√
−hd4x respectively. g, h are the

determinant of corresponding metrics. Mpl and mpl are the five dimensional
and four dimensional Planck mass. Λb and σ are bulk and Brane cosmological
constants respectively.

As from [40] ,

L2ρΛ ∼
(N − 1)AN−1L

N−2m2
pl

2VN−3

(40)

By implementing the solution 40 the time-varying energy density can be
rewritten as

ρΛ(t) =
C2ξ(t)(N − 1)AN−1L

N−5m2
pl

2VN−3

(41)

Here ξ(t) is a time varying parameter as suggested for interaction solutions
[1].

For N = 4 sphere , Kaluza Klein solution gives

ρΛξ(t) = 3C2π2L2ξ(t) (42)

Many theories confirm that the particles can be treated as black holes
[41]. The radius of the apparent horizon is derived as

ra =
1

H
= rH = L (43)

Mass of such particles produced in higher dimensions are calculated as

M =
N − 1 AN−1 < rH >N−2 m2

pl

2V̂N−3

(44)

Here < rH > is the expectation value for the particle horizon. V̂ is the
volume operator given by loop quantum gravity [42].

There are eigenstates of volume operator V̂ can be written as

Vj = (γl2pl)
3
2

√
1

27
j(j +

1

2
)(j + 1) (45)

When a black hole has a Schwarzschild radius equal to Compton wave-
length, it is refereed as Planck particles [43].

10

Page 11 of 24

https://mc06.manuscriptcentral.com/cjp-pubs

Canadian Journal of Physics



For Review Only

Mass of such particles are

m =

√
h c

2G
(46)

In higher dimensions using Kaluza Klein solution, the Compton wave-
length can be written as

r =

(
1

mpl

√
VN−3~

2c3

)N−2

(47)

Similarly, as like particle production, the universe in late times can be
exited into higher dimensions, in which it might be embedded as a baby
universe. In recent days many theories confirm that the universe can be
embedded on a supermassive black hole [44].

4.1 Comparative solutions

For any arbitrary time t the equation of state can be written as

ω(t) = −
(1− 2q) + kc2

(H2a2)

3[1 + kc2

(H2a2)
]

(48)

With q(t) = − 1
a
ä[ 1
a
ȧ]−2 and k = 0,±1 for flat, open and closed universe

respectively. H2 in Equation 48 can be modified with equation 30.
The results can be compared with quintessence model. Quintessence is

a time-varying spatially inhomogeneous and negative pressure component of
the cosmic fluid [45][46][47]. The energy density and pressure of quintessence
are time-dependent components. The EoS for quintessence is −1 < ω < 0,
whereas for cosmological constant ω = −1 and for phantom ω < −1 . In
Quintessence plus Cold Dark Matter model (QCDM) the matter density is
described as ωm = 1− ωq. The energy density can be constructed as

ρ(a) = ωqρcrit exp(3

∫ 1

a

[1 + ω(a)]d ln a) (49)

This relation can be applied to the modified Friedmann equation of LQC
(equation 77).

H2
0 =

8πG(ρ(a))2

3

(
1− ρ(a)

ρcrit

)
(50)

This substitution results the modified FRW equaion in terms of LQC and
quintessence cosmology. Quintessence and phantom fields can be combined
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as quintom. In this model, dominations by quintessence ω > −1 in the earlier
phases of the expansion and by phantom ω < −1 [48]. Such phase transitions
are explained as

H2 =
4π

3
[φ̇2 − σ̇2 + 2v(φ, σ)2ρm] (51)

The state finder parameter of dark energy can be modified with loop quan-
tum cosmology. That opens a new window for LCDM [49]. One can relate
both LCDM and quintessence models as braneworld models. the relativistic
parameter is defined as

E(z) =
H

H0

(52)

Hence, the avoidance of big rip is possible as a consequence of H, Ḣ → 0
as a → ∞ [50]. Consider, the late time universe is filled with generalized
Chaplygin gas. The scalar curvature for k = 0,±1 is,

R = 6(Ḣ + 2H2 +
k

a2
) (53)

This relation can be compared with 35. As suggested from the reference
[51], the curvature can be obtained as,

R = 12D[A+
B

4a3
(1 + α)(A+

B

a3(1 + α)
)]−

α
1+α (54)

where D = 8πG
3

. For phantom field

a(t) = [a
3β
2

0 +
3β

2
C

1
2 (t− t0)]

2
3β (55)

Here, β is constant and C = 8πG
Ã

with Ã is an integration constant. For
β < 0 the energy density grows instead of decreasing. Hence,

B = (ρα+1
0 − A)a

3(α+1)
0 (56)

The Chaplygin gas can be considered as a perfect fluid [52]. The phantom
energy can be generalized by Chaplygin gas (β < 0 and α < −1).

