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CONFORMAL ITERATED FUNCTION SYSTEMS
WITH APPLICATIONS TO THE GEOMETRY

OF CONTINUED FRACTIONS

R. DANIEL MAULDIN AND MARIUSZ URBAŃSKI

Abstract. In this paper we obtain some results about general conformal it-
erated function systems. We obtain a simple characterization of the packing
dimension of the limit set of such systems and introduce some special systems
which exhibit some interesting behavior. We then apply these results to the
set of values of real continued fractions with restricted entries. We pay spe-
cial attention to the Hausdorff and packing measures of these sets. We also
give direct interpretations of these measure theoretic results in terms of the
arithmetic density properties of the set of allowed entries.

1. Introduction: Setting and notation

Let I be a nonempty subset of N, the set of all positive integers such that I 6= N.
Let JI be the set of all irrational numbers z whose standard continued fraction has
the form

z =
1

b1 +
1

b2 +
1

b3 +
1
.. .

where each partial denominator bi is an element of I. We concern ourselves here
with the geometric measure theoretic properties of the set J = JI . In particular, we
are interested in the Hausdorff, packing, and box dimension of J and corresponding
measures. It is easy to see (comp. [MU, Section 6]) that J is the limit set of
the conformal iterated function system generated by the maps φb(x) = 1/(b+ x),
b ∈ I. Our investigations of J are based on this representation. We call the family
S = {φb : b ∈ I} a continued fraction system and I the base for the continued
fraction system.

The paper is organized as follows. Later in this section we recall from [MU]
some major features of general conformal iterated function systems. In section
2, we present some new results for general conformal iterated function systems.
In particular, we introduce the absolutely regular systems which naturally occur
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among the continued fraction systems. For regular systems, we obtain some useful
necessary and sufficient conditions for the Hausdorff measure of the limit set J to
be positive and also necessary and sufficient conditions for the packing measure to
be finite where the dimension parameter for both of these is the Hausdorff dimen-
sion of the limit set J . We also give a simple and useful characterization of the
packing dimension of the limit set in terms of the Hausdorff dimension of J and
the box counting dimension of the set of first iterates of a point in the limit set,
J . In section 4, we apply these results to continued fraction systems. It turns out
that when these characterizations are applied to a continued fraction system, these
results have direct interpretations in terms of some arithmetic density properties
of the set I. So, in section 3, we discuss some of these density notions. Some of
these notions do not seem to have been discussed before. Again, in section 4, we
give the relationship between these density properties and Hausdorff measure and
dimension. In section 5, we give the corresponding properties for packing measure
and dimension. In section 6, we examine some particular continued fraction sys-
tems. Various examples are given throughout the paper. The results of this paper
include a detailed analysis of those continued fraction systems when the index set
I is an arithmetic progression, the set of powers of a given integer, the set of all
integers raised to a given exponent, and the set of prime numbers. Finally, we end
the paper with some problems which remain unsolved.

Many papers have been written on estimating or determining the Hausdorff
dimension of particular sets of continued fractions. The most detailed work has
concerned the case where the index set I is finite. We mention here the papers
of T.J. Cusick [Cu], I.J. Good [Go], and D. Hensley [He]. However, none of these
papers have dealt with the finer geometry of these sets, e.g., whether the Hausdorff
measure in the dimension is positive or finite, but have mainly concentrated on
other interesting aspects of these finite systems. Also, none of these papers have
dealt with the corresponding properties of the packing measure. It is after all
a relatively new concept introduced independently by D. Sullivan and C. Tricot
in the 1980’s. We shall be using several theorems concerning packing measures as
presented in Mattila’s book [Ma]. If the index set I is finite, then both the Hausdorff
and packing measures are positive and finite and each is up to a multiplicative
constant the conformal measure corresponding to the system. Here we concentrate
on new phenomena which occur when the index set I is infinite. In this paper, we
demonstrate that there are many continued fraction systems where the Hausdorff
measure is trivial but the packing measure is, geometrically speaking, the correct
measure or conversely. We also provide examples for which none of these measures
is nontrivial.

We now recall the setting and some of the results developed in [MU] which
will be used in this paper. Let X be a nonempty compact subset of a Euclidean
space Rd. Let I be a countable index set with at least two elements and let S =
{φi : X → X : i ∈ I} be a collection of injective contractions from X into X for
which there exists 0 < s < 1 such that ρ(φi(x), φi(y)) ≤ sρ(x, y) for every i ∈ I
and for every pair of points x, y ∈ X . Thus, the system S is uniformly contractive.
Any such collection S of contractions is called an iterated function system. We are
particularly interested in the properties of the limit set defined by such a system.
We can define this set as the image of the coding space under a coding map as
follows. Let I∗ =

⋃
n≥1 I

n, the space of finite words, and for ω ∈ In, n ≥ 1, let
φω = φω1 ◦φω2 ◦ · · ·◦φωn . If ω ∈ I∗∪I∞ and n ≥ 1 does not exceed the length of ω,
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we denote by ω|n the word ω1ω2 . . . ωn. Since given ω ∈ I∞, the diameters of the
compact sets φω|n(X), n ≥ 1, converge to zero and since they form a descending
family, the set

∞⋂
n=0

φω|n(X)

is a singleton and therefore, denoting its only element by π(ω), defines the coding
map π : I∞ → X . The main object of our interest will be the limit set

J = π(I∞) =
⋃

ω∈I∞

∞⋂
n=1

φω|n(X).

Observe that J satisfies the natural invariance equality, J =
⋃
i∈I φi(J). Notice

that if I is finite, then J is compact. However, our main interest centers on systems
S which are infinite. Some of the essential properties of J depend upon an object
which appears only when I is infinite. Let X(∞), the “asymptotic boundary,” be
the set of limit points of all sequences φi(X), i ∈ I ′, where I ′ ranges over all infinite
subsets of I. The geometric behavior of the system at X(∞) directly affects the
geometric properties of the limit set J . For an infinite continued fraction system
the only element of X(∞) is 0.

An iterated function system S = {φi : X → X : i ∈ I} is said to satisfy the Open
Set Condition (abbreviated (OSC)) if there exists a nonempty open set U ⊂ X (in
the topology of X) such that φi(U) ⊂ U for every i ∈ I and φi(U) ∩ φj(U) = ∅ for
every pair i, j ∈ I, i 6= j.

An iterated function system S satisfying OSC is said to be conformal (c.i.f.s.) if
the following conditions are satisfied.

(a) X is a compact connected subset of a Euclidean space Rd and U = IntRd(X).
(b) There exist α, l > 0 such that for every x ∈ ∂X ⊂ Rd there exists an open cone

Con(x, ux, α, l) ⊂ Int(X) with vertex x, direction vector ux, central angle of
Lebesgue measure α, and altitude l.

(c) There exists an open connected set X ⊂ V ⊂ Rd such that all maps φi, i ∈ I,
extend to C1+ε diffeomorphisms of V into V and are conformal on V .

(d) Bounded Distortion Property(BDP). There exists K ≥ 1 such that |φ′ω(y)| ≤
K|φ′ω(x)| for every ω ∈ I∗ and every pair of points x, y ∈ V , where |φ′ω(x)|
means the norm of the derivative.

Each continued fraction system S = {φb(x) = 1/(b+ x) : b ∈ I} satisfies properties
(a)–(c). We take X = [0, 1]. For V , we take an open interval such that X ⊂
V ⊂ (−1/4, 5/4). To check the bounded distortion property, we note that if ω =
(b1, ..., bn), then φ′ω(x) = (−1)n/(qn + xqn−1)2. Thus, |φ′ω(y)| ≤ 4|φ′ω(x)|, for every
pair of points x, y ∈ X. So, we may take the distortion constant K as close to 4
as we like by adjusting the open interval V . There is one small point about these
continued fraction systems. If 1 ∈ I, then the system is not uniformly contractive,
since φ′1(0) = −1. However, this is not a real problem, since the system of second
level maps, {φb1b2 : b1, b2 ∈ I}, has the same limit set and is uniformly contractive.

As was demonstrated in [MU], conformal iterated function systems naturally
break into two main classes, irregular and regular. This dichotomy can be deter-
mined from either the existence of a zero of a natural pressure function or, equiv-
alently, the existence of a conformal measure. The topological pressure function P
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is defined as follows. For every integer n ≥ 1 define

ψn(t) =
∑
ω∈In

||φ′ω ||t

and

P (t) = lim
n→∞

1
n

logψn(t).

For a conformal system S, we sometimes set ψS = ψ1 = ψ. The finiteness parameter,
θS , of the system S is defined by inf{t : ψ(t) < ∞} = θS . In [MU], it was shown
that the topological pressure function P (t) is non-increasing on [0,∞), strictly
decreasing, continuous and convex on [θ,∞) and P (d) ≤ 0. Of course, P (0) = ∞ if
and only if I is infinite. In [MU] (see Theorem 3.15) we have proved the following
characterization of the Hausdorff dimension of the limit set J , which will be denoted
by dimH(J) = hS .

Theorem 1.1. dimH(J) = sup{dimH(JF ) : F ⊂ I is finite} = inf{t : P (t) ≤ 0}.
If P (t) = 0, then t = dimH(J).

We called the system S regular provided that there is some t such that P (t) = 0.
It follows from [MU] that t is unique. Also, the system is regular if and only if there
is a t-conformal measure. A Borel probability measure m is said to be t-conformal
provided m(J) = 1 and for every Borel set A ⊂ X and every i ∈ I

m(φi(A)) =
∫
A

|φ′i|t dm

and

m(φi(X) ∩ φj(X)) = 0,

for every pair i, j ∈ I, i 6= j.
A system S = {φi}i∈I is said to be strongly regular if 0 < P (t) < ∞ for some

t ≥ 0. As an immediate application of Theorem 1.1 we get the following

Theorem 1.2. A conformal system S is strongly regular if and only if h > θ.

In [MU] we called a a system S = {φi}i∈I hereditarily regular or cofinitely regular
provided every nonempty subsystem S′ = {φi}i∈I′ , where I ′ is a cofinite subset of
I, is regular. A finite system is cofinitely regular and for an infinite system, we
showed in [MU] that whether a system is cofinitely regular can be also determined
from the pressure function:

Theorem 1.3. An infinite system S is cofinitely or hereditarily regular if and only
if P (θ) = ∞⇔ ψ(θ) = ∞⇔ {t : P (t) <∞} = (θ,∞) ⇔ {t : ψ(t) <∞} = (θ,∞).

Theorem 1.4. Every cofinitely regular system is strongly regular.

Note that Example 5.4 of [MU] is a regular, but not strongly regular system.
Also, Example 5.3 of [MU] may be adjusted to yield a system S of similarity maps
of [0, 1] into [0, 1] with ψ1(t) = +∞, if t < 1/2 and ψ1(1/2) < 1. Now, add finitely
many similarity maps to S so that ψ1(1/2) > 1. This system is strongly, but not
cofinitely, regular.

We also need another characterization of the finiteness parameter θ, Theorem
3.23 of [MU]:

Theorem 1.5. θS = inf{dimH(JS′) : S′ is a cofinite subsystem of S}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ITERATED FUNCTION SYSTEMS AND CONTINUED FRACTIONS 4999

2. Results for general conformal systems

First, let us introduce another subclass of the regular conformal systems.

Definition. A system S = {φi}i∈I is said to be absolutely regular if and only
if every nonempty subsystem of S is regular.

The following two statements are obvious.

Theorem 2.1. A system S is absolutely regular if and only if every non-empty
subsystem of S is cofinitely regular.

Corollary 2.2. Every absolutely regular system is cofinitely regular.

Like cofinitely regular systems, whether an infinite conformal system is absolutely
regular can also be completely determined by the behavior of the pressure function.

Theorem 2.3. Let S = {φi}i∈I be infinite. The following conditions are equiva-
lent:

(1) S is absolutely regular.
(2) θS = 0.

