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1 Introduction

Starting from the early seventies, Painlevé equations have been playing an increasingly

important role in mathematical physics, especially in the applications to classical and

quantum integrable systems and random matrix theory [12, 19, 27, 35–39, 41]–[44, 46]. A

considerable progress has been made since then in the study of various analytic, asymptotic

and geometric properties of Painlevé transcendents. The interested reader is referred to [7,

9, 13] for details and further references.

The sixth Painlevé equation (PVI)

w′′ =
1

2

(
1

w
+

1

w − 1
+

1

w − t

)
(
w′)2 −

(
1

t
+

1

t− 1
+

1

w − t

)

w′ (1.1)

+
2w(w − 1)(w − t)

t2(t− 1)2

(
(

θ∞ − 1

2

)2

− θ20t

w2
+
θ21(t− 1)

(w − 1)2
−
(
θ2t − 1

4

)
t(t− 1)

(w − t)2

)

,

is on the top of the classification of 2nd order ODEs without movable critical points.

The latter property means that w(t) is a meromorphic function on the universal cover of

P
1\{0, 1,∞}. Four complex parameters θ = (θ0, θt, θ1, θ∞) and two integration constants

form a six-dimensional PVI parameter space M.
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Figure 1. Homotopy basis for 4-punctured sphere.

The most natural mathematical framework for Painlevé equations is the theory of mon-

odromy preserving deformations. For example, equation (1.1) is associated to rank 2 system

dΦ

dz
=

(A0

z
+

At

z − t
+

A1

z − 1

)

Φ, (1.2)

with four regular singular points 0, t, 1,∞ on P
1. Traceless 2× 2 matrices Aν (ν = 0, t, 1)

are independent of z and have eigenvalues ±θν that coincide with PVI parameters. Also,

A0 +At +A1
def
= −A∞ = diag {−θ∞, θ∞}.

The fundamental matrix solution Φ(z) is multivalued on P
1\{0, 1, t,∞}, as its analytic

continuation along non-contractible closed loops produces nontrivial monodromy. Full

monodromy group is generated by three matrices M0,t,1 ∈ G = SL(2,C) which correspond

to the loops γ0,t,1 in figure 1 (note that M∞M1MtM0 = 1). Right multiplication of Φ by

a constant matrix gives another solution, and therefore {Mν} are fixed by (1.2) only up

to overall conjugation.

As is well-known, Schlesinger equations of isomonodromic deformation of (1.2)

dA0

dt
=

[At,A0]

t
,

dA1

dt
=

[At,A1]

t− 1

are equivalent to (1.1). Parameter space M may be identified with G3/G and many ques-

tions on Painlevé VI can be recast in terms of monodromy. This approach, characteristic

for classical integrable systems in general, turns out to be quite successful. In particular,

it represents the key element of the solution of PVI connection problem [18], as well as of

the construction [5, 11] and classification [25] of algebraic solutions.

Logarithmic derivative of Painlevé VI tau function

σ(t) = t(t− 1)
d

dt
ln τ = (t− 1) trA0At + t trAtA1 (1.3)

can be expressed in terms of t, w(t) and w′(t) (see e.g. eq. (2.9) in [26]). It solves a nonlinear

2nd order ODE called σ-form of Painlevé VI (σPVI), which may be written as

(

t(t− 1)σ′′
)2

= −2 det






2θ20 tσ′ − σ σ′ + θ20 + θ2t + θ21 − θ2∞
tσ′ − σ 2θ2t (t− 1)σ′ − σ

σ′+θ20+θ
2
t +θ

2
1− θ2∞ (t− 1)σ′ − σ 2θ21




 .

(1.4)

It is much more natural to work with τ(t) than with w(t) for a number of reasons:
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• First, it is the tau function which typically shows up in the applications of Painlevé

equations, representing gap probabilities in random matrix theory, correlation func-

tions of Ising model and sine-Gordon field theory at the free-fermion point etc.

• The notion of tau function extends to the general isomonodromic setting [20] and

its mathematical meaning is rather clear: it gives the determinant of a Cauchy-

Riemann operator whose domain consists of multivalued functions with appropriate

monodromy [34].

• Thirdly and (arguably) most importantly, the tau function has an intimate connection

with quantum field theory.

The last point was discovered by Sato, Miwa and Jimbo in the first two papers of the

series [35–39]. There it was shown that the Riemann-Hilbert problem for rank r linear

systems with an arbitrary number of regular singularities on P
1 admits a formal solution

in terms of correlation functions in the theory describing r free massless chiral fermion

copies. Besides fermions, the correlators involve local fields of another type (below we

use the term “monodromy fields” instead of SMJ’s “holonomic”) which can be seen in

the operator formalism as Bogoliubov transformations of the fermion algebra ensuring

the required monodromy properties. General isomonodromic tau function was originally

defined as the correlator of monodromy fields. In particular, for Painlevé VI it is given by

a four-point correlator

τ(t) = 〈OM0(0)OMt(t)OM1(1)OM∞(∞)〉. (1.5)

We would like to put isomonodromic deformations into the context of subsequent

developments in conformal field theory [4, 10, 48]. To our knowledge, no such attempt

has been made so far except for a short general discussion in [31]. The present pa-

per mainly deals with Painlevé VI which represents the simplest nontrivial example of

isomonodromy equations.

It will be argued below that the relevant chiral CFT has central charge c = 1 and mon-

odromy fields in (1.5) are Virasoro primaries with conformal dimensions ∆ν = 1
2 trA2

ν = θ2ν ,

where ν = 0, 1, t,∞. Therefore the structure of the expansion of τ(t) near, say, t = 0, is

strongly constrained by conformal invariance. In fact, the chiral correlator of four primary

fields for any c is given by

〈φ0(0)φt(t)φ1(1)φ∞(∞)〉 =
∑

p

Cp
0tC

1
p∞t

∆p−∆0−∆tF(∆,∆p, c; t), (1.6)

where the sum runs over conformal families appearing in the OPE of φ0 and

φt, ∆p denotes the dimension of the corresponding intermediate primary field φp
and ∆ = (∆0,∆t,∆1,∆∞) is the set of external dimensions. Conformal block

F(∆,∆p, c; t) =
∞∑

k=0

Fk(∆,∆p, c) t
k associated to the channel p is a power series normal-

ized as F0(∆,∆p, c) = 1. It is completely fixed by conformal symmetry [4]. The structure

constants Cp
0t, C

1
p∞ combine conformal blocks into correlation functions of specific theories

– 3 –
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and should be obtained from another source. CFT correlators usually contain contribu-

tions of holomorphic and antiholomorphic conformal blocks subject to the requirement of

invariance under the action of braid group on the positions of fields. The chiral correla-

tors (1.5), (1.6) are not invariant under this action but transform in a natural way, induced

by the Hurwitz action on monodromy matrices.

Direct computation of the coefficients Fk(∆,∆p, c) becomes quite laborious with the

growth of k. However, very recently this problem was completely solved in the framework of

AGT conjecture [3] relating Liouville CFT and N = 2 4D supersymmetric gauge theories.

