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1 Introduction

Inflation is an attractive idea which explains the approximate homogeneity and isotropy of

the early Universe, while also providing a mechanism for the production of perturbations

which lead to a small breaking of these symmetries. The simplest model of inflation involves

a scalar field, called the inflaton, with a potential which is positive and slowly varying

during the inflationary era. The positive and approximately constant potential gives rise

to a spacetime which is well described, upto small corrections, by four dimensional de Sitter

space (dS4). This spacetime is homogeneous and isotropic, in fact highly symmetric, with

symmetry group SO(4, 1). Quantum effects, due to the rapid expansion of the Universe

during inflation, give rise to small perturbations in this spacetime. These perturbations

are of two types: tensor perturbations, or gravity waves, and scalar perturbations, which

owe their origin to the presence of the inflaton.

The past decade or so has seen impressive advances in observational cosmology. These

advances, for example in the measurement of the cosmic microwave background, increas-

ingly constrain some of the parameters which appear in the inflationary dynamics. This

includes a determination of the amplitude of the two-point correlator for scalar pertur-

bations, and more recently, a measurement of the tilt in this correlator and a bound on

magnitude of the scalar three point function [1, 2]. In fact, observations are now able to

rule out several models of inflation, see for e.g. [1].

These observational advances provide a motivation for a more detailed theoretical

study of the higher point correlation functions for perturbations produced during inflation.

There are theoretical developments also which make this an opportune time to carry out

such a study. Assuming that the SO(4, 1) symmetries of de Sitter space are shared by the

full inflationary dynamics, including the scalar field, to good approximation, this symmetry

group can be used to characterize and in some cases significantly constrain the correlation

functions of perturbations produced during inflation. Although the idea of inflation is

quite old, such a symmetry based analysis, which can sometimes lead to interesting model

independent consequences, has received relatively little attention, until recently.

Another related theoretical development comes from the recent intensive study of the

AdS/CFT correspondence in string theory and gravity. Four dimensional AdS space, AdS4,

is related, by analytic continuation to dS4, and its symmetry group SO(3, 2) on continuation
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becomes the SO(4, 1) symmetry of dS4. As a result, many of the techniques which have

been developed to study correlators in AdS space can be adapted to the study of correlators

in de Sitter space. It is well known that the SO(3, 2) symmetries of AdS4 are also those

of a 2+ 1 dimensional conformal field theory. It then follows that the SO(4, 1) symmetries

of dS4 are the same as those of a 3 dimensional Euclidean Conformal Field Theory. This

connection, between symmetries of dS4 and a 3 dimensional CFT, is often a useful guide in

organizing the discussion of de Sitter correlation functions. A deeper connection between de

Sitter space and CFTs, analogous to the AdS/CFT correspondence, is much more tentative

at the moment. We will therefore not assume that any such deeper connection exists in

the discussion below. Instead, our analysis will only use the property that dS4 and CFT3
share the same symmetry group.

More specifically, in this paper, we will use some of more recent theoretical devel-

opments referred to above, to calculate the four point correlator for scalar perturbations

produced during inflation. We will work in the simplest model of inflation mentioned

above, consisting of a slowly varying scalar coupled to two-derivative gravity, which is of-

ten referred to as the slow-roll model of inflation. This model is characterized by three

parameters, the Hubble constant during inflation, H, and the two slow-roll parameters,

denoted by ǫ, η, which are a measure of the deviation from de Sitter invariance. These

parameters are defined in eq. (2.3), eq. (2.4). In our calculation, which is already quite

complicated, we will work to leading order in ǫ, η. In this limit the effects of the slow vari-

ation of the potential can be neglected and the calculation reduces to one in dS space. The

tilt of the two-point scalar correlator, as measured for example by the Planck experiment,

suggest that ǫ, η are of order a few percent, and thus that the deviations from de Sitter

invariance are small, so that our approximation should be a good one.

In the slow-roll model of inflation we consider, one knows before hand, from straight-

forward estimates, that the magnitude of the four point scalar correlator is very small. The

calculation we carry out is therefore not motivated by the hope of any immediate contact

with observations. Rather, it is motivated by more theoretical considerations mentioned

above, namely, to explore the connection with calculations in AdS space and investigate

the role that conformal symmetry can play in constraining the inflationary correlators.

In fact, the calculation of the four point function in this model of inflation has already

been carried out in [3], using the so called “in-in” or Schwinger-Keldysh formalism. Quite

surprisingly, it turns out that the result obtained in [3] does not seem to satisfy the Ward

identities of conformal invariance. This is a very puzzling feature of the result.1 It seemed

to us that it was clearly important to understand this puzzle further since doing so would

have implications for other correlation functions as well, and this in fact provided one of

the main motivations for our work.

The result we obtain for the four point function using, as we mentioned above, tech-

niques motivated by the AdS/CFT correspondence, agrees with that obtained in [3]. Since

the final answer is quite complicated, this agreement between two calculations using quite

different methods is a useful check on the literature.
1We thank P. Creminelli and M. Simonovic for bringing this puzzle to our attention and for sharing

their Mathematica code where the Ward identities are checked with us.
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But, more importantly, the insights from AdS/CFT also help us resolve the puz-

zle regarding conformal invariance mentioned above. In fact techniques motivated from

AdS/CFT are well suited for the study of symmetry related questions in general, since

these techniques naturally lead to the wave function of the Universe which is related to the

partition function in the CFT.

We find that the wave function, calculated upto the required order for the four point

function calculation, is indeed invariant under conformal transformations. However our

calculation also reveals a subtlety, which is present in the de Sitter case and which does

not have an analogue in the AdS case. This subtlety, which holds the key to the resolution,

arises because one needs to proceed differently in calculating a correlation function from a

wave function as opposed to the partition function (in the presence of sources). Given a

wave function, as in the de Sitter case, one must carry out a further sum over all configu-

rations weighting them with the square of the wave function, as per the standard rules of

quantum mechanics, to obtain the correlation functions.

This sum also runs over possible values of the metric. This is a sign of the fact that the

metric is itself a dynamical variable on the late-time surface on which we are evaluating

the wave function. We emphasize that this is not in contradiction with the fact that the

metric perturbation becomes time independent at late times. Rather, the point is that

there is also a non-zero amplitude for this time-independent value to be non-trivial. In

contrast, in the AdS case, where the boundary value of the metric (the non-normalizable

mode) is a source, one does not carry out this further sum; instead correlation functions

are calculated by taking derivatives with respect to the boundary metric.

From a calculational perspective, this further sum over all configurations in the de

Sitter case requires a more complete fixing of gauge for the metric. This is not surprising

since even defining local correlators in a theory without a fixed background metric requires

a choice of gauge. This resulting gauge is not preserved in general by a conformal trans-

formation. As a result, a conformal transformation must be accompanied by a suitable

coordinate parameterization before it becomes a symmetry in the chosen gauge. Once this

additional parameterization is included, we find that the four point function does indeed

meet the resulting Ward identities of conformal invariance. We expect this to be true for

other correlation functions as well.

There is another way to state the fact above. The correlation functions that are

commonly computed in the AdS/CFT correspondence can be understood to be limits of

bulk correlation functions, where only normalizable modes are turned on [4]. However, as

emphasized in [5], the expectation values of de-Sitter perturbations that we are interested

in cannot be obtained in this way as a limit of bulk correlation functions. As a result, they

do not directly satisfy the Ward identities of conformal invariance, although a signature of

this symmetry remains in the wave function of the Universe from which they originate.

The Ward identities of conformal invariance, once they have been appropriately un-

derstood, serve as a highly non-trivial test on the result especially when the correlation

function is a complicated one, as in the case of the scalar four point function considered

here. The AdS/CFT point of view also suggests other tests, including the flat-space limit

where we check that the AdS correlator reduces to the flat space scattering amplitude of
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four scalars in the appropriate limit. In a third series of checks, we test the behavior of

the correlator in suitable limits that are related to the operator product expansion in a

conformal field theory. Our result meets all these checks.

Before proceeding let us discuss some of the other related literature on the subject.

For a current review on the present status of inflation and future planned experiments,

see [6]. Two reviews which discuss non-Gaussianity from the CMB and from large scale

structure are, [7], and [8] respectively. The scalar four point function in single field in-

flation has been discussed in [3, 9–12]. The general approach we adopt is along the lines

of the seminal work of Maldacena [13]. (See also [14].) Some other references which con-

tain a discussion of conformal invariance and its implications for correlators in cosmology

are [15–28]. Some discussion of consistency conditions which arise in the squeezed limit

can be found in [14, 29–41]. An approach towards holography in inflationary backgrounds

is given in [42, 43].

This paper is structured as follows. Some basic concepts which are useful in the

calculation are discussed in section 2, including the connection between the wave function

in dS space and the partition function in AdS space. Issues related to conformal invariance

are discussed in section 3. A term in the wave function needed for the four point correlator

is then calculated in section 4, leading to the final result for the correlator in section 5.

Important tests of the result are carried out in section 6 including a discussion of the Ward

identities of conformal invariance. Finally, we end with a discussion in section 7. There

are six important appendices which contain useful supplementary material.

2 Basic concepts

We will consider a theory of gravity coupled to a scalar field, the inflaton, with action

S =

∫
d4x

√−gM2
Pl

[
1

2
R− 1

2
(∇φ)2 − V (φ)

]
. (2.1)

Note we are using conventions in which φ is dimensionless. Also note that in our conventions

the relation between the Planck mass and the gravitational constant is

M2
Pl =

1

8πGN
. (2.2)

If the potential is slowly varying, so that the slow-roll parameters are small,

ǫ ≡
(
V ′

2V

)2

≪ 1 (2.3)

and

η ≡ V ′′

V
≪ 1, (2.4)

then the system has a solution which is approximately de Sitter space, with metric,

ds2 = −dt2 + a2(t)
3∑

i=1

dxidxi, (2.5)

a2(t) = e2Ht, (2.6)
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where the Hubble constant is,

H =

√
V

3
. (2.7)

This solution describes the exponentially expanding inflationary Universe.

The slow-roll parameters introduced above can be related to time derivatives of the

Hubble constant, in the slow-roll approximation, as follows,

ǫ = − Ḣ

H2
, (2.8)

while η is given by,

η = ǫ− Ḧ

2HḢ
. (2.9)

Using the slow-roll approximation we can also express ǫ in terms of the rate of change

of the scalar as,

ǫ =
1

2

φ̇2

H2
. (2.10)

de Sitter space is well known to be a highly symmetric space with symmetry group

SO(1, 4). We will refer to this group as the conformal group because it is also the symmetry

group of a conformal field theory in 3 dimensions. This group is ten dimensional. It consists

of 3 rotations and 3 translations in the xi directions, which are obviously symmetries of

the metric, eq. (2.5); a scale transformations of the form,

xi → λxi, t→ t− 1

H
log(λ); (2.11)

and 3 special conformal transformations whose infinitesimal form is

xi → xi − 2(bjx
j)xi + bi

(∑

j

(xj)2 − e−2Ht

H2

)
, (2.12)

t→ t+ 2
bjx

j

H
, (2.13)

where bi, i = 1, 2, 3 are infinitesimal parameters. This symmetry group will play an impor-

tant role in our discussion below.

As mentioned above during the inflationary epoch the Hubble constant varies with

time and de Sitter space is only an approximation to the space-time metric. The time

varying Hubble constant also breaks some of the symmetries of de Sitter space. While

translations and rotations in the xi directions are left unbroken, the scaling and special

conformal symmetries are broken. However, as long as the slow-roll parameters ǫ, η, are

small this breaking is small and the resulting inflationary spacetime is still approximately

conformally invariant.

– 5 –



J
H
E
P
0
7
(
2
0
1
4
)
0
1
1

2.1 The perturbations

Next we turn to describing perturbation in the inflationary spacetime. Following, [13], we

write the metric in the ADM form,

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt). (2.14)

By suitable coordinate transformations we can set the lapse function

N = 1 (2.15)

and the shift functions to vanish,

Ni = 0. (2.16)

The metric then takes the form,

ds2 = −dt2 + hijdx
idxj . (2.17)

We will work in this gauge throughout in the following discussion.

The metric of dS space can be put in this form, eq. (2.5) with

hij = e2Htδij . (2.18)

Perturbations about dS space take the form

hij = e2Htgij , (2.19)

with

gij = δij + γij , (2.20)

γij = 2ζδij + γ̂ij . (2.21)

By definition the metric perturbation γ̂ij meets the condition,

γ̂ii = 0. (2.22)

The tensor modes are given by γ̂ij . Let us note here that the expansion in eq. (2.21)

is true to lowest order in the perturbations, higher order corrections will be discussed in

appendix D and will be shown to be unimportant to the order we work.

Besides perturbations in the metric there are also perturbations in the inflaton,

φ = φ̄(t) + δφ (2.23)

where φ̄(t) is the background value of the inflaton.

The metric of dS space, eq. (2.17), eq. (2.18) is rotationally invariant with SO(3)

symmetry in the xi directions. This invariance can be used to classify the perturbations.

There are two types of perturbations, scalar and tensor, which transform as spin 0 and spin

2 under the rotation group respectively. The tensor perturbations arise from the metric,

γ̂ij . The scalar perturbation physically arises due to fluctuations in the inflaton field.

We turn to describing these perturbations more precisely next.
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2.1.1 Gauge 1

We will be especially interested in understanding the perturbations at sufficiently late time,

when their wavelength becomes bigger than the Horizon scale H. At such late times the

perturbations become essentially time independent. It turns out that the coordinate trans-

formations used to bring the metric in the form eq. (2.14) meeting conditions, eq. (2.15),

eq. (2.16), does not exhaust all the gauge invariance in the system for describing such time

independent perturbations. Additional spatial reparameterizations of the kind

xi → xi + vi(x) (2.24)

can be carried out which keep the form of the metric fixed. These can be used to impose

the condition

∂iγ̂ij = 0. (2.25)

From eq. (2.22), eq. (2.25) we see that γ̂ij is now both transverse and traceless, as one

would expect for the tensor perturbations.

In addition, a further coordinate transformation can also be carried out which is a

time parameterization of the form,

t→ t+ ǫ(x). (2.26)

Strictly speaking to stay in the gauge eq. (2.15), eq. (2.16), this time parameterization

must be accompanied by a spatial parameterization

xi → xi + vi(t,x), (2.27)

where to leading order in the perturbations

vi = − 1

2H
(∂iǫ)e

−2Ht. (2.28)

However, at late time we see that vi → 0 and thus the spatial parameterization vanishes.

As a result this additional coordinate transformation does not change γ̂ij which continues

to be transverse, upto exponentially small corrections.

By suitably choosing the parameter ǫ in eq. (2.26) one can set the perturbation in the

inflaton to vanish,

δφ = 0. (2.29)

This choice will be called gauge 1 in the subsequent discussion. The value of ζ, defined

in eq. (2.21), in this gauge, then corresponds to the scalar perturbation. It gives rise to

fluctuations of the spatial curvature.

2.1.2 Gauge 2

Alternatively, having fixed the spatial reparameterizations so that γ̂ij is transverse,

eq. (2.25), we can then choose the time parameterization, ǫ, defined in eq. (2.26) differently,

so that

ζ = 0, (2.30)

– 7 –
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and it is the scalar component of the metric perturbation, instead of δφ, that vanishes.

This choice will be referred to as gauge 2. The scalar perturbations in this coordinate

system are then given by fluctuations in the inflaton δφ.

This second gauge is obtained by starting with the coordinates in which the perturba-

tions take the form given in gauge 1, where they are described by ζ, γ̂ij , and carrying out

a time reparameterization

t→ t+
ζ

H
, (2.31)

to meet the condition eq. (2.30). The tensor perturbation γ̂ij is unchanged by this coordi-

nate transformation. If the background value of the inflaton in the inflationary solution is

φ = φ̄(t), (2.32)

the resulting value for the perturbation δφ this gives rise to is2

δφ = −
˙̄φζ

H
. (2.33)

Using eq. (2.10) we can express this relation as

δφ = −
√
2ǫζ. (2.34)

For purposes of calculating the 4-pt scalar correlator at late time, once the modes have

crossed the horizon, it will be most convenient to first use gauge 2, where the perturbation

is described by fluctuations in the scalar, δφ, and then transform the resulting answer to

gauge 1, where the perturbation is given in terms of fluctuation in the metric component,

ζ. This turns out to be a convenient thing to do for tracing the subsequent evolution of

scalar perturbations, since a general argument, following essentially from gauge invariance,

says that ζ must be a constant once the mode crosses the horizon. This fact is discussed

in [44–49], for a review see section [5.4] of [50].

2.2 Basic aspects of the calculation

Let us now turn to describing some basic aspects of the calculation. Our approach is based

on that of [13]. We will calculate the wave function of the Universe as a functional of the

scalar and tensor perturbations. Once this wave function is known correlation functions

can be calculated from it in a straightforward manner.

In particular we will be interested in the wave function at late times, when the modes

of interest have crossed the horizon so that their wavelength λ≫ H. At such late times the

Hubble damping results in the correlation functions acquiring a time independent form.

Since the correlation functions become time independent the wave function also becomes

time independent at these late enough times.

2There are corrections involving higher powers of the perturbation in this relation, but these will not be

important in our calculation of the four point function.
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The perturbations produced during inflation in the slow-roll model are known to be

approximately Gaussian. This allows the wave function, which is a functional of the per-

turbations in general, to be written as a power series expansion of the form,

ψ[χ(x)] = exp

[
− 1

2

∫
d3xd3yχ(x)χ(y)〈O(x)O(y)〉

+
1

6

∫
d3xd3yd3z χ(x)χ(y)χ(z)〈O(x)O(y)O(z)〉+ · · ·

]
.

(2.35)

This expression is schematic, with χ standing for a generic perturbation which could be

a scalar or a tensor mode, and the coefficients 〈O(x)O(y)〉, 〈O(x)O(y)O(z)〉 being func-

tions which determine the two-point three point etc correlators. Let us also note, before

proceeding, that the coefficient functions will transform under the SO(1, 4) symmetries like

correlation functions of appropriate operators in a Euclidean Conformal Field Theory, and

we have denoted them in this suggestive manner to emphasize this feature.

For our situation, we have the tensor perturbation, γij , and the scalar perturbation,

which in gauge 1 is given by δφ. With a suitable choice of normalization the wave function

takes the form3

ψ[δφ, γij ] = exp

[
M2

Pl

H2

(
− 1

2

∫
d3x

√
g(x) d3y

√
g(y) δφ(x)δφ(y)〈O(x)O(y)〉

− 1

2

∫
d3x

√
g(x) d3y

√
g(y) γij(x)γkl(y)〈T ij(x)T kl(y)〉

− 1

4

∫
d3x

√
g(x) d3y

√
g(y) d3z

√
g(z)

δφ(x)δφ(y)γij(z)〈O(x)O(y)T ij(z)〉

+
1

4!

∫
d3x

√
g(x) d3y

√
g(y) d3z

√
g(z) d3w

√
g(w)

δφ(x)δφ(y)δφ(z)δφ(w)〈O(x)O(y)O(z)O(w)〉+ · · ·
)]
.

(2.36)

Where g(x) = det[gij(x)] and gij is given in eq. (2.20).