Proof. (2) ⇒ (1). Assume (2). Then for every infinite subsystem S′, θS′ = 0, and
since, ψS′(0) = ∞, S′ is regular. Thus, S is absolutely regular.

(1) ⇒ (2). Suppose θ = θS > 0. Since S is infinite, we may assume that
I = N = {1, 2, 3, . . .}. Define inductively In, an increasing sequence of finite
subsets of I, as follows. Set I0 = ∅ and suppose that In has been determined.
Let Mn = max In. Since ψ(θ(1 − 2−n)) = ∞, there exists a finite subset ∆n of
[Mn+1,∞) such that ‖φ′i‖θ·2

−n

< 2−2n−1 for all i ∈ ∆n and 2n ≤
∑
i∈∆n

‖φ′i‖θ(1−2−n)

≤ 2n+1. Then by setting In+1 = In ∪∆n, we finish the recursion for the sequence
{In}n≥0. Set F =

⋃
n≥0

In. By construction, F is infinite. Since
∑
i∈∆n

‖φ′i‖θ ≤

2−2n−1
∑
i∈∆n

‖φ′i‖θ(1−2−n) ≤ 2−n, we conclude that

ψF (θ) =
∑
n≥0

∑
i∈∆n

‖φ′i‖θ ≤
∑
n≥0

2−n = 2 <∞.

Also for every 0 ≤ t < θ there exists k such that t ≤ θ(1 − 2−k). Thus,

ψF (t) ≥
∑
n≥k

∑
i∈∆n

‖φ′i‖t ≥
∑
n≥k

∑
i∈∆n

‖φ′i‖θ(1−2−n) ≥
∑
n≥k

2n = ∞.

Hence, θF = θ and ψF (θF ) ≤ 2 <∞. Therefore, the subsystem generated by F is
not cofinitely regular and the system S is not absolutely regular.

For a regular conformal system with P (h) = 0, we know that Hh(J) <∞, where
Hh(J) denotes the Hausdorff h-dimensional measure. It is possible for the measure
to be zero. In Lemma 4.11 of [MU] we gave a sufficient condition for Hh(J) > 0.
In the next theorem we extend this result, by giving some necessary and sufficient
conditions for the Hausdorff measure to be positive.

Theorem 2.4. Let S = {φi}i∈I be regular. Then the following statements are
equivalent.

(1) Hh(J) > 0.
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(1′) ∃0 < L < ∞ ∃γ ≥ 1 such that for all i ∈ I and for all r > γ diamφi(X),
there is some x ∈ φi(X) such that

m(B(x, r)) ≤ Lrh.

(2) ∃0 < L <∞ ∃γ ≥ 1 and there exists a finite set F such that for all i ∈ I \ F
and for all r > γ diamφi(X), there is some x ∈ φi(X) such that

m(B(x, r)) ≤ Lrh.

(2′) ∃0 < L <∞ ∀γ ≥ 1 there exists a finite set F such that for all i ∈ I \ F and
for all r > γ diamφi(X), there is some x ∈ φi(X) such that

m(B(x, r)) ≤ Lrh.

(3) ∃0 < L <∞ ∃γ ≥ 1 and there exists a finite set F such that for all i ∈ I \ F
and for all r > γ diamφi(X), for all x ∈ φi(X)

m(B(x, r)) ≤ Lrh.

(3′) ∃0 < L <∞ ∀γ ≥ 1 there exists a finite set F such that for all i ∈ I \ F and
for all r > γ diamφi(X), for all x ∈ φi(X)

m(B(x, r)) ≤ Lrh.

Proof. Obviously (3′) ⇒ (3) ⇒ (2) ⇒ (1′) and (3′) ⇒ (2′) ⇒ (2) ⇒ (1′). It is
straightforward to show that (1′) ⇒ (2). Lemma 4.11 of [MU] shows that (1′) ⇒ (1).
In order to show that (1) implies (3′) suppose that (3′) fails. Then for every L >

1/ disth(X, ∂V ) there exists j ∈ I such that m(B(x, r)) > Lrh for some x ∈ φj(X)
and some r > diam(φj(X)). Let J1 be the image under π of all words of I∞ such
that each element of I occurs infinitely often. Consider z ∈ J1, z = π(ω) ∈ I∞ such
that ωn+1 = j for some n ≥ 1. Then there exists zn ∈ φj(X) such that z = φω|n(zn).
Since r ≤ 1/L1/h ≤ dist(X, ∂V ), all the geometric consequences of the bounded
distortion property listed in Section 2 of [MU] are applicable to the ball B(x, r).
In particular, we get |φω|n(zn)−φω|n(x)| ≤ D||φ′ω|n ||r and B

(
φω|n(x), ||φ′ω|n ||r

)
⊃

φω|n(B(x, r)). Therefore, B(z, (D + 1)||φ′ω|n ||r) ⊃ φω|n(B(x, r)). By conformality
and (BDP), this implies that

m
(
B(z, (D + 1)||φ′ω|n ||r)

)
≥ K−h||φ′ω|n ||hm(B(x, r)) ≥ K−hL||φ′ω|n ||hrh

=
(
(D + 1)||φ′ω|n ||r

)h L

Kh(D + 1)h
.

Using Theorem 2.8(1) of [MU], we get Hh(J1) ≤ C/L, for some constant C inde-
pendent of L. Now, letting L→∞ we conclude that Hh(J1) = 0. By Theorem 3.8
and Corollary 3.11 of [MU], m(J \ J1) = 0. This in turn, in view of Lemma 4.2 of
[MU], shows that Hh(J \ J1) = 0. Thus, Hh(J) = 0 and therefore (1) ⇒ (3′). The
proof is finished.

Similarly, we have some necessary and sufficient conditions for the packing mea-
sure to be finite. We denote the h-dimensional packing measure by Ph. For its def-
inition and other information about packing measures and dimensions the reader
may look at the book [Ma] by P. Mattila for example.

Theorem 2.5. Let S = {φi}i∈I be regular. Then the following statements are
equivalent.

(1) Ph(J) <∞.
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(1′) ∃L > 0∃ξ > 0∃γ ≥ 1 such that for all i ∈ I and for all r with γ diamφi(X) <
r ≤ ξ there is some x ∈ φi(X) such that

m(B(x, r)) ≥ Lrh.

(2) ∃L > 0∃ξ > 0∃γ ≥ 1 and there exists a finite set F such that for all i ∈ I \F
and for all r with γ diamφi(X) < r ≤ ξ there is some x ∈ φi(X) such that

m(B(x, r)) ≥ Lrh.

(2′) ∃L > 0∃ξ > 0∀γ ≥ 1 there exists a finite set F such that for all i ∈ I \F and
for all r with γ diamφi(X) < r ≤ ξ there is some x ∈ φi(X) such that

m(B(x, r)) ≥ Lrh.

(3) ∃L > 0∃ξ > 0∃γ ≥ 1 and there exists a finite set F such that for all i ∈ I \F
and for all x ∈ φi(X) and for all r with γ diamφi(X) < r < ξ

m(B(x, r)) ≥ Lrh.

(3′) ∃L > 0∃ξ > 0∀γ ≥ 1 there exists a finite set F such that for all i ∈ I \F and
for all x ∈ φi(X) and for all r with γ diamφi(X) < r < ξ

m(B(x, r)) ≥ Lrh.

Proof. It is straightforward to show that (2) ⇒ (1′). Lemma 4.10 of [MU] shows
that (1′) ⇒ (1). Clearly, (3′) ⇒ (3) ⇒ (2) and (3′) ⇒ (2′) ⇒ (2). Finally, by way of
contradiction, let us assume (1) holds and (3′) fails. Fix L > 0, ξ > 0. Then there
are γ ≥ 1, i ∈ I and γ diamφi(X) < r ≤ ξ such that for some x ∈ φi(X), we have

m(B(x, r)) ≤ Lrh.

Since the system is regular, there is a Borel subset B of J with m(B) = 1 and such
that each point z of B has a unique code, ω, and π(σn(ω)) is in the ball B(x, r/2)
for infinitely many n’s. For such a point z and integer n ≥ 1, we have

m(φω|n(B(π(σn(ω)), r/2))) ≤ ‖φ′ω|n‖hm(B(π(σn(ω)), r/2)) ≤ ‖φ′ω|n‖hLrh.
But, by the bounded distortion property of the system,

φω|n(B(π(σn(ω)), r/2)) ⊃ B(z, ‖φ′ω|n‖K−1r/2).

So,m(B(z, ‖φ′ω|n‖r/2K)) ≤ (‖φ′ω|n‖r/2K)h(2K)hL.Using Theorem 2.9(1) of [MU],
we get Ph(J) ≥ Ph(J ∩B) ≥ (2K)−hL−1. Now, letting L→ 0 we get Ph(J) = ∞.
This contradiction finishes the proof.

We close this section with a stronger form of Lemma 4.15 of [MU]. This improved
version will be directly applied to continued fraction systems in Section 5. For
completeness, and to avoid confusion, we have included a proof since part of the
hypothesis was unfortunately left out of the statement of Lemma 4.15.

Theorem 2.6. Let {φi : i ∈ I} be a regular conformal iterated function system.
Suppose that there exists a subset ∅ 6= Z ⊂ X(∞) such that for every z ∈ Z there
exist i(z) ∈ I and a set R(z) ⊂ (0, dist(X, ∂V )) such that

(a) φi(z)(B(z, supR(z)) ∩ J) = φi(z)(B(z, supR(z))) ∩ J ,
(b) φi(z)(B(z, supR(z))) ⊂ X,
(c) inf{m(B(z,r))

rh : z ∈ Z, r ∈ R(z)} = 0.

Then Ph(J) = ∞.
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Proof. First notice that since ϕi(z) is one-to-one, φi(z)(F ∩ J) = φi(z)(F ) ∩ J, for
all z ∈ Z and all F ⊂ B(z, supR(z)). Let J∞ = π(Σ∞), where Σ∞ ⊂ Σ is the
set of all sequences containing each finite word infinitely often. Of course, J∞ has
full measure. Fix ε > 0 and take z ∈ Z and r ∈ R(z) such that m(B(z, r)) ≤ εrh.
Fix x = π(ω), ω ∈ Σ∞. Then there exists q ≥ 1 such that φωq+1(X) ⊂ B(z, r/2)
and ωq = i(z). Now, x = φω|q (π(σqω)), where σ is the shift transformation on the
coding space, IN . So, using (BDP.3) of [MU], we get

m(B(x,K−1||φ′ω|q ||r/2)) ≤ m(φω|q (B(π(σqω), r/2))) ≤ m(φω|q (B(z, r))).

Using the facts that φωq (B(z, r)) ⊂ X, and condition (a) holds, we have

m(φω|q (B(z, r))) = m(φω|q−1 (φωq (B(z, r))) =
∫
φωq (B(z,r))∩J

||φ′ω|q−1
||h dm

=
∫
φωq (B(z,r)∩J)

||φ′ω|q−1
(x)||h dm(x)

=
∫
B(z,r)∩J

||φ′ω|q−1
(φωq (y))||h||φ′ω|q (y)||h dm(y)

=
∫
B(z,r))∩J

||φ′ω|q ||h dm ≤ ||φ′ω|q ||hm(B(z, r)) ≤ ||φ′ω|q ||hεrh

= (2K)−1(||φ′ω|q ||r)hε(2K)h.

Since we may require q to be as large as we wish and since r > 0 is bounded
from above, the numbers (2K)−1||φω|q ||r converge to zero and we finish the proof
applying Theorem 2.9(1) of [MU].