The latter correspondence produces conjectural combinatorial evaluations of conformal

blocks, subsequently proven by Alba, Fateev, Litvinov and Tarnopolsky [2]. For c = 1,

which is the only case of interest for PVI, another derivation was given by Mironov, Morozov

and Shakirov in [30]. In particular, AGT representation expresses the contribution of fixed

level of descendants of φp to 4-point conformal block F(∆,∆p, c; t) in terms of sums of

simple explicit functions of ∆, ∆p and c over bipartitions with a fixed number of boxes.

Hence, to obtain full expansion of PVI tau function it suffices to determine the dimen-

sion spectrum of primaries present in the OPEs of monodromy fields and the associated

structure constants. To formulate the final result, we introduce monodromy exponents

σ = (σ0t, σ1t, σ01) by

pµν = trMµMν = 2 cos 2πσµν , µ, ν = 0, t, 1.

Together with θ, these parameters define seven invariant functions on the space M of

monodromy data subject to a relation [18]

p20t + p21t + p201 + p0tp1tp01 + p20 + p2t + p21 + p2∞ + p0ptp1p∞ (1.7)

= (p0pt + p1p∞)p0t + (p1pt + p0p∞)p1t + (p0p1 + ptp∞)p01 + 4,

where pν = trMν = 2 cos 2πθν (ν = 0, t, 1,∞). This of course agrees with the dimension

of M, and allows to interpret the triple σ as a pair of PVI integration constants. Below

we assume that θ, σ are generic complex numbers verifying Jimbo-Fricke relation (1.7).

Let Y be the set of all partitions identified with Young diagrams. Given λ ∈ Y, we

write λi and λ
′
j for the number of boxes in the ith row and the jth column of λ, and denote

by |λ| the total number of boxes in λ. The quantity hλ(i, j) = λ′j − i+ λi − j + 1 is called

the hook length of the box (i, j) ∈ λ.

Our main statement is the following

Claim. Complete expansion of Painlevé VI tau function near t = 0 can be written as

τ(t) = const ·
∑

n∈Z
Cn (θ,σ) t

(σ0t+n)2−θ20−θ2tB(θ, σ0t + n; t). (1.8)

The function B(θ, σ; t) is a power series in t which coincides with the general c = 1 con-
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formal block F
(
θ20, θ

2
t , θ

2
1, θ

2
∞, σ

2, 1; t
)
and is explicitly given by

B (θ, σ; t) =(1− t)2θtθ1
∑

λ,µ∈Y
Bλ,µ (θ, σ) t

|λ|+|µ|, (1.9)

Bλ,µ (θ, σ) =
∏

(i,j)∈λ

(

(θt + σ + i− j)2 − θ20

)(

(θ1 + σ + i− j)2 − θ2∞
)

h2λ(i, j)
(

λ′j − i+ µi − j + 1 + 2σ
)2 × (1.10)

×
∏

(i,j)∈µ

(

(θt − σ + i− j)2 − θ20

)(

(θ1 − σ + i− j)2 − θ2∞
)

h2µ(i, j)
(

µ′j − i+ λi − j + 1− 2σ
)2 .

The structure constants {Cn (θ,σ)}n∈Z can be written in terms of Barnes G-function,

Cn (θ,σ) = sn
∏

ǫ,ǫ′=±G
(
1 + θt + ǫθ0 + ǫ′(σ0t + n)

)
G
(
1 + θ1 + ǫθ∞ + ǫ′(σ0t + n)

)

G
(
1 + 2(σ0t + n)

)
G
(
1− 2(σ0t + n)

) ,

(1.11)

with s given by

s±1 (cos 2π(θt ∓ σ0t)− cos 2πθ0) (cos 2π(θ1 ∓ σ0t)− cos 2πθ∞) (1.12)

= (cos 2πθt cos 2πθ1 + cos 2πθ0 cos 2πθ∞ ± i sin 2πσ0t cos 2πσ01)

− (cos 2πθ0 cos 2πθ1 + cos 2πθt cos 2πθ∞ ∓ i sin 2πσ0t cos 2πσ1t) e
±2πiσ0t .

Analogous expansions of τ(t) at t = 1,∞ are obtained from (1.8)–(1.12) by applying a

suitable transformation of parameters.

Painlevé transcendents are generally believed to be rather complicated special func-

tions. In our opinion, this reputation is somewhat undeserved. Painlevé VI, for instance,

enjoys most of the basic properties of the Gauss hypergeometric equation. In particular,

it has many elementary solutions (see [25] and references therein), Bäcklund transfor-

mations [33], quadratic Landen-type transformations [21], and its connection problem is

solved [18]. The present work adds to this list a link to representation theory of the Vira-

soro algebra and the series representation of PVI solutions, which can also be seen as an

efficient tool for their numerical computation.

The outline of the paper is as follows. The next section starts with a brief survey of the

isomonodromy problem. After exhibiting global conformal symmetry of the tau function,

in subsection 2.3 we introduce monodromy fields and explain how various mathematical

objects of the theory of monodromy preserving deformations can be written in terms of

correlation functions in 2D CFT. Subsection 2.4 deals more specifically with Painlevé VI.

Here we present the arguments leading to (1.8)–(1.12), and discuss analytic continuation

of PVI solutions and their Bäcklund transformations from CFT point of view. Section 3 is

devoted to direct analytic verification of the above expansion. This task is further pursued

in section 4, where the known special PVI solutions are examined from the field-theoretic

perspective. We conclude with a list of open questions and directions for future work.

– 5 –
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2 CFT approach to isomonodromy

2.1 General

It is instructive to start with the general case of rank N linear system with n regular

singular points a = {a1, . . . , an} on P
1. Instead of (1.2) one has

∂zΦ = A(z)Φ, A(z) =
n∑

ν=1

Aν

z − aν
. (2.1)

The absence of singularity at infinity implies that N×N constant matrices {Aν} satisfy the

constraint
∑n

ν=1Aν = 0. They are assumed to be diagonalizable so that Aν = GνTνG−1
ν

with some Tν = diag {λν,1, . . . , λν,N}. The fundamental solution will be normalized by

Φ(z0) = 1N . It is useful to introduce the matrix

J (z) = Φ−1∂zΦ = Φ−1A(z)Φ.

The coefficients of the Taylor series of Φ(z) around z = z0 can be expressed in terms of J
and its derivatives. In particular,

Φ(z → z0) = 1N + J (z0) (z − z0) +
(
J 2(z0) + ∂J (z0)

) (z − z0)
2

2
+ . . . (2.2)

Near the singular points, the fundamental solution has the following expansions (under

additional non-resonancy assumption λν,j − λν,k /∈ Z for j 6= k):

Φ(z → aν) = Gν(z) (z − aν)
Tν Cν . (2.3)

Here Gν(z) is holomorphic and invertible in a neighborhood of z = aν and satisfies Gν(aν) =

Gν . The connection matrix Cν is independent of z. Counterclockwise continuation of Φ(z)

around aν leads to monodromy matrix Mν = C−1
ν e2πiTνCν .