The terms which appear explicitly on the r.h.s. of eq. (2.36) are all the ones needed for

calculating the four point scalar correlator of interest in this paper. The ellipses indicate

additional terms which will not enter the calculation of this correlation function, in the

leading order approximation in
M2

pl

H2 , where loop effects can be neglected. The graviton two-

point correlator and the graviton-scalar-scalar three point function are relevant because

they contribute to the scalar four point correlator after integrating out the graviton at tree

level as we will see below in more detail in sec 5.

In fact only a subset of terms in eq. (2.36) are relevant for calculating the 4-pt scalar

correlator. As was mentioned in subsection 2.1.2 we will first calculate the result in gauge 2.

Working in this gauge, where ζ = 0, and expanding the metric gij in terms of the pertur-

3The coefficient functions include contact terms, which are analytic in some or all of the momenta.
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bation γij , eq. (2.20), one finds that the terms which are relevant are

ψ[δφ(k), γs(k)]= exp

[
M2

Pl

H2

(
− 1

2

∫
d3k1

(2π)3
d3k2

(2π)3
δφ(k1)δφ(k2)〈O(−k1)O(−k2)〉 (2.37)

− 1

2

∫
d3k1

(2π)3
d3k2

(2π)3
γs(k1)γ

s′(k2)〈T s(−k1)T
s′(−k2)〉

− 1

4

∫
d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3
δφ(k1)δφ(k2)γ

s(k3)〈O(−k1)O(−k2)T
s(−k3)〉

+
1

4!

∫ 4∏

J=1

{
d3kJ

(2π)3
δφ(kJ)

}
〈O(−k1)O(−k2)O(−k3)O(−k4)〉

)]
.

In eq. (2.37) we have shifted to momentum space, with

δφ(x) =

∫
d3k

(2π)3
δφ(k)eik·x (2.38)

and similarly for γij and all the coefficient functions appearing in eq. (2.37). Also, since

γij is transverse we can write

γij(k) =
2∑

s=1

γs(k)ǫ
s
ij(k), (2.39)

where ǫsij(k), s = 1, 2, is a basis of polarization tensors which are transverse and traceless.

Some additional conventions pertaining to our definition for ǫsij etc are given in appendix A.

Of the four coefficient functions which appear explicitly on the r.h.s. of eq. (2.37),

two, the coefficient functions 〈O(k1)O(k2)〉 and 〈T s(k1)T
s′(k2)〉 are well known. The

function 〈O(k1)O(k2)T
s(k3)〉 was obtained in [13], for the slow-roll model of inflation

being considered here, and also obtained from more general considerations in [27], see

also [21]. These coefficient functions are also summarized in appendix A. This only leaves

the 〈O(k1)O(k2)O(k3)O(k4)〉 coefficient function. Calculating it will be one of the major

tasks in this paper.

Conventions. Before proceeding it is worth summarizing some of our conventions. Vec-

tors with components in the xi directions will be denoted as boldface, e.g., x,k, while their

magnitude will be denoted without the boldface, e.g., x = |x|, k = |k|. Components of such

vectors will be denoted without bold face, e.g., ki. The Latin indices on these components

will be raised and lowered using the flat space metric, so that ki = ki, x
i = xi, and also

k · x = kixi.

2.3 The wave function

The wave function as a functional of the late time perturbations can be calculated by doing

a path integral,

ψ[χ(x)] =

∫ χ(x)

DχeiS , (2.40)

where S is the action and χ stands for the value a generic perturbation takes at late time.
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To make the path integral well defined one needs to also specify the boundary condi-

tions in the far past. In this paper we take these boundary conditions to correspond to

the standard Bunch Davies boundary conditions. In the far past, the perturbations had a

wavelength much shorter than the Hubble scale, the short wavelengths of the modes makes

them insensitive to the geometry of de Sitter space and they essentially propagate as if in

Minkowski spacetime. The Bunch Davies vacuum corresponds to taking the modes to be

in the Minkowski vacuum at early enough time.

An elegant way to impose this boundary condition in the path integral above, as

discussed in [13], is as follows. Consider de Sitter space in conformal coordinates,

ds2 =
1

H2η2

(
− dη2 +

3∑

i=1

(dxi)2
)
, (2.41)

with the far past being η → −∞, and late time being η → 0. Continue η so that it

acquires a small imaginary part η → η(1 − iǫ), ǫ > 0. Then the Bunch Davies boundary

condition is correctly imposed if the path integral is done over configurations which vanish

at early times when η → −∞(1 − iǫ). Note that in general the resulting path integral is

over complex field configurations.

As an example, for a free scalar field with equation,

∇2φ = 0, (2.42)

a mode with momentum k, φ = fk(η)e
ik·x which meets the required boundary condition is

fk = c1(k)(1− ikη)eikη. (2.43)

The second solution,

fk = c2(k)(1 + ikη)e−ikη (2.44)

is not allowed. Since f~k 6= f∗~k
the resulting configuration which dominates the saddle point

is complex.

With the Bunch Davies boundary conditions the path integral is well defined as a

functional of the boundary values of the fields at late time.

We will evaluate the path integral in the leading saddle-point approximation. Correc-

tions corresponding to quantum loop effects are suppressed by powers of H/MPl and are

small as long as H/MPl ≪ 1. In this leading approximation the procedure to be followed

is simple. We expand the action about the zeroth order inflationary background solution.

Next, extremize the resulting corrections to the action as a function of the perturbations,

to get the equations which must be satisfied by the perturbations. Solve these equations

subject to the Bunch Davies boundary conditions, in the far past, and the given boundary

values of the perturbations at late times. And finally evaluate the correction terms in the

action on-shell, on the resulting solution for the perturbations, to obtain the action as a

functional of the late time boundary values of the perturbations. This gives, from eq. (2.40)

ψ[χ(x)] = eiS
dS
on-shell

[χ(x)]. (2.45)
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This procedure is further simplified by working in the leading slow-roll approximation,

as we will do. In this approximation, as was mentioned above, the metric becomes that

of de Sitter space, eq. (2.5) with constant H. Since the slow-roll parameters, eq. (2.3),

eq. (2.4) are put to zero, the potential V , eq. (2.1), can be taken to be a constant, related

to the Hubble constant by eq. (2.7). The resulting action for the small perturbations is

then given by

S =

∫
d4x

√
−det(ḡµν + δgµν)M

2
Pl

[
1

2
R(ḡµν + δgµν)− V − 1

2
(∇δφ)2

]
. (2.46)

Here ḡµν denotes the background value for the metric in de Sitter space, eq. (2.5), and V is

constant, as mentioned above. δgµν is the metric perturbation, and δφ is the perturbation

for the scalar field, eq. (2.23).

Notice that the action for the perturbation of the scalar, is simply that of a minimally

coupled scalar field in de Sitter space. In particular self interaction terms coming from

expanding the potential, for example a (δφ)4 term which would be of relevance for the four-

point function, can be neglected in the leading slow-roll approximation. One important

consequence of this observation is that the correlation functions to leading order in the

slow-roll parameters must obey the symmetries of de Sitter space. In particular, this must

be true for the scalar 4-point function.

2.4 The partition function in AdS and the wave function in dS

The procedure described above for calculating the wave function in de Sitter space is very

analogous to what is adopted for calculating the partition function AdS space. In fact this

connection allows us to conveniently obtain the wave function in de Sitter space from the

partition function in AdS space, after suitable analytic continuation, as we now explain.

Euclidean AdS4 space has the metric (in Poincare coordinates):

ds2 = R2
AdS

1

z2

(
dz2 +

3∑

i=1

(dxi)2
)

(2.47)

with z ∈ [0,∞]. R is the radius of AdS space.

After continuing z,H to imaginary values,

z = −iη, (2.48)

and,

RAdS =
i

H
(2.49)

where η ∈ [−∞, 0] and H is real, this metric becomes that of de Sitter space given in

eq. (2.41).

The partition function in AdS space is defined as a functional of the boundary values

that fields take as z → 0. In the leading semi-classical approximation it is given by

Z[χ(x)] = e−SAdS

on-shell (2.50)

– 12 –



J
H
E
P
0
7
(
2
0
1
4
)
0
1
1

where SAdS
on-shell is the on shell action which is obtained by substituting the classical solution

for fields which take the required boundary values, z → 0, into the action. We denote these

boundary values generically as χ(x) in eq. (2.50).

Besides the boundary conditions at z → 0 one also needs to impose boundary condi-

tions as z → ∞ to make the calculation well defined. This boundary condition is imposed

by requiring regularity for fields as z → ∞.

For example, for a free scalar field with momentum k, φ = fke
ik·x, the solution to the

wave equation, eq. (2.42) is,

fk = c1(k)(1 + kz)e−kz + c2(k)(1− kz)ekz. (2.51)

Regularity requires that c2 must vanish, and the solution must be

fk = c1(k)(1 + kz)e−kz. (2.52)

At z → 0 the solution above goes to a z independent constant

fk = c1(k). (2.53)

More generally a solution is obtained by summing over modes of this type,

φ(z,x) =

∫
d3k

(2π)3
φ(k)(1 + kz)e−kzeik·x. (2.54)

Towards the boundary, as z → 0, this becomes,

φ(x) =

∫
d3k

(2π)3
φ(k)eik·x. (2.55)

The AdS on-shell action is then a functional of φ(k).

The reader will notice that the relation between the partition function and on-shell

action in AdS space, eq. (2.50), is quite analogous to that between the wave function and

on shell action in dS space eq. (2.45). We saw above that after the analytic continuation,

eq. (2.48), eq. (2.49), the AdS metric goes over to the metric in dS space. It is easy to

see that this analytic continuation also takes the solutions for fields in AdS space which

meet the regularity condition as z → ∞, to those in dS space meeting the Bunch Davies

boundary conditions. For example, the free scalar which meets the regularity condition, as

z → 0, in AdS, is given in eq. (2.52), and this goes over to the solution meeting the Bunch

Davies boundary condition in dS space, eq. (2.43). Also after the analytic continuation

the boundary value of a field as z → 0 in AdS, becomes the boundary value at late times,

as η → 0 in dS, as is clear from comparing eq. (2.53) with the behavior of the solution in

eq. (2.43) at η → 0.

These facts imply that the on-shell action in AdS space when analytically continued

gives the on-shell action in dS space. For example, for a massless scalar field the action in

AdS space is a functional of the boundary value for the field φ(k), eq. (2.55), and also on

the AdS radius RAdS. We denote

SAdS
on-shell = SAdS

on-shell[φ(k), RAdS]. (2.56)
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to make this dependence explicit. The on shell action in dS space is then obtained by

taking RAdS → i/H,

Sds
on-shell[φ(k), H] = −i SAdS

on-shell

[
φ(k),

i

H

]
. (2.57)

Note that on the l.h.s. in this equation φ(k) refers to the late time value of the scalar field

in dS space. The factor of i on the r.h.s. arises because the analytic continuation eq. (2.48)

leads to an extra factor of i when the z integral involved in evaluating the AdS action is

continued to the η integral in dS space.

Two more comments are worth making here. First, it is worth being more explicit

about the analytic continuation, eq. (2.48), eq. (2.49). To arrive at dS space with the Bunch

Davies conditions correctly imposed one must start with regular boundary condition in AdS

space, z → ∞, and then continue z from the positive real axis to the negative imaginary

axis by setting

z = |z|eiφ (2.58)

and taking φ to go from 0 to π/2. In particular when φ = π/2− ǫ, η = iz is given by

η = −|z|(1− iǫ) = −|η|(1− iǫ), (2.59)

so that η has a small positive imaginary part. Imposing the regularity condition then

implies that fields vanish when η → ∞, this is exactly the condition required to impose

the Bunch Davies boundary condition.

Second, one subtlety we have not discussed is that the resulting answers for correlation

functions can sometimes have divergences and needs to be regulated by introducing a

suitable cutoff in the infra-red. Physical answers do not depend on the choice of cut-off

procedure and in any case this issue will not arise for the calculation of interest here, which

is to obtain the scalar four-point correlator.

2.5 Feynman-Witten diagrams in AdS

As we mentioned above, the wave function of the Universe helps to elucidate the role of

various symmetries, such as conformal invariance. This itself makes the on-shell action in

AdS a useful quantity to consider. However, there is another advantage in first doing the

calculation in anti-de Sitter space.

The various coefficient functions in the wave function of the Universe can be computed

by a set of simple diagrammatic rules. These Feynman diagrams in AdS are sometimes

called “Witten diagrams”. They are closely related to flat-space Feynman diagrams, except

that flat space propagators must be replaced by the appropriate Green functions in AdS.

Taking the limit where the external points of the correlators reach the boundary, we obtain

correlators in one-lower dimension, which are conformally invariant.

These correlators have been extensively studied in the AdS/CFT literature, where sev-

eral powerful techniques have been devised to calculate them, and check their consistency.

We will bring some of these techniques to bear upon this calculation below. In fact, the
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four point scalar correlator that we are interested in, has been computed in position space

in [51] and in [52]. Here we will compute this quantity in momentum space.

Although, in principle, we could have obtained this answer by Fourier transforming

the position space answers, it is much more convenient to do the calculation directly using

momentum space Feynman-Witten diagrams. The use of momentum space is particu-

larly convenient in odd boundary dimensions, since the propagators simplify greatly, and

exchange interactions can be evaluated by a straightforward algebraic procedure of com-

puting residues of a complex function, as we will see below.

2.6 Basic strategy for the calculation

Now that we have discussed all the required preliminaries in some detail, we are ready

to spell out the basic strategy that we will adopt in our calculation of the scalar four

point function. First, we will calculate the coefficient function 〈O(x1)O(x2)O(x3)O(x4)〉,
which, as was discussed in section 2.2, is the one coefficient function which is not already

known. This correlator is given by a simple set of Feynman-Witten diagrams that we can

evaluate in momentum space. With this coefficient function in hand, all the relevant terms

in the on-shell AdS action are known, and we can analytically continue the Euclidean

AdS result of section 4.1 to de Sitter space in section 4.2. We then proceed to calculate

the four point scalar correlator from it as discussed in section 5. Before embarking on

the calculation though we let us first pause to discuss some general issues pertaining to

conformal invariance in the next section.

3 Conformal invariance

Working in the ADM formalism, with metric, eq. (2.14), the action, eq. (2.1), is given by

S =
M2

Pl

2

∫ √
−h

[
NR(3)−2NV +

1

N
(EijE

ij−E2)+
1

N
(∂tφ−N i∂iφ)

2−Nhij∂iφ∂jφ
]

(3.1)

where

Eij =
1

2
(∂thij −∇iNj −∇jNi),

E =Ei
i .

(3.2)

The equations of motion of Ni, N give rise to the constraints

∇i[N
−1(Ei

j − δijE)] = 0, (3.3)

R(3) − 2V − 1

N2
(EijE

ij − E2)− 1

N2
(∂tφ−N i∂iφ)

2 − hij∂iφ∂jφ = 0 (3.4)

respectively.

The constraints obtained by varying the shift functions, Ni, leads to invariance under

spatial reparameterizations, eq. (2.24). The constraint imposed by varying the lapse func-

tion, N , leads to invariance under time reparameterizations, eq. (2.26). Physical states

must meet these constraints. In the quantum theory this implies that the wave function
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must be invariant under the spatial reparameterizations and the time reparameterization,

eq. (2.24), eq. (2.26), for a pedagogical introduction see [53]. We will see that these condi-

tions give rise to the Ward identities of interest.

Under the spatial parameterization, eq. (2.24) the metric and scalar perturbations

transform as

γij → γij + δγij = γij −∇ivj −∇jvi, (3.5)

δφ→ δφ+ δ(δφ) = δφ− vk∂kδφ. (3.6)

Requiring that the wave function is invariant under the spatial parameterization imposes

the condition that

ψ[γij + δγij , δφ+ δ(δφ)] = ψ[γij , δφ]. (3.7)

For the wave function in eq. (2.36) imposing this condition in turn leads to constraints

on the coefficient functions. For example, it is straightforward to see, as discussed in

appendix B that we get the condition,

∂i〈Tij(x)O(y1)O(y2〉 = δ3(x− y1)〈∂yj
1

O(y1)O(y2)〉+ δ3(x− y2)〈O(y1)∂yj
2

O(y2)〉. (3.8)

Similar conditions rise for other correlation functions. These conditions are exactly the

Ward identities due to translational invariance in the conformal field theory.

Under the time reparameterizations, eq. (2.26), the metric transforms as

γij → γij + 2Hǫ(x)δij . (3.9)

The scalar perturbation, δφ, at late times is independent of t and thus is invariant under

time parameterization. The invariance of the wave function then gives rise to the condition

ψ[γij + 2Hǫ(x), δφ] = ψ[γij , δφ] (3.10)

which also imposes conditions on the coefficient functions. For example from eq. (2.37) we

get that the condition

〈Tii(x)O(y1)O(y2)〉 = −3δ3(x− y1)〈O(y1)O(y2)〉 − 3δ3(x− y2)〈O(y1)O(y2)〉 (3.11)

must be true, as shown in appendix B. Similarly other conditions also arise; these are all

exactly the analogue of the Ward identities in the CFT due to Weyl invariance, with O

being an operator of dimension 3.

The isometries corresponding to special conformal transformations were discussed in

eq. (2.12), eq. (2.13). We see that at late times when e−2Ht → 0 these are given by

xi → xi − 2(bjx
j)xi + bi

∑

j

(xj)2, (3.12)

t→ t+ 2
bjx

j

H
. (3.13)

We see that this is a combination of a spatial parameterization, eq. (2.24) and a time pa-

rameterization, eq. (2.26). The invariance of the wave function under the special conformal
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transformations then follows from our discussion above. It is easy to see, as discussed in

appendix B that the invariance of the wave function under conformal transformations leads

to the condition that the coefficient functions must be invariant under the transformations,

O(x) → O(x) + δO(x),

δO(x) = −6(x · b)O(x) +DO(x),

D ≡ x2(b · ∂)− 2(b · x)(x · ∂).
(3.14)

and

Tij(x) → Tij + δTij ,

δTij = −6(x · b)Tij − 2Mk
iTkj − 2Mk

jTik +DTij ,

Mk
i ≡ (xkbi − xibk),

D ≡ x2(b · ∂)− 2(b · x)(x · ∂).

(3.15)

The resulting conditions on the coefficient functions agree exactly with the Ward identities

for conformal invariance which must be satisfied by correlation function in the conformal

field theory.

Specifically for the scalar four point function of interest here, the relevant terms in

the wave function are given in eq. (2.37) in momentum space. The momentum space

versions of eq. (3.14), eq. (3.15) are given in the appendix B.2 in eq. (B.17), eq. (B.19),

eq. (B.21), eq. (B.22). It is easy to check that the two point functions, 〈O(k1)O(k2)〉
and 〈Tij(k1)Tkl(k2)〉 are both invariant under these transformations. The invariance of

〈O(k1)O(k2)T
s(k3)〉 was discussed e.g. in [21, 27]. In order to establish conformal in-

variance for the wave function it is then enough to prove that the coefficient function

〈O(k1)O(k2)O(k3)O(k4)〉 is invariant under the transformation eq. (B.21). We will see

that the answer we calculate in section 4 does indeed have this property.

3.1 Further gauge fixing and conformal invariance

We now come to an interesting subtlety which arises when we consider the conformal invari-

ance of correlation functions, as opposed to the wave function, in the de Sitter case. This

subtlety arises because one needs to integrate over the metric and scalar perturbations, to

calculate the correlation functions from the wave function. In order to do so the gauge

symmetry needs to be fixed more completely, as we will see in the subsequent discussion.

