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1 Introduction

Since the discovery of the Seiberg-Witten (SW) solution [1, 2], four-dimensional N = 2 the-
ories have attracted a lot of attention. This is often due to the fact that the large amount of
supersymmetry constrains the dynamics enough to make these models a useful theoretical
laboratory for the exploration of nonperturbative dynamics. Remarkably, the physics on
the Coulomb branch (CB) of these theories is accessible even for nonlagrangian models
and this fact led to the discovery of a large class of intrinsically strongly-coupled theories,
first as low-energy theories at singular points of the Coulomb branch of N = 2 gauge
theories [3–6] and then more abstractly via geometric methods, either as compactifications
of higher dimensional superconformal theories (SCFTs) [7–11] or from the compactifica-
tion of superstring theory on local Calabi-Yau (CY) 3-folds [12, 13]. In this latter case
the geometric engineering in Type IIB is particularly convenient since the complex struc-
ture moduli of the geometry (i.e. classical properties) encode the information about the
quantum-corrected Coulomb branch physics.

A natural question is then how the stringy geometry encodes the information about
the Higgs branch (HB) of the four-dimensional theory. This is harder to address since a
classical Type IIB analysis is not enough to provide the answer. An effective strategy to
make progress in this direction is to describe the Higgs branch of the 4d theory as the
Coulomb branch of a three-dimensional theory with eight supercharges, the so-called 3d
mirror dual [14] or magnetic quiver [15–25] in more modern terminology. Following previous
work (see e.g. [26–40]) our goal is to construct the 3d mirror theory in the case of local
Calabi-Yau geometries described by hypersurface singularities in C4. More specifically, in
this note we consider hypersurfaces given by the sum of two ADE singularities (usually
referred to as (G,G′) models [41]), where both singularities are of type D.

The analysis of the present work represents a natural continuation of [37, 38], where
(A,A) and (A,D) theories have been considered, and with respect to the cases already
discussed in the literature presents a new hurdle: the (D,D) singularities are not terminal
and we have crepant resolutions, which imply a mismatch between the dimension of the
Higgs branch and the number of mass parameters since crepant divisors contribute to the
former but not to the latter (see the discussion in the Introduction of [35]). As a result,
the 3d mirror cannot simply be an abelian gauge theory as it was in the (A,A) and (A,D)
cases. This would indeed immediately imply that the Higgs branch dimension and the rank
of the global symmetry of the 4d theory agree. We find that the difference is accounted
for by the presence in the 3d mirror of a balanced USp(2n) gauge node, whose topological
symmetry [42, 43] contributes one to the rank of the global symmetry of the 4d theory
and whose rank contributes n to the dimension of the Higgs branch of the 4d theory. This
represents a new conceptual step towards a systematic understanding of the Higgs branch
of 4d SCFTs from hypersurface singularities.

The strategy we apply in this work to extract the 3d mirrors of (Dn, Dm) theories
is to start from the already understood (A,A) and (A,D) cases and to construct the 3d
quivers step by step for a large set of examples. This then allows us to guess the general
answer. In order to implement this program, we first need to study the conformal manifold
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of these theories and identify weakly-coupled cusps (see also [44–46]), which turn out to
involve gaugings of Dp(SO) or Dp(USp) theories introduced in [47–50] (see also [38]).
This therefore reduces the problem to gauging building blocks whose 3d mirror is already
known. The key feature for identifying the structure of the conformal manifold is the fact
that from the geometry we can easily extract the Seiberg-Witten curve of the theory, at
least in a certain limit. This is due to the specific structure of the family of hypersurface
singularities which engineers the (Dn, Dm) theories, which allows us to plot on a plane the
various deformations of the theory.

Let us describe salient features of the 3d mirrors of (Dn, Dm) theories. For generic
values of n and m, such a theory consists of a collection of free hypermultiplets, along
with an interacting 3d N = 4 SCFT that admits a quiver description. We first discuss the
latter. The quiver consists of a balanced central node of the USp-type, which is surrounded
by a collection of SO(2) ∼= D1 gauge nodes, possibly with certain number of flavors of
hypermultiplets. A subset of such D1 gauge nodes are connected together by lines to form
a complete graph. The central USp gauge node is connected to the surrounding D1 nodes
in a highly non-trivial way, described in detail in the main text. We now describe the origin
and properties of such free hypermultiplets. As described in the context of the (An, Am)
and (An, Dm) theories [37, 38, 51], the free sector arises from dimensional reduction of the
SCFTs with no Higgs branch, also known as the non-Higgsable SCFTs, that are present
at a generic point of the Higgs branch of the 4d theory. The readers are referred to ([38],
appendix C) for an extensive list of the non-Higgsable SCFTs and their properties. In
particular, the difference between the rank of the 4d theory and the Higgs branch of the
aforementioned quiver is equal to the number of the free hypermultiplets and thus the
rank of the non-Higgsable SCFTs in question. Moreover, the difference between the value
24(c − a) of the 4d theory and the Coulomb branch dimension of the aforementioned 3d
quiver (which is equal to the Higgs branch dimension of the 4d theory given by (3.26)
below) is equal to the total value of 24(c− a) of the non-Higgsable SCFTs in question. We
use these two conditions as a non-trivial test of the proposed 3d mirror theories throughout
the paper.

The paper is organized as follows: in section 2 we summarize our notation and con-
ventions, in section 3 we review (Dn, Dm) theories and study their conformal manifold.
We also compute the number of mass parameters and the dimension of the Higgs branch
by counting crepant divisors. In section 4 we determine all the 3d mirrors of Dp(SO(2N))
theories with p < 2N −2, which is needed for the analysis of (Dn, Dm) models. This result
complements the analysis carried out in [38]. The main result is contained in section 5,
where we describe the 3d mirrors of all (Dn, Dm) theories. We conclude with appendix A
which includes new results about Dp(USp(2N)) theories.