Recall that the Hausdorff dimension of a probability measure m is defined by
dimH(m) = min{dimH(E) : m(E) = 1}. In Theorem 3.24 of [MU] we have shown
that the Hausdorff dimension of the conformal measure of every regular system for
which the series

∑
i∈I − log(‖φ′i‖)‖φ′i‖h converges is equal to the Hausdorff dimen-

sion of the limit set. In the proof of Corollary 2.25 of [MU] we have demonstrated
that this class of systems comprises all the strongly regular systems. Here we shall
prove a complementary result for the packing dimension of the conformal measure
m, dimP (m) = min{dimP (E) : m(E) = 1}.
Theorem 2.7. If S is a regular system and the series

∑
i∈I − log(‖φ′i‖)‖φ′i‖h con-

verges, then dimP (m) = dimH(J) = dimH(m).

Proof. We shall first show that

lim
n→∞

log(||φ′ω|n ||)
log(||φ′ω|n−1

||) = 1,(2.1)

for almost every ω ∈ I∞. Indeed, applying Birkhoff’s ergodic theorem similarly as
it has been done in the beginning of the proof of Theorem 3.24 of [MU], we conclude
that for almost every ω ∈ I∞ the limit

lim
n→∞

1
n

log(m(φω|n(J)))

exists and is independent of ω. Since for all ω ∈ I∞ and all n ≥ 1, K−h‖φ′ω|n‖h ≤
m(φω|n(J)) ≤ ‖φ′ω|n‖h, formula (2.1) is therefore proved. Denote the set of points
satisfying (2.1) by Z. Fix ε > 0. Consider ω ∈ Z. For n0 sufficiently large, we have
log(||φ′ω|n ||)≥(1+ε) log(||φ′ω|n−1

||) for all n≥n0 or equivalently ||φ′ω|n ||/||φ′ω|n−1
|| ≥

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ITERATED FUNCTION SYSTEMS AND CONTINUED FRACTIONS 5003

||φ′ω|n−1
||ε. For every r > 0, let n be the least number satisfying B(π(ω), r) ⊃

φω|n(X). Then m(B(π(ω), r)) ≥ K−h||φ′ω|n ||h and r ≤ D||φ′ω|n−1
||, where D is

given by (BDP.2) of [MU]. If r is small enough, then n ≥ n0 and therefore

m(B(π(ω), r)) ≥ K−h||φ′ω|n−1
||h ·

||φ′ω|n ||h
||φ′ω|n−1

||h ≥ (DK)−hD−hεrh+hε.

Thus, dimP (π(Z)) ≤ h+ hε and since m(Z) = 1, we conclude that dimP (m) ≤ h.
Since dimP (m) ≥ dimH(m), the proof is finished.

Finally, we close this section by characterizing the packing dimension of the
limit set J of a conformal iterated function system. As recalled in Theorem 1.1, we
showed in [MU] that the Hausdorff dimension of J is given by dimH(J) = inf{t :
P (t) ≤ 0}. It turns out the packing dimension is determined by the box counting
dimension of the “level one” portion of the orbits of points of J and the Hausdorff
dimension of J . For x ∈ X,n ∈ N, set Ln(x) = {φω(x) : ω ∈ In}. We recall that
Nr(E) is the minimum number of balls of radius ≤ r needed to cover a set E. We
also make some notation. If F ⊂ X and R ⊂ I∗, we denote the set

⋃
ω∈R φω(F )

by O(F,R). If R = In, n ≥ 1, we write O(F, n) for simplicity. In the sequel, we
will need the following fact concerning conformal systems. Namely, from (BDP.2)
of [MU], there is some number D > 1 such that

diam(φω(V )) ≤ D||φ′ω ||,
for all finite words ω.

Lemma 2.8. Let {φi : i ∈ I} be a conformal iterated function system. Then
dimP(J) = M = sup{dimH(J), dimB(Ln(x)) : x ∈ J, n ∈ N}.
Proof. Recall from Theorem 3.1 of [MU] that dimP(J) = dimB(J). Fix t > M.
Since P (t) < 0, there is some Q such that if q ≥ Q, then ψq(t) < 4−t and if
|ω| ≥ Q, then ||φ′ω || ≤ 1/4. Fix q ≥ Q and x ∈ J . Choose A such that for all
D ≥ r > 0, Nr(Lq(x)) ≤ Ar−t. Now, choose B such that if 1 ≤ r ≤ D, then
Nr(J) ≤ Br−t and such that B ≥ 4tA/(1− 4tψq(t)).

We will show by induction that for each n ∈ N, if 1/n ≤ r ≤ D, then Nr(J) ≤
Br−t. This inequality holds for 1. Suppose it holds for n and 1/(n+ 1) ≤ r < 1/n.
Let Cn+1 = {ω ∈ Iq : diam(φω(J)) ≤ 1/2(n+ 1)}. Since J =

(⋃
ω∈Cn+1

φω(J)
)
∪(⋃

ω∈Iq\Cn+1
φω(J)

)
, we have

Nr(J) ≤ N1/(n+1)(J) ≤ N1/(n+1)

 ⋃
ω∈Cn+1

φω(J)

+
∑

ω∈Iq\Cn+1

N1/(n+1)(φω(J)).

For ω ∈ Iq \ Cn+1, we have

N1/(n+1)(φω(J)) ≤ N1/((n+1)||φ′ω||)(J) ≤ N1/(2(n+1)||φ′ω||)(J).

Since ||φ′ω|| ≤ 1/4 ≤ (1/2)(n/n + 1), we have 1/n ≤ 1/(2(n + 1)||φ′ω||). Since
1/(2(n+ 1)) < diam(φω(J)) ≤ D||φ′ω ||, we have 1/(2(n+ 1)||φ′ω||) ≤ D. So, by the
induction hypothesis, N1/(n+1)(φω(J)) ≤ B (2(n+ 1)||φ′ω ||)t . Next, we claim that
N1/(n+1)(

⋃
ω∈Cn+1

φω(J)) ≤ N1/(2(n+1))(Lq(x)). To see this, let B(yj , 1/(2(n+1)))
be a collection of balls of radius 1/(2(n+ 1)) covering Lq(x). Suppose z ∈ φω(J),
where ω ∈ Cn+1. Then |z − φω(x)| ≤ diam(φω(J)) ≤ 1/(2(n + 1)). For some
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j, |φω(x)− yj| ≤ 1/(2(n+ 1)). So, the balls B(yj , 1/(n+ 1)) cover
⋃
ω∈Cn+1

φω(J).
Our claim follows from this. Since n+ 1 ≤ 2/r,

Nr(t) ≤ A2t(n+ 1)t +
∑
|ω|=q

B2t(n+ 1)t||φ′ω ||t ≤ 4t [A+Bψq(t)] r−t ≤ Br−t.

This completes the induction argument. It now follows that dimB(J) ≤ t. From
this we have, dimP(J) = M.

Our goal is to show that we can replace the supremum in Lemma 2.8 with a
simple maximum. We use two propositions to accomplish this.

Proposition 2.9. If S is a c.i.f.s., then for all x, y ∈ X, and all n ≥ 1

dimB(O(x, n)) = dimB(O(y, n)).

Proof. First notice that it suffices to prove this equality for n = 1 since for every
n ≥ 1 the collection of maps {φω : ω ∈ In} forms a conformal iterated function
system again. With this setting notice that

∃ ≥1∀r > 0∀z ∈ Rd #{i ∈ I : B(z, r) ∩ φi(X) 6= ∅ and diam(φi(X)) ≥ r/2} ≤M.

(2.2)

To see this (cf. proof of Lemma 4.11, [MU]) denote the set of such i’s by E and
consider i ∈ E with this property and fix y ∈ B(z, r) ∩ φi(X). We repeat here a
crucial geometric condition from the definition of a conformal system. The “cone
condition” (2.10) of [MU] states: there exists 0 < β ≤ α such that for all x ∈ X
and for all ω ∈ I∗

φω(Int(X)) ⊃ Con
(
φω(x), β,D−1||φ′ω ||

) ⊃ Con
(
φω(x), β,D−2 diam(φω(X))

)
,

(2.3)

where Con
(
φω(x), β,D−1||φ′ω ||

)
and Con

(
φω(x), β,D−2 diam(X)

)
denote some

cones with vertices at φω(x), angles β, and altitudes D−1||φ′ω || and D−2 diam(X)
respectively. Thus, there exists a constant P > 0 such that

λ (φi(X) ∩B(z, 2r)) ≥ λ
(
φi(X) ∩ Con(φi(x), β,min{r,D−2 diam(φi(X))})

≥ λ
(
Con(φi(x), β(2D2)−1r)

) ≥ Pr2,

where x ∈ X is such that φi(x) ∈ B(z, 2r). Since all the sets φi(Int(X)) ∩
B(z, 2r), i ∈ E, are mutually disjoint, #E ≤ λ(B(z,2r))

Pr2 ≤ 2dVd

P . So, it suffices
to take M = 2dVd

P . In order to prove the proposition, it is enough to show that
dimB(O(x, 1)) ≤ dimB(O(y, 1)). Towards this goal, take 0 < r ≤ diam(X) and let
Ir = {i ∈ I : diam(φi(X)) ≤ r/2}. Then Nr(O(y, Ir)) ≤ Nr/2(O(x, Ir)). Clearly,
we have Nr(O(z, I \ Ir)) ≤ #(I \ Ir), for all z ∈ X . On the other hand by (2.2),
Nr(O(z, I \ Ir)) ≥ #(I \ Ir)/M . Hence,

Nr(O(y, 1)) ≤ Nr/2(O(x, Ir)) +Nr(O(y, I \ Ir))
≤ Nr/2(O(x, I)) +MNr(O(z, I \ Ir)) ≤ (1 +M)Nr/2(O(x, 1)).

Therefore,

lim
r→0

logNr(O(y, 1))
log r

≤ lim
r→0

logNr(O(x, 1))
log r

.

The proof is finished.
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Lemma 2.10. If S is a c.i.f.s., then for all x ∈ X and for all n ≥ 1,

dimB(O(x, n)) = dimB(O(x, 1)).

Proof. By Proposition 2.9, we may assume that x ∈ Int(X), so B(x, ρ) ⊂ Int(X)
for some ρ > 0. First, we shall show that θS ≤ dimB(O(x, 1)). To see this, fix
t > t− s > dimB(O(x, 1)). Then fix ε > 0 and consider the set

I(ε) = {i ∈ I : Kερ−1 ≤ ||φ′i(x)|| ≤ 2Kερ−1}.
Since the balls B(φi(x), ε) with i ∈ I(ε) are disjoint, Nε(O(x, 1)) ≥ #I(ε). Since
for all ε > 0 small enough ε−t ≥ ε−sNε(O(x, 1)), we get for all k large enough, say
k ≥ k0, the following:

∑
k≥k0

∑
i∈I(2−k)

||φ′i||t ≤
∑
k≥k0

2tKtρ−t2−kt#I(2−k) ≤ 2tKtρ−t
∑
k≥k0

2−ktN2−k(O(x, 1))

≤ (2Kρ−1)t
∑
k≥k0

2−ks ≤ (2Kρ−1)t
1

1− 2−s
<∞.

Since limi∈N ||φ′i|| = 0, the set I \ ⋃k≥k0 I(2−k) is finite, and therefore t ≥ θS .
Letting t→ dimB(O(x, 1)), we get θS ≤ dimB(O(x, 1)).

Now, fix t > dimB(O(x, 1)) again. We shall show by induction that for all n ≥ 1
there exists 0 < An <∞ such that

Nr(O(x, n)) ≤ Anr
−t,

for all 0 < r ≤ 2D. Indeed, the existence of A1 is immediate as t > dimB(O(x, 1)).
Suppose that 0 < An <∞ exists. To prove the existence of An+1, set I1 = {ω ∈ In :
diam(φω(X)) < r/2}. Then Nr(O(x, I1 × I)) ≤ Nr/2(O(x, I1)) ≤ Nr/2(O(x, n)) ≤
2tAnr−t. If ω ∈ In\I1, then Nr(O(x, {ω}×I)) ≤ Nr/||φ′ω||(O(x, 1)) ≤ A1||φ′ω ||tr−t,
where the second inequality sign holds since r/||φ′ω || ≤ 2 diam(φω(X))/||φ′ω|| ≤ 2D.
Thus, since t > θS ,

Nr(O(x, n + 1)) ≤ 2tAnr−t +A1r
−t ∑

ω∈In\I1
||φ′ω||t ≤ 2tAnr−t +A1ψn(t)r−t

= (2tAn +A1ψn(t))r−t.