However, once this additional gauge fixing is done a general conformal transformation does

not preserve the choice of gauge. Thus, to test for conformal invariance of the resulting

correlation functions, the conformal transformation must be accompanied by a compensat-

ing coordinate transformation which restores the choice of gauge. As we describe below,

this compensating transformation is itself field-dependent. The invariance of the correla-

tion functions under the combined conformal transformation and compensating coordinate

transformation is then the signature of the underlying conformal invariance.

Let us note here that this subtlety does not have a corresponding analogue in the AdS

case, where one computes the partition function, and the boundary value of the metric

is a source which is non-dynamical. It is also worth emphasizing, before we go further,

– 17 –



J
H
E
P
0
7
(
2
0
1
4
)
0
1
1

that due to these complications it is in fact easier to test for the symmetries in the wave

function itself rather than in the correlators which are calculated from it. Calculating the

wave function by itself does not require the additional gauge fixing mentioned above. Thus

the wave function should be invariant separately under conformal transformations and

spatial reparameterizations. Once this is shown to be true the invariance of the probability

distribution function P [δφ] and all correlation functions under the combined conformal

transformation and gauge restoring parameterization then follows.

We will now discuss this issue in more detail. Let us begin by noting, as was discussed

in section 2, that the conditions, eq. (2.15), eq. (2.16), do not fix the gauge completely.

One has the freedom to do spatial reparameterizations of the form eq. (2.24), and at late

times, also a time parameterization of the form, eq. (2.26). Using this freedom one can

then fix the gauge further, for example, leading to gauge 1 or gauge 2 in section 2. In fact

it is necessary to do so in order to calculate correlation functions from the wave function,

otherwise one would end up summing over an infinite set of copies of the same physical

configuration.

As a concrete example, consider the case where we make the choice of gauge 2 of

subsection 2.1.2. In this gauge ζ = 0 and the metric γij is both traceless and transverse.

On carrying out a conformal transformation, the coordinates xi, t transform as given in

eq. (3.12) and eq. (3.13) respectively. As shown in appendix B eq. (B.12),

δγij(x) = 2Mm
jγim + 2Mm

iγmj − (x2bm − 2xm(x · b))∂γij(x)
∂xm

, (3.16)

where δγij = γ′ij(x)− γij(x) is the change in γij and Mm
j = xmbj − xjbm.

Since δγii = 0, γ′ij remains traceless and ζ continues to vanish. However

∂iδγij = −6bkγkj 6= 0, (3.17)

so we see that γ′ij(x) is not transverse anymore.

Now, upon carrying out a further coordinate transformation

xi → xi + vi(x) (3.18)

γij transforms as

γij(x) → γij(x) + δγij ,

δγij = −∂ivj − ∂jvi.
(3.19)

Choosing

vj(x) =
−6bkγkj(x)

∂2
(3.20)

it is easy to see that transformed metric perturbation γij continues to be traceless and

also now becomes transverse. The combination of the conformal transformation, eq. (3.12)

and the compensating spatial parameterization eq. (3.18), eq. (3.20), thus keep one in

gauge 2. Let us note here that we will work with perturbation with non-zero momentum,

thus 1
∂2 = − 1

k2
will be well defined.
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The scalar perturbation δφ transforms like a scalar under both the conformal trans-

formation, eq. (3.12) and the compensation parameterization eq. (3.18) with eq. (3.20).

It then follows that under the combined transformation which leaves one in gauge 2 it

transforms as follows:

δφ→ δφ+ δ(δφ), (3.21)

δ(δφ) = δC(δφ) + δR(δφ), (3.22)

where δC(δφ) is the change in δφ due to conformal transformation eq. (3.12),

δC
(
δφ(x)

)
= −(x2bi − 2xi(x · b)) ∂

∂xi
δφ(x) (3.23)

and δR(δφ) is the change in δφ under spatial parameterization eq. (3.18) with eq. (3.20)

δR
(
δφ(x)

)
= −vi(x)∂iδφ(x). (3.24)

It is important to note that the coordinate transformation parameter vi, eq. (3.19) is itself

dependent on the metric perturbation, γij , eq. (3.20). As a result the change in δφ under

the spatial parameterization is non-linear in the perturbations, γij , δφ. This is in contrast

to δC(δφ) which is linear in δφ. As we will see in section 6.1 when we discuss the four point

function in more detail, a consequence of this non-linearity is that terms in the probability

distribution function which are quadratic in δφ will mix with those which are quartic,

thereby ensuring invariance under the combined transformation, eq. (3.22).

The momentum space expression for δC
(
δφ(x)

)
is given in eq. (B.20) of appendix B.2.

We write here the momentum space expression for vi and δR
(
δφ(x)

)

vi(k) =
6bkγki(k)

k2
, (3.25)

δR
(
δφ(k)

)
= i6bkki

∫
d3k2
(2π)3

γki(k − k2)

|k − k2|2
δφ(k2). (3.26)

3.2 Conformal invariance of the four point correlator

Now consider the four point scalar correlator in gauge 2. It can be calculated from ψ[δφ, γij ]

by evaluating the functional integral:

〈δφ(x1)δφ(x2)δφ(x3)δφ(x4)〉 = N
∫

D[δφ]D[γij ]
4∏

i=1

δφ(xi) |ψ[δφ, γij ]|2. (3.27)

The normalization N is given by

N−1 =

∫
D[δφ]D[γij ] |ψ[δφ, γij ]|2. (3.28)

The integral over the field configurations in eq. (3.27) can be done in two steps. We can

first integrate out the metric to obtain a probability distribution which is a functional of

δφ alone,

P [δφ(x)] = N
∫

D[γij ] |ψ[δφ, γij ]|2, (3.29)
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and then use P [δφ(x)] to compute correlations of δφ, in particular the correlator,

〈δφ(x1)δφ(x2)δφ(x3)δφ(x4)〉 =
∫

D[δφ]

4∏

i=1

δφ(xi)P [δφ]. (3.30)

Note that the integral over the metric γij is well defined only because of the further gauge

fixing which was done leading to gauge 2.

The invariance of the wave function under conformal transformations and compen-

sating spatial reparameterizations implies that the probability distribution P [δφ] must be

invariant under the combined transformation generated by the conformal transformation

and compensating parameterization which leaves one in the gauge 2. This gives rise to the

condition

P [δφ+ δ(δφ)] = P [δφ] (3.31)

where δ(δφ) is given in eq. (3.22) with eq. (3.23) and eq. (3.24). We will see in section 6.1

that our final answer for P [δφ] does indeed meet this condition.

4 The 〈O(x1)O(x2)O(x3)O(x4)〉 coefficient function

We now compute the coefficient of the quartic term in the wave function of the Universe.

This coefficient is the same as the four point correlation function of marginal scalar oper-

ators in anti-de Sitter space. As explained above, this calculation has the advantage that

it can be done by standard Feynman-Witten diagram techniques. In the next section, we

put this correlator together with other known correlators to obtain the wave function of

the Universe at late times. This can then easily be used to compute the expectation value

in de Sitter space that we are interested in.

Additional conventions. Some additional conventions we will use are worth stating

here. The Greek indices µ, ν, · · · , take 4 values in the z, xi, i = 1, 2, 3, directions. The

inverse of the back ground metric ḡµν is denoted by ḡµν , while indices for the metric

perturbation δgµν are raised or lowered using the flat space metric, so that, e.g., δgµν =

ηµρδgρκη
κν .

4.1 The calculation in AdS space

We are now ready to begin our calculation of the 〈O(x1)O(x2)O(x3)O(x4)〉 coefficient

function. As discussed in subsection 2.6 we will first calculate the relevant term in the

partition function in Euclidean AdS space and then continue the answer to obtain this

coefficient function in dS space. This will allow us to readily use some of the features

recently employed in AdS space calculations. However, it is worth emphasizing at the

outset itself that it is not necessary to do the calculation in this way. The problem of

interest is well posed in de Sitter space and if the reader prefers, the calculation can be

directly done in de Sitter space, using only minor modifications in the AdS calculation.

The perturbations in dS space we are interested in can be studied with the action given

in eq. (2.46). For the analogous problem in AdS space we start with the action

S =
M2

Pl

2

∫
d4x

√
g
[
R− 2Λ− (∇δφ)2

]
(4.1)
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where gµν here is a Euclidean signature metric, and Λ, the cosmological constant. AdS

space arises as the solution of this system with metric, eq. (2.47), and with the scalar

δφ = 0. The radius RAdS in eq. (2.47) is related to Λ,4 by

Λ = − 3

R2
AdS

. (4.2)

To simplify the analysis it is convenient to set RAdS = 1, the dependence on RAdS

can be restored by noting that the action is dimensionless, so that the prefactor which

multiples the action must appear in the combination
M2

Pl
R2

AdS

2 . The metric in eq. (2.47)

then becomes

ds2 =
dz2 + (dxi)2

z2
(4.3)

where the index i takes values, i = 1, 2, 3.

For studying the small perturbations we expand the metric by writing

gµν = ḡµν + δgµν (4.4)

where ḡµν is the AdS metric given in eq. (4.3) and δgµν is the metric perturbation. Ex-

panding the action, eq. (4.1) in powers of the perturbations δgµν and δφ then gives,

S =S0 + S(2)
grav −

M2
Pl

2

∫
d4x

√
ḡ ḡµν ∂µ(δφ)∂ν(δφ) + Sint. (4.5)

S0 in eq. (4.5) is the action for the background AdS space with metric eq. (4.3). S
(2)
grav is the

quadratic part of the metric perturbation. Using the action given in [54] (see also eq. (98)

in [55]), and using the first order equations of motion the quadratic action for the graviton

can be simplified to [56]

S(2)
grav =

M2
Pl

8

∫
d4x

√
ḡ
(
δ̃g

µν
�δgµν + 2δ̃g

µν
Rµρνσδg

ρσ + 2∇ρδ̃gρµ∇σ δ̃g
µ

σ

)
, (4.6)

with δ̃g
µν

= δgµν − 1
2 ḡ

µνδgαα. We also expand Sint to linear order in δgµν , since higher

order terms are not relevant to our calculation.

Sint =
M2

Pl

2

∫
d4x

√
ḡ
1

2
δgµνTµν , (4.7)

where the scalar stress energy is

Tµν = 2∂µ(δφ)∂ν(δφ)− ḡµν ḡ
αβ∂α(δφ)∂β(δφ). (4.8)

Let us note that the quadratic term, eq. (4.6), can also be written as, see eq. (98) in [55],

S(2)
grav =

M2
Pl

2

∫
d4x

√
ḡ

[
− 2Λ

{
− 1

4
δgαβδg

αβ +
1

8
(δgαα)

2

}
+

{
−R

(
1

8
(δgαα)

2 − 1

4
δgαβδg

αβ

)

− δgνβδgβαR
αν +

1

2
δgααδg

νβRνβ − 1

4
∇µδgαβ∇µδgαβ

+
1

4
∇µδg

α
α∇µδgββ − 1

2
∇βδg

α
α∇µδg

βµ +
1

2
∇αδgνβ∇νδgαβ

}]
. (4.9)

4Note that in our conventions Λ < 0 corresponds to AdS space.
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From eq. (4.5) we see that the scalar perturbation is a free field with only gravitational

interactions. The four point function arises from Sint due to single graviton exchange. The

scalar perturbation gives rise to a stress energy which sources a metric perturbation. Using

the action eq. (4.5) we can solve for δgµν in terms of this source and a suitable Green’s

function. Then substitute the solution for the metric perturbation back into the action to

obtain the on-shell action as a function of φki
.

From eq. (4.5) we see that to leading order the scalar perturbation, δφ, satisfies the

free equation in AdS space. For a mode with momentum dependence eik·x the solution,

which is regular as z → ∞ is given by

δφ = (1 + kz)e−kzeik·x. (4.10)

A general solution is obtained by linearly superposing solutions of this type. For calculating

the four point scalar correlator we take

δφ =
4∑

i=1

φ(ki)(1 + kiz)e
−kizeiki·x (4.11)

so that it is a sum of four modes with momenta k1, · · ·k4, with coefficients φ(ki).

Notice that towards the boundary of AdS space, as z → 0,

δφ =

4∑

i=1

φ(ki)e
ik·x. (4.12)

Thus the procedure above yields the partition function in AdS space as a function of the

external scalar source, eq. (4.12). On suitably analytically continuing this answer we will

then obtain the wave function in de Sitter space as a functional of the boundary value of

the scalar field given in eq. (4.12) from where the four point correlator can be obtained.

To proceed we must fix a gauge for the metric perturbations, because it is only after do-

ing so we can solve for the metric uniquely in terms of the matter stress tensor. Alternately

stated, the Feynman diagram for graviton exchange involves the graviton propagator, which

is well defined only after a choice of gauge for the graviton. We will choose the gauge

δgzz = 0, δgzi = 0, (4.13)

with i = 1, 2, 3, taking values over the xi directions. We emphasize that, at this stage,

our final answer for the correlation function in anti-de Sitter space, or the on shell action

is gauge invariant and independent of our choice of gauge above. After the analytic con-

tinuation, eq. (2.48), this gauge goes over to the gauge eq. (2.15), eq. (2.16) discussed in

section 2.1 in the context of dS space.5

The on-shell action, with boundary values set for the various perturbations, has an

expansion precisely analogous to (2.37). As we mentioned there, the only unknown co-

efficient is the four-point correlation function 〈O(x1)O(x2)O(x3)O(x4)〉. Although, at

tree-level this correlator can be computed by solving the classical equations of motion, it is

5The conformal time η in eq. (2.48) is related to t in eq. (2.14) by η = e−Ht.
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more convenient to simply evaluate the Feynman-Witten diagrams shown in figure 1. The

answer is then simply

SAdS
on-shell =

M2
plR

2
AdS

8

∫
dz1
z41

dz2
z42
d3x1d

3x2ḡ
i1i2 ḡj1j2Ti1j1(x1, z1)G

grav
i2j2,k2l2

(x1, z1, x2, z2)

ḡk1k2 ḡl1l2Tk1l1(x2, z2). (4.14)

In this equation the scalar stress-tensor Tij is given in (4.8), and the graviton propagator

Ggrav is given by [56, 57]

Ggrav
ij,kl =

∫
d3k

(2π)3
eik·(x1−x2)

∫ ∞

0

dp2

2

[
J 3

2

(pz1)J 3

2

(pz2)
√
z1z2

(
k2 + p2

) 1
2
(TikTjl + TilTjk − TijTkl)

]
, (4.15)

where

Tij = δij +
kikj
p2

. (4.16)

Since the x-integrals in (4.14) just impose momentum conservation in the boundary direc-

tions, the entire four-point function calculation boils down to doing a simple integral in

the radial (z) direction. Here, the factors of 1
z4

come from the determinant of the metric

to give the appropriate volume factor.

Note that the projector that appears in the graviton propagator is not transverse and

traceless. As we also discuss in greater detail below in section 6.2, this is the well known

analogue of the fact that the axial gauge propagator in flat space also has a longitudinal

component. For calculational purposes it is convenient to break up our answer into the

contribution from the transverse graviton propagator, and the longitudinal propagator.

This leads us to write the graviton propagator in a form that was analyzed in [58] (see eq.

4.14 of that paper), and we find that the four point correlation function

SAdS
on-shell =

M2
PlR

2
AdS

2

1

4
[W̃ + 2R], (4.17)

where, W̃ is obtained from the scalar stress tensor, eq. (4.8), and the transverse graviton

Greens function, G̃ij,kl(z1,x1; z2,x2).

W̃ =

∫
dz1d

3x1dz2d
3x2Ti1j1(z1,x1)δ

i1i2δj1j2G̃i2j2,k2l2(z1,x1; z2,x2)δ
k1k2δl1l2Tk1l1(z2,x2) .

(4.18)

In the expression above, we have also canceled off the volume factors of 1
z4

in (4.14) with

the two factors of z2 in the raised metric. The transverse graviton Green function is almost

the same as (4.15)

G̃ij,kl(z1,x1; z2,x2) =

∫
d3k

(2π)3
eik·(x1−x2)

∫ ∞

0

dp2

2

[
J 3

2

(pz1)J 3

2

(pz2)
√
z1z2

(
k2 + p2

) 1
2

(
T̃ikT̃jl + T̃ilT̃jk − T̃ij T̃kl

)]
,

(4.19)
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(a) S-Channel (b) T-Channel (c) U-Channel

Figure 1. Three different contribution corresponding to S,T and U-channel to the scalar four point

correlator are shown in the three figures. The brown solid vertical line represents the 3-dimensional

boundary of AdS4 at z = 0, the black solid lines are boundary to bulk scalar propagators whereas

the green wavy lines are graviton propagators in the bulk.

except that T̃ij , which appears here, is a projector onto directions perpendicular to k,

T̃ij = δij −
kikj
k2

. (4.20)

After momentum conservation is imposed on the intermediate graviton, we have k =

k1 + k2. Details leading to eq. (4.18) are discussed in appendix C.

The other term on the r.h.s. of eq. (4.17), R, arises from the longitudinal graviton

contribution (which is just the difference between (4.15) and (4.19)) and it is convenient

for us to write it as a sum of three terms,

R = R1 +R2 +R3, (4.21)

with,

R1 = −
∫
d3x1dz1
z21

Tzj(x1, z1)
1

∂2
Tzj(x1, z1),

R2 = −1

2

∫
d3x1dz1
z1

∂jTzj(x1, z1)
1

∂2
Tzz(x1, z1),

R3 = −1

4

∫
d3x1dz1
z21

∂jTzj(x1, z1)

(
1

∂2

)2

∂iTzi(x1, z1),

(4.22)

where 1
∂2 denotes the inverse of ∂xi∂xjδij .

Substituting for δφ from eq. (4.12) in the stress tensor eq. (4.8) one can calculate

both these contributions. The resulting answer is the sum of three terms shown in fig-

ure 1(a), 1(b), 1(c), which can be thought of as corresponding to S, T, and U channel
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contributions respectively. In the S channel exchange, figure 1(a), the momentum carried

by the graviton along the xi directions is,

k = k1 + k2. (4.23)

The contributions of the T, U channels can be obtained by replacing k2 ↔ k3, and

k2 ↔ k4 respectively.