2 Notation and convention

Throughout the paper, we use the following abbreviations in the quiver diagrams:
SO(2N) = DN , USp(2N) = CN and SO(2N + 1) = BN . We denote by /Z2 the diagonal
Z2 quotient of the gauge symmetry.

– 3 –



J
H
E
P
0
2
(
2
0
2
2
)
0
1
4

We follow the same terminology as in [43] to characterize the orthosymplectic gauge
groups in 3d N = 4 gauge theories. A USp(2N) gauge group with Nf flavors in the
fundamental representation is said to be balanced, overbalanced and underbalanced if
Nf =, >,< 2N + 1, respectively. An SO(N) gauge group with Nf flavors in the vector
representation is said to be balanced, overbalanced and underbalanced if Nf =, >,< N−1,
respectively. On the contrary, in 4d N = 2 gauge theories, the condition for a USp(2N)
gauge group with Nf to have a zero beta-function is Nf = 2N + 2, and that for an SO(N)
gauge group with Nf flavors to have a zero beta-function is Nf = N −2. It is worth noting
that a USp gauge group that satisfies the zero-beta function condition in 4d is overbalanced
in 3d, whereas an SO gauge group that satisfies the zero-beta function condition in 4d is
underbalanced in 3d.

We also adopt the following notations for the quiver diagrams.

• The R copies of half-hypermultiplets in the representation [2N; 2] of the gauge group
USp(2N)× SO(2) are denoted by

CN
R

D1 . (2.1)

It gives rise to an SU(R) flavor symmetry. To make the Cartan elements of SU(R)
manifest, we should interpret (2.1) as denoting the half-hypermultiplets in the fol-
lowing representation of {USp(2N) × U(1)} × SU(R), where the quantity in {· · · }
denotes the gauge factors and U(1) ∼= SO(2):

[2N; +1; R]⊕ [2N;−1; R] . (2.2)

• The F flavors of hypermultiplets carrying charge 2 under U(1)∼=SO(2) are denoted by

D1 [F ]2 , (2.3)

where the wiggle line and subscript 2 emphasize the charge 2 under the U(1) gauge
group. This gives rise to an SU(F ) flavor symmetry. In other words, (2.3) denotes
the chiral multiplets in the following representation of U(1)× SU(F ):

[+2; F]⊕ [−2; F] . (2.4)

• An edge connecting two SO(2) gauge nodes with multiplicity M is denoted by

D1
M

D1 . (2.5)

This represents M copies of half-hypermultiplets in the representation [2; 2] of the
gauge group SO(2) × SO(2). It gives rise to a U(M)2/U(1) flavor symmetry, whose
algebra is isomorphic to SU(M) × SU(M) × U(1). To make the Cartan elements of
the latter manifest, we should interpret (2.5) as denoting the half-hypermultiplets in
the following representation of {U(1)×U(1)}×SU(M)×SU(M)×U(1), where each
of the first two U(1) factors are isomorphic to each SO(2) gauge group:

[+1; +1; M; 1;−1]⊕ [−1;−1; M; 1; +1]
⊕ [+1;−1; 1; M; +1]⊕ [−1; +1; 1; M;−1] .

(2.6)
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• An edge connecting an SO(2) gauge node to an SO(2N) gauge node (for N ≥ 2) with
multiplicity M is denoted by

DN
M

D1 . (2.7)

This represents M copies of half-hypermultiplets in the representation [2N; 2] of the
gauge group SO(2N)×SO(2). This gives rise to an SU(M) flavor symmetry. To make
the Cartan elements of SU(M) manifest, we should interpret (2.1) as denoting the
half-hypermultiplets in the following representation of {SO(2N) × U(1)} × SU(M),
where the quantity in {· · · } denotes the gauge factors and U(1) ∼= SO(2):

[2N; +1; M]⊕ [2N;−1; M] . (2.8)

3 The conformal manifold for (D, D) Argyres-Douglas theories

The Calabi-Yau hypersurface singularity which engineers in Type IIB the (Dn, Dm) SCFT,
with m,n ≥ 3, reads as follows

F (u, x, y, z) = xn−1 + xu2 + ym−1 + yz2 ; Ω = dudxdydz

dF
. (3.1)

Because of the equivalence (Dn, Dm) = (Dm, Dn) we can without loss of generality assume
m ≥ n. By assigning scaling dimension 1 to the holomorphic 3-form and imposing, as
usual, homogeneity of the hypersurface singularity, we can easily determine the dimension
of the various coordinates:

[x] = 2m− 2
n+m− 2 ; [y] = 2n− 2

n+m− 2 ; [u] = (n− 2)(m− 1)
n+m− 2 ; [z] = (n− 1)(m− 2)

n+m− 2 . (3.2)

The allowed deformations, which describe expectation values of Coulomb branch operators,
mass parameters and relevant/marginal couplings can be parametrized as follows:

xn−1 + xu2 + ym−1 + yz2 + P (x, y) + uQ(y) + zS(x) +Muz = 0 , (3.3)

where P , Q and S are polynomials. Notice that M has always dimension 1 and is therefore
a mass parameter for all values of n and m, as can be easily seen from (3.2). We can also
notice that the term xy has always dimension 2.