H2 +
k

a2
=

8πG

3

[
A+

B

a3(α+1)

] 1
1+α

(57)

Hence, the Friedmann equation can be modified in terms of quintessence
and phantom models.
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5 Non-interaction solutions

On the late time universe, the dominance of phantom energy determines
the evolution of the universe. Fro the universe to avoid the big rip and to
reach the big bounce, non-interacting scenario between dark energy and dark
matter must occur.

Effective equation of state is determined as

ωΛ = ωeffΛ − γ

4HρΛ

(58)

As the interaction is nullified, γ = 0 then,

ωΛ = ωeffΛ (59)

Where

ωeffΛ = −

(
1 +

Ḣ

2H2

)
(60)

The effective equation of state can be modified by the solutions obtained
from [53] as dust solutions.

ωeffΛ = −
ε(2 + p) + (p+ 1)2 × 3m2

pl

3(−ε+ p)
(61)

As suggested from [10],

ωΛ = −1

2
+
äa

2ȧ2
− 3b

ΩΛ − Ωm

4ΩΛ

(62)

ΩΛ =
ρΛ

ρc
(63)

When ρΛ ∼ ρc , ΩΛ = 1. Then ΩM → 0. Hence,

ωΛ = −1

2
+
äa

2ȧ2
− 3b

4
(64)

Setting b = 0,

ωΛ = −1

2
+
äa

2ȧ2
(65)

Equation 65 conforms modified equation of state for non-interacting dark
matter and dark energy. The higher curvature due to phantom density will
be a local kind of quantized curvature.
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As per the LQC theory, the scale factor and curvature can be quantized
as quantum variables. Triads can be written as desensitized form. That the
densitized triads conjugate extrinsic curvature coefficient.

kai = Kabe
b
i (66)

{kia(x), Eb
j (y)} = 8πGδbaδ

i
jδ(x, y) (67)

The curvature is replaced with Ashteaker connections.

Aia = Γia + γkia (68)

Ashteaker connections conjugate to triads will be

{Aia(x), Eb
j (y)} = 8πGδbaδ

i
jδ(x, y) (69)

Hence, the spin connection will be

Γia = εijkebj(∂[aeke ] +
1

2
ecke

i
a∂[ceib]

) (70)

The spatial geometry is obtained from densitized triads.

Ea
i E

b
i = qabdet q (71)

Equation 67 can be rewritten as

{kia(x), Eb
j (y)} =

V̂

m2
pl

δbaδ
i
jδ(x, y) (72)

Such quantization can be done in extra dimensions.
In terms of LQG, the action can be modified as the function of triads and

connections.

S[e, ω] =
1

2

∫
e ∧ e ∧ F ∗ +

1

γ
e ∧ e ∧ F (73)

F reprecents the curvature as

Rσ
µνρ = ejρe

σkFµνjk (74)

ejρ , eσk are triads. More generally

S = −
∫
eσlF

l
µν ε̃

σµνd3x (75)

More precisely the action can be written as

S = − 1

16

c2
1

c2

∫
FµνjF

j
ρσg

ρσgσν
√
gd3x (76)

Equation 76 can be applied to any Brane-world solutions as suggested from
39. The action is modified with loop quantum gravitational solutions.
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6 Discussion

In higher dimensions the LQC formalism can be applied, that is conformed
by equation 72. Modified Friedmann equation which is derived from LQC as
[54]

H2 =
V̇ 2

9V 2
=

8πG

3
ρ(1− ρ

ρcrit
) (77)

Similarly modified Friedmann equation from LQC can be rewritten for
higher dimensions as

H2 =
VN−3

3m2
pl

ρ(1− ρ

ρcrit
) (78)

or

H2 =
VN−3

V 2
plρ

2
pl

ρ(1− ρ

ρcrit
) (79)

Modified Friedman equation powered by Loop Quantum Gravity in higher
dimensions is defined in 72. The equation can be applied to calculate the
evolution of the universe in higher dimensions.

Increasing energy density is the cause of the local domain to pass into
higher dimensions. As suggested from previous work [1] higher dimensional
exit might produce locally high curved domains due to the increment in phan-
tom energy density. Such localized curvatures can be discussed as Kaluza
Klein higher dimensional solutions. Also due to the negative pressure in
such scales, a consequence of the local high curvature produces high energy
particles in higher dimensions.