The S channel contribution for W̃ which we denote by W̃S(k1,k2,k3,k4) turns out

to be

W̃S(k1,k2,k3,k4) = 16(2π)3 δ3
( 4∑

J=1

kJ

)( 4∏

I=1

φ(kI)

)
ŴS(k1,k2,k3,k4) (4.24)

where

ŴS(k1,k2,k3,k4) = −2

[{
k1.k3 +

{(k2 + k1).k1}{(k4 + k3).k3}
|k1 + k2|2

}

{
k2.k4 +

{(k1 + k2).k2}{(k3 + k4).k4}
|k1 + k2|2

}
+

{
k1.k4 +

{(k2 + k1).k1}{(k4 + k3).k4}
|k1 + k2|2

}

{
k2.k3 +

{(k2 + k1).k2}{(k4 + k3).k3}
|k1 + k2|2

}
−
{
k1.k2 −

{(k2 + k1).k1}{(k1 + k2).k2}
|k1 + k2|2

}

{
k3.k4 −

{(k3 + k4).k4}{(k4 + k3).k3}
|k1 + k2|2

}]
×

[{
k1k2(k1 + k2)

2
(
(k1 + k2)

2 − k23 − k24 − 4k3k4
)

(k1 + k2 − k3 − k4)2(k1 + k2 + k3 + k4)2(k1 + k2 − |k1 + k2|)(k1 + k2 + |k1 + k2|)
(
− k1 + k2

2k1k2
− k1 + k2

−(k1 + k2)2 + k23 + k24 + 4k3k4
+

k1 + k2
|k1 + k2|2 − (k1 + k2)2

+
1

−k1 − k2 + k3 + k4
− 1

k1 + k2 + k3 + k4
+

3

2(k1 + k2)

)
+ (1, 2 ↔ 3, 4)

}

− |k1 + k2|3
(
−k21 − 4k2k1 − k22 + |k1 + k2|2

) (
−k23 − 4k4k3 − k24 + |k1 + k2|2

)

2
(
−k21 − 2k2k1 − k22 + |k1 + k2|2

)2 (−k23 − 2k4k3 − k24 + |k1 + k2|2
)2

]
, (4.25)

The S channel contribution for R is denoted by RS(k1,k2,k3,k4) and is given by

RS(k1,k2,k3,k4) = 16(2π)3 δ3
( 4∑

J=1

kJ

)[ 4∏

I=1

φ(kI)

]
R̂S(k1,k2,k3,k4), (4.26)

where

R̂S(k1,k2,k3,k4) =
A1(k1,k2,k3,k4)

(k1 + k2 + k3 + k4)
+

A2(k1,k2,k3,k4)

(k1 + k2 + k3 + k4)2

+
A3(k1,k2,k3,k4)

(k1 + k2 + k3 + k4)3

(4.27)
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with

A1(k1,k2,k3,k4) =

[
k3 · k4

(
k1 · k2

(
k21 + k22

)
+ 2k21k

2
2

)

8|k1 + k2|2
+ {1, 2 ⇔ 3, 4}

]

− k21k2 · k3k
2
4 + k21k2 · k4k

2
3 + k1 · k3k

2
2k

2
4 + k1 · k4k

2
2k

2
3

2|k1 + k2|2

−
(
k1 · k2

(
k21 + k22

)
+ 2k21k

2
2

) (
k3 · k4

(
k23 + k24

)
+ 2k23k

2
4

)

8|k1 + k2|4
, (4.28)

A2(k1,k2,k3,k4) =− 1

8|k1 + k2|4
[
k3k4(k3 + k4)

(
k1 · k2

(
k21 + k22

)
+ 2k21k

2
2

)

(k3k4+k3 ·k4)+k1k2(k1+k2)(k1k2+k1 ·k2)
(
k3 ·k4

(
k23+k

2
4

)
+2k23k

2
4

) ]

− 1

2|k1 + k2|2
[
k21k2 · k3k

2
4(k2 + k3) + k21k2 · k4k

2
3(k2 + k4)

+ k1 · k3k
2
2k

2
4(k1 + k3) + k1 · k4k

2
2k

2
3(k1 + k4)

]

+

[
k1 · k2

8|k1 + k2|2
(
(k1 + k2)

(
k3 · k4

(
k23 + k24

)
+ 2k23k

2
4

)

+ k3k4(k3 + k4)(k3k4 + k3 · k4)
)
+ {1, 2 ⇔ 3, 4}

]
, (4.29)

A3(k1,k2,k3,k4) =− k1k2k3k4(k1 + k2)(k3 + k4)(k1k2 + k1 · k2)(k3k4 + k3 · k4)

4|k1 + k2|4

− k1k2k3k4(k1k2 · k3k4 + k1k2 · k4k3 + k1 · k3k2k4 + k1 · k4k2k3)

|k1 + k2|2

+
1

4|k1 + k2|2
[
k1k2(k1k2 + k1 · k2)

(
k3 · k4

(
k23 + k24

)
+ 2k23k

2
4

)

+ k1 · k2k3k4(k1 + k2)(k3 + k4)(k3k4 + k3 · k4) + {1, 2 ⇔ 3, 4}
]

+
3k1k2k3k4(k1k2 + k1 · k2)(k3k4 + k3 · k4)

4|k1 + k2|2
. (4.30)

Details leading to these results are given in appendix C. The full answer for SAdS
on-shell is

obtained by adding the contributions of the S, T, U channels. This gives, from eq. (4.17),

SAdS
on-shell =

M2
plR

2
AdS

4

[
1

2

{
W̃S(k1,k2,k3,k4) + W̃S(k1,k3,k2,k4) + W̃S(k1,k4,k3,k2)

}

+RS(k1,k2,k3,k4) +RS(k1,k3,k2,k4) +RS(k1,k4,k3,k2)

]
(4.31)

where W̃S(k1,k2,k3,k4) is given in eq. (4.24) and RS(k1,k2,k3,k4) is given in eq. (4.26).
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4.2 Analytic continuation to de Sitter space

As we explained in section 2.4, the on-shell action SAdS
on-shell obtained above can be analyti-

cally continued to the de Sitter space on-shell action SdS
on-shell. So, the AdS correlator that

we have computed above continues directly to the coefficient function in the wave function

of the Universe at late times on de Sitter space. More precisely, the result of eq. (4.31) is

just the Fourier transform of the coefficient function we are interested in by

〈O(x1)O(x2)O(x3)O(x4)〉 =
∫ 4∏

I=1

d3kI
(2π)3

ei(kI ·xI)〈O(k1)O(k2)O(k3)O(k4)〉 (4.32)

where

〈O(k1)O(k2)O(k3)O(k4)〉=− 4(2π)3δ3
( 3∑

i=1

ki

)[
1

2

{
ŴS(k1,k2,k3,k4)

+ ŴS(k1,k3,k2,k4) + ŴS(k1,k4,k3,k2)
}

+ R̂S(k1,k2,k3,k4)

+ R̂S(k1,k3,k2,k4) + R̂S(k1,k4,k3,k2)

]
(4.33)

where ŴS(k1,k2,k3,k4) is given in eq. (4.25) and R̂S(k1,k2,k3,k4) is given in eq. (4.27).

As was mentioned in subsection 2.2, once the coefficient function 〈O(x1)O(x2)O(x3)O(x4)〉
is obtained in eq. (4.32), eq. (4.33), we now know all the relevant terms in the wave function

in eq. (2.37).

5 The four point scalar correlator in de Sitter space

With the wave function eq. (2.37), in our hand we can proceed to calculate the scalar

four point correlator 〈δφ(x1)δφ(x2)δφ(x3)δφ(x4)〉 which was defined in eq. (3.27). As was

discussed in subsection 3.1 we need to fix the gauge more completely for this purpose. We

will work below first in gauge 2, described in subsection 2.1.2 and then at the end of the

calculation transform the answer to be in gauge 1, section 2.1.1.

In gauge 2 the metric perturbation γij is transverse and traceless. Working in this

gauge we follow the strategy outlined in subsection 3.1 and first integrate out the metric

perturbation to obtain a probability distribution P [δφ] defined in eq. (3.29). The functional

integral over γij is quadratic. Integrating it out gives, in momentum space,

γij(k) = − 1

2k3

∫
d3k1
(2π)3

d3k2
(2π)3

δφ(k1)δφ(k2)〈O(−k1)O(−k2)T
lm(k)〉P̂lmij(k) (5.1)

where

P̂ijkl(k) = T̃ik(k)T̃jl(k) + T̃il(k)T̃jk(k)− T̃ij(k)T̃kl(k),

with T̃ik(k) = δik −
kikk
k2

.
(5.2)
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eq. (5.1) determines the γij(k) in terms of the scalar perturbation δφ(k). Substituting back

then leads to the expression,

P [δφ(k)] = exp

[
M2

Pl

H2

(
−
∫

d3k1
(2π)3

d3k2
(2π)3

δφ(k1)δφ(k2)〈O(−k1)O(−k2)〉

+

∫ 4∏

J=1

{
d3kJ
(2π)3

δφ(kJ)

}{
1

12
〈O(−k1)O(−k2)O(−k3)O(−k4)〉

+
1

8
〈O(−k1)O(−k2)Tij(k1 + k2)〉′〈O(−k3)O(−k4)Tkl(k3 + k4)〉′

(2π)3δ3
( 4∑

J=1

kJ

)
P̂ijkl(k1 + k2)

1

|k1 + k2|3
})]

(5.3)

with P̂ijkl(k1 + k2) being defined in eq. (5.2) and the prime in 〈O(k1)O(k2)Tij(k3)〉′
signifies that a factor of (2π)3δ3

(∑4
l=1 kl

)
is being stripped off from the unprimed

〈O(k1)O(k2)Tij(k3)〉, i.e.

〈O(k1)O(k2)Tij(k3)〉 = (2π)3δ3
( 4∑

J=1

kJ

)
〈O(k1)O(k2)Tij(k3)〉′. (5.4)

We see that in the exponent on the r.h.s. of eq. (5.3) there are two terms which are

quartic in δφ, the first is proportional to the 〈O(k1)O(k2)O(k3)O(k4)〉 coefficient function,

and the second is an extra term which arises in the process of integration out γij to obtain

the probability distribution, P [δφ].

The four function can now be calculated from P [δφ(k)] using eq. (3.30). The answer

consists of two terms which come from the two quartic terms mentioned above respectively

and are straightforward to compute. We will refer to these two contributions with the

subscript “CF” and “ET” respectively below. The 〈O(k1)O(k2)O(k3)O(k4)〉 coefficient

function in eq. (5.3) gives the contribution,

〈δφ(k1)δφ(k2)δφ(k3)δφ(k4)〉CF = −8(2π)3δ3
( 4∑

J=1

kJ

)
H6

M6
Pl

1∏4
J=1(2k

3
J)[

1

2

{
ŴS(k1,k2,k3,k4) + ŴS(k1,k3,k2,k4) + ŴS(k1,k4,k3,k2)

}

+ R̂S(k1,k2,k3,k4) + R̂S(k1,k3,k2,k4) + R̂S(k1,k4,k3,k2)

]
(5.5)

where ŴS(k1,k2,k3,k4) is given in eq. (4.25) and R̂S(k1,k2,k3,k4) is given in eq. (4.27).

While the ET term which arises due to integration out γij gives,

〈δφ(k1)δφ(k2)δφ(k3)δφ(k4)〉ET = 4(2π)3δ3
( 4∑

J=1

kJ

)
H6

M6
Pl

1∏4
J=1(2k

3
J)[

ĜS(k1,k2,k3,k4) + ĜS(k1,k3,k2,k4) + ĜS(k1,k4,k3,k2)
] (5.6)

– 28 –



J
H
E
P
0
7
(
2
0
1
4
)
0
1
1

where

ĜS(k1,k2,k3,k4) =
S(k̃,k1,k2)S(k̃,k3,k4)

|k1 + k2|3
[{

k1.k3 +
{(k2 + k1).k1}{(k4 + k3).k3}

|k1 + k2|2
}

{
k2.k4 +

{(k1 + k2).k2}{(k3 + k4).k4}
|k1 + k2|2

}
+

{
k1.k4 +

{(k2 + k1).k1}{(k4 + k3).k4}
|k1 + k2|2

}

{
k2.k3 +

{(k2 + k1).k2}{(k4 + k3).k3}
|k1 + k2|2

}
−

{
k1.k2 −

{(k2 + k1).k1}{(k1 + k2).k2}
|k1 + k2|2

}

{
k3.k4 −

{(k3 + k4).k4}{(k4 + k3).k3}
|k1 + k2|2

}]
(5.7)

with

S(k̃,k1,k2) = (k1 + k2 + k3)−
∑

i>j kikj

(k1 + k2 + k3)
− k1k2k3

(k1 + k2 + k3)2

∣∣∣∣∣
k̃=−(k1+k2)

. (5.8)

The full answer for the four point correlator in gauge 2 is then given by combining

eq. (5.5) and eq. (5.6),

〈δφ(k1)δφ(k2)δφ(k3)δφ(k4)〉 =〈δφ(k1)δφ(k2)δφ(k3)δφ(k4)〉CF

+ 〈δφ(k1)δφ(k2)δφ(k3)δφ(k4)〉ET .
(5.9)

Let us end this subsection with one comment. We see from eq. (5.3) that the ET con-

tribution is determined by the 〈OOTij〉 correlator. As discussed in [27] this correlator is

completely fixed by conformal invariance, so we see conformal symmetry completely fixes

the ET contribution to the scalar 4 point correlator.

5.1 Final result for the scalar four point function

We can now convert the result to gauge 1 defined in 2.1.1 using the relation6 in eq. (2.34).

This gives

〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉 = (2π)3δ3
( 4∑

J=1

kJ

)
H6

M6
Plǫ

2

1∏4
J=1(2k

3
J)[

ĜS(k1,k2,k3,k4) + ĜS(k1,k3,k2,k4) + ĜS(k1,k4,k3,k2)

− ŴS(k1,k2,k3,k4)− ŴS(k1,k3,k2,k4)− ŴS(k1,k4,k3,k2)

− 2
{
R̂S(k1,k2,k3,k4) + R̂S(k1,k3,k2,k4) + R̂S(k1,k4,k3,k2)

}]

(5.10)

where ŴS(k1,k2,k3,k4) is given in eq. (4.25), R̂S(k1,k2,k3,k4) is given in eq. (4.27) and

ĜS(k1,k2,k3,k4) is given in eq. (5.7).

eq. (5.10) is one of the main results of this paper. The variables ki, i = 1, 2, 3, 4 refer to

the spatial momenta carried by the perturbations, The scalar perturbation ζ is defined in

6The relation in eq. (2.34) has corrections in involving higher powers of ζ which could lead to additional

contributions in eq. (5.10) that arise from the two point correlator of δφ. However these corrections are

further suppressed in the slow-roll parameters as discussed in appendix D.
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eq. (2.21), see also subsection 2.1.1, with ζ(k) being related to ζ(x) by a relation analogous

to eq. (2.38). H is the Hubble constant during inflation defined in eq. (2.6), eq. (2.7). Our

conventions for MPl are given in eq. (2.1), eq. (2.2). And the slow-roll parameter ǫ is

defined in eq. (2.3), eq. (2.10).

The result, eq. (5.10), was derived in the leading slow-roll approximation. One way

to incorporate corrections is to take H in eq. (5.10) to be the Hubble parameter when the

modes cross the horizon, at least for situations where all momenta, ki, i = 1, · · · 4, are com-

parable in magnitude. Additional corrections which depend on the slow-roll parameters,

ǫ, η, eq. (2.3), eq. (2.4), will also arise.

Comparison with previous results. Our result, eq. (5.10), agrees with that obtained

in [3]. The result in [3] consists of two terms, the CI term and the ET term, see eq. (4.7).

The CI term agrees with the R̂S terms in eq. (5.10) which arise due the longitudinal graviton

propagator, eq. (4.26). The Ŵ terms in eq. (5.10) arise from the transverse graviton prop-

agator, eq. (4.18), while the GS terms arise from the extra contribution due to integrating

out the metric perturbation, eq. (5.7); these two together agree with the ET term in [3].7

6 Tests of the result and behavior in some limits

We now turn to carrying out some tests on our result for the four point function and

examining its behavior in some limits. We will first verify that the result is consistent with

the conformal invariance of de Sitter space in subsection 6.1, and then examine its behavior

in various limits in subsection 6.3 and show that this agrees with expectations.

6.1 Conformal invariance

Our calculation for the 4 point function was carried out at leading order in the slow-roll

approximation, where the action governing the perturbations is that of a free scalar in de

Sitter space, eq. (2.42). Therefore the result must be consistent with the full symmetry

group of dS4 space which is SO(1, 4) as was discussed in section 2. In fact the wave function,

eq. (2.37), in this approximation itself should be invariant under this symmetry, as was

discussed in section 3, see also, [13, 14] and [27].

For the four point function we are discussing, as was discussed towards the end of

section eq. (3) after eq. (3.15), given the checks in the literature already in place only one

remaining check needs to be carried out to establish the invariance of all relevant terms

in the wave function. This is to check the invariance of the 〈O(k1)O(k2)O(k3)O(k4)〉
coefficient defined in eq. (4.32) and eq. (4.33). Conformal invariance of the coefficient

function 〈O(k1)O(k2)O(k3)O(k4)〉 gives rise to the equation

〈δO(k1)O(k2)O(k3)O(k4)〉+ 〈O(k1)δO(k2)O(k3)O(k4)〉
+〈O(k1)O(k2)δO(k3)O(k4)〉+ 〈O(k1)O(k2)O(k3)δO(k4)〉 = 0

(6.1)

where δO(k) is given in appendix B.2, eq. (B.21), and depends on b which is the parameter

specifying the conformal transformation.

7This comparison is carried out in a Mathematica file allchecks.nb, that is included with the source of

the arXiv version of this paper and also at suvratraju.net/software.
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The coefficient function 〈O(k1)O(k2)O(k3)O(k4)〉 contains an overall delta function

which enforces momentum conservation, eq. (4.33). As was argued in [14] all terms in

eq. (6.1) where the derivatives act on this delta function sum to zero, so the effect of the

derivative operators acting on it can be neglected. We can also use rotational invariance so

take b to point along the x1 direction. Our answer for 〈O(k1)O(k2)O(k3)O(k4)〉 is given
in eq. (4.33). The complicated nature of the answer makes it very difficult to check analyt-

ically whether eq. (6.1) is met. However, it is quite simple to check this numerically. One

finds that the l.h.s. of eq. (6.1) does indeed vanish with the four point function given in

eq. (4.33),8 there by showing that our result for 〈O(k1)O(k2)O(k3)O(k4)〉 does meet the re-

quirement of conformal invariance. This then establishes that all terms in the wave function

relevant for the four point function calculation are invariant under conformal symmetry.

A further subtlety having to do with gauge fixing, arises in discussing the conformal

invariance of correlation functions, as opposed to the wave function, as discussed in sec-

tion 3.1. The relevant terms in the probability distribution P [δφ] were obtained in eq. (5.3).

The scalar four point function would be invariant if P [δφ] is invariant under the combined

conformal transformation, eq. (3.12), eq. (3.13) and compensating coordinate transforma-

tion, eq. (3.18). From eq. (5.1) and eq. (3.20) we see that the compensating coordinate

transformation in this case is specified by

vi(k) = −3bk

k5

∫
d3k1
(2π)3

d3k2
(2π)3

δφ(k1)δφ(k2)〈O(−k1)O(−k2)T
lm(k)〉P̂lmki(k) (6.2)

with P̂lmki(k) being given in eq. (5.2).

Thus the total change in δφ, given in eq. (3.22) becomes,

δ(δφ(k)) = δC(δφ(k)) + δR(δφ(k)) (6.3)

where δC(δφ(k)) is given in eq. (B.20) of appendix B.2. Using eq. (5.1) in eq. (3.26),

δR(δφ(k)) becomes,

δR(δφ(k)) =− 3ikibk
∫

d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3
P̂lmki(k − k2)

|k − k2|5
δφ(k1)δφ(k2)δφ(k3)〈O(−k1)O(−k2)Tlm(−k + k2)〉.

(6.4)

Note in particular that vi given in eq. (6.2) is quadratic in the scalar perturbation and as

a result δR(δφ) in eq. (6.4) is cubic in δφ.