The proof is completed by setting An+1 = 2tAn +A1ψn(t).

As a corollary of Lemma 2.8 and Propositions 2.9 and 2.10, we have a simple
means of obtaining the packing dimension of the limit set.

Theorem 2.11. Let {φi : i ∈ I} be a conformal iterated function system. Then
dimP(J)=max{dimH(J), dimB(L1(x)) : x ∈ J}=max{dimH(J), dimB(L1(x0))},
where x0 is any given point in X.

3. Arithmetic relations

In this section we collect some basic arithmetic definitions and relations. We
begin with the following notation. If I is a subset of N and 1 ≤ p ≤ q ≤ ∞ are two
real numbers, then by #I(p, q) we denote the number of elements of the intersection
I ∩ [p, q]. If p = 1, we frequently use the notation Sq(I) for #I(p, q).
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Lemma 3.1. If I ⊂ N and 0 < k < l ≤ 2k, then for all s > 0

(kl)s

(l − k)s

l∑
n=k

1I(n)
n2s

� #I(k, l)
(l − k)s

,

where the comparability constant depends only on s.

Proof. The proof follows immediately from the following computation.

(kl)s

(l − k)s

l∑
n=k

1I(n)
n2s

� l2s

(l − k)s

l∑
n=k

1I(n)
n2s

� l2s

(l − k)s
1
l2s

#(I ∩ [k, n]) =
#(I(k, n)
(l − k)s

.

Lemma 3.2. For each I ⊂ N and for each 0 < t < 1

lim
n→∞

#I(n/2, n)
nt

≥ (1 − 2−t) lim
n→∞

#I(1, n)
nt

.

Proof. We may assume that limn→∞
#I(1,n)
nt > 0. Let d = (1− 2−t)limn→∞

#I(1,n)
nt .

Suppose on the contrary that lim
k→∞

#I(2k, 2k+1)
2kt

< d. Then there exists c < d such

that for every k ≥ 1 large enough, say k ≥ S, we have #I(2k,2k+1)
2kt ≤ c. So, for every

k ≥ S,

#I(2S , 2k+1)
2kt

≤
k∑

j=S

#I(2j , 2j+1) · 2(j−k)t

2jt
≤

k∑
j=S

c2(j−k)t ≤ c
1

1− 2−t
.

Thus,

limk→∞
#I(1, 2k+1)

2kt
= limk→∞

#I(2S , 2k+1)
2kt

≤ c

1− 2−t
.

Now, since for every n ≥ 2,

#I(1, n)
nt

≤ #I(1, 2[log2 n]+1)
(2[log2 n])t

,

we get

limn→∞
#I(1, n)

nt
≤ c

1− 2−t
< limn→∞

#I(1, n)
nt

.

This contradiction finishes the proof.

We now provide the reader with several definitions of objects and properties
associated with infinite subsets of N which are intended to measure the ”size” of
those sets.

We first define the lower density dimension of a set I ⊂ N. Given t ≥ 0, let

%
t
(I) = lim inf

l−k→∞

{
#I(k, l)
(l − k)t

: k < l and A(
2kl
k + l

) ∩ I 6= ∅
}
,

where given t ≥ 0, A(t) = N ∩ [t− 1, t+ 1]. Notice that

inf
{
t : %

t
(I) <∞

}
= sup

{
t : %

t
(I) > 0

}
.

This common value will be called the lower density dimension of I and will be
denoted by %D(I).
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Similarly, we define %D(I), the upper density dimension of a set I ⊂ N, as
follows. For each t ≥ 0, set

%t(I) = lim sup
l−k→∞

{
#I(k, l)
(l − k)t

: k < l, k, l ∈ I
}

= lim sup
l−k→∞

{
#I(k, l)
(l − k)t

: k < l

}
.

Notice that

inf {t : %t(I) <∞} = sup {t : %t(I) > 0} .
This common value will be called the upper density dimension of I and will be
denoted by %D(I). Clearly %D(I) ≤ %D(I), and if these two numbers are equal,
the common value will be denoted by %D(I).

A subset I ⊂ N is said to have the strong arithmetic density 0 if for every t > 0,

lim
n→∞

Sn(I)
nt

= 0.

We say that two subsets of N are strongly equivalent if their symmetric difference
is finite.

Suppose that I ⊆ N. A subset A ⊂ I is said to be a cluster of I if and only if
A∩[min(A), sup(A)] = A. By the length of A we mean the number sup(A)−min(A).

A subset A ⊂ I is said to be a punctured cluster of I if and only if there is
x /∈ A with min(A) < x < sup(A) such that [min(A), sup(A)] \ {x} = A. Notice
such an x is determined uniquely and by the lower length of A we mean the number
min{x−min(A), sup(A)− x}.

The following lemma, whose straightforward proof is left to the reader, provides
some elementary properties of the notions introduced above.

Lemma 3.3. Suppose that I, I ′ ⊆ N. Then

(a) 0 ≤ %D(I) ≤ %D(I) ≤ 1.
(b) If I ′ is strongly equivalent with I, then %D(I ′) = %D(I) and %D(I ′) = %D(I).
(c) If I contains arbitrarily long clusters, then %D(I) = 1.
(d) If N \ I contains arbitrarily long punctured clusters, then %D(I) = 0.
(e) If p is a polynomial of degree d ≥ 1, then the set Ip = {[p(n)] : n ∈ N} has

density dimension 1/d.
(f) If I is equivalent with a subset of a geometric sequence, then it has arithmetic

density dimension and %D(I) = 0.
(g) If I is an infinite subset of N with upper density dimension zero, then I has

strong density zero. If in turn I has strong density zero, then it is of lower
density dimension zero.

Let us relate the density dimensions of I to the finiteness parameter of the
continued fraction system with index set I.

Lemma 3.4. If I ⊂ N, then %D(I) ≤ 2θ(I) ≤ %D(I).

Proof. Since I is infinite, there exists an infinite subset F of I such that [n/2, 2n]∩
[m/2, 2m] = ∅, for all distinct elementsm and n in F . Since θI ≥ 0, in order to prove
the first inequality we may assume that %D(I) > 0. Fix then any 0 < s < %D(I).
By the definition of the lower density dimension there exists a constant M > 0 such
that #I(k, l) ≥M(l−k)s, for all k < l with l−k large enough with A( 2kl

k+l )∩I 6= ∅.
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Assuming the first element of F is large enough, we then make the estimates

ψ1(s/2) �
∑
n∈I

1
ns

≥
∑
n∈F

2n∑
k= 2

3n

1
ks

1I(k) ≥
∑
n∈F

1
2s
· 1
ns

#I(
2
3
n, 2n)

≥M
1
2s
∑
n∈F

1
ns

(
4
3
n

)s
=
M2s

3s
∑
n∈F

1 = ∞.

Hence, s/2 ≤ θ(I) and the first inequality is proven. In order to prove the second
inequality fix t > %D(I) and then auxiliarily %D(I) < s < t. By the definition
of the upper density dimension there exists a constant 0 < M < +∞ such that
#I(k, l) ≤M(l − k)s for all k < l. Then

ψ1(t/2) �
∑
n≥0

2n+1∑
k=2n

1
kt

1I(k) �
∑
n≥0

1
2nt

#I(2n, 2n+1)

≤M
∑
n≥0

1
2nt

2ns =
∑
n≥0

2(s−t)n <∞.

Hence, t/2 ≥ θ(I) and we are done.

We end this section with some basic results concerning sets of density zero.

Theorem 3.5. Let I = {n1 < n2 < n3 < . . . } be an infinite subset of N. The
following four statements are equivalent.

(1) I has strong arithmetic density zero.

(2) For each t > 0,
∑

n∈I
1
nt

<∞.

(3) For each t > 0, lim
k→∞

k

ntk
= 0.

(4) The continued fraction system S = {φb}b∈I is absolutely regular.

Proof. For each t > 0, we have by summation by parts
n∑
k=1

1I(k)
1
kt

=
n∑
k=1

Sk(I)
[

1
kt
− 1

(k + 1)t

]
+

1
(n+ 1)t

Sn(I).(3.1)

So,
∑n
k=1 1I(k) 1

kt ≤ t
∑n
k=1

1
k
Sk

kt + 1
(n+1)tSn. Assume I has strong density zero.

Then Mt = supn≥1
Sn(I)
nt < ∞, limn→∞

Sn(I)
n+1t = 0, and for all k, Sk(I)

kt ≤ Mt/2

kt/2 . It
now follows that

∑n
k=1 1I(k) 1

kt ≤ tMt/2

∑n
k=1

1
k1+t/2 and consequently

∑
n∈I

1
nt <

∞. Now, assume statement (2) holds. Then from (3.1), it follows that for each
t > 0, limS(n)

nt <∞. This in turn implies that that for each t > 0, limn→∞
S(n)
nt = 0.

Hence (1) and (2) are equivalent. Now, given n ≥ n1 take k such that nk ≤ n <
nk+1. Then

k

ntk+1

≤ Sn(I)
nt

≤ k + 1
ntk

.

Thus (3) and (1) are equivalent. Since condition (2) means that θI = 0, the
equivalence of (2) and (4) is established by Theorem 2.3. The proof is finished.

One can use the summation by parts formula to obtain another characterization
of the finiteness parameter of a continued fraction system:
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Theorem 3.6. Let I ⊂ N. Then the finiteness parameter θI of the continued frac-
tion system with index set I satisfies:

θI = inf{t : lim
n→∞

Sn
nt

<∞}.
The following example completes the part (g) of Lemma 3.3.

Example 3.7. Consider I = {2n + i : n > 0, 0 ≤ i ≤ n − 1}. Then I has positive
upper density dimension equal to one and also has strong density zero.

4. Hausdorff measures and dimensions

We begin this section with the following general theorem linking arithmetical
properties of the set I and geometrical properties of the corresponding limit set.

Theorem 4.1. For a regular continued fraction system with index set I, the fol-
lowing conditions are equivalent:

(a) Hh(JI) = 0.

(b) For some γ ≥ 1, sup
{
m(B (φi(X), r))

rh
: i ∈ I, r ≥ γ diam(ϕi(X))

}
= ∞.

(c) For each γ ≥ 1, sup
{
m(B(φi(X), r))

rh
: i ∈ I, r ≥ γ diam(ϕi(X))

}
= ∞.

(d) sup
k<l

(kl)h

(l − k)h

l∑
n=k

1I(n)
n2h

= ∞.

Proof. First, let us assume statement (a) holds and fix γ ≥ 1. Since statement
(2) of Theorem 2.4 is false, the ratios m(B(x, r))/rh with x ∈ φi(X) and r >
γ diam(φ(X)) can be made arbitrarily large. Thus, (a)⇒(b). Clearly, (c)⇒(b).

Next, let us assume γ0 ≥ 1 is such that the supremum in statement (b) is
∞. Let L > 0. We will show that condition (3′) of Theorem 2.4 fails with γ =
γ0 +1. First, note that if j ∈ I and r ≥ γ diam(ϕj(X)), then m(B(φj(X), r))/rh ≤
(γ diam(φj(X)))−h. Let F ⊂ I be finite. Let

T = max
{
γhL, (γ diamϕj(X))−h : j ∈ F} .