In order to determine the dimension of the conformal manifold, we should count pa-
rameters of dimension 0 appearing in (3.3). In order to do this, it is convenient to introduce
the parameters

a ≡ GCD(n− 1,m− 1) ; p ≡ n− 1
a

; q = m− 1
a

. (3.4)

It is easy to see that a parameter appearing in P (x, y) is marginal if and only if it multiplies
a term of the form xkpy(a−k)q with 1 ≤ k ≤ a− 1 and therefore there are a− 1 of them. A
marginal parameter in Q(y) and S(x) respectively can instead appear when either (m−1)n

2n−2
or m(n−1)

2m−2 are integers. Notice that, since n and n− 1 are coprime (and analogously for m

– 5 –



J
H
E
P
0
2
(
2
0
2
2
)
0
1
4

and m− 1), the two conditions above are mutually exclusive unless n and m are equal and
even. Notice that for m > n only the former can be satisfied.

In conclusion, we find that if n = m, the conformal manifold has dimension{
n− 2 if n is odd,
n if n is even.

(3.5)

If instead, n < m, we introduce
f ≡ n(m− 1)

2(n− 1) , (3.6)

and the dimension of the conformal manifold is1{
a if f is an integer,
a− 1 otherwise.

(3.7)

We would now like to study the cusps of the conformal manifold and identify the gauge
groups becoming weakly-coupled there. In order to do that, it is convenient to set M to
zero in (3.3) and introduce, generalizing the analysis of [52], two Lagrange multipliers λ
and µ as follows:

xn−1 + xu2 + ym−1 + yz2 + P (x, y) + uQ(y) + zS(x) + λu+ µz = 0 . (3.8)

Viewing this expression as a superpotential, we can integrate out the massive variables u
and z using the equations of motion. As long as the term Muz (which would couple the
equations of motion) is absent, we can rewrite (3.8) in terms of x and y only and therefore
obtain a Seiberg-Witten curve describing the (Dn, Dm) theory, in the limit M → 0. This
can be written in the form

xn−1 + ym−1 + P (x, y) + Q(y)2

x
+ S(x)2

y
= 0 , (3.9)

where the polynomials P , Q and S are as in (3.3).
The parametrization (3.9) is particularly convenient since we can plot the various

deformations, which are all monomials of the form xayb, on a plane. The coordinates of
the corresponding point are given by the powers (b, a). Let us give an example for ease
of the reader. In the case n = 5 and m = 7 we can represent the allowed deformations
in (3.9) on a plane as follows:

n− 1

m− 1

(3.10)

1The fact that for a = 1 the theory is isolated was already noticed in [46].
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We refer to a planar plot like (3.10) as the Newton polygon of the singularity. All the
solid dots represent allowed deformations. Those inside the triangle (including those on
the boundary) appear in P (x, y) in (3.9). Those below the triangle arise from Q(y) and
those on the left come from S(x). We should remember that all dots outside the triangle
represent terms in (3.9) which are squares of more fundamental parameters.

The representation (3.10) is particularly convenient for identifying marginal deforma-
tions in P (x, y), since they arise as dots sitting on the diagonal edge of the triangle. In
the case at hand of the (D5, D7) theory, we clearly see a single marginal parameter (de-
noted in red) corresponding to the deformation x2y3 in (3.9). In order to identify one
weakly-coupled cusp in the conformal manifold, namely providing a description of the the-
ory involving a vector multiplet coupled to two or more matter sectors, it is convenient to
recall that [x] + [y] = 2. Therefore, if we consider a marginal deformation appearing in
P (x, y) of the form xαyβ with

α = kp , β = (a− k)q , (3.11)

we can then notice that the parameter multiplying the term xα−iyβ−i has dimension 2i,
therefore suggesting these are the Casimir invariants of a gauge group, either of USp or
SO type. In (3.10) these correspond to the blue dots, which have dimension 2, 4 and 6
respectively. The parameter of dimension 6, which lies outside the triangle, is actually the
square of a parameter of dimension 3 and we therefore see that the dots in blue represent
the Casimirs of a SO(6) group.

Generalizing this observation, we are led to the conclusion that whenever we have a
marginal deformation of the form xαyβ with β−α odd, there is a SO(2N) vector multiplet
(we will be more specific about the value of N momentarily). If instead β − α is even, we
do not find a deformation corresponding to the Pfaffian and our guess is that the gauge
group is of type USp(2N). For example, in the case n = 3 and m = 7 we have the marginal
deformation xy3 and only one blue dot corresponding to a Casimir of dimension 2. There
is no Casimir associated with a deformation term belonging to Q(y) in (3.9):

n− 1

m− 1

(3.12)

Regarding the matter sectors coupled to the vector multiplet, we find it convenient to
exploit once again the Newton polygon and consider the straight line passing through
the red and blue dots. This divides the plane in two half-planes, each containing the
deformations associated with one matter sector coupled to the vector multiplet. Exploiting
this guiding principle, we find that the Coulomb branch spectrum is compatible with the
following description of the (Dn, Dm) SCFT.

When α−β is odd, the gauge group is of SO type, as we have already explained. More
precisely,
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1. For β > α we have

Dn−1+β−α(SO(2β + 2))− SO(2α+ 2)−Dm−1+α−β(SO(2α+ 2)) . (3.13)

The matter sector on the left has a partially closed regular puncture labeled by
partition

[
β − α, β − α, 12α+2].

2. For β < α we have

Dn−1+β−α(SO(2β + 2))− SO(2β + 2)−Dm−1+α−β(SO(2α+ 2)) . (3.14)

Now the matter sector on the right has a partially closed regular puncture labeled
by partition

[
α− β, α− β, 12β+2].

When instead α− β is even the gauge group is of USp type. Specifically

3. For β > α we have

Dn−1+β−α(USp(2β))−USp(2α)−Dm−1+α−β(USp(2α)) . (3.15)

The matter sector on the left has a partially closed regular puncture labeled by
partition

[
β − α, β − α, 12α].