The probability distribution, P [δφ] upto quartic order in δφ is given in eq. (5.3) and

consists of quadratic terms and quartic terms. In appendix E we show that, upto quar-

tic order,

P [δφ(k)] = P [δφ(k) + δ
(
δφ(k)

)
] (6.5)

where δ
(
δφ(k)

)
is given in eq. (6.3), so that P [δφ] is invariant under δ(δφ) upto this order.

This invariance arises as follows. The quadratic term in P [δφ] gives rise to a contribution

8This check is carried out in the Mathematica file allchecks.nb available with the source of the arXiv

version of this paper and also at suvratraju.net/software.
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going like δφ4, since δR(δφ) is cubic in δφ. This is canceled by a contribution coming

from the quartic term due to δC(δφ) which is linear in δφ. eq. (6.5) establishes that the

probability distribution function and thus also the four point scalar correlator calculated

from it are conformally invariant.

6.2 Flat space limit

We now describe another strong check on our computation of the four point correlator:

its “flat space limit.” This is the statement that, in a particular limit, this correlation

function reduces to the flat space scattering amplitude of four minimally coupled scalars

in four dimensions! More precisely, we use the flat space limit developed in [59, 60], which

involves an analytic continuation of the momenta. In our context, the limit reads

lim
k1+k2+k3+k4→0

(k1+k2+k3+k4)
3

k1k2k3k4
〈O(k1)O(k2)O(k3)O(k4)〉′ = NS4(k̃1, k̃2, k̃3, k̃4) (6.6)

where S4 is the four-point scattering amplitude of scalars minimally coupled to gravity,

and the on-shell four-momenta of these scalars are related to the three-momenta of the

correlators by k̃n = (ikn,kn). This means that we add an additional planar direction to

the three boundary directions, and use ikn for the this component of the four-dimensional

momentum (which we call the z-component) and kn for the other three components. An

intuitive way to understand this limit is as follows. The four-point flat space scattering

amplitude conserves four-momentum, whereas the CFT correlator conserves just three-

momentum. The point where
∑
kn = 0 corresponds to the point in kinematic space,

where the four-momentum is conserved. The claim is that the CFT correlator has a pole

at this point, and the residue is just the flat space scattering amplitude.

Note that, consistent with our conventions, the prime on the correlator indicates that a

factor involving the delta function has been stripped off. Similarly, on the right hand side,

S4 is the flat-space scattering amplitude without the momentum conserving delta function.

Here, N is an unimportant numerical factor (independent of all the momenta) that we will

not keep track of, which just depends on the conventions we use to normalize the correlator

and the amplitude.

Before we show this limit, let us briefly describe the flat space scattering amplitude of

four minimally coupled scalars. In fact, the Feynman diagrams that contribute to this am-

plitude are very similar to the Witten diagrams of figure 1. The s-channel diagram is shown

in figure 2, and of course, the t and u-channel diagrams also contribute to the amplitude.

So, the flat-space amplitude using the diagram in figure 2 evaluates to

S4 = T flat
ij (k̃1, k̃2)G

flat-grav
ijkl (K̃s)T

flat
kl (k̃3, k̃4) + t+u-channels (6.7)

where K̃s = k̃1 + k̃2 and

T flat
i,j (k̃1, k̃2) = k̃i1k̃

j
2 −

1

2
(k̃1 · k̃2)δ

ij ,

Gflat-grav
ijkl (K̃s) =

1

K̃s
2 − iǫ

1

2

[(
T flat
ik T flat

jl + T flat
il T flat

jk − T flat
ij T flat

kl

)]
,

T flat
ij = δij +

K̃siK̃sj

(K̃s
0
)2

(6.8)
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k̃1

k̃2

k̃3

k̃4

K̃s

Figure 2. S-channel Feynman diagram for scattering of minimally coupled scalars

and we emphasize that in (6.7) the Latin indices are contracted only over the spatial

directions. In (6.8), K̃s
0
indicates the z-component of the exchanged momentum. The

reader should compare this formula to our starting formula for the four-point correlator

in (4.14). In fact, if we consider the pole in the p-integral at p = i(k1 + k2), in this

integral, we see that we will get the right flat space limit. However, in our calculation

it was convenient to divide the expression in (4.14) into two parts: a transverse graviton

contribution given in (4.18), and a longitudinal graviton contribution that we wrote as a

remainder comprised of three terms in (4.21).

We can make the same split for the flat-space amplitude, by replacing the graviton

propagator with a simplified version G̃flat-grav
ijkl , by replacing each T flat

ij with

T̃ flat
ij = δij −

K̃siK̃sj

(Ks)2
. (6.9)

and then writing

S4 = S̃4 + 2Rflat (6.10)

where S̃4 is given by an expression analogous to (6.7)

S̃4=T
flat
ij (k̃1, k̃2)G̃

flat-grav
ijkl (K̃s)T

flat
kl (k̃3, k̃4)+t+u-channels = k̃1ik̃2jP̂

ijkl(K̃s)k̃3kk̃4l. (6.11)

The second equality follows because projector in this simplified propagator now projects

onto traceless tensors that are transverse to K̃s, which we have denoted by P̂ ijkl(K̃s), as

in (5.2).

Now, consider the expression in (4.25). We see that the third order pole at kt =

(k1 + k2 + k3 + k4) is given by

ŴS =
k1ik2jk3kk4lP

ijkl

k3t

[{
k1k2(k1 + k2)

2
(
(k1 + k2)

2 − k23 − k24 − 4k3k4
)

(k1 + k2 − k3 − k4)2((k1 + k2)2 − |k1 + k2|2)

]
+O

(
1

k2t

)

=
1

k3t

k1k2k3k4
(k1 + k2)2 − |k1 + k2|2

k1ik2jk3kk4lP
ijkl +O

(
1

k2t

)

=
k1k2k3k4

k3t
S̃4 +O

(
1

k2t

)
. (6.12)
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All that remains to establish the flat space limit is to show that

lim
k1+k2+k3+k4→0

(k1 + k2 + k3 + k4)
3

k1k2k3k4
R̂S = Rflat. (6.13)

The algebra leading to this is a little more involved but as we verified this also remarkably

turns out to be true.9

So, we find that our complicated answer for the four-point scalar correlator reduces in

this limit precisely to the flat space scalar amplitude. This is a very non-trivial check on

our answer.

6.3 Other limits

In this subsection we consider our result for the four point function for various other limiting

values of the external momenta. The first limit we consider in subsection 6.3.1 is when one

of the four momenta goes to zero. Without any loss of generality we can take this to be

k4 → 0. The second limit we consider in subsection 6.3.2 is when two of the momenta, say

k1,k2 get large and nearly opposite to each other, while the others, k3,k4, stay fixed, so

that, k1 ≃ −k2, and k1, k2 ≫ k3, k4. In both cases we will see that the result agrees with

what is expected from general considerations. Finally, in subsection 6.3.3 we consider the

counter-collinear limit where the sum of two momenta vanish, say |k1 + k2| → 0. In this

limit we find that the result has a characteristic third order pole singularity resulting in a

characteristic divergence, as noted in [3].

6.3.1 Limit I: k4 → 0

This kind of a limit was first considered in [13] and is now referred to as a squeezed limit

in the literature. It is convenient to think about the behavior of the four point function in

this limit by analyzing what happens to the wave function eq. (2.37). For purposes of the

present discussion we can write the wave function, eq. (2.37), as,

ψ[δφ(k)] = exp

[
M2

Pl

H2

(
− 1

2

∫
d3k1

(2π)3
d3k2

(2π)3
δφ(k1)δφ(k2)〈O(−k1)O(−k2)〉

+
1

3!

∫
d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3
δφ(k1)δφ(k2)δφ(k3)

〈O(−k1)O(−k2)O(−k3)〉

+
1

4!

∫
d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3
d3k4

(2π)3
δφ(k1)δφ(k2)δφ(k3)δφ(k4)

〈O(−k1)O(−k2)O(−k3)O(−k4)〉+ · · ·
)]
.

(6.14)

Here terms dependent on the tensor perturbations have not been shown explicitly since

they are not relevant for the present discussion. We have also explicitly included a three

point function on the r.h.s. . This three point function vanishes in the slow-roll limit, [13],

9The steps are shown in the Mathematica file allchecks.nb available with the source of the arXiv version

of this paper and also at suvratraju.net/software.
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but it is important to include it for the general argument we give now, since the slow -roll

limit for this general argument is a bit subtle.

In the limit when k4 → 0, δφ(k4) becomes approximately constant and its effect is to

rescale the metric by taking hij , eq. (2.18), to be, eq. (2.20), eq. (2.21),

hij = e2Ht(1 + 2ζ)δij (6.15)

where ζ(k4) is related to δφ(k4) by, eq. (2.34),

δφ(k4) = −
√
2ǫζ(k4). (6.16)

The effect on the wave function in this limit can be obtained by first considering the

wave function in the absence of the δφ(k4) perturbation and then rescaling the momenta

to incorporate the dependence on δφ(k4). The coefficient of the term which is trilinear in

δφ on the r.h.s. of eq. (6.14) is denoted by 〈O(k1O(k2)O(k3)〉. Under the rescaling which

incorporates the effects of δφ(k4) this coefficient will change as follows:

δ〈O(k1)O(k2)O(k3)〉 ∼
δφ(k4)√

ǫ

( 3∑

i=1

ki · ∂ki

)
〈O(k1)O(k2)O(k3)〉. (6.17)

As a result the trilinear term now depends on four powers of δφ and gives a contribution

to the four point function. We see that the resulting value of the coefficient of the term

quartic in δφ is therefore

lim
k4→0

〈O(k1)O(k2)O(k3)O(k4)〉 ∼
1√
ǫ

( 3∑

i=1

ki · ∂ki

)
〈O(k1)O(k2)O(k3)〉. (6.18)

The three point function in this slow-roll model of inflation was calculated in [13] and

the result is given in eq. (4.5), eq. (4.6) of [13]. From this result it is easy to read-off the

value of 〈O(k1)O(k2)O(k3)〉. One gets that

〈O(k1)O(k2)O(k3)〉 ∝ (2π)3δ

(∑

i

ki

)
1√
ǫ
A (6.19)

where

A = 2
φ̈∗

φ̇∗H

3∑

i=1

k3i +
φ̇2∗
H2

[
1

2

3∑

i=1

k3i +
1

2

∑

i 6=j

kik
2
j + 4

∑
i>j k

2
i k

2
j

kt

]
(6.20)

where the subscript ∗ means values of the corresponding object to be evaluated at the time

of horizon crossing and kt = k1 + k2 + k3. 4 Substituting in eq. (6.18) gives

lim
k4→0

〈O(k1)O(k2)O(k3)O(k4)〉 ∼
1

ǫ

[ 3∑

i=1

ki · ∂ki

][
δ

(∑

i

ki

)
A

]
. (6.21)

Now, it is easy to see that due to the φ̇∗, φ̈∗ dependent prefactors A is of order the slow-roll

parameters ǫ, η, eq. (2.9), eq. (2.10). Thus in the limit where ǫ ∼ η and both tend to

zero the 1
ǫ prefactor on the r.h.s. will cancel the dependence in A due to the prefactors.
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However, note that there is an additional suppression since A is trilinear in the momenta

and therefore δ(
∑

i k)A will be invariant under rescaling all the momenta to leading order

in the slow-roll approximation,

[ 3∑

i=1

ki · ∂ki

][
δ

(∑

i

ki

)
A

]
= 0. (6.22)

As a result the r.h.s. of eq. (6.21) and thus the four point function will vanish in this limit

in the leading slow-roll approximation. To subleading order in the slow-roll approximation

the condition in eq. (6.22) will not be true any more since the Hubble constant H and

φ̇∗, φ̈∗ which appears in eq. (6.20) will also depend on k and should be evaluated to take

the values they do when the modes cross the horizon.

For our purpose it is enough to note that the behavior of the four point function in the

leading slow-roll approximation is that it vanishes when k4 → 0. It is easy to see that the

result in eq. (4.33) does have this feature in agreement with the general analysis above. In

fact expanding eq. (4.33) for small momentum we find it vanishes linearly with k4.

6.3.2 Limit II: k1, k2 get large

Next, we consider a limit where two of the momenta, say k1,k2, get large in magnitude and

approximately cancel, so that their sum, |k1 + k2|, is held fixed. The other two momenta,

k3,k4, are held fixed in this limit. Note that this limit is a very natural one from the point

of view of the CFT. In position space in the CFT in this limit two operators come together,

at the same spatial location and the behavior can be understood using the operator product

expansion (OPE). We will see below that our result for the four point function reproduces

the behavior expected from the OPE in the CFT.

It is convenient to start the analysis first from the CFT point of view and then compare

with the four point function result we have obtained.10 Consider the four point function

of an operator O of dimension 3 in a CFT:

〈O(x1)O(x2)O(x3)O(x4)〉. (6.23)

The momentum space correlator is

〈O(k1)O(k2)O(k3)O(k4)〉 =
∫
d3x1d

3x2d
3x3d

3x4 e
−i(k1·x1+k2·x2+k3·x3+k4·x4)

〈O(x1)O(x2)O(x3)O(x4)〉

=(2π)3δ(3)(
∑

I

kI)

∫
d3y2d

3y3d
3y4 e

−i(k2·y2+k3·y3+k4·y4)

〈O(0)O(y2)O(y3)O(y4)〉 (6.24)

where in the last line on the r.h.s. above

y2 = x2 − x1, y3 = x3 − x1, y4 = x4 − x1. (6.25)

10One expects to justify the OPE from the bulk itself, but we will not try to present a careful derivation

along those lines here.
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We are interested in the limit where k3,k4 are held fixed while

k2 → ∞ and k1 = | − (k2 + k3 + k4)| → ∞ (6.26)

In position space in this limit x1 → x2 so that

y2 → 0. (6.27)

The operator product expansion can be used when the condition in eq. (6.27) is met, to

expand

O(0)O(y2) = C1
yi2y

j
2

y52
Tij(y2) + . . . (6.28)

where C1 is a constant that depends on the normalization of O. In general there are extra

contact terms which can also appear on the r.h.s. of the OPE. We are ignoring such terms

and considering the limit when y2 is small but not vanishing.

Using eq. (6.28) in the r.h.s. of eq. (6.24) we get

lim
k2→∞

〈O(k1)O(k2)O(k3)O(k4)〉′ =
∫
d3y2 d

3y3 d
3y4 C1

yi2y
j
2

y52
e−i(k2·y2+k3·y3+k4·y4)

〈Tij(y2)O(y3)O(y4)〉′ (6.29)

where by the lim on the l.h.s. we mean more precisely the limit given in eq. (6.26) and

the symbol 〈O(k1)O(k2)O(k3)O(k4)〉′ with the prime superscript stands of the four point

correlator 〈O(k1)O(k2)O(k3)O(k4)〉 without the factor of (2π)3δ3(
∑

i ki). The variable

k1 which appears in the argument on the l.h.s. of eq. (6.29) is understood to take the value

k1 = −(k2 + k3 + k4).

Now in the limit of interest when k2 → ∞, the support for the integral on the r.h.s.

of eq. (6.29) comes from the region where y2 → 0. Thus the integral in eq. (6.29) can be

approximated to be

∫
d3y2 d

3y3 d
3y4 C1

yi2y
j
2

y52
e−i(k2·y2+k3·y3+k4·y4)〈Tij(y2)O(y3)O(y4)〉′

= C1D1
ki2k

j
2

k22

∫
d3y3 d

3y4e
−i(k3·y3+k4·y4)〈Tij(0)O(y3)O(y4)〉′,

(6.30)

where the prefactor is due to

ki2k
j
2

k22
= D1

∫
d3y2

yi2y
j
2

y52
eik2·y2 . (6.31)

Finally doing the integral in eq. (6.30) gives us,
∫
d3y3 d

3y4 e
−i(k3·y3+k4·y4)〈Tij(0)O(y3)O(y4)〉′ = 〈Tij(−k3 − k4)O(k3)O(k4)〉′ (6.32)

where the prime superscript again indicates the absence of the momentum conserving delta

function, and using eq. (6.29), eq. (6.30), and eq. (6.32), we get

lim
k2→∞

〈O(k1)O(k2)O(k3)O(k4)〉′ = C1D1
ki2k

j
2

k22
〈Tij(−k3 − k4)O(k3)O(k4)〉′. (6.33)
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From eq. (6.33) we see that in this limit the behavior of the scalar four point function

gets related to the three point 〈Tij(−k3 − k4)O(k3)O(k4)〉 correlator. For the slow-roll

model we are analyzing this three point function was calculated in [13] and has been studied

more generally in [27], see also [21, 26]. These results give the value of the 〈Tij(−k3 −
k4)O(k3)O(k4)〉 correlator after contracting with the polarization of the graviton, es,ij ,

to be,

es,ij〈Tij(−k3 − k4)O(k3)O(k4)〉′ = −2es,ijk3ik4jS(k̃, k3, k4) (6.34)

where the momentum

k̃ = −(k3 + k4), (6.35)

is the argument of Tij .
11 Note that the polarization es,ij is a traceless tensor perpendicular

to k̃ and S(k̃, k3, k4) is given in eq. (5.8).

By choosing k2⊥ (k3 + k4) we use eq. (6.34) to obtain from eq. (6.33)

lim
k2→∞

〈O(k1)O(k2)O(k3)O(k4)〉′ = C1D1
ki2k

j
2

k22
k3ik4jS(k̃, k3, k4). (6.36)

The numerical constant C1D1 in eq. (6.36) can be obtained independently looking at the

correlator 〈OOTij〉. This correlator was completely fixed after contracting with the po-

larization of the graviton, es,ij , by conformal invariance in [27]. Comparing the behavior

of 〈OOTij〉 in the limit when two of the O’s come together in position space with the

expectations from CFT one can obtain,

C1D1 =
3

2
. (6.37)

For the correlator 〈O(k1)O(k2)O(k3)O(k4)〉, to compare this expectation from CFT

in eq. (6.36) with our result in eq. (4.33), it is convenient to parameterize k2 = a/ǫ and

then take the limit ǫ→ 0, with k3,k4 held fixed and k1 = −(k2+k3+k4). For comparison

purposes we also consider the situation when k2⊥ (k3+k4). As discussed in appendix F.1

in this limit and also for the cases when k2 is perpendicular to k3 + k4, we find that

eq. (4.33) becomes

lim
k2→∞

〈O(k1)O(k2)O(k3)O(k4)〉′ =
3

2

ki2k
j
2

k22
k3ik4jS(k̃, k3, k4). (6.38)

Comparing eq. (6.36) with eq. (6.38) it is obvious that, in this limit, our result for the

four point function agrees precisely with the expectation from OPE in the CFT. The

agreement is upto contact terms which have been neglected in our discussion based on

CFT considerations above anyways.

11The reader should not confuse this with the four-momentum that was introduced in subsection 6.2.

Here k̃ is a three-vector.
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6.3.3 Limit III: counter-collinear limit

Finally, we consider a third limit in which the sum of two momenta vanish while the

magnitudes of all individual momenta, ki, i = 1, · · · 4, are non-vanishing. Below we consider

the case where

k12 ≡ k1 + k2 → 0. (6.39)

Note that by momentum conservation it then follows that (k3 + k4) also vanishes. This

limit is referred to as the counter-collinear limit in the literature. As we will see, in this

limit our result, eq. (5.10), has a divergence which arises from a pole in the propagator

of the graviton which is exchanged to give rise to the term, eq. (5.6). This divergence is

a characteristic feature of the result and could potentially be observationally interesting.