Choose i ∈ I and r0 ≥ γ0 diam(ϕi(X)) such that m(B(φi(X), r0)) ≥ (T + 1)rh0 .
Thus, i ∈ I \ F . Let x ∈ ϕi(X) and r = (1 + 1/γ0)r0. Then r ≥ γ diamϕi(X) and
B(x, r) ⊃ B(ϕi(X), r0). So, m(B(x, r)) > Lrh. Thus, by Theorem 2.4, Hh(JI) = 0.
So, (b)⇒(a).

Now, assume statement (d) holds. We show that statement (b) holds with γ = 1.

Choose k < l such that
(kl)h

(l − k)h

l∑
n=k

1I(n)
n2h

> T > 0, where a positive lower bound

on T will be specified later. Choose i ∈ I such that the distance from 1/i to
1/2(1/k + 1/l) is minimum and let r = max {|1/(i+ 1)− 1/(l+ 1)|, |1/k − 1/i|}.
So, r < 1/k − 1/l and

m(B(ϕi(X), r))
rh

≥ (K−h)
(kl)h

(l − k)h

l∑
n=k

1I(n)
n2h

≥ K−hT.

Let us note that the quantities
(kl)h

(l − k)h

l∑
n=k

1I(n)
n2h

with r < diam(φi(X)) =

1/i(i + 1), where r is chosen as above have a uniform upper bound. To see this
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note that in this setting k = i and l < i(i + 1)/(i − 1). So,
(kl)h

(l − k)h

l∑
n=k

1I(n)
n2h

is

bounded above by
(kl)h

(l − k)h
1
i2h

2i
(i− 1)

. If l ≤ 2k, then
(kl)h

(l − k)h
≤ (kl)h and us-

ing the bounds on l, we get the quantity uniformly bounded above. If 2k < l,

then
(kl)h

(l − k)h
≤
(
i(i+ 1)
i− 1

)h
, and again the quantity is uniformly bounded above.

Therefore, we also have r ≥ diam(φi(X)), for T sufficiently large. Thus, (d)⇒ (b).
Finally, let us assume statement (c) holds and take γ = 1. Letm(B(φi(X), r))/rh

> T , with r ≥ diam(φi(X)). Choose k < l such that [1/(l − 1), 1/k + 1] ⊂
B(φi(X), r) and 1/k, 1/l /∈ B(φi(X), r). Then 1/k − 1/l ≤ 4r and

(kl)h

(l − k)h

l∑
n=k

1I(n)
n2h

≥ (4−h)
m(B(φi(X), r))

rh
.

From this, we see (c) ⇒ (d).

Corollary 4.2. If I ⊆ N generates a regular continued fraction system and if

limn→∞
#I(1, n)
nh

= ∞,

then Hh(JI) = 0.

Proof. For every k ≥ 1 we have

(k · 2k)h
(2k − k)h

2k∑
n=k

1I(n)
n2h

= 2hkh
2k∑
n=k

1I(n)
n2h

≥ 2hkh
#I(k, 2k)

(2k)2h
= 2−h

#I(k, 2k)
kh

.

Thus an immediate application of Theorem 4.1 and Lemma 3.2 finishes the proof.

As an immediate consequence of this result we get the following.

Corollary 4.3. Let I be a base for a regular continued fraction system and let h
be the dimension of the system. If for some t > h, lim supn→∞

#I(1,n)
nt > 0, then

Hh(J) = 0.

Proposition 4.4. If I is a base for a continued fraction system and Hh(JI) > 0,
then h ≥ 2θ.

Proof. Since the Hausdorff measure is a conformal measure, the system is regular.
By Corollary 4.2, M = supn

#I(1,n)
nh < ∞. Suppose by way of contradiction that

h < 2θ. Thus θ > 0 and there exists 0 < t < θ such that h < 2t. Then we can write

ψ1(t) =
∑
n∈I

1
n2t

=
∞∑
n=0

∑
k∈I∩[2n,2n+1)

1
k2t

≤
∞∑
n=0

#I[2n, 2n+1)
22tn

=
∞∑
n=0

#I[2n, 2n+1)
2nh

2(h−2t)n ≤ 2hM
1− 2−(2t−h)

<∞.

Hence, ψ1(t) is finite which contradicts the definition of θ and finishes the proof.

Since by Theorem 4.7 of [MU], h < 1 if I 6= N, as an immediate consequence of this
proposition, we get the following
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Corollary 4.5. If I 6= N is a base for a continued fraction system and Hh(JI) > 0,
then θ < 1/2. In particular, if I is the set of all prime numbers, then Hh(JI) = 0.

Proof. Since pn � n logn, it easily follows that if I is the set primes, then θI = 1/2,
ψI(1/2) = ∞ and the system is strongly regular.

Let us also note the following, in a sense stronger, consequence of Proposition 4.4.

Corollary 4.6. Let the infinite set I be the base for a continued fraction system.
If HhF (JF ) > 0, for every cofinite subsystem F of I, then I has strong density 0.

Proof. Since the Hausdorff measure is a conformal measure, the system is regular.
Suppose that I does not have strong density 0. Therefore by Theorem 2.3 and
Theorem 3.5, θ(I) > 0. Thus, applying Theorem 1.5 and Lemma 3.19 of [MU] we
see that there is a cofinite subsystem F of I such that hF < 2θ(F ). This contradicts
Proposition 4.4 and finishes the proof.

Lemma 4.7. Suppose I ⊂ N, I 6= N and I contains arbitrarily long blocks; then
Hh(JI) = 0.

Proof. By way of contradiction, suppose Hh(JI) > 0. By Theorem 4.1.7 of [MU],
the system is regular. If I has a block from k to l, then

(kl)h

(l − k)h

l∑
n=k

1I(n)
n2h

=
(kl)h

(l − k)h

l∑
n=k

1
n2h

≥ (kl)h

(l − k)h
(l − k)
l2h

= (
k

l
)h(l − k)1−h.

If additionally l ≤ 2k, then (kl )
h(l−k)1−h ≥ 2−h(l−k)1−h. Since h < 1 and since I

has arbitrarily long blocks (l− k→∞) with the property that l ≤ 2k, we complete
the proof by invoking Theorem 4.1.

Lemma 4.8. If I ⊆ N and h = dimH(JI) > %D(I), then Hh(JI) > 0.

Proof. Since h > %D(I), there exists a constant M > 0 such that #I(k, l) ≤
M(l− k)h for all 0 < k < l. Thus, it follows from Lemma 3.1 that

sup
k<l≤2k

(kl)h

(l − k)h

l∑
n=k

1I(h)
n2h

<∞.

If l > 2k > 0, then (kl)h

(l−k)h � khlh

lh
= kh, and therefore, for l > 2k,

(kl)h

(l − k)h

l∑
n=k

1I(h)
n2h

� kh
l∑

n=k

1I(h)
n2h

≤ kh
∞∑
n=k

1I(h)
n2h

= kh
∞∑
j=0

2j+1k−1∑
n=2jk

1I(h)
n2h

≤ kh
∞∑
j=0

#(I ∩ [2jk, 2j+1k])
(2jk)2h

=
1
kh

∞∑
j=0

#(I ∩ [2jk, 2j+1k])
2j2h

≤ M

kh

∞∑
j=0

(2jk)h

22jh

= M

∞∑
j=0

1
2jh

=
M

1− 2−h
<∞.

By Lemma 3.4, h > %D(I) ≥ 2θ ≥ θ and, therefore, by Theorem 1.2, I induces a
regular system. Thus, an application of Theorem 4.1 finishes the proof.
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Corollary 4.9. If I is strongly equivalent to {an : n ∈ N}, for some a ∈ N, a ≥ 2,
then Hh(JI) > 0.

Remark. As it follows from the proof of Lemma 4.8, it suffices to require the exis-
tence of a constant M > 0 such that #I(k, l) ≤ M(l − k)h for all 0 < k < l which
is weaker than the assumption h = dimH(JI) > %D(I).

Remark. Since there exist absolutely regular systems I with arbitrarily long blocks,
it is possible to have Hh(JI) = 0 for an absolutely regular system.

Theorem 4.10. If %D(I) < 1, then the strong equivalence class of I contains an
element F with HhF (JF ) > 0. More precisely, there exists a number q ≥ 1 such
that if F is strongly equivalent with I and F ⊇ I ∪ [1, q], then HhF (JF ) > 0.

Proof. In view of Theorem 1.1 there exists q ≥ 1 such that dimH(JF ) > %D(I)
provided F ⊇ [1, q]. So, we finish the proof applying Lemma 4.8.

Remarks. Notice that combining Theorem 4.10 and Lemma 3.3(e) and (f) gives rise
to a method of producing a large class of sets I with HhI (JI) > 0. We also note
that the property of being cofinitely regular is invariant under strong equivalency
whereas regularity is not.

Lemma 4.11. Let I ⊂ N, k ≥ e2, and l ≥ k. The function gk,l defined by t 7→
(kl)t

(l−k)t

∑l
n=k

1I(n)
n2t is non-increasing.

Proof. One simply calculates

g′k,l(t) =
(kl)t

(l − k)t

(
ln(

kl

l − k
)− 2

) l∑
n=k

1I(n)(1 − lnn)
n2t

.

If k ≥ e2, then ln( kl
l−k )−2 ≥ 0 and 1− lnn < 0 for all n ≥ k ≥ e2. Thus, g′k,l(t) ≤ 0

and we are done.

One may generalize Proposition 4.4:

Lemma 4.12. Let I ⊂ N. If (kl)s

(l−k)s

∑l
n=k

1I(n)
n2s < M < ∞, for some s ≥ 0, then

s ≥ 2θ.

Proof. Fix t > s/2. Then

ψ1(t) =
∞∑
n=0

2n+1∑
j=2n

1I(j)
j2sj2(t−s)

≤
∞∑
n=0

22n(s−t)
2n+1∑
j=2n

1I(j)
j2s

≤ 2−s
∞∑
n=0

22n(s−t) ·M2−ns

≤ 2−sM
1− 2s−2t

<∞.

Thus, t ≥ θ and letting t↘ s/2, we get s/2 ≥ θ.

Theorem 4.13. If I ⊂ N and HhI (JI) > 0, then HhE (JE) > 0, for every system
E ⊃ I such that E \ I is finite.

Proof. As hE ≥ hI , it follows from Theorems 4.1 and 4.11 that

sup
k≥1

k−hE

∑
n≥k

1I(n)
n2hE

<∞.

Since
∑
n≥k

1E(n)

n2hE
=
∑

n≥k
1I(n)

n2hE
, for k large enough, supk≥1 k

−hE
∑

n≥k
1E(n)

n2hE
<

∞. Also, the system E is regular, since every system containing a regular system as
a cofinite subset is regular. Invoking Theorem 4.1 again, we get HhE (JE) > 0.
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5. Packing measures and dimensions

We begin this section by giving some necessary and sufficient conditions for the
packing measure to be finite for regular systems. Since the packing measure is more
complex than Hausdorff measure, we must analyze separately those index sets I
which are cofinite and those which are not. It is in the proof of Theorem 5.1 that the
use of the harmonic mean of k and l, H(k, l), in connection with packing measure
becomes essential.

Theorem 5.1. For a regular continued fraction system with index set I, the fol-
lowing three conditions are equivalent:

(a) Ph(J) <∞.
(b)

inf
k<l

A( 2kl
k+l )∩I 6=∅

(kl)h

(l − k)h

l∑
n=k

1I(n)
n2h

> 0 and inf
1≤k

kh
∞∑
n=k

1I(n)
n2h

> 0.

(c) For some k0, n0,

inf
k0<k,k+n0<l
A( 2kl

k+l )∩I 6=∅

(kl)h

(l − k)h

l∑
n=k

1I(n)
n2h

> 0 and inf
1≤k

kh
∞∑
n=k

1I(n)
n2h

> 0.