4. For β < α we have

Dn−1+β−α(USp(2β))−USp(2β)−Dm−1+α−β(USp(2α)) . (3.16)

Now the matter sector on the right has a partially closed regular puncture labeled
by partition

[
α− β, α− β, 12β].

5. For β = α we have

Dn−1(USp(2α)) − USp(2α) − Dm−1(USp(2α)) .
|

[SO(2)]
(3.17)

Both matter sectors have a full regular puncture in this case, but we also have a
hypermultiplet in the fundamental of USp(2α).

Notice that in all cases described above the gauging is conformal as expected. A natural
question at this stage is how the parameter M appearing in (3.3) enters the above de-
scriptions of the (Dn, Dm) theory, since it does not fit in the curve (3.9). The answer is
the following: in the first four cases, one of the matter sectors features a puncture of the
form [b, b, 1c]. The symmetry carried by the [1c] part is always gauged, but we also have a
rank 1 factor for the global symmetry carried by the [b, b] part. The corresponding mass
parameter is identified with M . In the fifth case, instead, the [b, b] part is missing and M
is identified with the mass of the hypermultiplet in the fundamental of the USp group.

A careful reader might also wonder about the role of the marginal couplings appearing
in Q(y) or S(x), since we have never discussed those. It is easy to see that Q(y) includes a
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marginal parameter only if a term of the form xyβ with β even is marginal. According to
our analysis, such a term implies the presence of a SO(4) gauge group, and therefore the
marginal term in Q(y) can be interpreted as providing the second marginal coupling of the
SO(4) vector multiplet. Analogously, a marginal parameter in S(x) implies marginality of
a term of the form xαy with α even, which also leads to a SO(4) gauging.

3.1 Counting mass deformations

By the same token, we can compute the number of mass parameters, that is given by
the deformation parameters of dimension 1 in (3.3). This equals the rank of the flavor
symmetry group of (Dn, Dm) theory.
It can be checked that Q(y) includes a dimension 1 parameter only if m − 1 is odd, and
analogously S(y) includes a mass parameter if n − 1 is odd. On the other hand, P (x, y)
includes mass parameters if p and q are both odd, and in this case we find a extra mass
parameters. Overall, taking also into account the parameterM we find the following result,
depending on the parity of n and m, we find that the number of mass parameters is:

1 if n− 1 and m− 1 are even and p or q is even,
2 if n− 1 is odd and m− 1 is even,
2 if n− 1 is even and m− 1 is odd,
a+ 1 if n− 1 and m− 1 are even and p and q are odd,
a+ 3 if n− 1 and m− 1 are odd.

(3.18)

3.2 Counting crepant divisors

The dimension of the Higgs Branch of a (G,G′) theory can be computed adding to the
number of masses, the number of crepant divisors of the canonical singularity describing
the geometry of the theory [35, 36].

The number of crepant divisors for a canonical singularity can be computed following
the algorithm described in [53, 54] that we are now going to briefly review.2 Such algorithm
can be also easily implemented, for instance, in SageMath [55].

Let us define a polynomial

f =
∑
i

ai
∏
j

x
mj

i
j , (3.19)

where ai are integer coefficients, and mi =
(
m1, . . . ,mn

)
are the exponents associated

to the i-th monomial in f . The locus of f = 0 gives an isolated canonical hypersurface
singularity. Let us define M to be a free abelian group Zn, and MR = M ⊗Z R. From f , it
is possible to define its Newton polyhedron, Γ+(f), which is the convex hull in MR of the
set given by the union of the mi and the positive quadrant in R.

2We thank C. Closset for pointing out this technique to compute the number of crepant divisors.
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We now introduce a set of vectors α = (α1, . . . αn) that belongs to N = HomZ(M,Z), which
is the dual of M , and for each α, we define α(m) = α ·mi and

α(f) = min
mi∈f

α ·mi . (3.20)

The vectors α are called weightings, and from this set of vectors, we call crepant weightings
those that satisfies

|α| = α(f) + 1 , (3.21)

where |α| is the sum of the components of α.
For each crepant weighting we also introduce

g(α) = min
mi∈Γ+(f)

α ·mi , (3.22)

and we call the face of Γ(f) corresponding to α as the set

Γα = {mi ∈ Γ+(f) : α(m) = g(α)} . (3.23)

Finally, we define the length Γα as the number of vectors composing the face Γα minus 1.
The number of crepant divisors for an isolated canonical singularity X is [53, 54]

c(X) =
∑
α

c(α) with c(α) =
{
length Γα if dim Γα = 1 ,
1 if dim Γα ≥ 2 .

(3.24)

The HB dimension of a (Dn, Dm) AD theory is given by the sum of the number of masses
in (3.18) and the number of crepant divisors. We find that for given a (Dn, Dm) theory X,
for m ≥ n, the number of its crepant divisors is

c(X) =
⌊
n

2

⌋
− 1 . (3.25)

We will see in subsequent sections that the rank of the balanced symplectic gauge group
in the mirror theory for a given (Dn, Dm) theory is, in fact, equal to one plus the number
of crepant divisors of the corresponding theory.3