Towards the end of this subsection we will see that the counter-collinear limit can in fact

be obtained as a special case of the limit considered in the previous subsection.

It is easy to see that in the limit eq. (6.39) the contribution of the CF term eq. (5.5)

is finite while that of the ET contribution term eq. (5.6) has a divergence arising from the

GS(k1,k2,k3,k4) term, leading to,

〈δφ(k1)δφ(k2)δφ(k3)δφ(k4)〉ET → 4(2π)3δ3
(∑

J

kJ

)
H6

M6
Pl

1∏4
J=1(2k

3
J)

9

4

k31k
3
3

k312

sin2(θ1) sin
2(θ3) cos(2χ12,34).

(6.40)

The r.h.s. arises as follows. In this limit k1 ≃ k2 and k3 ≃ k4, and from eq. (5.8)

S(k1, k2) ≃
3

2
k1, (6.41)

and similarly, S(k3, k4) ≃ 3
2k3. As explained in appendix F.2, eq. (5.6) then gives rise to

eq. (6.40), where θ1 is the angle between k1 and k12 θ3 is the angle between k3 and k12,

and χ12,34 is the angle between the projections of k1,k3 on the plane orthogonal to k12.

From eq. (6.40) it then follows that in this limit

〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉ET → 4(2π)3δ3
(∑

J

kJ

)
1

4ǫ2
H6

M6
Pl

1∏4
J=1(2k

3
J)

9

4

k31k
3
3

k312

sin2(θ1) sin
2(θ3) cos(2χ12,34).

(6.42)

Some comments are now in order. First, as was noted in subsection 5 after eq. (5.9) the

ET contribution term is completely fixed by conformal invariance and therefore the 1/k312
divergence in eq. (6.42) is also fixed by conformal symmetry and is model independent.

The model dependence in the result above could arise from the fact that the CF term

makes no contribution in the slow-roll case. The behavior of the CF term (like that of the

ET term, see below) in this limit depends on contact terms which arise in the OPE. We

have not studied these contact terms carefully and it could perhaps be that in other models

the CF term also gives rise to a divergent contribution comparable to eq. (6.42). Of course

departures from the result above can also arise in models where conformal invariance is

not preserved.
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Second, the two factors S(k1, k2), S(k3, k4) in eq. (5.7) arise from the two factors of

〈OOTij〉 in the ET contribution to P [δφ], eq. (5.3), since 〈OOTij〉 when contracted with a

polarization tensor can be expressed in terms of S, eq. (A.8) in appendix A. In the three

point function 〈OOTij〉 the limit where k1 + k2 vanishes is a squeezed limit. This limit

was investigated in [27], subsection 4.2, and it follows from eq. (6.41) and eq. (A.8) in

appendix A that in this limit

〈O(k1)O(k2)Tij(k3)〉′es,ij = −2es,ijk1ik2j
3

2
k1 (6.43)

and is a contact term since it is analytic in k2. However it is easy to see from eq. (6.40)

that the contribution that the product of two of these three point functions make to the

four point scalar correlator in the counter-collinear limit is no longer a contact term. This

example illustrates the importance of keeping track of contact terms carefully even for the

purpose of eventually evaluating non-contact terms in the correlation function.

Finally, we note that due to conformal invariance an equivalent way to phrase the

counter-collinear limit is to take the four momenta, k1,k2,k3,k4, all large while keeping

the sum, k1 +k2 = −k3 +k4, fixed. This makes it clear that the counter-collinear limit is

a special case of the limit considered in the previous subsection. However in our discussion

of the previous section we did not keep track of contact terms. Here, in obtaining the

leading divergent behavior it is important to keep these terms, as we have noted above. In

fact without keeping the contact term contributions in 〈OOTij〉 the ET contribution would

vanish in this limit.

7 Discussion

In this paper we have calculated the primordial four point correlation function for scalar

perturbations in the canonical model of slow-roll inflation, eq. (2.1). We worked to leading

order in the slow-roll approximation where the calculations can be done in de Sitter space.

Our final answer is given in eq. (5.10). This answer agrees with the result obtained in [3],

which was obtained using quite different methods.

The resulting answer is small, as can be seen from the prefactor in eq. (5.10) which

goes like H6

M6

Pl
ǫ2

∼ P 3
ζ ǫ, where Pζ ∼ 10−10 is the power in the scalar perturbation, eq. (A.6).

And it is a complicated function of the magnitudes of three independent momenta and

three angles.

The smallness of the answer is expected, since it can be easily estimated without

any detailed calculation by noting, for example, that the coefficient of the 〈OOOO〉 term,

eq. (2.37), is not expected to vanish.12 In discussions related to observations, it is conven-

tional to consider the four point correlator (also called the trispectrum) to be of the local

form and parameterize it by two coefficients τNL, gNL. This local form arises by taking the

perturbation to be of the type,

ζ = ζg +
1

2

√
τNL(ζ

2
g − 〈ζ2g 〉) +

9

25
gNLζ

3
g , (7.1)

12In contrast the 〈OOO〉 coefficient function vanishes to leading order in the slow-roll approximation

leading to fNL ∼ ǫ. This vanishing of 〈OOO〉 is expected from general considerations of CFT.
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where ζg is a Gaussian field. The answer we get is not of this local type13 and so it is

not possible to directly compare our result with the experimental bounds quoted in the

literature, see [2, 61], τNL < 2800. However, to get some feel for the situation, we note that

the non-Gaussian term proportional to
√
τNL in eq. (7.1) would give rise to a four point

correlator of order ∼ τNLP
3
ζ . Thus, as a very rough estimate the slow-roll model gives

rise to τNL ∼ ǫ ∼ 10−2 which is indeed small and very far from the experimental bound

mentioned above.

As mentioned in the introduction, one of the main motivations of this work was to use

techniques drawn from the AdS/CFT correspondence for calculating correlation functions

of perturbations produced during inflation, and to analyze how the Ward identities of

conformal invariance get implemented on these correlation functions. The four point scalar

correlator provides a concrete and interesting setting for these purposes.

As the analysis above has hopefully brought out the calculation could be done quite

easily by continuing the result from AdS space. In fact doing the calculation in this way

naturally gives rise to the wave function. And the wave function is well suited for studying

how the symmetries, including conformal invariance, are implemented, since the symmetries

of the wave function are automatically symmetries of all correlators calculated from it. We

found that the wave function, calculated upto the required order for the four point scalar

correlator, is conformally invariant and also invariant under spatial reparameterizations.

The Ward identities for conformal invariance follow from this, and it also follows that the

four point function satisfies these Ward identities, this is discussed further in the next

paragraph. Given the complicated nature of the result these Ward identities serve as an

important and highly non-trivial check on the result. An additional set of checks was also

provided by comparing the behavior of the result in various limits to what is expected from

the operator product expansion in a conformal field theory.

Our analysis helped uncover an interesting general subtlety with regard to the Ward

identities of conformal invariance. This subtlety arises in de Sitter space, more generally

inflationary backgrounds, and does not have an analogue in AdS space, and is a general

feature for other correlation functions as well. In the dS case one computes the wave

function as a functional of the boundary values for the scalar and the tensor perturbations,

in contrast to the partition function in AdS space. As a result, calculating the correlation

functions in dS space requires an additional step of integrating over all boundary values

of the scalar and tensor perturbations. This last step is well defined only if we fix the

gauge completely.

The resulting correlation functions are then only invariant under a conformal trans-

formation accompanied by a compensating coordinate transformation that restores the

gauge. Failure to include this additional coordinate transformation results in the wrong

Ward identities. It is also worth emphasizing that due to these complications it is actually

simpler to check for conformal invariance in the wave function, before correlation functions

are computed from it. The wave function is well defined without the additional gauge fixing

13We clarify that we are not excluding any local type terms from the answer for the four point function,

but rather that the full answer is not of the form obtained by making the ansatz in eq. (7.1).
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mentioned above, and on general grounds can be argued to be invariant under both con-

formal transformations and general spatial reparameterizations. Once this is ensured the

correlation functions calculated from it automatically satisfy the required Ward identities.

Going beyond the canonical slow-roll model we have considered, one might ask what

constraints does conformal symmetry impose on the 4 point correlator in general? Our

answer, eq. (5.10), arises from a sum of two terms, see eq. (5.9). The second contribution,

the extra term (ET), eq. (5.6), is completely determined by conformal invariance and is

model independent. This follows by noting that the boundary term is obtained from the

〈OOTij〉 correlator,14 and the 〈OOTij〉 correlator in turn is completely fixed by conformal

invariance, e.g. as discussed in [27]. The first contribution to the answer though, the

〈OOOO〉 dependent CF term, is more model dependent and is related to the 4 point

function of a dimension 3 scalar operator O in a CFT. In 3 dimensional CFT there are

3 cross-ratios for the 4 point function in position space which are conformally invariant,

and any function of these cross ratios is allowed by conformal invariance. This results in a

rather weak constraint on the CF term.

However, some model independent results can arise in various limits. For example, in

the counter-collinear limit considered in section 6.3.3, our full answer has a characteristic

pole and is dominated by the ET contribution. In contrast the contribution from the

CF term is finite and sub-dominant. The difference in behavior can be traced to contact

terms in the OPE of two O operators. While we have not studied these contact terms

in enough detail, it seems to us reasonable that in a large class of models the ET term

should continue to dominate in this limit and the resulting behavior of the correlator should

then be model independent and be a robust prediction that follows just from conformal

invariance. A similar model independent result may also arise in another limit which was

discussed in section 6.3.2, in which two of the momenta grow large. In this limit again

the behavior of 〈OOOO〉, upto contact terms, is determined by the 〈OOTij〉 correlator,

eq. (6.33), eq. (6.36), which is model independent. A better understanding of the extent

of model independence in this limit also requires a deeper understanding of the relevant

contact terms which we leave for the future.
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A Two and three point functions and normalizations

In this appendix we will summarize the two point functions of scalar and tensor perturba-

tions and the scalar-scalar-tensor three point function and issues related to their normaliza-

tions. The wave function in momentum space, written in eq. (2.37) contains the relevant

coefficient functions for our discussion. The label s, s′ corresponds to the polarizations

of the graviton as shown in eq. (2.39). The polarization tensors ǫsij(k), in eq. (2.39) are

transverse and traceless as already mentioned and are normalized according to,

ǫs,ijǫs
′

ij = 2δs,s
′

. (A.1)

Similarly, we define for the stress tensor

T s(k) = Tij(k)ǫ
s,ij(−k). (A.2)

In momentum space the coefficient functions are related to position spaces ones in eq. (2.36)

and can be written as,

〈O(k1)O(k2)〉 =
∫
d3xd3ye−ik1·xe−ik2·y〈O(x)O(y)〉. (A.3)

With this convention all the other coefficient functions, 〈Tij(x)Tkl(y)〉, 〈O(x)O(y)Tij(z)〉
and 〈O(x)O(y)O(z)O(w)〉, will be related to their values in momentum space accordingly.

The coefficient functions, 〈O(k1)O(k2)〉, 〈T s(k1)T
s′(k2)〉 are well known, in the liter-

ature. We write them here,

〈O(k1)O(k2)〉 = (2π)3δ3(k1 + k2)k
3
1 (A.4)

and

〈T s(k1)T
s′(k2)〉 = (2π)3δ3(k1 + k2)k

3
1

δss
′

2
. (A.5)

From eq. (A.4) and the wave function eq. (2.37) we get

〈ζ(k1)ζ(k2)〈= (2π)3δ(k1 + k2)Pζ(k1) (A.6)

where

Pζ(k1) =
H2

M2
pl

1

ǫ

1

4k31
. (A.7)

For the slow-roll model of inflation being considered here the three point coefficient

function 〈O(k1)O(k2)T
s(k3)〉 was computed in [13]. It was also obtained in [27] from more

general considerations, which is

〈O(k1)O(k2)Tij(k3)〉es,ij =− 2(2π)3δ(
4∑

J=1

kJ)e
s,ijk1ik2jS(k1, k2, k3).

with S(k1, k2, k3) =(k1 + k2 + k3)−
∑

i>j kikj

(k1 + k2 + k3)
− k1k2k3

(k1 + k2 + k3)2
.

(A.8)
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B Ward identities under spatial and time reparameterization

In this appendix we will derive the Ward identities obeyed by the coefficient functions

due to both spatial and time reparameterizations. They are also called the momentum

and Hamiltonian constraints respectively. We will also discuss the transformation of the

scalar and tensor perturbations under special conformal transformation (SCT) following

invariance of wave function under SCT.

B.1 Ward identities under spatial and time reparameterization

We will consider the specific coefficient function 〈Tij(x)O(y1)O(y2)〉 and derive the Ward

identities under spatial and time parameterization. For that we need to consider only two

out of the four terms in the exponent, the first and the third term, on r.h.s. of the wave

function in eq. (2.36),

ψ[δφ, γij ] = exp

[
M2

Pl

H2

(
− 1

2

∫
d3x

√
g(x) d3y

√
g(y) δφ(x)δφ(y)〈O(x)O(y)〉

−1

4

∫
d3x

√
g(x) d3y

√
g(y) d3z

√
g(z)

δφ(x)δφ(y)γij(z)〈O(x)O(y)T ij(z)〉
)]
.

(B.1)

In the leading order to the perturbations, relevant to our calculation,
√
g(x), defined in

eq. (2.20), can be expanded as

√
g(x) = 1 +

1

2
γii(x). (B.2)

Under the spatial reparameterizations given in eq. (2.24) the scalar and tensor pertur-

bations, δφ and γij , transform as given in eq. (3.5) and eq. (3.6) respectively. Following

them we can obtain the change in
√
g(x) under the spatial reparameterizations

√
g(x) →

√
g(x)− ∂ivi(x). (B.3)

Using eq. (3.5), eq. (3.6) and eq. (B.3) we can obtain the change in the two terms on

the r.h.s. of eq. (B.1). They are, for the first term,

δS
[
− 1

2

∫
d3x

√
g(x) d3y

√
g(y) δφ(x)δφ(y)〈O(x)O(y)〉

]
=

1

2

∫
d3xd3y

[
∂

∂xi

{
vi(x)δφ(x)

}
δφ(y) + δφ(x)

∂

∂yi

{
vi(y)δφ(y)

}]
〈O(x)O(y)〉

(B.4)

and similarly for the second term

δS
[
− 1

4

∫
d3x

√
g(x) d3y

√
g(y) d3z

√
g(z)δφ(x)δφ(y)γij(z)〈O(x)O(y)T ij(z)〉

]

=
1

2

∫
d3x d3y d3z

∂vi(z)

∂zj
δφ(x)δφ(y)〈O(x)O(y)T ij(z)〉.

(B.5)

– 44 –



J
H
E
P
0
7
(
2
0
1
4
)
0
1
1

The invariance of the wave function under spatial reparameterizations as stated in

eq. (3.7), translates to the requirement that the total change of the r.h.s. of eq. (B.1) van-

ishes. Which in turn implies the sum of eq. (B.4) and eq. (B.5) vanishes. This requirement,

after performing an integration by parts to move the derivatives in the r.h.s. of eq. (B.4)

and eq. (B.5) to the coefficient functions, leads us to the desired Ward identity given in

eq. (3.8), which is the momentum constraint.

Under the time reparameterization in eq. (2.26), at late times when e−Ht → 0, the

scalar perturbation, δφ, does not change and the tensor perturbation, γij , changes as given

in eq. (3.9). Also
√
g(x), in eq. (B.2), changes by,

√
g(x) →

√
g(x) + 3Hǫ(x). (B.6)

Using these we can obtain the change in the two terms on the r.h.s. of eq. (B.1) under

time reparameterization, similarly as we did for the spatial reparameterization. They are,

for the first term,

δT
[
− 1

2

∫
d3x

√
g(x) d3y

√
g(y) δφ(x)δφ(y)〈O(x)O(y)〉

]
= −1

2

∫
d3x d3y d3z

δφ(x)δφ(y)Hǫ(z)
[
3δ3(z − x)〈O(x)O(y)〉+ 3δ3(z − y)〈O(x)O(y)〉

] (B.7)

and similarly for the second term,

δT
[
− 1

4

∫
d3x

√
g(x) d3y

√
g(y) d3z

√
g(z)δφ(x)δφ(y)γij(z)〈O(x)O(y)T ij(z)〉

]

= −1

2

∫
d3x d3y d3zHǫ(z)δφ(x)δφ(y)〈O(x)O(y)T ii(z)〉.

(B.8)

The invariance of the wave function under the time reparameterization as mentioned

in eq. (3.10) then implies that the sum of eq. (B.7) and eq. (B.8) vanishes. Which leads

us to the constraint on the coefficient function under time reparameterization as written

in eq. (3.11), also called the Hamiltonian constraint.

B.2 Transformations of the scalar and tensor perturbations under SCT

At late times, e−Ht → 0, the special conformal transformation (SCT) takes the form as

given in eq. (3.12) and eq. (3.13). Under SCT the scalar perturbation, δφ(x), transforms

like a scalar,

δφ(x) → δφ′(x) = δφ(xi − δxi). (B.9)

Therefore under SCT the change in scalar perturbation is,

δ(δφ) = δφ′(x)− δφ(x) = −(x2bi − 2xi(x · b)) ∂

∂xi
δφ. (B.10)

Since e2Htgmn appears as metric component in eq. (2.14), eq. (2.19), it should transform

as a tensor under coordinate transformation

e2Ht′g′ij(x
′) = e2Htgmn(x)

∂xm

∂x′i
∂xn

∂x′j
. (B.11)
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From here one obtains the change in the tensor perturbation due to SCT,

γij(x) → γ′ij(x) = γij(x) + δγij(x),

δγij(x) = 2Mm
jγim + 2Mm

iγmj − (x2bm − 2xm(x · b))∂γij(x)
∂xm

,

Mm
j = xmbj − xjbm.

(B.12)

The invariance of wave function under SCT implies that,

ψ[γij(x)] = ψ[γ′ij(x)] = ψ[γij(x) + δγij(x)]. (B.13)

Ignoring scalar perturbations one obtains,
∫
d3xγij(x)Tij(x) =

∫
d3x (γij(x) + δγij(x))Tij(x). (B.14)

After doing integration by parts one can move the derivatives acting on γij to Tij to obtain,

∫
d3xγij(x)Tij(x) = −

∫
d3xγij(x) (Tij(x) + δTij(x)) . (B.15)

From eq. (B.15) one can obtain the change in Tij(x) under SCT. Similar arguments based

on invariance of the wave function, can lead us from eq. (B.10) to the change in O(x) under

SCT. The position space expression for them are given in eq. (3.14) and eq. (3.15). We

can obtain the changes in O(x) and Tij(x) under SCT in momentum space in a straight

forward manner as given below

δφ(k) → δφ′(k) = δφ(k) + δ
(
δφ(k)

)
, (B.16)

O(k) → O′(k) =O(k) + δO(k), (B.17)

γij(k) → γ′ij(k) = γij(k) + δγij(k), (B.18)

Tij(k) → T ′
ij(k) =Tij(k) + δTij(k) (B.19)

where

δ
(
δφ(k)

)
=6(b.∂)δφ(k) + 2kj∂kj (b · ∂k)δφ(k)− (b · k)∂ki∂kiδφ(k), (B.20)

δO(k) = 2kj∂kj (b · ∂k)O(k)− (b · k)∂ki∂kiO(k), (B.21)

δγij(k) = 6(b.∂)γij + 2M̃ l
iγlj + 2M̃ l

jγil + 2kl∂kl(b · ∂k)γij − (b · k)∂kl∂klγij , (B.22)

δTij(k) = 2M̃ l
iTlj + 2M̃ l

jTil + 2kl∂kl(b · ∂k)Tij − (b · k)∂kl∂klTij , (B.23)

M̃ l
i ≡ bl∂ki − bi∂kl . (B.24)

C More details on calculating the AdS correlator

In this appendix we will discuss in some more detail the algebra leading us to the four

point scalar correlator in AdS, written in eq. (4.31), which is the unknown coefficient in

on-shell action in AdS space, SAdS
on-shell.