Proof. Clearly, (b)⇒(c). Suppose (c) holds for some given k0, n0. Since the quanti-
ties in the first infimum in (b) are uniformly bounded away from 0 if l−k ≤ n0, we
need consider only the quantities where k ≤ k0 and l > k + n0. If the infimum of
these quantities is 0, then there are some fixed k ≤ k0 and an infinite sequence of l’s
such that the quantities converge to 0. But, the limit of this sequence of quantities
is kh × (ψ1(h)−

∑k−1
n=1

1I(n)
n2h ) which is positive. Thus, (c)⇒(b).

Now, suppose that condition (a) is satisfied. We will show that the first inequality
in (c) holds with k0 = 6 and n0 large enough (we will indicate that n0 ≤ 49
suffices). Consider k + 49 < l, k > 6 and such that A( 2kl

k+l ) ∩ I 6= ∅. Let i ∈ I be
a point closest to 2kl/(k + l). Then k < i < l and there exists x ∈ ( 1

i+1 ,
1
i ) ∩ JI .

Set r = min{1/k − x, x − 1/l}. It can be shown under these conditions that the
inequalities 1/(i + 1) − 1/l > 1/i(i + 1) and 1/k − 1/i > 1/i(i + 1) hold. It now
follows that r > diam(ϕi(X)). Also, 1

l+1 ≤ x− r < x+ r ≤ 1
k and therefore

B(x, r) ∩ JI ⊂
[

1
l+ 1

,
1
k

]
∩ JI =

⋃
j∈[k,l]∩I

[
1

j + 1
,
1
j

]
∩ JI .

It also follows from the conditions on k and l that the following inequalities hold:
1/k − 1/l < 4(1/k − 1/i) and 1/k − 1/l < 4(1/i + 1 − 1/l). From this we get
1/k− 1/l < 4r. Since condition (2′) of Theorem 2.5 with γ = 1 holds, we find there
is a positive number L such that

(kl)h

(l − k)h

l∑
n=k

1I(n)
n2h

≥ 4−h
m(B(x, r))

rh
≥ L.

So, the first infimum in (c) is positive. To see that the second infimum is positive,
note that for each k, m(B(0,1/k))

1/kh � kh
∑l
n=k

1I (n)
n2h . Consider two cases. First,

suppose that there exists 2 ≤ j ∈ I such that j − 1 /∈ I. If the infimum is
zero, then the assumptions of Theorem 2.6 are satisfied with Z = {0}, i(0) = j,
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and R(0) = {1/k : k ≥ 4}. Hence, Ph(JI) = ∞ and we have a contradiction.
Otherwise, I = N or I = N \ {1}. Then θ = 1/2 and for all k ≥ 2

kh
∞∑
n=k

1I(n)
n2h

= kh
∞∑
n=k

1
n2h

� khk1−2h = k1−h.

Since limk→∞ k1−h = ∞, our infimum is also positive in this case.
Finally, suppose that condition (b) is satisfied. We will show condition (2) of

Theorem 2.5 holds. Let M > 0 be the first infimum appearing in (b). Fix γ ≥ 1
which will be specified later on. Consider i ∈ I and γ/i(i + 1) < r < 1/i. Set
k = [1/(1

i + r)] + 1 and l = [1/(1
i − r)]− 1. Then 1

l+2 + 1
k <

2
i <

1
k−1 + 1

l+1 which
equivalently means that H(k−1, l+1) ≤ i ≤ H(k, l+2), where H(a, b) = 2ab/a+b,
the harmonic mean of a and b. Since H(k − 1, l + 1) ≤ H(k, l + 1) ≤ H(k, l + 2)
and H(k, l + 2) < H(k, l + 1) + 1 < H(k − 1, l + 1) + 2, there exists (a, b) ∈
{(k − 1, l + 1), (k, l + 1), (k, l + 2)} such that |H(a, b) − i| ≤ 1 which means that
i ∈ A(a, b)∩I. Moreover, r ≤ 1

2 ( 1
k−1− 1

l+2 ) ≤ 4( 1
a− 1

b ). Choose x ∈ J∩(1/i+1, 1/i)
so close to 1/i that B(x, r) ⊃ ⋃l−1

j=k[1/j + 1, 1/j]. We get

m(B(x, r))
rh

≥ 4h
(ab)h

(b− a)h

(
l−1∑
n=k

1I(n)
n2h

)

≥ 4h
(ab)h

(b− a)h

(
b∑

n=a

1I(n)
n2h

− 1
(k − 1)2h

− 1
(k)2h

− 1
(l + 1)2h

− 1
(l + 2)2h

)

≥ 4h
(ab)h

(b− a)h

(
b∑

n=a

1I(n)
n2h

)
− 41+h (ab)h

(b− a)h(k − 1)2h
.

Now,

(ab)h

(b− a)h(k − 1)2h
≤ (ab)h

(b− a)h(a− 1)2h
≤ (

a

a− 1
)h · bh

(b− a)hah
≤ M

8
,

provided that k and l − k are large enough (depending only on M) and then
m(B(x, r))/rh ≥ 4−hM/2. But k will be as large as we wish by taking i suf-
ficiently large and since l − k ≥ ri2 ≥ γ

i+1 i ≥ γ/2, l − k will be as large as
we wish choosing γ large enough. Applying now Theorem 2.5(2) we finish the
case when r < 1/i. In case r ≥ 1/i, set k = [1/(1

i + r)] + 1 as before. Then
1/i+ r ≥ 1/k and therefore taking x ∈ J ∩ (1/(i+ 1), 1/i) sufficiently close to 1/i,
we get B(x, r) ∩ J ⊃ (0, 1/(k + 1)) ∩ J =

⋃
n≥k+1[1/(n+ 1), 1/n] ∩ J . Thus

m(B(x, r))
rh

≥ K−h

rh

∞∑
n=k+1

1I(n)
n2h

.

Since 1/r ≥ 1
1
i +r

≥ k − 1,

m(B(x, r))
rh

≥ K−h(k − 1)h
∞∑

n=k+1

1I(n)
n2h

= K−h
(
k − 1
k + 1

)h
(k + 1)h

∞∑
n=k+1

1I(n)
n2h

.

Taking i large enough, we get k ≥ 2 and k−1
k+1 ≥ 1/3. Since the second infimum in

(b) is positive, the proof is completed.

Lemma 5.2. If Ph(J) <∞, then h ≤ 2θ.
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Proof. Let A > 0 be the first infimum appearing in Theorem 5.1(b). If l ∈ I is
large enough and k = [2l/3], then |2k(2l)k+2l − l| < 1. So,

A

2
<

(k)h(2l)h

(k + 2l)h

2l∑
n=k

1I(n)
n2h

� lh
#I(2l/3, 2l)

l2h
=

#I(2l/3, 2l)
lh

.

Since I is infinite, there exists an infinite sequence F ⊂ I such that [2l/3, 2l] ∩
[2s/3, 2s] = ∅ for all distinct elements l and s of F . Hence,

ψ1(h/2) �
∑
l∈I

1
lh
≥
∑
l∈F

2l∑
n=2l/3

1
nh

�
∑
l∈F

1
(2l)h

#I(2l/3, 2l) ≥ A

2

∑
l∈F

2−h = ∞.

Thus, h/2 ≤ θ and we are done.

Combining this lemma and Proposition 4.4 we get the following

Proposition 5.3. If Hh(J) > 0 and Ph(J) <∞, then h = 2θ.

The proof of the following consequence of Lemma 5.2 is similar to the proof of
Theorem 4.9.

Theorem 5.4. Let I ⊂ N induce a regular continued fraction system and suppose
θ < 1/2. Then there exists a number q ≥ 1 such that if F is strongly equivalent
with I and F ⊃ [1, q], then PhF (JF ) = ∞.

Proof. In view of Theorem 1.1, there exists q ≥ 1 such that dimH(JF ) > 2θI if
F ⊃ [1, q]. Now applying Lemma 5.2 along with the fact that strongly equivalent
sets have the same finiteness parameter, θ, finishes the proof.

We shall now prove the following.

Lemma 5.5. If N\ I contains punctured clusters of arbitrarily large lower lengths,
then Ph(JI) = ∞.

Proof. By assumption, I contains an infinite sequence of triples (a, n, b) and a <
n < b, I ∩ [a, b] = {n} such that min(b − n, n − a) → ∞. For each such triple,
let r = inf{s : 3/4 ≤ s ≤ 1, a ≤ [sn], [rn/2r − 1] ≤ b − 1}, let k = [rn] and
l = [rn/2r − 1]. Then k → ∞ and l − k → ∞. Also, if n is large enough, then
A( 2kl

k+l ) ∩ I 6= ∅, and [k, l] ∩ I is a singleton contained in A( 2kl
k+l ). Therefore,

Mk,l =
khlh

(l − k)h

l∑
n=k

1I(n)
n2h

� khlh

(l − k)h

(
k + l

kl

)2h

� (k + l)2h

(l − k)h(kl)h

� 4h
l2h

(l − k)h(kl)h
= 4h

lh

kh(l − k)h
.

Since max{k, l − k} ≥ l/2 and since both numbers k and (l − k) diverge to ∞,
it follows from this estimate that Mk,l → 0 over such pairs of k and l. Thus an
application of Theorem 5.1 finishes the proof.

Corollary 5.6. Let I be the set of prime numbers. Then Ph(JI) = ∞.

Proof. It is known that the primes have arbitrarily large two sided gaps (see
[E],[M]). The corollary follows.

Theorem 5.7. Let I ⊂ N be a proper infinite subset of N. If #I(k, l) � (l−k)h for
all k < l with A( 2kl

k+l )∩ I 6= ∅, then the first infimum in Theorem 5.1(b) is positive.
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Proof. Consider k < l such that A( 2kl
k+l ) ∩ I 6= ∅. Suppose first that l ≤ 2k. Then

(kl)h

(l − k)h

l∑
n=k

1I(n)
n2h

� k2h

(l − k)h
#I(k, l)

1
k2h

≥ (l − k)h

(l − k)h
= 1.

If l ≥ 2k, then we can find j such that [k, l] ⊃ [j, 2j] and A( 2kl
k+l ) ∩ A( 2j2j

j+2j ) 6= ∅.
Since the points of A( 2kl

k+l ) are of order k and 2j2j
j+2j = 4

3j, we see that the numbers
k and j are of the same order. Hence

(kl)h

(l − k)h

l∑
n=k

1I(n)
n2h

� kh
l∑

n=k

1I(n)
n2h

� kh
2j∑
n=j

1I(n)
n2h

� kh#I(j, 2j) · 1
j2h

� khjhj−2h =
(
k

j

)h
� 1.

This implies the first infimum in Theorem 5.1(b) is finite.

Lemma 5.8. If lim infn→∞ Sn

n > 1 − 1
2h , then the second infimum in Theorem

5.1(b) is positive and θ = 1/2 .

Proof. It is straightforward to check that ψ(1/2) = ∞. By summation by parts
and the fact that h > 1/2, we have

kh
∞∑
n=k

1I(n)
n2h

≥ kh

[ ∞∑
n=k

2hSn
n2h+1

− Sk−1

k2h

]
.

Now, there exists c > 1− 1
2h such for all sufficiently large k,

kh
∞∑
n=k

1I(n)
n2h

≥ (2h)ckh
[ ∞∑
n=k

1
n2h

]
− Sk−1

kh

≥ k1−h
[

2h
2h− 1

c− Sk−1

k

]
≥ k1−h

[
2h

2h− 1
c− 1

]
.

Since 2h
2h−1c−1 > 0, this implies the second infimum in Theorem 5.1(b) is positive.

Corollary 5.9. If I ⊂ N has bounded gaps, in particular, if I contains an infinite
arithmetic progression, then Ph(J) <∞.

Proof. If I has gaps bounded by d, then the lower arithmetic density of I is ≥ 1/d.
Also, we have #I(k, l) � 1

d (l − k) for k and l − k large enough. So, by Theorems
5.7 and 5.8, both infima in Theorem 5.1(c) are positive and Ph(J) <∞.