3We assume that the gauge symmetry in the mirror theory consists of a collection of abelian gauge
groups, together with a single balanced symplectic gauge group. This statement follows from the fact
that the HB dimension of the (Dn, Dm) theory is equal to the sum of the rank of all gauge groups in the
mirror theory, and that the number of mass parameters of the 4d theory is equal to the total number of FI
parameters of the mirror theory, where the latter comes from the abelian gauge groups and the balanced
symplectic gauge group. This assumption fits all special cases that can be cross-checked, e.g. with those
that admit class S descriptions. Moreover, the fact that the balanced gauge group should be symplectic
and not (special) orthogonal can be seen in a special class of theories as follows. Consider the last case
of (3.18) such that m−1 is a multiple of n−1 (m and n are even), so that we have a = n−1 and n+2 mass
parameters. We have a balanced USp(n) gauge group with n + 1 U(1) gauge groups, which act as n + 1
flavors for the balanced gauge group; altogether we have n + 2 FI parameters, as required. On the other
hand, if the balanced gauge group were SO(n) or O(n), we would require number of U(1) gauge groups
to be n− 1, acting as n− 1 flavors of the balanced gauge group, but this would not saturate the required
number n + 2 of FI parameters.
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The HB dimension for a (Dn, Dm), using (3.18), can thus be written as follows:

⌊
n

2

⌋
if n− 1 and m− 1 are even and p or q is even,⌊

n

2

⌋
+ 1 if n− 1 is odd and m− 1 is even,⌊

n

2

⌋
+ 1 if n− 1 is even and m− 1 is odd,

a+
⌊
n

2

⌋
if n− 1 and m− 1 are even and p and q are odd,

a+
⌊
n

2

⌋
+ 2 if n− 1 and m− 1 are odd.

(3.26)

4 The 3d mirror of Dp(SO(2N)) theories with p < 2N − 2

In [38] we have determined the 3d mirror of Dp(SO(2N)) theories with p < 2N − 2 only in
some cases. Here we would like to fill in this gap since this will be useful for determining
the 3d mirrors of (Dn, Dm) theories. We will divide the analysis in two cases; p odd and p
even. The analysis will be largely based on an analogy with the SU(N) case, which is well
understood and is discussed in detail in [37].

4.1 Dp(SO(2N)) theories with p odd

These models are the simplest since they do not include any mass parameters apart from
those associated with the SO(2N) global symmetry. It turns out that in this case the 3d
mirror is given by two orthosymplectic quiver tails with flavors attached at some of the
gauge nodes, which are all balanced.

For convenience, we define the parameter x as follows:

x ≡
⌊2N − 2

p

⌋
. (4.1)

For x odd or for 2N − 2 divisible by p (where, for the latter, x is even), we propose
that the 3d mirror of Dp(SO(2N)) is identified with the theory T σ[12N ][SO(2N)], where

σ =
[
(x+ 1)2N−1−px, xxp+p+1−2N , 1

]
. (4.2)

Notice that the above σ is always an even partition of 2N regardless of the parity of x. If
2N − 2 is divisible by p, then σ can be written as σ = [x+ 1, xp−1, 1]. The explicit quivers
can be described as follows: [

C 2N−1−px
2

]
|

C p−1
2
− Bp−1 − · · · − C p−1

2 x − D 2N−1−x
2

− C 2N−3−x
2

− · · · − C1 − D1

| |
B0

[
Bxp+p−2N

2

]
(4.3)
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The tail on the left has alternating gauge groups of type C and B, with increasing ranks,
which are multiples of p−1

2 . The tail on the right is instead equivalent to T [SO(2N−1−x)].
The mirror theory also comes with

Hfree = X

(
p− 1

2 −X
)
, (4.4)

free hypermultiplets,4 where

X =
(
N + x− 1

2

)
mod

(
p+ 1

2

)
. (4.5)

Let us discuss the case in which p divides 2N − 2. Here X = 0 and there are no free
hypermultiplets. Since p is odd, x = (2N−2)/p is even and, according to ([48], appendix C),
the corresponding Dp(SO(2N)) theory in 4d admits a Lagrangian description. As we
commented in ([38], section 8.4), the Lagrangian description of the 4d theory is the same
as that of the quiver description of the 3d Tσ[SO(2N)] theory, with σ given by (4.2), namely

[Dmp+1]− Cm(p−1) −Dm(p−2)+1 − · · · − C2m −Dm+1 (4.6)

where m ≡ x/2. Each C and D gauge group in the 4d quiver theory has zero beta-
function, whereas in the 3d quiver the C-gauge group is overbalanced and the D gauge
group is underbalanced, rendering the theory “bad” in the sense of [43]. At this stage, it is
not clear whether the quiver for Tσ[SO(2N)] describes the reduction of such a Dp(SO(2N))
theory to 3d. If we assume5 that this is true, then the mirror theory is as described above.
We hope to gain better understanding of this case in the future.

For x even and 2N−2 not divisible by p, we propose that the 3d mirror for Dp(SO(2N))
is identified with the theory T σ′[12N ][SO(2N)], where the partition σ′ can be obtained from
the partition σ by “lifting a box up”, i.e.

σ′ = [(x+ 1)2N−px, xxp+p−1−2N , x− 1, 1] . (4.7)

Note that if the box is not liftable, i.e. xp+ p− 1− 2N < 0, the partition σ′ is identical to
the partition σ, e.g. N = 5, p = 3, we have σ = σ′ = [3, 3, 3, 1]. The theory T σ′[12N ][SO(2N)]

4We remark that the expression for the number of the free hypermultiplets Hfree in the mirror theory for
Dp(SO(2N)) with p odd and p ≥ 2N−2, given by ([38], (5.4)), can also be written as Hfree =

(
p−2N+1

2

)
N =[

p−1
2 − (N − 1)

]
N . We see that (4.4) indeed has a similar form to such an expression.