Bounce is higher dimensions is predicted by the equation 92. When the
scale factor approaches very small, then the curvature will be maximum. This
resolution is also predicted by the loop quantum cosmology. As suggested
by the loop quantum gravity, space is discreet in nature at quantum levels.
As the critical density approaches, the universe bounces back, but in higher
dimensions for the case of phantom dominated final stages.

The Friedmann equation can be modified for Chaplygin gas dominated
solution, that is explained in equation 57. It is observed that the Hubble
parameter will be modified by the presence of energy density and pressure.
It is also understood that the loop quantum action that consequences the
evolution of the quantum geometry, also plays the key role in the quantum
mechanical evolution of the universe. The effective equation of the state is
obtained as a form of dust solutions. The equation contains the Planck mass
term.
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Scale factor solutions for the late time and cyclic cosmological can be
implemented to its evolution. [55] Thus the oscillating scale factor solutions
confirm the evolution will be in a conformal manner. At the late time during
the evolution, the scale factor and the equation of state of the ghost dark
energy can be compared [56]. Similarly, the scale factor solutions discussed
in this work also rely on the same kind of analysis. Likewise, the avoidance
of big rip singularity is also made possible from our solutions.

At the very late time, instead of facing the big rip, the universe will
continue its evolution to next Aeon. The scenario confirms the credibility
of Conformal Cyclic Cosmology and Loop Quantum Cosmology. As like
the big bang is replaced by the big bounce in Loop Quantum Cosmology
and big bang singularity is replaced by the smooth topological surface in
Conformal Cyclic Cosmology, the big rip singularity also can be dealt with
the same kind of approaches. If the Conformal Cosmological model is applied
to analyze the big rip singularity, it can be understood that the evolution
of the universe will not be perturbed by the big rip and the universe will
evolve conformally. Similarly, it can be found that the curvature increment
due to the increment of the energy density will consequence the universe to
exit into higher dimensions. While the Kaluza Klein action is compared with
the action obtained by triad formalism, one can observe that the quantum
gemoerical consequences would play in the determination of the final stages
of the universe. The curvature components are discussed in the equations 19-
40. Similarly, the Friedman equation can be modified to obtain the behaviour
of the late time universe. The modified Friedman solutions are reported in
equation 31. Evolution of the universe that is dominated by the phantom
energy can be derived from this solution.

The no interaction between phantom energy and dark matter will avoid
future big rip. Hence, the non-interaction is also confirmed using non-
interacting solutions. The effective equation of state obtained by the equation
65 fits exclusively with the scale factor and equation of statecomparision plot
which is defined from [57]. The plot is given in figure 1

7 Conclusion

The local higher curvature and higher dimensions in late time universe conse-
quence the evolution of the baby universe, that emerge out of bouncing initial
conditions. The conformal cyclic cosmology [6] predicts the existence of such
possibilities. As a result, the universe evolves conformally without facing
an end at the big rip. Hence, an immediate conclusion can be convinced as
our universe might have initiated from such kind of past lower-dimensional
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Figure 1: The scale factor is compared and plotted with equation of state.
The plot is obtained from [57]

initial conditions. This conclusion indicates that our universe might be the
conformal evolution of past big rip universe. Also if such universe at the
late time was populated by supermassive black holes, another conclusion can
arrive that the universe could be embedded in the higher dimensional black
hole [58] [59] [60]. Here the predicted solutions support for the conformal
evolution of the universe, without facing any kind of singularities.
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Appendices
Non-redundant components of Riemann tensor are reduced as,

Rφ
ψ φψ = −k

2r2 − k
a (t)2 (80)

Rψ
t r ψ = − krȧ

(kr2 − 1)a (t)
(81)

Rψ
r t ψ = − krȧ

(kr2 − 1)a (t)
(82)

Rψ
r r ψ =

k

kr2 − 1
(83)

Rψ
θ θ ψ = −kr2 (84)

Rψ
φφψ = −kr2 sin (θ)2 (85)

Curvature in extra dimension can be obtained from equations 80 to 85.
From equation 83 it is observed that the curvature in higher dimension is
a pure effect of curvature constant k. Equation 82 predicts the curvature
tensor in extra dimension.

Consistency of the result is observed for the equations 80 to 85.
Ricci tensor within the manifold can be identified as.