Remark. There are subsets I with bounded gaps and which do not contain an
infinite arithmetic progression.

We shall now formulate a sufficient condition for the first infimum in Theo-
rem 5.1(c) to be positive.

Proposition 5.10. Let I = {an : n ≥ 1} be a subsequence of positive integers such
that if an − 1 /∈ I, then I ∩ [an,∞) ⊃ [an, 2an]. Then with h = 1 the first infimum
in Theorem 5.1(c) is positive.
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Proof. Let us fix k, l ∈ N such that A( 2kl
k+l ) ∩ I 6= ∅ and l − k ≥ 10. Choose

c ∈ A( 2kl
k+l ) ∩ I 6= ∅ and then fix a cluster of the form [a, 2a] containing c. Let us

explore several cases:

Case 1. [k, l] ⊂ [a, 2a]. Then

kl

l − k

l∑
n=k

1I(n)
n2

≥ kl

l − k

l − k

l2
=
k

l
≥ 1

2
.

Case 2. [a, 2a] ⊂ [k, l]. Since a ≤ c ≤ 2k, we get

kl

l − k

l∑
n=k

1I(n)
n2

≥ kl

l − k

2a∑
n=a

1
n2

≥ kl

l − k

a

4a2
=

1
4

kl

(l − k)a
≥ 1

4
k

a
≥ 1

8
.

Case 3. k /∈ [a, 2a] and l ∈ [a, 2a]. Since c ∈ A( 2kl
k+l ) we get, l − c ≥ l(l−k)

l+k − 1.
Since also 2k ≥ c ≥ a ≥ l/2, we get

kl

l− k

l∑
n=k

1I(n)
n2

≥ kl

l − k

l∑
n=a

1
n2

≥ kl

l − k

l − a

l2

≥ k(l − c)
l(l− k)

≥ kl(l − k)
l(l − k)(l + k)

− k

l(l − k)
=

k

l + k
− k

l(l− k)

≥ 1
5
− 1

10
=

1
10
.

Case 4. k ∈ [a, 2a] and l /∈ [a, 2a]. Since kl
l−k ≥ 2k(c+1)

c+1−k , we get

kl

l − k

l∑
n=k

1I(n)
n2

≥ 2k(c+ 1)
c+ 1− k

2a∑
n=k

1
n2

≥ 2k(c+ 1)
c+ 1− k

· 2a− k

4a2

≥ 2a2(2a− k)
4a2(c+ 1− k)

=
1
2

2a− k

c+ 1− k
≥ 1

2
c− k

c+ 1− k

≥ 1
4
.

The proof is finished.

Remark. By Lemma 4.11, the infimum considered in Proposition 5.10 is positive
for all 0 ≤ h ≤ 1.

We shall now construct two examples showing that in general the two inequalities
in Theorem 5.1(c) are mutually independent.

Example 5.11. Here we construct an example of a regular system showing that
the second infimum in Theorem 5.1(c) may happen to be zero although the first
one is positive. It goes as follows. Fix 1/2 < s < 1. We will define by induction
an infinite sequence {an : n ≥ 1} such that for I1 =

⋃
n≥1[an, 2an], the second

infimum, taken with this s, in Theorem 5.1(c) fails to be positive. Indeed, set
a1 = 1 and suppose that an is already defined. The first restriction on an+1 is that
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an+1 > 2an. Then

(2an + 1)s
∞∑

j=2an+1

1
j2s

≤ 3sasn
∞∑

j=an+1

1
j2s

≤ 3sasn
1

2s− 1
a1−2s
n+1

=
3s21−2s

2s− 1
asna

1−2s
n+1

.

Since 1− 2s < 0, we can find an+1 > 2an so large that

3s21−2s

2s− 1
asna

1−2s
n+1 ≤ 1

n+ 1
.(5.1)

The construction of I1 is finished. The first infimum in Theorem 5.1(c) is positive by
Proposition 5.10 and the second one is zero by (5.1). We now define the set I adding
to I1 an initial segment of the form [1, 2p] so long that dimH(JI) > max{s, θI}.
Then I induces a regular system (see Theorem 1.2), I continuous to satisfy the
assumptions of Proposition 5.10 and the second infimum in Theorem 5.1(c) is zero
by (5.1), Lemma 4.11 and since I ∩ [2p+ 1,∞) = I1 ∩ [2p+ 1,∞).

Example 5.12. We shall now describe a regular system for which the first infi-
mum in Theorem 5.1(c) is zero but the second one is positive. Indeed, let I =⋃
n≥0

(
[4n, 2 · 4n] ∪ {3 · 2n}). Then the complement of I contains arbitrarily long

punctured clusters and therefore the first infimum in Theorem 5.1(c) is zero by
Theorem 5.5. In order to check that the second infimum is positive, given k ≥ 1,
consider n ≥ 0 such that 4n ≤ k ≤ 4n+1. Then

k

∞∑
j=k

1I(j)
j2

≥ 4n
2·4n+1∑
j=4n+1

1
j2
≥ 4n · 4n+1 · 1

4 · 42n+2
=

1
16
.

Since θI = 1/2 and ψI(1/2) = ∞, the system generated by I is cofinitely regular.
We are done.

Example 5.13. Consider I =
⋃
n≥0

(
[4n, 2 · 4n] ∪ {3 · 2n}). Then I has posi-

tive arithmetic density, unbounded gaps and Ph(JI) < ∞. This is so, since the
assumptions of Proposition 5.10 are satisfied and since the second infimum in The-
orem 5.1(c) is positive which we check in exactly the same way as in Example 5.12.
Notice that the sets I considered here and in Example 5.12 differ only by a rather
thin set {3 · 2n} but the limit sets they generate have substantially different geo-
metrical properties.

Theorem 5.14. If Ph(JI) <∞, then lim supn→∞
Sn

nh > 0.

Proof. By summation by parts,
l∑

n=k

1I(n)
n2h

=
l∑

n=k

Sn

(
1
n2h

− 1
(n+ 1)2h

)
+

Sl
(l + 1)2h

− Sk−1

(k)2h
.

If lim supn→∞
Sn

nh = 0, then, for each k,

kh
∞∑
n=k

1I(n)
n2h

= kh

[ ∞∑
n=k

Sn

(
1
n2h

− 1
(n+ 1)2h

)
− Sk−1

k2h

]
� sup

n≥k

Sn
nh

− Sk−1

kh
.

But, the right-hand side converges to 0 as k → ∞. Thus, the second infimum in
Theorem 5.1(b) is not positive and we have a contradiction.
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Corollary 5.15. If I is the base for an absolutely regular system, then Ph(JI) = ∞.

Question. Does 0 < Ph(JI) <∞ imply lim infn→∞ Sn

nh > 0?

Lemma 5.16. Let I ⊂ N. If, for some s ≥ 0, we have ks
∑l

n=k
1I (n)
n2s > L > 0, for

all k ≥ 1, then s ≤ 2θ.

Proof. For all k ≥ 1,∑
n≥k

1I(n)
ns

≥
∑
n≥k

1I(n)ks

n2s
= ks

∑
n≥k

1I(n)
n2s

≥ L.

Therefore, ψ1(s/2) =
∑∞
n=1

1I (n)
ns = ∞. So, θ ≥ s/2.

Theorem 5.17. If I ⊂ N and PhI (JI) <∞, then PhE(JE) <∞, for every cofinite
regular subsystem E of I.

Proof. Let k0 be such that E ∩ [k0,∞) = I ∩ [k0,∞). Using Lemma 4.11 we see
that condition (c) of Theorem 5.1 is satisfied for the system with base E. Thus,
PhE(JE) <∞.

We finish this section with its most constructive theorem whose proof shows how
to produce sets of arithmetic density zero, but whose limit sets have finite packing
measure.

Theorem 5.18. There exist infinite sets I ⊂ N such that the induced continued
fraction systems are strongly regular, Hh(JI) = 0, Ph(JI) <∞, and both numbers
θI and hI are arbitrarily close to zero.

Proof. Fix an integer p > 4 and 3 < α < p− 1. We will show that if the integer w
is large enough, then the systems generated by the sets of the form

I = I(p, α, w) =
⋃
n≥w

[np + nα]

satisfy the requirements of our theorem. We shall show first that the system gen-
erated by the set of entries I = I(p, α, w) is strongly regular and θI(p,α,w) = 1+α

2p .
Indeed, this follows from the following computation:

ψ1(t) =
∑
n≥w

np+nα∑
j=np

1
j2t

�
∑
n≥w

1
n2pt

nα =
∑
n≥w

1
n2pt−α .

Let, as usual, h denote the Hausdorff dimension of JI , the limit set generated by
the set I(p, α, w). By Lemma 4.7, Hh(JI) = 0. In order to prove that Ph(JI) <∞,
we shall demonstrate that the assumptions of Theorem 5.1(c) are satisfied. Indeed,
in order to verify that the second infimum in Theorem 5.1(c) is positive it suffices
to check that lim infk→∞Mk > 0, where Mk = kph

∑
n≥k

∑np+nα

j=np j−2h. We do it
as follows.

Mk = kph
∑
n≥k

np+nα∑
j=np

j−2h � kph
∑
n≥k

n−2phnα = kph
∑
n≥k

nα−2ph

� kph
∫ ∞

k

xα−2ph dx =
kph

α− 2ph+ 1
[xα−2ph+1]∞k .
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Notice now that since h > θI = 1+α
2p , we have α − 2ph + 1 < 0, and therefore

Mk � kα−ph+1. Hence

lim inf
k→∞

Mk > 0 ⇔ α ≥ ph+ 1.(a.1)

In order to check that the first condition of Theorem 5.1(c) is satisfied, set

Mk,l =
(kl)h

(l − k)h

l∑
n=k

n−2h1I(p,w,α)(n).

We want to show that Mk,l with A( 2kl
k+l ) ∩ I(p, w, α) 6= ∅ are bounded away from

zero. Let n be the only integer with (n − 1)p ≤ k < np, and let m be the only
integer with mp ≤ l < (m+ 1)p. We shall consider several cases:

Case 1. m ≥ n+2. Then we may estimate the number Mk,l from below as follows.

Mk,l ≥ (kl)h

(l − k)h

m−1∑
j=n

jp+jα∑
s=jp

1
s2h

� (kl)h

(l − k)h

m−1∑
j=n

1
j2ph

jα

=
(kl)h

(l − k)h

m−1∑
j=n

jα−2ph � (kl)h

(l − k)h

∫ m−1

n

xα−2ph dx

� (kl)h

(l − k)h
1

α− 2ph+ 1
(
(m− 1)α−2ph+1 − nα−2ph+1

)
� (nm)ph

((m+ 1)p − (n− 1)p)h
(
(m− 1)α−2ph+1 − nα−2ph+1

)
=

(nm)ph

((m+ 1)p − (n− 1)p)h
((m− 1)p − np)x

1+α−2ph
p −1.

for some x, where np ≤ x ≤ (m− 1)p. We continue the above estimates as follows.

Mk,l ≥ 1
2
(nm)phx

1+α−2ph−p
p (mp − np)1−h.

Since 1 + α− 2ph− p < 0, we get

Mk,l � (nm)phm
1+α−2ph−p

p (mp − np)1−h

� nph(mp − np)1−hm
1+α−2ph+p2h−p

p .

Thus, if

1 + α− 2ph+ p2h− p ≥ 0,(a.2)

then the quantities Mk,l with m ≥ n+ 2 are bounded away from zero.

Case 2a. We now assume that (n − 1)p ≤ k ≤ np and (n + 1)p + (n + 1)α ≤ l <
(n+ 2)p. Then

Mk,l �
(

kl

l − k

)h (n+ 1)α

n2ph
� n2ph

(l − k)h
· nα

n2ph

=
nα

(l − k)h
� nα(

(n+ 2)p − (n− 1)p
)h � nα

n(p−1)h
.