5This assumption should be taken cautiously. We observe that only when p divides 2N−2, the Coulomb
branch dimension of the mirror theory is (p− 1)/2 larger than the value 24(c− a) of the corresponding 4d
theory. We have checked that all the other cases do not have this problem, namely the Coulomb branch
dimension of the mirror theory is always less than or equal to the integer part of 24(c − a). In this case,
it is not clear whether 24(c− a) is equal to the Higgs branch of the 4d theory, since the orthogonal gauge
groups may not be completely Higgsed at a generic point on the Higgs branch. This is due to the fact that
the orthogonal gauge group which is conformal in 4d is underbalanced in 3d. Nevertheless, we emphasize
that the Higgs branch dimension of the mirror theory (4.2) is exactly equal to the rank of the corresponding
4d theory, as it should be.
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admits a quiver description of the form[
C px+p−1−2N

2

]
|

C p−1
2
− Bp−1 − · · · − C p−1

2 (x−1) − D p−1
2 x − C 2N−2−x

2
− D 2N−2−x

2
− · · · − C1 − D1

| | |
B0 B0

[
D 2N−px

2

]
(4.8)

The number of free hypermultiplets in this case (i.e. x even and p does not divide 2N−2) is

Hfree = Y

(
p+ 1

2 − Y
)
, (4.9)

where

Y =
(
N + x

2

)
mod

(
p+ 1

2

)
. (4.10)

Let us mention some consistency checks for the proposed mirror theory. It is convenient
to discuss these via examples.

• The case of N = 9 and p = 7. Here x = 2. The 4d theory has 24(c− a) = 459/7 =
65 + (4/7) and it has rank 27. The proposed mirror theory has CB dimension 65 and
HB dimension 23. We thus have 27− 23 = 4 free hypermultiplets, in agreement with
the fact that the non-Higgsable SCFT has 24(c− a) equal to 4/7, which is expected
to be that of the (A1, A4)⊗2 theory whose rank is (2× 2) = 4.

• The case of N = 12 and p = 5. Here x = 4. The 4d theory has 24(c−a) = 552/5 =
110 + (2/5) and it has rank 24. The proposed mirror theory T σ′ [SO(2N)] has CB
dimension 110 and HB dimension 22. We thus have 24−22 = 2 free hypermultiplets,
in agreement with the fact that the non-Higgsable SCFT has 24(c− a) equal to 2/5,
which is expected to be that of the (A1, A2)⊗2 theory whose rank is (2× 1) = 2.

• The case of N = 12 and p = 7. Here x = 3. The 4d theory has 24(c−a) = 828/7 =
118 + (2/7) and it has rank 36. The proposed mirror theory T σ[SO(2N)] has CB
dimension 118 and HB dimension 34. We thus have 36−34 = 2 free hypermultiplets,
in agreement with the fact that the non-Higgsable SCFT has 24(c− a) equal to 2/7,
which is expected to be that of the (A1, A4) theory whose rank is 2.

Let us also briefly comment on the procedure of “lifting a box up” in the case of x even
and 2N − 2 not divisible by p. The reason for this is two-fold. First, this procedure leads
to the desired Higgs branch and Coulomb branch dimensions of the mirror theory that
pass the above checks. Secondly, this procedure cures the “badness” of the Tσ[SO(2N)]
theory (see also [56] for a related discussion). To illustrate this point, we take an example
of N = 12 and p = 5, where σ = [5, 5, 5, 4, 4, 1], σ′ = [5, 5, 5, 5, 3, 1], and

Tσ[SO(24)] : [D12]− C9 −D7 − C4 −D3

Tσ′ [SO(24)] : [D12]− C9 −D7 − C4 −D2
(4.11)

Observe that the former contains an underbalanced D3 gauge node, rendering the theory
bad, whereas the latter does not contain any underbalanced gauge nodes.
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4.2 Dp(SO(2N)) theories with p even

The difference with respect to the previous case is that for p even, we have extra mass
parameters besides those associated with the SO(2N) global symmetry. Their number
depends on the parity of 2N−2

GCD(2N−2,p) and we will therefore consider the two cases separately.

4.2.1 The case 2N−2
GCD(2N−2,p) even

In this case we have only one mass parameter besides those of SO(2N). The 3d mirror is
given by a orthosymplectic quiver with 2N−2 balanced gauge groups and one overbalanced
D1 group whose FI parameter accounts for the extra mass parameter of the 4d theory. We
introduce again the parameter

x =
⌊2N − 2

p

⌋
(4.12)

and we discuss the cases in which p does and does not divide 2N − 2 separately.
If p does not divide 2N −2 (here x can be even or odd), we propose that the 3d mirror

is given by a T σρ [SO(2N + 2p− 2)] theory with

ρ = [(p− 1)2, 12N ] ; σ = [(x+ 3)2N−2−xp, (x+ 2)xp+p−2N+2] . (4.13)

For x odd, the quiver reads[
Dxp+p−2N+2

2

]
|

D1 − Cp/2 − · · · − Cxp/2−(x−1)/2 − DN−1−(x−1)/2 − C 2N−3−x
2

− · · · − C1 − D1

|[
C 2N−2−xp

2

]
(4.14)

Again, all the nodes not indicated explicitly are of C or D type and balanced. On the other
hand, for x even, the quiver reads [

D 2N−2−xp
2

]
|

D1 − Cp/2 − · · · − C(x−1)p/2−(x−2)/2 − Dx(p−1)/2+1 − C 2N−2−x
2

− · · · − C1 − D1

|[
C px+p−(2N−2)

2

]
(4.15)

This mirror theory also comes with a number of free hypermultiplets given by6

Hfree =

(p−Np + 2)
(
Np − p

2 + 1
2

)
− p− 3

2 , if x odd,(
p
2 −Np + 5

2

)
Np − p− 3

2 , if x even,
(4.16)