R t t = −
3 ∂2 a
∂t2

a (t)
(86)

R t r =
krȧ

(kr2 − 1)a (t)
(87)

R r t =
krȧ

(kr2 − 1)a (t)
(88)

R r r = −
2 (ȧ)2 + a (t) ∂2 a

∂t2
+ 3 k

kr2 − 1
(89)

R θ θ = 2 r2 (ȧ)2 + r2a (t)
∂2 a

∂t2
+ 3 kr2 (90)

Rφφ =

(
2 r2 (ȧ)2 + r2a (t)

∂2 a

∂t2
+ 3 kr2

)
sin (θ)2 (91)

Rψ ψ = −3 (k2r2 − k)

a (t)2 (92)
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From equation 92 it is observed that, when the local curvature tends to
maximum, then the localized scale factor approaches to a minimum.

The connection is evaluated as

Γµ νρ =
1

2
gµσ(∂ρgνσ + ∂νgρσ − ∂σgνρ) (93)

Rρ
σµν = ∂µΓρ νσ − ∂νΓρ µσ + Γρ µλΓ

λ
νσ − Γρ νλΓ

λ
µσ (94)

Rσν = Rρ
σρν (95)

R = Rσνg
σν (96)

Gµν = Rµν −
1

2
gµνR (97)

The Ricci component of the metric is computed. It is a field of symmetric
bilinear forms Ric(g) on the 5-dimensional Lorentzian manifold M.

Ric (g) = −
3 ∂2 a
∂t2

a (t)
dt⊗ dt+

krȧ

(kr2 − 1)a (t)
dt⊗ dr +

krȧ

(kr2 − 1)a (t)
dr ⊗ dt

+

(
−

2 (ȧ)2 + a (t) ∂2 a
∂t2

+ 3 k

kr2 − 1

)
dr ⊗ dr

+

(
2 r2 (ȧ)2 + r2a (t)

∂2 a

∂t2
+ 3 kr2

)
dθ ⊗ dθ

+

(
2 r2 (ȧ)2 + r2a (t)

∂2 a

∂t2
+ 3 kr2

)
sin (θ)2 dφ⊗ dφ

−3 (k2r2 − k)

a (t)2 dψ ⊗ dψ

(98)

A Modified result for Klein Kaluza reduction

In this section, the Kaluza-Klein reduction of the Rm4n4 component of the
Riemann tensor is computed. Such components pass the Riemann tensor to
metrics. The metric is written in terms of the Kaluza-Klein gauge field Aµ
and the scalar φ. Substitutions are done for g44 → φ
gm4 → φAm,
g4m → φAm
gmn → φ ∗ ∗−1hmn + φAmAn ,
g44 → φ ∗ ∗−1 + φAmh

mnAn
gm4 → −φhmnAn ,
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g4m → −φhmnAn
, gmn → φhmn .

The term 1 − kr2 is introduced in g44 and g44 components. The results
are obtained below. Setting symmetries for Riemann tensor and connections.
That leads to

Rλ
µνκ → −∂κΓλ µν + ∂νΓ

λ
µκ − Γη µνΓ

λ
κη + Γη µκΓ

λ
νη (99)

Γλ µν →
1

2
gλκ(∂νgκµ + ∂µgκν − ∂κgµν) (100)

Here the Kaluza-Klein reduction of the Rm4n4 component of the Riemann
tensor is calculated as follows. Rm4n4 component provides the Riemann ten-
sor to metrics. Products over sums are also distributed in this procedure. To
distribute derivatives over factors in a product, the product rule is applied.
[61]. Setting

X = gm1mR
m1

4n4 + g4mR
4

4n4 (101)

By substituting equations 99 , 100 in 101 and distribution is made. Using
split index module from Cadabra [61], fix µ,m1, 4, and substituting ∂4A→
0, ∂4mA → 0, ∂m4A → 0 .Writing the metric in terms of the Kaluza-Klein
gauge field Aµ, the scalar φ and 1− k ∗ r2. Substitutions are done as

g44 → 1− k ∗ r ∗ r (102)

gm4 → φAm (103)

g4m → φAm (104)

gmn → φ ∗ ∗−1hmn + φAmAn (105)

g44 → 1− k ∗ r ∗ r ∗ ∗−1 + 1− k ∗ r ∗ rAmhmnAn (106)

gm4 → −φhmnAn (107)

g4m → −φhmnAn (108)

gmn → φhmn (109)

Derivatives over sums are distributed and the product rule is applied. The
derivatives of the inverse metric are converted to derivatives of the metric.
The substitutions are made as

∂ph
nmhqm → −∂phqmhnm (110)

hm1m2h
m3m2 → δm3

m1 (111)

Using canonicalise module of cadabra [62], the solution is rewritten.
Further simplification it in terms of the field strength can be written by

substituting ∂nAm → 1/2 ∗ ∂nAm + 1/2 ∗ Fnm + 1/2 ∗ ∂mAn.
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