Let us now vary the positions of singularities and normalization point, simultaneously

evolving Aν ’s in such a way that the monodromy is preserved. A classical result translates

this requirement into a system of PDEs

∂aνΦ = − z0 − z

z0 − aν

Aν

z − aν
Φ, (2.4)

∂z0Φ = −A (z0) Φ. (2.5)

It is important to note that the matrix J (z) remains invariant under isomonodromic vari-

ation of z0. Schlesinger deformation equations are obtained as compatibility conditions

of (2.1), (2.4) and (2.5). Explicitly,

∂aµAν =
z0 − aν
z0 − aµ

[Aµ,Aν ]

aµ − aν
, µ 6= ν, (2.6)

∂aνAν = −
∑

µ 6=ν

[Aµ,Aν ]

aµ − aν
, ∂z0Aν = −

∑

µ 6=ν

[Aµ,Aν ]

z0 − aµ
. (2.7)

– 6 –
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Lax form of the Schlesinger system (2.6)–(2.7) implies that the eigenvalues of Aν ’s are con-

served under deformation. This is of course expected due to the obvious relation between

the spectra of Aν ’s and monodromy matrices.

Isomonodromic tau function τ(a) is defined by

d ln τ =
∑

µ<ν

trAµAν d ln (aµ − aν) . (2.8)

It is a nontrivial consequence of the deformation equations that the 1-form in the r.h.s. is

closed. To show that it does not depend on z0, one can rewrite (2.8) as

∂aµ ln τ =
∑

ν 6=µ

trAµAν

aµ − aν
=

1

2
res z=aµ trJ 2(z). (2.9)

Here the first equality follows from (2.8) and the second one from the fact that J (z) is

conjugate to A(z).

Finally, let us decompose all Aν ’s into the sum of scalar and traceless part as Aν =
trAν

N 1N + Âν . It can then be easily checked that

ΦA(z) =
∏

ν

( z − aν
z0 − aν

) trAν
N

ΦÂ(z), (2.10)

JA(z) =
1

N

∑

ν

trAν

z − aν
1N + JÂ(z), (2.11)

τA(a) =
∏

µ<ν

(aµ − aν)
trAµtrAν

N τÂ(a). (2.12)

This allows to assume without any loss of generality that Aν ’s are traceless, but we delib-

erately postpone the imposition of this condition.

2.2 Global conformal symmetry

Fractional linear maps f(z) =
αz + β

γz + δ
form the automorphism group of the Riemann

sphere. It is clear that under the action of these transformations on z, z0 and a the

quantities Φ(z) and {Aν} transform as functions and J (z) as a vector field. Our task in

this subsection is to understand the effect of global conformal mappings on the tau function.

Let us first compute τ(a) explicitly in the case n = 3. Since A1 + A2 + A3 = 0, the

coefficients trAµAν in (2.8) are conserved quantities. Hence, integrating (2.8), we find

τ(a1, a2, a3) = const · (a1 − a2)
∆3−∆2−∆1 (a1 − a3)

∆2−∆1−∆3 (a2 − a3)
∆1−∆2−∆3 ,

where ∆ν = 1
2 trA2

ν with ν = 1, 2, 3. One recognizes here the general expression for the

three-point correlation function of (quasi)primary fields of dimensions ∆1,2,3 in the two-

dimensional conformal field theory.

Given the above example, it is natural to assume that for general n the tau function

transforms as the n-point function of primaries with appropriate dimensions:

τ (f(a)) =
n∏

ν=1

[
f ′ (aν)

]−∆ν τ(a). (2.13)

– 7 –
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To prove the last formula, it is sufficient to consider infinitesimal transformations gener-

ated by the vector field Z =
(
A+Bz + Cz2

)
∂z, which amounts to checking three differ-

ential constraints:

∑

ν

∂aν ln τ = 0,

∑

ν

(aν∂aν ln τ +∆ν) = 0,

∑

ν

(
a2ν∂aν ln τ + 2∆νaν

)
= 0.

These relations can indeed be straightforwardly demonstrated using the first equality

in (2.9) and the condition
∑

ν Aν = 0.

2.3 Field content

The fundamental solution Φ is completely fixed by its monodromy, normalization and

singular behaviour (2.3). The last point is particularly important: indeed, adding an integer

to any diagonal element of Tν modifies the asymptotics of Φ as z → aν without changing

monodromy matrices. Therefore, in what follows, the notion of monodromy will include

not only the set of Mν ’s but also the choice of their logarithm branches Lν = C−1
ν TνCν .

Let us now try to construct a formal QFT solution of the isomonodromic deformation

problem, extending the ideas of [31, 35, 36]. The starting point will be the following

ansatz for Φ:

Φjk(z) = (z − z0)
2∆ 〈OL1(a1) . . .OLn(an)ϕ̄j(z0)ϕk(z)〉

〈OL1(a1) . . .OLn(an)〉
, j, k = 1, . . . , N. (2.14)

Here it is assumed that {OLν}, {ϕ̄j}, {ϕk} are primary fields in a 2D CFT characterized by

some central charge c. Further, we want the OPEs of ϕ̄’s with ϕ’s to contain the identity

operator. This forces them to have equal dimensions, to be denoted by ∆. Normalization

of these fields is fixed by the normalization of Φ; the leading OPE term should be equal to

ϕ̄j(z0)ϕk(z) ∼ (z − z0)
−2∆ δjk. (2.15)

Since Φ(z) may be represented by an entire series near z = z0, the dimensions of all other

primaries appearing in this OPE should be given by strictly positive integers. Monodromy

fields {OLν} are defined by the condition that their complete OPEs with {ϕk} have the form

OLν (aν)ϕk(z) =
n∑

j=1

(

(z − aν)
Lν

)

jk

∞∑

ℓ=0

OLν ,j,ℓ(aν) (z − aν)
ℓ ,

where {OLν ,j,ℓ} are some local fields. In particular, the raw vector (ϕ1 . . . ϕn) should be

multiplied byMν when continued around OLν . If one succeeds in finding a set of fields with

all mentioned properties, the correlator ratio (2.14) will automatically give the solution of

the linear system (2.1).

The definition (2.8) of the tau function arises very naturally in the CFT framework.

To illustrate this, let us compute two more orders in the OPE (2.15). The identity field

– 8 –



J
H
E
P
1
0
(
2
0
1
2
)
0
3
8

has no level 1 descendants, therefore the leading correction is given by a new primary field

Jjk of dimension 1. The next-to-leading order correction comes from three sources: i)

nonvanishing level 2 descendant of the identity operator given by the energy-momentum

tensor T , ii) level 1 current descendant ∂Jjk and iii) new primaries of dimension 2 which

can be combined into a single field Sjk. Thus

ϕ̄j(z0)ϕk(z) = (z − z0)
−2∆

[

δjk + Jjk(z0) (z − z0) (2.16)

+

(
4∆

c
T (z0)δjk + (∂Jjk)(z0) + Sjk(z0)

)
(z − z0)

2

2
+O

(
(z − z0)

3
)
]

.