So, if

α− (p− 1)h ≤ 0,(a.3)

then Mk,l is bounded away from 0.
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Case 2b. (n− 1)p ≤ k < np and (n+ 1)p ≤ l < (n+ 1)p + (n+ 1)α. We shall show
that in this case if n is large enough, then A( 2kl

k+l ) ∩ I = ∅. And indeed, for this
intersection to be empty it suffices to know that

np + nα <
2kl
k + l

− 1 and
2kl
k + l

+ 1 < (n+ 1)p.

But the harmonic mean 2kl
k+l takes on its minimum if k and l are minimal and it

takes on its maximum if k and l are maximal. Thus our task reduces to check that

np + nα <
2(n1)p(n+ 1)p

(n− 1)p + (n+ 1)p
− 1 and

2np
(
(n+ 1)p + (n+ 1)α

)
np + (n+ 1)p + (n+ 1)α

< (n+ 1)p

provided n is large enough. This can be verified by a straightforward computation.

Case 3. (n−1)p ≤ k < np and np ≤ l < (n+1)p. We shall consider three subcases.

Case 3a. np + nα ≤ l < (n+ 1)p. Then

Mk,l �
(

kl

l − k

)h
· nα · 1

n2ph
� n2ph

(l − k)h
· nα · 1

n2ph

=
nα

(l − k)h
� nα(

(n+ 1)p − (n− 1)p
)h � nα

n(p−1)h

= nα−(p−1)h.

So, again if α− (p− 1)h ≥ 0, then we are done.

Case 3b. np ≤ l < np + nα and (n− 1)p + (n− 1)α ≤ k. Then

Mk,l �
(

kl

l − k

)h 1
l2h

(l − np + 1) � l − np

(l − k)h
.

But since A( 2kl
k+l ) ∩ I 6= ∅, we conclude that 2kl

k+l ≥ np − 1. So, l − np ≥ l − q − 1.
But since l − 2kl

k+l ≥ (l − k)/3, we get

Mk,l �
1
3 (l − k)− 1

(l − k)h
� (l − k)1−h � 1.

Case 3c. np ≤ l < np + nα and (n− 1)p ≤ k < (n− 1)p + (n− 1)α. Then for all n
large enough

2np(n− 1)6p >
(
np + (n− 1)p

)(
(n− 1)p + (n− 1)α + 1

)
or

2np(n− 1)p

np + (n− 1)p
> (n− 1)p + (n− 1)α + 1.

So,

2kl
k + l

≥ 2np(n− 1)p

np + (n− 1)p
> (n− 1)p + (n− 1)α + 1

and consequently A
(

2kl
k+l

) ≥ np. But then

Mk,l �
(

kl

l − k

)h
· 1
kh

(l − q)h �
(
l − q

l − k

)h
≥
(

1
3

)h
(l − k)h � 1,

and we are done in this case.
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Case 4. (n − 1)p ≤ k < l < np. In order for A( 2kl
k+l ∩ I 6= ∅, (n − 1)p ≤ k ≤

(n− 1)p + (n− 1)α.

Case 4a. l ≤ (n− 1)p + (n− 1)α. Then

Mk,l �
(

kl

l − k

)h
· 1
l2h

(l − k) � (l − k)1−h ≥ 1,

and we are done.

Case 4b. (n− 1)p + (n− 1)α < l. Let q = 2kl
k+l . We then get

Mk,l �
(

kl

l− k

)h
· 1(

(n− 1)p + (n− 1)α
)2h ((n− 1)p + (n− 1)α − k

)
� (n− 1)p + (n− 1)α − k

(l − k)h
≥ q − k

(l − k)h

Now, q − k ≥ (l − k)/3, so Mk,l � (l − k)1−h ≥ 1 and we have finished this last
case.

Since α > pθ + 1 and h → θ as w → ∞, if w is large enough α > ph + 1. The
proof is completed.

6. Dimension relations and further examples

In this section, we give some examples of strongly regular systems with dimH(J)
< dimP(J) and some examples with equality of these two dimensions.

Theorem 6.1. Let Ip = {np : n ≥ 1}. If p ≥ 2, then dimP (JIp) = hIp >

1/p, Hh(JIp) > 0 and Ph(JIp) = ∞.

Proof. Since N\Ip has punctured clusters of arbitrarily long lower lengths, Ph(JIp)
= ∞ follows from Lemma 5.5. We will show that h > 1/p by showing that P (1/p) >
0. Since it is easy to calculate that dimB(L1(0)) = 1/(p+ 1), it would then follow
from Theorem 2.11 that the box and Hausdorff dimensions of JIp are equal. First,
we estimate ψn+1(t) from below as follows:

ψn+1(t) =
∑

ω∈In+1

||φ′ω||t =
∑

ω∈In+1

1
(qn+1(ω))2t

=
∑
ω∈In

∑
b∈I

1
(bqn + qn−1)2t

=
∑
ω∈In

1
q2tn

[
∑
b∈I

1
(b+ qn−1/qn)2t

] ≥ ψn(t)
∑
b∈I

1
(b+ 1)2t

.

Therefore, by induction we have

ψn(t) ≥
(∑
b∈I

1
b2t

)(∑
b∈I

1
(b+ 1)2t

)n−1

.

So, if
∑
b∈I

1
(b+1)2t > 1, then P (t) > 0. It can be checked that

∑∞
k=1

(
1

kp+1

)2/p

> 1,

for all p ≥ 2. Finally, since %D(I) = 1/p, it follows from Lemma 4.8 that Hh(JIp) >
0.

Theorem 6.2. For every p ≥ 2, there exists q ≥ 1 such that if l ≥ q and Il = {np :
n ≥ l}, then dimH(Jl) < dimB(Jl) ≤ dimB(Jl) = dimP(Jl).
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Proof. First notice that for every l ≥ 1, θIl
= 1/2p and Il is a regular subset of N.

According to Theorem 1.5, liml→∞ dimH(Jl) = 1/2p and since 1/2p < 1/(p + 1),
there exists q ≥ 1 so large that dimH(Jl) < dimB(Jl) for all l ≥ q. The last
two equality signs in Theorem 6.2 are consequences of Theorem 3.1 in [MU] and
Theorem 2.11.

Remark. Notice that in contrast to the case p ≥ 2, for p = 1 and every system
strongly equivalent with I1, we have dimH(Jl) = dimB(Jl) = dimP(Jl). This follows
from Corollary 5.9 and Theorem 3.1 in [MU].

Theorem 6.3. If S = {φi : i ∈ I} is a conformal iterated function system and the
index set I is infinite, then for every 0 < t < θ there exists a set It ⊂ I such that
dimH(JIt) = t.

Proof. Without losing generality we may assume that I = N. First we shall show
that for every set E ⊂ N such that N \E is infinite and for every ε > 0 there exists
k ∈ N\E such that dimH(JE∪{k}) ≤ dimH(JE)+ ε. Indeed, let h = dimH(JE). By
Theorem 1.2, PE(h+ε) < 0 and by the definition of pressure there exists 0 < a < 1
and j0 ≥ 1 such that ψE,j(h+ ε) < aj , if j > j0. But, for every k ∈ N \E, we have

ψE∪{k},n(h+ ε) ≤
n∑
j=0

(
n

j

)
ψE,j(h+ ε)||φ′k||(n−j)(h+ε)K(n−j)(h+ε)

≤
 j0∑
j=0

(
n

j

)
ψE,j(h+ ε)K(n−j)(h+ε)

||φ′k||(n−j0)(h+ε) + (a+ (K||φ′k||)(h+ε))n

≤ j0 sup
0≤j≤

{ψE,j(h+ ε)}nj0Kn(h+ε)||φ′k||(n−j0)(h+ε) + (a+ (K||φ′k||)(h+ε))n.

Since ||φ′k|| is sufficiently small for k sufficiently large, we have ψE∪{k},n(h + ε) <
1 for all n large enough. This implies PE∪{k}(h + ε) < 0 and consequently
dimH(JE∪{k}) ≤ h+ ε. The claim is proved.

Passing to the actual proof, fix 0 < t < θN. We shall build the set It by con-
structing inductively an increasing sequence In of finite subsets of I satisfying
dimH(JIn) < t for all n ≥ 1. We then will show that setting It =

⋃
n≥1 In we

have dimH(JIt) = t. Indeed, let I1 = {1} and suppose that In is constructed and
dimH(JIn) < t. By the claim proved above there exists k > max{In} such that
dimH(JIn∪{k}) < t. Let kn+1 be such minimal k and let In+1 = In ∪ {kn+1}.
The inductive construction is finished. Let It =

⋃
n≥1 In. This set is infinite. By

Theorem 1.2 dimH(JIt) ≤ t. If the set N \ It were finite, then because of Theo-
rem 1.3 dimH(JIt) ≥ θN ≥ t, and we would have a contradiction. Thus, N \ It is
infinite. If dimH(JIt) = t, we are done. Otherwise, due to our claim we can find
an element q ∈ N \ It such that kn+1 > q > kn and dimH(JIn∪{q}) < t . But
then dimH(JIn∪{q}) ≤ dimH(JIt∪{q}) < t which contradicts the choice of kn+1 and
finishes the proof of our theorem.

In general Theorem 6.3 fails to be true for t > θ. Indeed, below we provide an
example.

Example 6.4. Consider a system of similarity maps on the interval [0,1] given by
two generators φ and ψ with contraction coefficients 1/4 and the maps φn with
contraction coefficients cn, where c is so small that the sets φ([0, 1]), ψ([0, 1]), and
φn([0, 1]), n ≥ 1, are mutually disjoint. Then dimH(J{φ,ψ}) = 1/2 but the Hausdorff
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dimension of any subsystem missing either φ or ψ is bounded from above by the
solution to the equation (1/4)t + ct/(1− ct) = 0. But t = t(c), the solution to this
equation converges to 0 if c→ 0. Therefore if c is taken so small that t = t(c) < 1/4,
we have a gap of Hausdorff dimension between t(c) and 1/4.

Example 6.5. We give an example of an irregular continued fraction system. First
notice that if I ⊂ N is an index set, we may obtain upper bounds on the the
functions ψn(t) by a similar method to that given in Example 6.1 for obtaining
lower bounds. Thus, using the Bounded Distortion Property with K = 4 and using
the facts that b < b+ qn−1/qn < b+ 1 and b+ 1 ≤ 2b, we have(∑

b∈I

1
b2t

)n
≥ ψn(t) ≥ 4−(n−1)t

(∑
b∈I

1
b2t

)n
.

From this we have

log

(∑
b∈I

1
b2t

)
≥ PI(t) ≥ −t log 4 + log

(∑
b∈I

1
b2t

)
.

In particular, if p > 1/2 and we set I = {[n(logn)p] : n ≥ n0}, then
∑

b∈I
1
b < 1,

provided n0 is large enough and
∑

b∈I
1
bs = ∞, if s < 1. Thus, PI(1/2) < 0 and

PI(t) = ∞ if t < 1/2. So, this system is irregular.

7. Some problems

1. Is there a nontrivial subset I of N such that 0 < Hh(JI) and Ph(JI) <∞? If
there is such an I, we know that 0 < limsupn→∞ Sn

nh <∞.

2. Is there a Hausdorff gauge function g of the form g(t) = thL(t), where L is a
slowly varying function such that 0 < Hh(JI) or Ph(JI) <∞, where I is the set of
prime numbers? Since some detailed information is known about the distribution
of the two sided gaps in the primes, one can at least determine a class of g for which
these measures are either 0 or ∞.

3. By Theorem 6.3 we know that for every 0 < t < 1/2 there exists a continued
fraction system whose limit set has dimension t. We conjecture that this remains
true for all t ∈ (0, 1].
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