The basic technique to compute this correlator is simply to consider the Feynman-

Witten diagrams in AdS that are shown in 1. These diagrams are just like flat space
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Feynman diagrams, except that the propagators between bulk points are replaced by AdS

Green functions, and the lines between the bulk and the boundary are contracted with reg-

ular solutions to the wave equation in AdS, which are called bulk to boundary propagators.

We start with our action in eq. (4.1) for a canonically coupled massless scalar field, δφ,

in AdS4 space-time. The stress tensor for the scalar field, Tµν , acts as a source coupled to

the metric perturbation δgµν . In the gauge given in eq. (4.13), the evaluation of the Witten

diagram simplifies to the expression given in (4.14), which we copy here for the reader’s

convenience
∫
dz1dz2

√−g1
√−g2Ti1j1(z1)gi1i2gj1j2Ggrav

i2j2,k2l2
(k, z1, z2)g

k1k2gl1l2Tk1l1(z2) (C.1)

Ggrav
ij,kl(k, z1, z2) =

∫ [
(z1)

−1

2 J 3

2

(pz1)J 3

2

(pz2)(z2)
−1

2

(
k2 + p2 − iǫ

) 1

2

(
TikTjl + TilTjk −

2TijTkl
d− 1

)]−dp2
2

,

Note that here, as opposed to (4.14), we have suppressed all except for the radial

coordinates.

In fact the Bessel functions, which appear above simplify greatly in d = 3, so that we

have J3/2(z) which appears in eq. (4.19) refers to the Bessel function with index 3/2. It

has the form,

J3/2(z) =

√
2

π

1√
z

(
− cos z +

sin z

z

)
=

√
2

π

(1− iz)eiz − (1 + iz)e−iz

2iz
√
z

. (C.2)

As we will see below, this makes the z-integrals involved in the evaluation of (C.1)

very simple. The integral over p can also be done by residues. However, from an algebraic

viewpoint, it is simply to replace Tij = δij + kikj/p
2 with T̃ij = δij − kikj/k

2, which is the

transverse traceless projector onto the exchanged momentum.

This replacement leads to an additional “remainder” term, which accounts for the

contribution of the longitudinal modes of the graviton. It also reduces our propagator to

the form given in eq. (4.14) of [58], for d = 3 which reduces to,

I =
1

4

M2
Pl

2

[ ∫
d4x1d

4x2
√
g(z1)

√
g(z2)(z1z2)

2tij(x1)G(x1, x2)tij(x2)

− 2

∫
d4x1

√
g(z1)z

2
1Tzj

1

∂2
Tzj −

∫
d4x1

√
g(z1)z

3
1∂jTzj

1

∂2
Tzz

− 1

2

∫
d4x1

√
g(z1)z

2
1∂jTzj

(
1

∂2

)2

∂iTzi

]
.

(C.3)

Note that in writing the above equation we have corrected two typographical errors in

eq. (4.14) of [58]. First, an overall factor of 1
4 and second, z31 in place of z21 in the third

term on the r.h.s. of eq. (C.3). In the first term on the r.h.s. of eq. (C.3), tij = P̂ijklTkl, such

that P̂ijkl is the transverse traceless projector in flat space, eq. (5.2), and G(x1, x2) is the

Green’s function for a free massless scalar field in Euclidean AdS4, obtained in appendix A,

see eq. (A.3), of [58].

It is straightforward to see that the first term on the r.h.s. of eq. (C.3) becomes the

contribution from the transverse graviton, W̃ in eq. (4.18), and also the three other terms
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on the r.h.s. of eq. (C.3) which are the contributions from the longitudinal graviton become

R1, R2 and R3 in eq. (4.22) respectively.

Next we proceed to perform the integrations in eq. (4.18) and eq. (4.22). We start

with W̃ in eq. (4.18).

After being fourier transformed to momentum space the stress tensor, appearing in

eq. (4.18), becomes

Tij(k, z) =

∫
d3x Tij(x, z) e

−i k·x. (C.4)

Using eq. (C.4), W̃ , as in eq. (4.18), takes the form

W̃ =

∫
dz1dz2

d3k

(2π)3
Ti1j1(−k, z1)δ

i1i2δj1j2G̃i2j2,k2l2(k, z1, z2)δ
k1k2δl1l2Tk1l1(k, z2) (C.5)

in momentum space with

G̃ij,kl(k, z1, z2) =

∫ ∞

0

dp2

2

[
J 3

2

(pz1)J 3

2

(pz2)
√
z1z2

(
k2 + p2

) 1
2

(
T̃ikT̃jl + T̃ilT̃jk − T̃ij T̃kl

)]
. (C.6)

The indices i1, j1 etc which appear in eq. (C.5) take values along the xi, i = 1, 2, 3 directions

eq. (4.3). The z components of the stress tensor do not appear because of our choice of

gauge, eq. (4.13).

In eq. (C.5) the graviton propagator G̃ijkl(k, z1, z2) is contracted against two factors

of the stress tensors Tij(k, z). The stress tensor for the scalar perturbation δφ, acts like

a source term for the metric perturbation δgµν as evident from the interaction vertex in

eq. (4.7). From the expression of stress tensor in eq. (4.8) one can obtain,

Tij(z,x) = 2(∂iδφ)(∂jδφ)− δij
[
(∂zδφ)

2 + ηmn(∂mδφ)(∂nδφ)
]
. (C.7)

The two insertions of the stress tensor in eq. (C.5) correspond to two different values

of the radial variable z = z1 and z = z2, which are integrated over. For the S-channel

contribution one should substitute for δφ from eq. (4.11) in eq. (C.7) and keep only the

bilinears of the form φ(k1)φ(k2) at z = z1 and similarly φ(k3)φ(k4) at z = z2. For the

T - channel and U - channel contributions one just needs to exchange two of the external

momenta in the S-channel answer like k2 ↔ k3 and k2 ↔ k4 respectively.

In momentum space, the stress tensors, to be substituted for in eq. (C.5), becomes

Tij [φ1(z1), φ2(z1)] = −4

{
k1ik2jφ1φ2 +

1

2
ηij [(∂z1φ1)(∂z1φ2)− k1 · k2 φ1φ2]

}
,

Tkl[φ3(z2), φ4(z2)] = −4

{
k3kk4lφ3φ4 +

1

2
ηkl [(∂z2φ3)(∂z2φ4)− k3 · k4 φ3φ4]

}
.

(C.8)

We have used ∂mφ = −ikmφ and gij = z2ηij and also the abbreviations

φ1 ≡ φ(k1)(1 + k1z1)e
−k1z1 , φ2 ≡ φ(k2)(1 + k2z1)e

−k2z1 ,

φ3 ≡ φ(k3)(1 + k3z2)e
−k3z1 , φ4 ≡ φ(k4)(1 + k4z2)e

−k4z2 .
(C.9)
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It is important to note that only the first term on the r.h.s. of eq. (C.8) in both Tij and Tkl
contribute to W̃ in eq. (C.5). This is because the second term in Tij on the r.h.s. of eq. (C.8)

carries ηij which when contracted with the transverse projector
(
T̃ikT̃jl + T̃ilT̃jk − T̃ij T̃kl

)

of the graviton propagator G̃i2j2,k2l2(k, z1, z2) in eq. (C.6), gives zero.

ηij

(
T̃ikT̃jl + T̃ilT̃jk − T̃ij T̃kl

)
= 0. (C.10)

Therefore, the relevant terms in the stress tensors are,

Tij(z1) = −4k1ik2jφ1φ2,

Tkl(z2) = −4k3kk4lφ3φ4.
(C.11)

Finally substituting in eq. (C.5) for Tij from eq. (C.11) with the φi’s in eq. (C.9) and

the graviton propagator in eq. (C.6) we obtain W̃S(k1,k2,k3,k4) as,

W̃S(k1,k2,k3,k4) = 16(2π)3δ3
(∑

i

ki

)
φ(k1)φ(k2)φ(k3)φ(k4)

ki1k
j
2k

k
3k

l
4

(
T̃ikT̃jl + T̃ilT̃jk − T̃ij T̃kl

)
S(k1, k2, k3, k4)

(C.12)

where

S(k1, k2, k3, k4) =

∫ ∞

0

dp2

2(p2 +K2
s )

∫ ∞

0

dz1
z21

(1 + k1z1)(1 + k2z1)(z1)
3

2J 3

2

(pz1)e
−(k1+k2)z1

∫ ∞

0

dz2
z22

(1 + k3z2)(1 + k4z2)(z2)
3

2J 3

2

(pz2)e
−(k3+k4)z1 , (C.13)

and Ks which is the norm of the momentum of the graviton exchanged in the S channel, is

ks = k1 + k2 = −(k3 + k4) (C.14)

S(k1, k2k3, k4) can be evaluated by explicitly carrying out the integrals. We first do the

z1, z2 integrals by noting that,

∫ ∞

0

dz1
z21

(1 + k1z1)(1 + k2z1)(z1)
3

2J 3

2

(pz1)e
−(k1+k2)z1 =

√
2

π

p3/2
(
k21 + 4k2k1 + k22 + p2

)

((k1 + k2)2 + p2)2

(C.15)

This gives,

S(k1, k2, k3, k4) =

∫

0

∞

dp
2

π

p4
(
k21 + 4k2k1 + k22 + p2

) (
k23 + 4k4k3 + k24 + p2

)

((k1 + k2)2 + p2)2 ((k3 + k4)2 + p2)2 (K2
s + p2)

, (C.16)

The p integral is now easy to do, by noting that the integrand is an even function of p,

and then doing the integral by the method of residues. This is a significant advantage of

massless fields in momentum space in AdSd+1, where d is odd: exchange interactions can
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be evaluated algebraically! This leads to

S =− 2

[
k1k2(k1 + k2)

2
(
(k1 + k2)

2 − k23 − k24 − 4k3k4
)

(k1 + k2 − k3 − k4)2(k1 + k2 + k3 + k4)2(k1 + k2 −Ks)(k1 + k2 +Ks)
(
− k1 + k2

2k1k2
− k1 + k2

−(k1 + k2)2 + k23 + k24 + 4k3k4
+

k1 + k2
K2

s − (k1 + k2)2

+
1

−k1 − k2 + k3 + k4
− 1

k1 + k2 + k3 + k4
+

3

2(k1 + k2)

)
+ (1, 2 ↔ 3, 4)

− K3
s

(
−k21 − 4k2k1 − k22 +K2

s

) (
−k23 − 4k4k3 − k24 +K2

s

)

2
(
−k21 − 2k2k1 − k22 +K2

s

)2 (−k23 − 2k4k3 − k24 +K2
s

)2

]
.

(C.17)

This value of S from eq. (C.17) along with the index contraction

ki
1
kj
2
kk
3
kl
4
(T̃ikT̃jl + T̃ilT̃jk − T̃ij T̃kl) =

{
k1.k3 +

{(k2 + k1).k1}{(k4 + k3).k3}
|k1 + k2|2

}

{
k2.k4 +

{(k1 + k2).k2}{(k3 + k4).k4}
|k1 + k2|2

}
+

{
k1.k4 +

{(k2 + k1).k1}{(k4 + k3).k4}
|k1 + k2|2

}

{
k2.k3 +

{(k2 + k1).k2}{(k4 + k3).k3}
|k1 + k2|2

}
−
{
k1.k2 − {(k2 + k1).k1}{(k1 + k2).k2}

|k1 + k2|2
}

{
k3.k4 − {(k3 + k4).k4}{(k4 + k3).k3}

|k1 + k2|2
}
,

(C.18)

can now be substituted in eq. (C.12) to obtain eq. (4.25).

Once the transverse graviton contribution, W̃ , is calculated, we are left with the lon-

gitudinal contributions for the graviton eq. (4.21). The momentum space expressions for

eq. (4.22) becomes

R1 =

∫
dz1
z21

d3k

(2π)3
Tzj(k, z1)

1

k2
Tzj(−k, z1),

R2 =
1

2
i

∫
dz1
z1

d3k

(2π)3
kjTzj(k, z1)

1

k2
Tzz(−k, z1),

R3 = −1

4

∫
dz1
z21

d3k

(2π)3
kjTzj(k, z1)

1

k4
kiTzi(−k, z1).

(C.19)

Using the relevant components of the stress tensors obtained from eq. (4.8), as given

below,

Tzj(φ1, φ2) = iz1e
−(k1+k2)z1

[
k21k2j(1 + k2z1) + k22k1j(1 + k1z1)

]
, (C.20)

Tzz(φ1, φ2) = e−(k1+k2)z1
[
k1.k2 + (k1.k2)(k1 + k2)z1

+ k1k2(k1k2 + k1.k2)z
2
1

]
, (C.21)

kjTzj(φ1, φ2) = z1e
−(k1+k2)z1

[
2k21k

2
2 + (k1.k2)(k

2
1 + k22)

+ k1k2(k1 + k2)(k1k2 + k1.k2)z1

]
(C.22)

in eq. (C.19) one obtains eq. (4.26). Adding eq. (4.25) and eq. (4.26) one finally obtains

SAdS
on-shell as given in eq. (4.31).
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D Possibility of additional contributions in changing gauge

Once we obtained the four point function 〈δφ(k1)δφ(k2)δφ(k3)δφ(k4)〉, eq. (5.9), in

gauge 2, we finally moved to gauge 1 using the relation eq. (2.34). It was mentioned

in subsection 5.1, in the footnote, that there will be additional higher order terms in ζ on

r.h.s. of eq. (2.34) which might lead to additional contribution in 〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉
coming from the two point function 〈δφ(k1)δφ(k2)〉. In this appendix we will first compute

the additional higher order terms in eq. (2.34) and then argue that the possible additional

contributions to eq (2.34) are further suppressed in the slow-roll parameters.

For the discussion of contribution due to higher order terms in ζ, we will not consider

any tensor perturbations and define the scalar perturbation, ζ, in the metric in the following

way, from eq. (2.17),

hij = e2(ρ(t)+ζ)δij . (D.1)

The scalar perturbation in the inflaton is defined in eq. (2.23). As was discussed in subsec-

tion 2.1.2, to go from gauge 2 to gauge 1 one needs to do a time reparameterization, which

to leading order in ζ was given in eq. (2.31). Considering the time coordinate in gauge 2

being t̃ and that in gauge 1 being t, we write this infinitesimal time reparameterization as,

t̃ = t+ T. (D.2)

The scalar perturbation in the inflaton in gauge 2 is given eq. (2.23), the scalar perturbation

in the metric, ζ, is zero in this gauge and the metric takes the form,

ds2 = −dt̃2 + e2ρ(t̃)δijdx
idxj . (D.3)

Notice that for ρ(t̃) = Ht̃ we get eq. (2.18), here we allow for a more general time depen-

dence.

In gauge 1 there is no scalar perturbation in the inflaton, δφ = 0 and the metric, now

containing a scalar perturbation, becomes,

ds2 = −dt2 + e2(ρ(t)+ζ)δijdx
idxj . (D.4)

Using the time reparameterization, eq. (D.2), in eq. (2.23) and demanding that δφ

vanishes as we go to gauge 1 yields the relation, upto cubic order in T ,15

δφ = −T∂tφ̄(t)−
T 2

2
∂2t φ̄(t)−

T 3

6
∂3t φ̄(t). (D.5)

Using the time parameterization, eq. (D.2), in the metric of gauge 2, eq. (D.3), and then

comparing with the metric in gauge 1, eq. ((D.4)), we obtain ζ, upto cubic order in T ,

ζ = T∂tρ+
T 2

2
∂2t ρ+

T 3

6
∂3t ρ. (D.6)

Inverting this equation we obtain T in terms of ζ,

T =
ζ

∂tρ
− ζ2

2(∂tρ)3
∂2t ρ−

ζ3

6(∂tρ)4
∂3t ρ. (D.7)

15Here we neglected a term like ∂tδφ, because at late times, upon horizon crossing δφ becomes constant.
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Substituting for T from eq. (D.7) in eq. (D.5), we obtain the correction to eq. (2.34) due

to higher order terms in ζ,

δφ =− ζ

∂tρ
∂tφ̄+

1

2

ζ2

(∂tρ)2
(∂tφ̄)

2

(
∂2t ρ

∂tρ ∂tφ̄
− ∂2t φ̄

(∂tφ̄)2

)

− 1

2

ζ3

(∂tρ)3
(∂tφ̄)

3

(
− 1

3

∂3t ρ

∂tρ (∂tφ̄)2
− ∂2t ρ

∂tρ

∂2t φ̄

(∂tφ̄)3
+

1

3

∂3t φ̄

(∂tφ̄)3

)
.

(D.8)

The linear term in ζ on the r.h.s. of eq. (D.8) gives the leading contribution to the

four point correlator of curvature perturbations 〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉 as obtained in

eq. (5.10). This arises due to the quartic coefficient term 〈O(k1)O(k2)O(k3)O(k4)〉 in

eq. (2.37). Additional contributions to the 〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉 correlator arise from

the higher terms on the r.h.s. of eq. (D.8). For example the term going like ζ2 on the r.h.s.

of eq. (D.8) when inserted twice in the quadratic term of the wave function, which goes like
M2

Pl

H2

∫
−δφδφ〈OO〉, eq. (2.37), can give a contribution of this type. However, due to the

extra factor
( ∂2

t ρ

∂tρ ∂tφ̄
− ∂2

t φ̄

(∂tφ̄)2

)
that multiples the ζ2 term on the r.h.s. of eq. (D.8) such a

contribution will be of order ǫ and therefore will be suppressed in the slow-roll parameters.

Similarly, it is easy to see that the other terms in the expansion in eq. (D.8) also give

subleading contributions to the four-point correlator.

E Conformal transformations and compensating reparameterizations

Following our discussion in section 6.1, in this appendix we will show that the probabil-

ity distribution P [δφ], defined in eq. (3.29), is invariant under the combined conformal

transformation, eq. (3.12), eq. (3.13), and the compensating coordinate reparameteriza-

tion, eq. (3.18) upto quartic order in δφ. This will, in turn, prove the invariance of the

scalalr four point function under the combined transformations mentioned above.

The probability distribution was calculated upto quartic order in δφ in eq. (5.3). Let

us begin by writing the different terms in P [δφ] schematically as,

P [δφ] = exp

[
−
∫
δφδφ〈OO〉+ 1

8

∫
δφδφδφδφ

P̂ijkl(k12)

k312
〈OOTij〉〈OOTkl〉

+
1

12

∫
δφδφδφδφ〈OOOO〉

] (E.1)

with, k12 = |k1 + k2|. In particular the second term in the r.h.s. of eq. (E.1) is responsible

for the ET contribution and we will refer to it loosely as the ET term below.