We will make a further assumption of tracelessness of S, which is essentially motivated

by the examples considered below. Now, substituting (2.16) into (2.14) and matching the

result with (2.2), one finds that

J (z) =
〈OL1(a1) . . .OLn(an)J(z)〉
〈OL1(a1) . . .OLn(an)〉

, (2.17)

trJ 2(z) =
〈OL1(a1) . . .OLn(an)T (z)〉

〈OL1(a1) . . .OLn(an)〉
4N∆

c
. (2.18)

Standard CFT arguments allow to rewrite the r.h.s. of the last formula as

〈OL1(a1) . . .OLn(an)T (z)〉
〈OL1(a1) . . .OLn(an)〉

=
n∑

ν=1

{

∆̃ν

(z − aν)2
+

1

z − aν
∂aν ln 〈OL1(a1) . . .OLn(an)〉

}

,

where ∆̃ν denotes conformal dimension of OLν . Comparison of (2.18) with (2.9) then shows

that the tau function can be identified with a power of the correlator of monodromy fields,

τ(a) = 〈OL1(a1) . . .OLn(an)〉
2N∆

c . (2.19)

In what follows, we will be exclusively interested in the case when

c = 2N∆. (2.20)

Such a condition implies, in particular, that the dimensions ∆̃ν of monodromy fields coin-

cide with the quantities ∆ν = 1
2 trA2

ν from the previous subsection.

One possible realization of the above conditions is provided by the theory of N free

complex fermions. Its central charge c = N agrees with the conformal dimension ∆ = 1
2

of fermionic fields {ψ̄j}, {ψk} which play the role of ϕ̄’s and ϕ’s. The currents are by

definition given by Jjk = (ψ̄j ψk), while the energy-momentum tensor T and the fields

{Sjk} may be expressed as

T =
1

2

∑

k

[
(ψ̄k ∂ψk)− (∂ψ̄k ψk)

]
,

Sjk = (ψ̄j ∂ψk)− (∂ψ̄j ψk)−
2

N
T δjk.
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To represent monodromy fields, recall the usual bosononization formulas

ψ̄k = : e−iφk :, ψk = : eiφk :,

Jjk =

{

: ei(φk−φj) :, j 6= k,

i ∂φk, j = k,

T = − 1

2

∑

k

(∂φk ∂φk) ,

where {φk}k=1,...,N are free complex bosonic fields with the propagator 〈φk(w)φk(z)〉 ∼
− ln(z − w). Also note that for C ∈ GL(N,C), monodromy matrices for the linearly

transformed fermions

ψ̄′
j =

∑

k

Cjkψ̄k, ψ′
j =

∑

k

C−1
kj ψk,

are obtained from Mν ’s by conjugation by C. In particular, setting C = Cν , one obtains

fermions {ψ̄(ν)
k }, {ψ(ν)

k } with diagonal monodromy around aν . Denote by {φ(ν)k } bosonic

fields associated to this “diagonal” fermionic basis, then monodromy field OLν can be

written as

OLν = : ei
∑

k λν,kφ
(ν)
k : .

We thus need to deal with n different bosonization schemes of the same theory, each of

them being adapted for representing one of the monodromy fields. The corresponding

N -tuples of bosons are related by complicated nonlocal transformations.

The formulas (2.10)–(2.12) are a signature of the well-known decomposition of

fermionic CFT into the direct sum û(1) ⊕ ŝu(N)1 of two WZW theories. Fermion and

monodromy fields are given by products of fields from the two summands:

ψ̄k = : e−iφ0/
√
N : ⊗ ˆ̄ϕk, ψk = : eiφ0/

√
N : ⊗ ϕ̂k,

OLν = : e
i trAν√

N
φ0 : ⊗OL̂ν

.

Bosonic field φ0 in the û(1) factors is expressed in terms of fields introduced before as

φ0 = 1√
N

∑N
k=1 φk. The fields { ˆ̄ϕk}, {ϕ̂k} and {OL̂ν

} live in the ŝu(N)1 WZW theory

and can be formally written as ordered exponentials of integrated linear combinations

of ŝu(N)1-currents. It should be emphasized that they are Virasoro primaries but not

necessarily WZW primaries. The fields { ˆ̄ϕk} and {ϕ̂k} have the same dimension ∆ = N−1
2N ,

in accordance with the central charge cŝu(N)1 = N − 1 [23]. The dimension of OL̂ν
is equal

to 1
2 tr Â2

ν , where as above, Âν = Aν − trAν

N 1N stands for the traceless part of Aν .

Now it becomes clear that imposing the tracelessness of A(z) corresponds to factoring

out the û(1) piece from the fermionic theory. This innocently looking procedure is in fact

crucial, as it drastically reduces the number of primary fields in the OPEs and thus makes

the computation of correlation functions much more efficient as compared to fermionic

realization. Therefore, in what follows we set trA(z) = 0, remove the hats from Âν ’s, L̂ν ’s,
ˆ̄ϕ’s and ϕ̂’s to lighten the notation, and interpret the isomonodromic tau function as a

correlation function of primaries with dimensions ∆ν in a CFT with c = N − 1.
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We close this subsection with an example of application of field-theoretic machinery

in the case N = 2. It is somewhat distinguished from CFT point of view, since for c = 1

the dimension ∆ = 1
4 of ϕ̄’s and ϕ’s corresponds to level 2 degenerate states, and the

dimension 1 of {Jjk} is degenerate at level 3. Hence the correlation functions

Pjk = 〈OL1(a1) . . .OLn(an)ϕ̄j(z0)ϕk(z)〉,
Qjk = 〈OL1(a1) . . .OLn(an)Jjk(z)〉,

have to satisfy linear PDEs of order 2 and 3, fixed by Virasoro symmetry. This results into

the following statement (cf observations made in [32]):

Proposition 1. Under assumption trA(z) = 0, the matrices

P = (z − z0)
− 1

2 τΦ, Q = τΦ−1∂zΦ,

satisfy the differential equations

∂zzP =

{

1

z − z0
∂z0 +

1

4 (z − z0)
2 +

∑

ν

(
1

z − aν
∂aν +

∆ν

(z − aν)
2

)}

P,

∂zzzQ =

{

4
∑

ν

(
1

z − aν
∂aνz +

∆ν

(z − aν)
2 ∂z

)

+ 2
∑

ν

(
1

(z − aν)
2 ∂aν +

2∆ν

(z − aν)
3

)}

Q.

Proof. Straightforward but tedious calculation using the relations (2.1), (2.4), (2.5), (2.9)

and the identity A2 = 1
2 trA

2 12 verified by any traceless 2× 2 matrix A. �

2.4 Painlevé VI

Recall that global conformal symmetry allows to fix the positions of three singular points.

Painlevé VI equation corresponds to setting N = 2, n = 4 and sending these three points to

0, 1 and ∞. The remaining singular point, z = t, represents the cross-ratio of singularities,

which is preserved by Möbius transformations.

For ν = 0, t, 1,∞, let us denote by ±θν the eigenvalues of Aν . Preceding arguments

show that PVI tau function τ(t) defined by (1.3) is nothing but the four-point correlator

of monodromy fields,

τ(t) = 〈OL0(0)OLt(t)OL1(1)OL∞(∞)〉, (2.21)

and that these fields are Virasoro primaries with dimensions ∆ν = θ2ν in a c = 1 con-

formal field theory. The field at infinity should be understood according to the usual

CFT prescription

〈. . .O (∞)〉def= lim
R→∞

R2∆O〈. . .O (R)〉.

It is clear that auxiliary fields {ϕk} should have monodromy MtM0 around all fields

in the OPE of OL0 and OLt . Let e±2πiσ0t denote the eigenvalues of MtM0 and C0t be its

diagonalizing transformation. Since σ0t is defined only up to an integer, it is natural to
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expect that the set of primaries present in the OPE of OL0 and OLt consists of an infinite

number of monodromy fields OL(n)
0t

with n ∈ Z and

L(n)
0t = C−1

0t

(

σ0t + n 0

0 −σ0t − n

)

C0t,

i.e. of all possible monodromy fields associated to the monodromy matrix MtM0. Taking

into account that conformal dimension of OL(n)
0t

is equal to (σ0t + n)2, the first part of

our main statement (formulas (1.8)–(1.10)) now follows from the general formula (1.6) and

AGT combinatorial representations of conformal blocks [3].

The structure constants Cn(θ,σ) of the expansion (1.8) can be determined from the

so-called Jimbo asymptotic formula [18], expressing the asymptotics of PVI tau function

as t→ 0 in terms of monodromy. In fact we have already obtained the “easier half” of this

formula. E.g. if −1
2 < Reσ0t <

1
2 , then (1.8) implies that the leading behaviour of τ(t)

is given by

τ(t→ 0) ∼ const · tσ2
0t−θ20−θ2t .

Subleading asymptotics, fixing the second PVI integration constant, can be rewritten in

the form of a recursion relation on the coefficients Cn(θ,σ). Namely,

Cn±1

Cn
=
Γ2 (1∓ 2(σ0t + n))

Γ2 (1± 2(σ0t + n))

∏

ǫ=±

Γ (1+ǫθ0+θt ± (σ0t+n)) Γ (1+ǫθ∞+θ1 ± (σ0t+n))

Γ (1+ǫθ0+θt ∓ (σ0t+n)) Γ (1+ǫθ∞+θ1 ∓ (σ0t+n))
×

×
(
θ20 − (θt ∓ (σ0t + n))2

) (
θ2∞ − (θ1 ∓ (σ0t + n))2

)

4 (σ0t + n)2 (1± 2(σ0t + n))2
(−s)±1,

where s is defined by (1.12). This relation can be easily solved in terms of Barnes func-

tions, with the answer given by (1.11). It is interesting to note that, up to a common

multiplier and appropriately symmetrized sn factors, Cn’s essentially coincide with the

chiral parts [40] of the corresponding structure constants in the time-like Liouville the-

ory [16, 47].

Remark 2. The structure constants (1.11) can not be completely factorized into the prod-

ucts of three-point functions due to the presence of the parameter s. This is an artifact of

non-trivial braid group action on the correlation functions of monodromy fields.

To illustrate what we have in mind, consider the analytic continuation of τ(t) along a

closed counterclockwise contour around the branch point t = 0. In general, such a contin-

uation induces an action of the 3-braid group (more precisely, of the modular group Γ(2))

on monodromy [11]. In the case at hand, new monodromy matrices are given by

M′
0 = MtM0M−1

t , M′
t = (MtM0)Mt (MtM0)

−1 , M′
1 = M1,

so that σ′0t = σ0t and

p′01 = p0p1 + ptp∞ − p01 − p0tp1t, (2.22)

p′1t = p1pt + p0p∞ − p1t − p0tp
′
01. (2.23)
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Therefore, the change of the branch of τ(t) is encoded in the change of the structure con-

stants. On the other hand, one can perform analytic continuation directly in the expan-

sion (1.8). Up to an irrelevant overall factor, this amounts to multiplication of Cn(θ,σ)

by e4πinσ0t . Since both results should coincide, the structure constants have to satisfy the

functional relation

Cn(θ,σ
′) = κ · e4πinσ0tCn(θ,σ),

where κ is independent of n. The factor sn in (1.11) is a minimal solution of this relation,

as for σ′ defined by (2.22)–(2.23) one has s(θ,σ′) = e4πiσ0ts(θ,σ).

Remark 3. Let us denote by dimλ the number of standard Young tableaux of shape λ ∈ Y.

It coincides with the dimension of the irreducible representation of symmetric group S|λ|
associated to λ. Also write dλ for the number of diagonal boxes in λ and introduce the

Frobenius coordinates

pλi = λi − i, qλi = λ′i − i, i = 1, . . . , dλ,

which give the number of boxes to the right and above the ith diagonal box. It is well

known/easy to show that

dimλ

|λ|! =
1

∏

(i,j)∈λ hλ(i, j)

=
1

∏dλ
i=1 Γ(p

λ
i + 1)Γ(qλi + 1)

det

[
1

pλi + qλj + 1

]

i,j=1,...,dλ

,

∏

(i,j)∈λ
(i− j + z)(i− j + z′) = (zz′)dλ

dλ∏

i=1

Γ

[

pλi +1+z, qλi +1−z, pλi +1+z′, qλi + 1− z′

1 + z, 1− z, 1 + z′, 1− z′

]

.

We now recognize in (1.10) typical pieces of z-measures on partitions [6]. It would be

nice to understand this coincidence conceptually with the purpose to sum up the series for

B(θ, σ; t) and τ(t).

Remark 4. Painlevé VI equation has a large group of hidden symmetries of affine Weyl

type [33]. Almost all of them are manifest in the conformal expansion (1.8). For instance,

the change of sign of any of parameters θ has no effect on the tau function, since conformal

blocks depend only on the dimensions ∆ν = θ2ν and the ratios of structure constants (1.11)

also remain invariant.

Conformal block symmetry (θ0, θt) ↔ (θ∞, θ1) and its counterparts for expansions at

t = 1,∞ yield further simple transformations of τ(t). Another, less trivial symmetry that

can be found by inspection of (1.10) shifts the values of all θ by δ =
θ0 + θt + θ1 + θ∞

2
.

Additional transformations come from crossing symmetry. In contrast to the previous ones,

they also act on t by fractional linear transformations exchanging 0, 1 and ∞.