The invariance of P [δφ] under the combined transformations works out in a rather

non-trivial way as follows. The first and third terms in the r.h.s. of eq. (E.1) which are

quadratic and proportional to 〈OOOO〉 respectively, are both invariant under a conformal

transformation. But the ET term in the r.h.s. of eq. (E.1) is not. However, its transfor-

mation under a conformal transformation is exactly canceled by the transformation of the

first term in the r.h.s. of eq. (E.1) under the compensating reparameterization. Under a

conformal transformation δφ transforms linearly, therefore the resulting change of the ET
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term under a conformal transformation is quartic in δφ. Now as we see from eq. (6.4)

under the compensation reparameterization δφ transforms by a term which is cubic in δφ.

As a result the change under the compensating reparameterization of the first term in the

r.h.s. of eq. (E.1), which is quadratic in δφ to begin with, is also quartic in δφ. We will

show in this appendix that these two terms exactly cancel. Additional contributions under

the compensating reparameterization arise from the second and third terms in eq. (E.1)

but these are of order (δφ)6 and not directly of concern for us, since we are only keeping

terms upto quartic order in δφ. We expect that once all terms of the required order are

kept P [δφ] should be invariant to all orders in δφ.

We turn now to establishing this argument in more detail. First, we will calculate the

change in the first term in the r.h.s. of eq. (E.1) under the compensating reparameteriza-

tion. Next, we will calculate the change in the ET term in eq. (E.1) under a conformal

transformation and show that they cancel each other.

E.1 Change in
∫
δφδφ〈OO〉 under the compensating reparameterization

The change of
∫
δφδφ〈OO〉 under the coordinate reparameterization xi → xi + vi(x) with

vi(x) = −6bkγkj(x)

∂2 can be written in momentum space as,

δR
[
−
∫
δφδφ〈OO〉

]
= I1 + I2, (E.2)

I1 = −
∫

d3k1

(2π)3
d3k2

(2π)3
δR

(
δφ(k1)

)
δφ(k2)〈O(−k1)O(−k2)〉, (E.3)

I2 = −
∫

d3k1

(2π)3
d3k2

(2π)3
δφ(k1)δ

R
(
δφ(k2)

)
〈O(−k1)O(−k2)〉. (E.4)

Using δR
(
δφ(k)

)
from eq. (6.4), one gets

I1 = 3bm
∫

d3k1
(2π)3

d3k2
(2π)3

d3k3
(2π)3

d3k4
(2π)3

d3k5
(2π)3

δφ(k1 − k5)δφ(k2)δφ(k3)δφ(k4)

ki1
P̂imkl(k5)

k85
〈O(−k1)O(−k2)〉 〈O(−k3)O(−k4)Tkl(−k5)〉.

(E.5)

With the change of variable

k1 = q1 + k5 (E.6)

and then again relabeling q1 → k1 one arrives at,

I1 =3bm
∫

d3k1
(2π)3

d3k2
(2π)3

d3k3
(2π)3

d3k4
(2π)3

d3k5
(2π)3

δφ(k1)δφ(k2)δφ(k3)δφ(k4)

P̂imkl(k5)

k85
(ki1 + ki5) 〈O(−k1 − k5)O(−k2)〉〈O(−k3)O(−k4)Tkl(−k5)〉.

(E.7)

Similar procedure for I2 gives,

I2 =3bm
∫

d3k1
(2π)3

d3k2
(2π)3

d3k3
(2π)3

d3k4
(2π)3

d3k5
(2π)3

δφ(k1)δφ(k2)δφ(k3)δφ(k4)

P̂imkl(k5)

k85
(ki2 + ki5) 〈O(−k1)O(−k2 − k5)〉〈O(−k3)O(−k4)Tkl(−k5)〉.

(E.8)
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Substituting for I1 and I2 in eq. (E.2) one obtains,

δR
[
−
∫
δφδφ〈OO〉

]
=3bm

∫ 4∏

i=1

(
d3ki
(2π)3

δφ(ki)

)
d3k5
(2π)3

P̂imkl(k5)

k85
{
(ki1+k

i
5) 〈O(−k1−k5)O(−k2)〉+ (ki2+k

i
5) 〈O(−k1)O(−k2−k5)〉

}

〈O(−k3)O(−k4)Tkl(−k5)〉. (E.9)

We further use the Ward identity for the conservation of stress tensor,

∂
xj
3

〈O(x1)O(x2)Tij(x3)〉 = δ3(x3 − x1)〈∂xj
1

O(x1)O(x2)〉
+ δ3(x3 − x2)〈O(x1)∂xj

2

O(x2)〉
(E.10)

which in momentum space is of the form,

(ki3 + ki1) 〈O(k1 + k3)O(k2)〉+ (ki3 + ki2) 〈O(k1)O(k2 + k3)〉
= kj3〈O(k1)O(k2)Tij(k3)〉.

(E.11)

Using eq. (E.11), one can simplify eq. (E.9) further to obtain,

δR
[
−
∫
δφδφ〈OO〉

]
=3bm

∫ 4∏

i=1

[
d3ki
(2π)3

δφ(ki)

]
d3k5
(2π)3

P̂imkl(k5)

k85

kj5 〈O(−k1)O(−k2)Tij(−k5)〉 〈O(−k3)O(−k4)Tkl(−k5)〉.
(E.12)

E.2 Change in ET contribution term under conformal transformation

The ET term in the r.h.s. of eq. (E.1) in more detail is given by

P [δφ]ET = exp

[ ∫ 4∏

J=1

{
d3kJ
(2π)3

δφ(kJ)

}
I

]
, with (E.13)

I =

∫
d3k5
(2π)3

d3k6
(2π)3

〈Tij(k5)Tkl(k6)〉
k35 k

3
6

〈O(k1)O(k2)Tij(k5)〉 〈O(k3)O(k4)Tkl(k6)〉.

Where we have used the relation,

P̂ijkl =
8〈Tij(k5)Tkl(−k5)〉′

k35
(E.14)

to write P̂ijkl appearing in eq. (5.3) in terms of 〈Tij(k5)Tkl(−k5)〉′. In the above ex-

pression one can integrate over k5 and k6 using the momentum conserving delta func-

tion in 〈Tij(k5)Tkl(k6)〉 and also in the coefficient functions 〈O(k1)O(k2)Tij(k5)〉 and

〈O(k2)O(k3)Tij(k6)〉 to get the ET term in eq. (5.3). Under a conformal transformation

δφ transforms as given in eq. (B.20). After integrating by parts we obtain,

δC
[ ∫ 4∏

J=1

{
d3kJ
(2π)3

δφ(kJ)

}
I

]
= −

∫ 4∏

J=1

{
d3kJ
(2π)3

δφ(kJ)

}
δC

(
I
)
. (E.15)
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Where the resulting change in I is given by

δC
(
I
)
=

∫
d3k5
(2π)3

d3k6
(2π)3

〈Tij(k5)Tkl(k6)〉
k35 k

3
6[

〈δO(k1)O(k2)Tij(k5)〉 〈O(k3)O(k4)Tkl(k6)〉

+ 〈O(k1)δO(k2)Tij(k5)〉 〈O(k3)O(k4)Tkl(k6)〉
+ 〈O(k1)O(k2)Tij(k5)〉 〈δO(k3)O(k4)Tkl(k6)〉
+ 〈O(k1)O(k2)Tij(k5)〉 〈O(k3)δO(k4)Tkl(k6)〉

]

(E.16)

and δO(k) is given in eq. (B.21).

Now we will use the fact that 〈O(k3)O(k4)Tkl(k6)〉 is invariant under special conformal

transformation, which will allow us to write,

〈δO(k1)O(k2)Tij(k5)〉+ 〈O(k1)δO(k2)Tij(k5)〉 = −〈O(k1)O(k2)δTij(k5)〉. (E.17)

Using eq. (E.17) back in eq. (E.16),

δC
(
I
)
=−

∫
d3k5
(2π)3

d3k6
(2π)3

〈Tij(k5)Tkl(k6)〉
k35 k

3
6

[
〈O(k1)O(k2)δTij(k5)〉

〈O(k3)O(k4)Tkl(k6)〉+ 〈O(k1)O(k2)Tij(k5)〉 〈O(k3)O(k4)δTkl(k6)〉
]
.

(E.18)

Next we use the expression for the change of Tij(k) as given in eq. (B.23) in the above

expression and integrate by parts to move the derivatives acting on Tij(k) to other terms.

After using the fact that 〈Tij(k5)Tkl(k6)〉 is also invariant under conformal transformation,

we are left with the terms which arise when the differential operators acts on the factors

of 1/k35 and 1/k36. This gives,

δC
(
I
)
=

∫
d3k5
(2π)3

d3k6
(2π)3

12

k35 k
3
6

[
1

k25
(bmk5i − bik5m)〈Tmj(k5)Tkl(k6)〉

+
1

k26
(bmk6k − bkk6m)〈Tij(k5)Tml(k6)〉

]

〈O(k1)O(k2)Tij(k5)〉 〈O(k3)O(k4)Tkl(k6)〉.

(E.19)

Further we can use the fact that 〈Tij(k5)Tml(k6)〉 satisfies the relation

k5m〈Tmj(k5)Tkl(k6)〉 = 0 (E.20)

which follows for example from eq. (E.14) and the fact that P̂ijkl is transverse and traceless.

This yields,

δC
(
I
)
=

∫
d3k5
(2π)3

d3k6
(2π)3

24

k35 k
3
6

bmk5i
k25

〈Tmj(k5)Tkl(k6)〉

〈O(k1)O(k2)Tij(k5)〉 〈O(k3)O(k4)Tkl(k6)〉.
(E.21)
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In obtaining the above equation we have also used the fact that I is symmetric under the

exchange

the external momenta k1 ⇔ k3, k2 ⇔ k4, k5 ⇔ k6

and for the indices {i, j} ⇔ {k, l}.
(E.22)

Finally, using eq. (E.14) gives,

δC
(
I
)
= 3bm

∫
d3k5
(2π)3

P̂imkl(k5)

k85
k5j〈O(k1)O(k2)Tij(k5)〉〈O(k3)O(k4)Tkl(−k5)〉. (E.23)

Using δC
(
I
)
from eq. (E.23) in eq. (E.15) and comparing with eq. (E.12), we see that they

exactly cancel each other so that their sum vanishes. This proves that P [δφ] is invariant

upto quartic order in δφ.

F More details on different limits of the final result

As was mentioned in subsection 6.3, in this appendix we will provide more details on the

discussion of different limits of our final result in the following subsections.

F.1 Details on deriving eq. (6.36) for Limit II in subsection 6.3.2

Let us start examining the behavior of 〈O(k1)O(k2)O(k3)O(k4)〉′ in the limit k2 → ∞.

We do so by parameterizing k2 = a/ǫ and then take the limit ǫ→ 0, with k3,k4 held fixed

and k1 = −(k2 + k3 + k4). One then obtains,

lim
ǫ→0

〈O(k1)O(k2)O(k3)O(k4)〉′ =
1

ǫ
W div. +W const. +O(ǫ) . (F.1)

Here W div. is the coefficient of a term which is divergent as ǫ → 0, and W const. is a term

which is ǫ independent. The presence of a divergent term might at first seem to contradict

eq. (6.36). However it turns out that the divergent piece is entirely a contact term analytic

in the momenta.

W div. =W div.
s +W div.

t +W div.
u (F.2)

where the contributions from the individual channels are

1

ǫ
W div.

s = − 5

8k2
(k2 · k3)(k2 · k4) +

k2
4
k3 · k4, (F.3)

1

ǫ
W div.

t =
1

ǫ
W div.

u = − 1

8k2
(k2 · k3)(k2 · k4)−

k2
4
k3 · k4 . (F.4)

These terms are clearly analytic functions of k3,k4. Such analytic terms in position space

give rise to contact terms, which are proportional to delta functions or their derivatives for

one or more of the arguments. We had mentioned in our discussion after eq. (6.28) that

we are neglecting such contact terms in the OPE, it is therefore no contradiction that they

are appearing in an expansion of the full answer in eq. (F.1) above, but did not appear in

our discussion based on the OPE in eq. (6.36).
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Neglecting these divergent pieces we get in the limit ǫ→ 0 that

lim
ǫ→0

〈O(k1)O(k2)O(k3)O(k4)〉′ =W const. (F.5)

We get contributions to W const from all the three channels,

W const =W const
S +W const

T +W const
U (F.6)

where,

W const
T +W const

U =
(k2 · k3)(k

2
3 − k24)

8k2
. (F.7)

It is obvious from r.h.s. of eq. (F.7) that the contribution to W const from T and U channels

are analytic functions of k3,k4. Therefore, effectively they don’t contribute to W const for

the same reason described earlier, and the contribution to W const. comes only from the S-

channel, which is

W const
S =W const.

S(1) +W const.
S(2) , (F.8)

with

W const
S(1) =

3

8

(k2 · k3)(k2 · k4)

k22

(
(k̃ + k3 + k4)−

k̃k3 + k3k4 + k4k̃

(k̃ + k3 + k4)
− k̃k3k4

(k̃ + k3 + k4)2

)
,

W const.
S(2) =

3

64
k̃
(
−k̃2 + k23 + k24

)
+

3k23k
2
4

8(k̃ + k3 + k4)
+

5(k2 · k3)(k
2
3 − k24)

16k2
. (F.9)

It is obvious from eq. (F.9) that the term W const.
S(2) does not contribute to eq. (F.5), because

the first two terms on l.h.s. of W const.
S(2) does not depend on k2 and the last term is analytic

in the momenta k3,k4, therefore when fourier transformed back to position space they

produce delta functions or derivatives of them.

Finally we get,

lim
ǫ→0

〈O(k1)O(k2)O(k3)O(k4)〉′ ∼
(k2 · k3)(k2 · k4)

k22

(
(k̃ + k3 + k4)

− k̃k3 + k3k4 + k4k̃

(k̃ + k3 + k4)
− k̃k3k4

(k̃ + k3 + k4)2

)
.

(F.10)

Therefore we have confirmed eq (6.36).

F.2 More details on obtaining eq. (6.40)

In this subsection we will explain in more detail the contribution of the ET contribu-

tion term to the scalar four point correlator 〈δφ(k1)δφ(k2)δφ(k3)δφ(k4)〉ET in counter-

collinear limit eq. (6.39). It is obvious from eq. (5.6) and eq. (5.7) that in this limit the

dominant contribution in 〈δφ(k1)δφ(k2)δφ(k3)δφ(k4)〉ET comes from the S-channel term,

ĜS(k1,k2,k3,k4). This term diverges as 1
k3
12

in the counter-collinear limit. In the r.h.s. of
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eq. (5.7) the term within the parenthesis is due to the four external momenta correspond-

ing to the four perturbations being contracted with the transverse traceless projector P̂ijkl,

eq. (5.2), as follows,

ki1k
j
2k

k
3k

l
4P̂ijkl(k1 + k2) = (F.11)

[{
k1.k3 +

{(k2 + k1).k1}{(k4 + k3).k3}
|k1 + k2|2

}{
k2.k4 +

{(k1 + k2).k2}{(k3 + k4).k4}
|k1 + k2|2

}

+

{
k1.k4 +

{(k2 + k1).k1}{(k4 + k3).k4}
|k1 + k2|2

}{
k2.k3 +

{(k2 + k1).k2}{(k4 + k3).k3}
|k1 + k2|2

}

−
{
k1.k2 −

{(k2 + k1).k1}{(k1 + k2).k2}
|k1 + k2|2

}{
k3.k4 −

{(k3 + k4).k4}{(k4 + k3).k3}
|k1 + k2|2

}]
.

One can also use the polarization tensors ǫsij , defined in eq. (2.39), to write the r.h.s. of

eq. (F.11) in an alternate way. In a spherical coordinate system having {e, ē, k̂12} as basis

(denoting k̂ = k
k ) one can obtain the relation

∑

s

ǫsijǫ
s
kl = P̂ijkl. (F.12)

Let us define θi being the angle between ki and k12, whereas φi being the angle between

ki and e. As was shown in [3], see eq. (2.32), using eq. (F.12), one can then get,

ki1k
j
2k

k
3k

l
4P̂ijkl(k1 + k2) = k21k

2
3 sin

2(θ1) sin
2(θ3) cos(2χ12,34). (F.13)

Using eq. (F.11), eq. (F.13) and eq. (5.8) in eq. (5.7), one obtains the form of the ET contri-

bution term 〈δφ(k1)δφ(k2)δφ(k3)δφ(k4)〉ET in the counter-collinear limit as in eq. (6.40)

in a straight forward way.

F.3 More details on the check of the relative coefficient between CF and ET

terms

In subsection 6.3.3 towards the end we discussed the counter-collinear limit in an alternative

but equivalent way compared to what already exists in literature. We took all the individual

momenta i.e. ki, i = 1, 2, 3, 4 to diverge keeping k1 + k2 = −(k3 + k4) fixed. This way

of interpreting the counter-collinear limit provides us a further check to fix the relative

coefficient between the CF term in eq. (5.5) and the ET term in eq. (5.6). Here we will

discuss in some detail.

We implement this alternate way of counter-collinear limit in two steps. First we take

k1,k1 → ∞ keeping k12 fixed and then we take k3,k4 → ∞ keeping k3 + k3 fixed. After

the first limit the 〈O(k1)O(k2)O(k3)O(k4)〉, given in eq. (4.33), becomes,

〈O(k1)O(k2)O(k3)O(k4)〉 → 4(2π)3δ3
(∑

J

kJ

)
3

8

(k2.k3)(k2.k4)

k22
S(k3, k4) (F.14)

with S(k3, k4) being given in eq. (5.8). Next we take the limit, i.e. k3,k4 → ∞ keeping

k3 + k3 fixed and in this limit the leading non-analytic behavior of S(k3, k4) goes as,

S(k3, k4) ∼ −3

8

k334
k23
. (F.15)
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Using eq. (F.15), one obtains the limiting behavior of the CF term contribution to scalar

4 point correlator, eq. (5.5) in the counter-collinear limit as,

〈δφ(k1)δφ(k2)δφ(k3)δφ(k4)〉CF = −8(2π)3δ3
(∑

J

kJ

)(
3

8

)2 (k2.k3)(k2.k4)

k22

k334
k23
. (F.16)

For the ET contribution to the scalar four point correlator, eq. (5.6), we have two

factors of S, and as it was mentioned in the previous subsection, the term within the

parenthesis in the r.h.s. of eq. (5.7) is ki1k
j
2k

k
3k

l
4P̂ijkl(k1 + k2), eq. (F.11). In the sequence

of steps for the counter-collinear limit we are concerned with, this term goes as,

ki1k
j
2k

k
3k

l
4P̂ijkl(k1 + k2) ∼ −2(k2.k3)(k2.k4). (F.17)

Using eq. (F.15) and eq. (F.17) in eq. (5.6), we obtain the form of the contribution of the

ET term in 4 point scalar correlator as,

〈δφ(k1)δφ(k2)δφ(k3)δφ(k4)〉ET = −8(2π)3δ3
(∑

J

kJ

)(
3

8

)2 (k2.k3)(k2.k4)

k22

k334
k23
. (F.18)

Now comparing eq. (F.16) and eq. (F.18) we conclude that, once we take the counter-

collinear limit in the sequential order prescribed above, the leading behavior of both the

CF and ET term matches perfectly including coefficients and thus provides a further check

on the relative coefficient of these two contributions.
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