The action of generators of the above transformations on the parameters θ, conformal

blocks and tau function expansions is recorded in table 1.
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θ0 θt θ1 θ∞ B(θ, σ; t) τ(t)

s0 −θ0 θt θ1 θ∞ B(θ, σ; t) τ(t)

st θ0 −θt θ1 θ∞ B(θ, σ; t) τ(t)

s1 θ0 θt −θ1 θ∞ B(θ, σ; t) τ(t)

s∞ θ0 θt θ1 −θ∞ B(θ, σ; t) τ(t)

sδ θ0 − δ θt − δ θ1 − δ θ∞ − δ (1− t)δ1tδB(θ, σ; t) tδ0tδ(1− t)δ1tδτ(t)

r0t θ∞ θ1 θt θ0 B(θ, σ; t) t∆0tτ(t)

r1t θt θ0 θ∞ θ1 (1− t)∆1tB(θ, σ; t) (1− t)∆1tτ(t)

r01 θ1 θ∞ θ0 θt (1− t)∆1tB(θ, σ; t) t∆0t(1− t)∆1tτ(t)

q01 θ1 θt θ0 θ∞ τ(1− t)

q0∞ θ∞ θt θ1 θ0 t−2∆tτ
(
t−1
)

q1∞ θ0 θt θ∞ θ1 (1− t)∆0−∆t−∆σB
(
θ, σ; t

t−1

)
(1− t)−2∆tτ

(
t

t−1

)

Table 1. Backlund transformations of parameters, conformal blocks and tau functions.

Here we have introduced the notation

δ0t = θ0 + θt − θ1 − θ∞, ∆0t = ∆0 +∆t −∆1 −∆∞,

δ1t = θ1 + θt − θ0 − θ∞, ∆1t = ∆1 +∆t −∆0 −∆∞,

and ∆σ = σ2. Transformed tau functions in the last column are (in some cases) defined up

to constant factors which depend on the choice of normalization of the structure constants.

To complete the picture, it remains to understand the QFT meaning of an elementary

Schlesinger transformation, e.g. the one shifting θ0 and θ1 by 1
2 . It may be expected that

this symmetry arises from the fusion of auxiliary fields ϕ̄j and ϕk with monodromy fields

OL0 and OL1 in the correlator representation (2.14) of the fundamental solution Φ. Indeed,

ϕ̄’s and ϕ’s are degenerate at level 2, and therefore their OPEs with monodromy field of

dimension θ2 can only contain two conformal families generated by monodromy fields with

dimensions
(
θ ± 1

2

)2
.

3 Painlevé VI recurrence

Painlevé VI tau function expansion (1.8)–(1.11) is, in the strict mathematical sense, a

conjecture. On the other hand, τ(t) is completely fixed by its leading asymptotics as

t → 0. Once the quantity σ0t in the power-law exponent and the amplitude ratio C1(θ,σ)
C0(θ,σ)

are found from Jimbo’s formula, the rest of the series can, at least in principle, be recursively

reconstructed order by order from σPVI equation and checked against CFT predictions.

Below we describe technical details of this procedure and derive several first terms of the

conformal expansion.
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The equation (1.4) gives a quadrilinear 3rd order ODE for the tau function itself.

Observe, however, that if we differentiate (1.4) one more time with respect to t, the resulting

equation will be divisible by σ′′(t) and in the end turns out to be bilinear in τ(t). It is also

convenient to work with a slightly modified function η(t) = t∆0+∆t(1− t)∆t+∆1τ(t), which

partially takes into account the behaviour of τ(t) as t→ 0, 1. It satisfies the equation

t2(t− 1)2
{[

t(t− 1)η2
]′′′′

− 8
[

t(t− 1)
(
η′
)2
]′′

− 4(2A− 1)ηη′′ + 8(A− 2)
(
η′
)2
}

(3.1)

+ 16t3(t− 1)3
(
η′′
)2

+ 4t(t− 1)ηη′′ − 4(A− 1)t(t− 1)(2t− 1)ηη′ + 4(Bt+ C)η2 = 0,

where A, B, C are given by

A = ∆0 +∆t +∆1 +∆∞,

B =(∆0 −∆1) (∆∞ −∆t) ,

C =(∆0 −∆t) (∆1 −∆∞) ,

and the fourth PVI parameter is killed by differentiation.

Now substitute into (3.1) the ansatz

η(t) =
∑

n∈Z
Cnt

(σ+n)2
∞∑

k=0

η
(n)
k tk, (3.2)

normalized by η
(n)
0 = 1 for all n ∈ Z. Picking up the coefficients of different powers of t in

the result, one obtains an overdetermined system of equations for {Cn}, {η(n)k }. Namely,

for any ℓ ∈ Z and any L ∈ Z≥0 we have

∑

m,n∈Z
m+n=ℓ

CmCn

[
∑

k,k′≥0
k+k′+m2+n2=L+1

αkk′
mnη

(m)
k η

(n)
k′ +

∑

k,k′≥0
k+k′+m2+n2=L

βkk
′

mnη
(m)
k η

(n)
k′ (3.3)

+
∑

k,k′≥0
k+k′+m2+n2=L−1

γkk
′

mnη
(m)
k η

(n)
k′ +

∑

k,k′≥0
k+k′+m2+n2=L−2

δkk
′

mnη
(m)
k η

(n)
k′

]

= 0,

with somewhat cumbersome but completely explicit polynomial coefficients:

αkk′
mn = ǫkk

′
mn

(

2P − ǫkk
′

mn + 1
)

,

βkk
′

mn =3
(

ǫkk
′

mn

)2
− 2 (P − 1 + 2A) ǫkk

′
mn − P (P − 2A) + 4C,

γkk
′

mn = − 3
(

ǫkk
′

mn

)2
− 2 (P − 4A) ǫkk

′
mn + (P − 1) (P − 1− 2A) + 4B,

δkk
′

mn = ǫkk
′

mn

(

2P + ǫkk
′

mn − 3− 4A
)

,

ǫkk
′

mn =
(

k − k′ + (m− n)(ℓ+ 2σ)
)2
,

P = 2σ2 + 2σℓ+ L.

Let us write down the recurrence relations (3.3) and their consequences for some L

and ℓ.
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L = 0, ℓ = 0: from (3.3) it follows that

(

α1,0
0,0 + α0,1

0,0

)

η
(0)
1 + β0,00,0 = 0,

which in turn gives

η
(0)
1 = −(∆t +∆1) +

(∆σ −∆0 +∆t)(∆σ −∆∞ +∆1)

2∆σ
,

with ∆σ = σ2 as above. This reproduces n = 0, level 1 descendant contribution to the

expansion (1.8). The corresponding term was already found in [18].

L = 1, ℓ = ±1: in this case, (3.3) implies that

(

α1,0
±1,0 + α0,1

0,±1

)

η
(±1)
1 +

(

α0,1
±1,0 + α1,0

0,±1

)

η
(0)
1 +

(

β0,0±1,0 + β0,00,±1

)

= 0,

and we obtain

η
(±1)
1 = −(∆t +∆1) +

(∆σ±1 −∆0 +∆t) (∆σ±1 −∆∞ +∆1)

2∆σ±1
.

The latter expression corresponds to level 1 descendants with n = ±1. It coincides with

η
(0)
1 with σ replaced by σ ± 1, but this is not surprising: the same should be correct for

any n ∈ Z provided the conjectured periodicity of powers in (3.2) holds true.

L = 1, ℓ = 0: here we find

C2
0

[(

α2,0
0,0 + α0,2

0,0

)

η
(0)
2 + α1,1

0,0

(

η
(0)
1

)2
+
(

β1,00,0 + β0,10,0

)

η
(0)
1 + γ0,00,0

]

(3.4)

+C1C−1

(

α0,0
1,−1 + α0,0

−1,1

)

= 0,

which gives level 2 descendant contribution with n = 0:

η
(0)
2 =− (∆t +∆1)(∆t +∆1 + 1)

2
− (∆t +∆1)η

(0)
1

+
(∆σ −∆0 +∆t)(∆σ −∆0 +∆t + 1)(∆σ −∆∞ +∆1)(∆σ −∆∞ +∆1 + 1)

4∆σ(1 + 2∆σ)

+
(1 + 2∆σ)

(

∆0+∆t+
∆σ(∆σ−1)−3(∆0−∆t)2

1+2∆σ

)(

∆∞+∆1+
∆σ(∆σ−1)−3(∆∞−∆1)2

1+2∆σ

)

2 (1− 4∆σ)
2 .

To obtain the last formula, one should use, in addition to (3.4) and the coefficients found

above, the relation

C1C−1

C2
0

=

(

(∆0 +∆t −∆σ)
2 − 4∆0∆t

)(

(∆∞ +∆1 −∆σ)
2 − 4∆∞∆1

)

16∆2
σ (1− 4∆σ)

2 .

This piece of initial data disappears after the above differentiation but can be determined

from the quadrilinear form of σPVI.
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❍
❍
❍

❍
❍

ℓ

L
0 1 2 3 4 5 6 7 8 9

0 η
(0)
1 η

(0)
2 η

(0)
3 η

(0)
4 η

(0)
5 η

(0)
6 η

(0)
7 η

(0)
8 η

(0)
9 η

(0)
10

±1 η
(±1)
1 η

(±1)
2 η

(±1)
3 η

(±1)
4 η

(±1)
5 η

(±1)
6 η

(±1)
7 η

(±1)
8 η

(±1)
9

±2 C±2 η
(±2)
1 η

(±2)
2 η

(±2)
3 η

(±2)
4 η

(±2)
5 η

(±2)
6

±3 C±3 η
(±3)
1

Table 2. Appearance of recurrence coefficients.

It is straightforward to compute more terms in (3.2) using computer algebra. The

procedure works as follows. For a given L, one should start with maximal |ℓ| producing
a nontrivial relation (3.3), and then repeatedly decrease |ℓ| by 1. When all possibilities

are exhausted, increase L by 1. The coefficients determined at the first steps of this

iterative procedure are listed in table 2. Empty entries correspond to the relations satisfied

automatically or to no relations at all.

In this way, we have successfully checked the expansion (1.8)–(1.11) for n = 0, ±1, ±2,

±3 going up to level 10 in descendants. To give the reader an idea of the computational

complexity, we note that there are nearly 500 bipartitions of size 10, each of them producing

a rational function of θ, σ0t in the corresponding expansion coefficient.

4 Conformal blocks and special PVI solutions

4.1 Riccati solutions

These PVI solutions appear when the monodromy of (1.2) is equivalent to an upper trian-

gular one. Parameters θ can be Bäcklund transformed to satisfy θ0+θt+θ1+θ∞ = 0. The

initial conditions are also constrained and can be chosen as σ = (θ0 + θt, θ1 + θt, θ0 + θ1).

This results into a one-parameter family of PVI transcendents w(t) that may be written

in terms of Gauss hypergeometric functions, see e.g. Proposition 49 in [25] for explicit

formulas. The relevant tau function, however, is extremely simple:

τ(t) = const · t2θ0θt(1− t)2θtθ1 .

We recognize in the r.h.s. of this relation the four-point correlator

〈Vθ0(0)Vθt(t)Vθ1(1)Vθ∞(∞)〉 of the chiral vertex operators Vθ(z) = : ei
√
2θφ(z) : made

of free massless bosons. The contribution of conformal blocks B(θ, σ0t + n; t) with n 6= 0

to the expansion (1.8) is annihilated by the vanishing structure constants.

4.2 Chazy solutions

As is well-known [4, 10, 48] and already mentioned in section 2, the presence of degenerate

states in the Virasoro module generated by a primary field φ leads to linear differential

equations for the correlation functions involving this field. Possible conformal dimensions of

such φ’s are determined by the zeros of Kac determinant. They are labeled by two integers
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r, s ∈ Z≥1 and, for c = 1, are explicitly given by ∆φr,s
= (r−s)2

4 . In the simplest nontrivial

case r = 2, s = 1 the four-point correlator containing φ2,1(z) and three arbitrary primaries

solves a linear 2nd order ODE that can be reduced to the hypergeometric equation.

Thus if one of the monodromy matrices M0,t,1,∞ is equal to −1, there exists a PVI

tau function given by a linear combination of two solutions of the latter equation. For

example, for θ∞ = ±1
2 (i.e. ∆∞ = 1

4) the general solution of

τ ′′ + 2

[

θ20 − θ21 + θ2t +
1
4

t
+
θ21 − θ20 + θ2t +

1
4

t− 1

]

τ ′

+

[

(θ0 + θ1)
2 + θ2t − 1

4

t(t− 1)
+
∏

ǫ=±

(

θ20 + θ2t − (ǫθ1 +
1
2)

2

t
+
θ2t + θ21 − (ǫθ0 +

1
2)

2

t− 1

)]

τ = 0

satisfies σPVI. Conformal expansion of this tau function at, say, t = 0 is determined by

only two channels with dimensions
(
θ1 ± 1

2

)2
. More precisely, one has

τ(t) =
∑

ǫ=±
Cǫt

(ǫθ1+
1
2
)2−θ20−θ2tB

(

θ0, θt, θ1,
1

2
, ǫθ1 +

1

2
; t

)

, (4.1)

where C± are arbitrary constants. The relevant conformal blocks can be written as

B
(

θ0, θt, θ1,
1

2
, θ1 +

1

2
; t

)

= (1− t)(θ0+
1
2
)2−θ2t−θ21 2F1

[

θ0+θt+θ1+
1
2 , θ0−θt+θ1+ 1

2

1 + 2θ1

∣
∣
∣ t

]

.

The tau function (4.1) gives another known class of special function solutions of Painle-

vé VI, the so-called generalized Chazy solutions (cf Lemma 33 in [29]).

4.3 Algebraic solutions

Algebraic PVI solutions correspond to finite orbits of the braid/modular group action on

monodromy of the associated linear system [11]. All such solutions have been classified

in [25]. It turns out that there are 45 exceptional equivalence classes with fixed rational

parameters θ, σ and three families continuously depending on some of them.

In the exceptional cases, the contributions of different conformal blocks overlap in

the tau function expansion, which makes difficult their identification. On the other hand,

this task is rather straightforward for continuous families, see examples given below. An

infinite number of other explicit examples of c = 1 conformal blocks can be generated by

Bäcklund transformations.

Example 5. For θ =
(
a, a, b, 12 − b

)
, σ =

(
2a, 14 ,

1
4

)
there is a solution

τ(t) = const · t2a2 (1− t)−a2−b2+ 1
16

(
1 +

√
1− t

2

)−4a2+(2b− 1
2)

2

︸ ︷︷ ︸

B(a,a,b, 12−b,2a;t)

,

arising from the contribution of a single conformal block (Solution II in [25]).
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Example 6. For θ =
(
2a, a, a, 13

)
, σ =

(
3a, 16 ,

1
4

)
there is a solution that can be parame-

trized as follows (Solution III in [25]):

τ(t(s)) = const · (s− 2)4a
2
(s− 1)2a

2− 7
72 (s+ 1)−10a2+ 1

8 (s+ 2)10a
2− 1

9 ,

t(s) =
(s+ 1)2(s− 2)

(s− 1)2(s+ 2)
.

Consider the interval s ∈ (2,∞) which maps to t ∈ (0, 1). Again only one block contributes

to the tau function expansion on the corresponding branch at t = 0. It is explicitly given by

B
(

2a, a, a,
1

3
, 3a; t

)

= (st − 1)10a
2− 7

72

(
st + 1

3

)−18a2+ 1
8
(
st + 2

4

)14a2− 1
9

,

with st =
(1+

√
t)

2
3+(1−

√
t)

2
3

(1−t)
1
3

. Note that t = 0 is not really a branch point of st.

Example 7. Taking θ =
(
a, a, a, 14

)
, σ =

(
2a, 16 ,

1
6

)
one has a solution (corresponding to

Solution IV in [25])

τ(t(s)) = const · s−6a2+ 1
12 (s− 1)−6a2+ 1

12 (s+ 1)2a
2
(2− s)2a

2
(2s− 1)5a

2− 1
16 ,

t(s) =
s3(2− s)

2s− 1
.

Under this parametrization, the interval s ∈ (1, 2) is mapped to t ∈ (0, 1). Tau function

asymptotics near t = 0 on the relevant branch yields the conformal block

B
(

a, a, a,
1

4
, 2a; t

)

= (st − 1)−6a2+ 1
12

(st
2

)−12a2+ 1
12

(
st + 1

3

)2a2 (2st − 1

3

)7a2− 1
16

,

where

st =
1

2

(

1 + ut +

√

3− u2t +
2− 4t

ut

)

, ut =

√

1− (4t(1− t))
1
3 .

4.4 Picard solutions

The remainder of this section deals with Painlevé VI solutions of Picard type. Here the

parameters are chosen to be θPicard =
(
1
4 ,

1
4 ,

1
4 ,

1
4

)
. Up to Bäcklund transformations, this is

the only case where the general two-parameter solution of PVI is available [14, 28]. Quite

remarkably, for precisely these θ there exists an explicit formula for c = 1 conformal block,

found by Zamolodchikov [45]. We now briefly explain the relation between the two subjects.

First recall that complex torus can be seen as a two-sheeted covering of the four-

punctured sphere, its period ratio being determined by the cross-ratio of the punctures.

This suggests an elliptic parametrization of PVI variable t:

q = eiπτ , τ =
iK ′(t)
K(t)

,

where K(t), K ′(t) are complete elliptic integrals of the first kind:

K(t) =

∫ 1

0

dx
√

(1− x2)(1− tx2)
, K ′(t) = K(1− t).
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Painlevé VI solutions c = 1 conformal blocks

Riccati vertex operators

Chazy singular vectors

Picard Ashkin-Teller

algebraic ?

Table 3. PVI-CFT correspondence.

In this parametrization, conformal block with external dimensions corresponding to

θPicard is given by (see eq. (2.28) in [45])

B (θPicard, σ; t) =

(
16t−1q

)σ2

(1− t)
1
8ϑ3(0|τ)

.

Here and below ϑ3(z|τ) =
∑

n∈Z e
iπn2τ+2inz denotes Jacobi theta function. On the other

hand, Barnes function duplication identity reduces the formula (1.11) for the structure

constant to

(Cn)Picard =
π2G4

(
1
2

)

cosπσ0t
(−s)n2−4(σ0t+n)2 ,

The expression for s also simplifies drastically. Jimbo-Fricke relation (1.7) implies that

for fixed σ0t, σ1t the two possible values of cos 2πσ01 are given by − cos 2π(σ0t ∓ σ1t) and

therefore s = −e±2πiσ1t .

Summation over conformal families in (1.8) now gives theta function series so that we

get an explicit expression

τPicard(t) = const · qσ
2
0t

t
1
8 (1− t)

1
8

ϑ3 (σ0tπτ ± σ1tπ|τ)
ϑ3(0|τ)

.

Straightforward check (of the literature [22]) shows that this function indeed satisfies PVI

with Picard parameters, i.e. the expansion (1.8) is complete.

The above observations on the correspondence between special solutions of Painlevé VI

equation and c = 1 conformal blocks are collected in table 3.

5 Further questions

To summarize, we have obtained a complete series expansion of Painlevé VI tau function

near the singular points t = 0, 1,∞. This series involves summation over conformal families

arising in the OPEs of monodromy fields and labeled by n ∈ Z, as well as a double sum over

Young diagrams which encode the contribution of Virasoro descendants. The field theory

meaning of τ(t) now becomes clear: it is a generating function of c = 1 conformal blocks.

This opens a way to intriguing applications of AGT correspondence in the theory of

monodromy preserving deformations. To increase the number of singular points of the

linear system (1.2), one should deal with AGT representation for the n-point conformal

block with n > 4. Increasing rank N leads to other integer values of central charge, and it
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can be expected that intermediate conformal families will be labeled by (N − 1)-tuples of

integers. Another interesting option is the study of isomonodromic tau functions on higher

genus Riemann surfaces.

Conversely, isomonodromy problems may provide useful insight into CFT. For instance,

it would be interesting to understand if conformal blocks associated to exceptional algebraic

Painlevé VI solutions can be computed in explicit form and identify the corresponding

theories, orbifold CFTs [15] being the most natural candidates. One may also try to

generate new explicit examples of conformal blocks for higher values of c from tau functions

associated to branched covers of P1 [24].

It is in principle straightforward to obtain from (1.8)–(1.11) similar expansions for

Painlevé V and Painlevé III tau functions. In particular, this gives full short-distance

(conformal perturbation theory) expansion of two-point functions in the Ising and free-

fermion sine-Gordon field theory, and of the PV tau function describing universal part

of the process of formation of Fisher-Hartwig singularities in the asymptotics of Toeplitz

determinants [8]. This also seems to shed some light on recent results of [1, 17]. We hope

to return to these issues elsewhere.
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