6We remark that the expression for the number of the free hypermultiplets Hfree in the mirror theory
for Dp(SO(2N)) with p even, p ≥ 2N − 2 and 2N−2

GCD(2N−2,p) even, given by ([38], (6.4)), can also be written
as Hfree =

(
p
2 −N + 5

2

)
N − p− 3

2 . We see that (4.16), for x even, indeed has the same form as the former
expression with N replaced by Np.
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with Np defined as

Np = N mod p . (4.17)

If p divides 2N − 2,7 the 4d theory Dp(SO(2N)) admits a Lagrangian description,
which turns out to coincide with the quiver for T ρσ [SO(2N + 2p− 2)] theory, with

ρ = [(p− 1)2, 12N ] = [(p− 1)2, 1xp+2] ;
σ = [(x+ 3)2N−1−xp, (x+ 2)xp+p−2N , x+ 1] = [x+ 3, (x+ 2)p−2, x+ 1]

(4.18)

namely

[Dmp+1]− Cm(p−1) −Dm(p−2)+1 − · · · −D2m+1 − Cm − [D1] (4.19)

where m ≡ x/2. The 3d mirror of this quiver is given by a T σρ [SO(2N + 2p− 2)] theory

B0 B0
| |

D1 − Cp/2 − · · · − C (x−1)p
2 −x−2

2
− Bx(p−1)

2
− Cx(p−1)

2
− · · · − C1 − D1

|[
C p−2

2

]
(4.20)

All the gauge groups not indicated explicitly are alternating of C and D type. The ranks
are fixed by requiring all groups to be balanced. It can be checked that in this case,
the Higgs branch dimension of the mirror theory (4.20) is exactly equal to the rank of
the corresponding 4d theory Dp(SO(2N)). We conclude that there are no free (twisted)
hypermultiplets upon reduction of such a 4d theory on a circle. Similarly to Footnote 4, we
remark that the Coulomb branch dimension of the mirror theory (4.20) is (p− 2)/2 larger
than the value of 24(c − a) of the corresponding 4d theory. In the special case of p = 2,
the 4d theory is simply the USp(x) SQCD with x+ 2 flavors. The corresponding 3d mirror
theory (4.20), with p = 2, turns out to be coincident with ([57], figure 11) with k = x/2
and N = x+ 2, as it should be.

We can perform a similar consistency check for the proposed mirror theory, as in the
previous subsection.

• The case of N = 7 and p = 10. Here x = 1. The 4d theory has 24(c−a) = 211/5 =
42+(1/5) and it has rank 31. The proposed mirror theory T σρ [SO(2N+2p−2)] has CB
dimension 42 and HB dimension 30. We thus have 31− 30 = 1 free hypermultiplets,
in agreement with the fact that the non-Higgsable SCFT has 24(c− a) equal to 1/5,
which is expected to be that of the (A1, A2) theory whose rank is 1.

• The case of N = 13 and p = 10. Here x = 2. The 4d theory has 24(c − a) =
742/5 = 148 + (2/5) and it has rank 58. The proposed mirror theory T σρ [SO(2N +
2p − 2)] has CB dimension 148 and HB dimension 56. We thus have 58 − 56 = 2
free hypermultiplets, in agreement with the fact that the non-Higgsable SCFT has
24(c− a) equal to 2/5, which is expected to be that of the (A1, A2)⊗2 theory whose
rank is 2.

7In this case x = 2N−2
p

is even by our assumption that 2N−2
GCD(2N−2,p) = 2N−2

p
= x is even.
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4.2.2 The case 2N−2
GCD(2N−2,p) odd

We recall that the only way in which we used the fact that 2N−2
GCD(2N−2,p) is even in sec-

tion 4.2.1 is in requiring that the flavors attached to the central C-type node in (4.14)
and (4.15) are not gauged. This has to be the case in order to match the rank of the global
symmetry of the 4d theory discussed in section 4.2.1.

We shall shortly see that the main part of the mirror quiver in the previous section can
be carried through in the case of 2N−2

GCD(2N−2,p) odd as well. We claim that the structure of
the two tails in the mirror dual is the same as in section 4.2.1, which is also supported by
the known form of the mirrors presented in ([38], section 8.3). The only differences are that

1. The D-type flavor nodes in (4.14) and (4.15) are now gauged to account for the larger
number of mass parameters and they form a complete graph, whose structure we can
try to guess using as a guidance the special cases we have already worked out.

2. The C-type flavor node that is attached to a central D-type gauge node in (4.14)
and (4.15) is replaced by lines with appropriate multiplicities that connect such a
D-type gauge node to the vertices of the complete graph.

Let us now be explicit about the above description.
As before, we use the notation

x =
⌊2N − 2

p

⌋
. (4.21)

We start from T σρ [SO(2N + 2p− 2)] theory with the same partitions as in (4.13), namely

ρ = [(p− 1)2, 12N ] ; σ = [(x+ 3)2N−2−xp, (x+ 2)xp+p−2N+2] . (4.22)

Let us first consider the case x odd. The quiver description of such a theory is given
by (4.14). For convenience, we reproduce the diagram here:[

Dxp+p−2N+2
2

]
|

D1 − Cp/2 − · · · − Cxp/2−(x−1)/2 − DN−1−(x−1)/2 − C 2N−3−x
2

− · · · − C1 − D1

|[
C 2N−2−xp

2

]
(4.23)

Since we should now introduce GCD(2N − 2, p)/2 new mass parameters, we replace the[
Dxp+p−2N+2

2

]
flavor node with a collection of GCD(2N − 2, p)/2 D1 gauge nodes. We

assume they are all identical. By analogy with ([37], section 5), we propose the following
candidate structure for the mirror theory:

1. Keep the middle line of quiver (4.23) as it is.

2. Replace the
[
Dxp+p−2N+2

2

]
flavor node with a collection of GCD(2N−2, p)/2 D1 gauge

nodes.
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3. Each D1 group is connected to the node Cxp/2−(x−1)/2 with an edge of multiplicity

mA ≡
(x+ 1)p− (2N − 2)

GCD(2N − 2, p) . (4.24)

4. Remove the [C 2N−2−xp
2

] from (4.23) and connect the DN−1−(x−1)/2 gauge node to each
of the D1 gauge nodes in Step 2 by an edge with multiplicity

mB ≡
(2N − 2)− xp

GCD(2N − 2, p) . (4.25)

5. Each pair of D1 nodes is connected by an edge whose multiplicity is equal to

mG ≡ mAmB = [(x+ 1)p− (2N − 2)][(2N − 2)− xp]
GCD(2N − 2, p)2 . (4.26)

These form a complete graph of GCD(2N − 2, p)/2 nodes, with all edge multiplicity
equal to mG.

6. There are
1
2(mA − 1)mB (4.27)

hypermultiplets of charge 2 charged under each U(1) ∼= D1 gauge group.

7. The quiver constructed above has an overall Z2 that needs to be decoupled.

Assuming there are no other ingredients, the dimension of the HB of the quiver matches
the dimension of the CB of the 4d SCFT provided that the number of free hypermultiplets is

Hfree = 1
4(mA − 1)(mB − 1)GCD(2N − 2, p)

= [(x+ 1)p− (2N − 2)−GCD(2N − 2, p)] [(2N − 2)− xp−GCD(2N − 2, p)]
4GCD(2N − 2, p) .

(4.28)

It is worth pointing out that the above expression of Hfree takes the same form as that for
the Dp(SU(N)) theory with p ≤ N , where the latter is given by ([37], (5.5)). The only
difference between the two expressions are the prefactors, where they are 1/4 in the former
and 1/2 in the latter.

We now turn to the case x even. The procedure is very similar to that of the case x
odd, with the roles of mA andmB interchanged. Explicitly, we start from the theory (4.22),
whose quiver description is given by (4.15). For convenience, we reproduce it here again:[

D 2N−2−xp
2

]
|

D1 − Cp/2 − · · · − C(x−1)p/2−(x−2)/2 − Dx(p−1)/2+1 − C 2N−2−x
2

− · · · − C1 − D1

|[
C px+p−(2N−2)

2

]
(4.29)

We then follow the subsequent steps:
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1. Keep the middle line of quiver (4.29) as it is.

2. Replace the
[
D 2N−2−xp

2

]
flavor node with a collection of GCD(2N − 2, p)/2 D1 gauge

nodes.

3. Each D1 group is connected to the node C(2N−2−x)/2 with an edge of multiplicity
mB.

4. Remove the
[
C px+p−(2N−2)

2

]
from (4.29) and connect the Dx(p−1)/2+1 gauge node to

each of the D1 gauge nodes in step 2 by an edge with multiplicity mA.

5. Each pair of D1 nodes is connected by an edge whose multiplicity is equal to mG.
These form a complete graph of GCD(2N − 2, p)/2 nodes, with all edge multiplicity
equal to mG = mAmB.

6. There are

1
2(mB − 1)mA (4.30)

hypermultiplets of charge 2 charged under each U(1) ∼= D1 gauge group.

7. The quiver constructed above has an overall Z2 that needs to be decoupled.

There are also Hfree free hypermultiplets, given by (4.28).

Examples.

• Let us consider the case in which p divides 2N − 2, so that

2N − 2 = xp , x is odd . (4.31)

The mirror theory for Dp(SO(xp+ 2)) is then

C xp−x+1
2

D xp−x+1
2

D1 − Cp/2 − · · · C px−x−1
2
−D px−x−1

2
− · · · − C1 −D1

D1 D1· · ·
p/2 nodes

/Z2

(4.32)

When x = 1, namely p = 2N−2, we recover the quiver described in ([38], section 6.2)
as expected.
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• The mirror theory of D4N(SO(4N + 4)), for which we have N = 2N + 2, 2N − 2 =
4N+ 2, p = 4N, GCD(2N − 2, p) = 2, x = 1, mA = 2N− 1, mB = 1, is described by8

C2N −D2N − · · · − C1 −D1D2N+1C2N

[N− 1]2 D1

D1

2N− 1
1

/Z2
(4.33)

There are no free hypermultiplets in this example.

• The mirror theory of D24(SO(90)), for which we have N = 45, 2N − 2 = 88, p = 24,
GCD(2N − 2, p) = 8, x = 3, mA = 1, mB = 2, is described by

C35 D43 C42 −D42 − · · · − C1 −D1

D1 D1

D1 D1

D24C12D1

1

2

2

/Z2

(4.34)

There are no free hypermultiplets in this example.

• The mirror theory of D30(SO(80)), for which we have N = 40, 2N − 2 = 78, p = 30,
GCD(2N − 2, p) = 6, x = 2, mA = 2, mB = 3, is described by

C38 D38 C37 −D37 − · · · − C1 −D1

D1 D1

D1

[2]2 [2]2

[2]2

D30C15D1

3
2

6

/Z2

(4.35)

There are 3 free hypermultiplets in this example.

Consistency checks. We can perform a similar consistency check of the proposed mirror
theory as in precedent subsections. Let us demonstrate this in two examples:

• Let us take N = 8 and p = 10. Here x = 1. The 4d theory has 24(c−a) = 281/5 =
56 + (1/5) and it has rank 35. The proposed mirror theory has CB dimension 56 and
HB dimension 34. We thus have 35− 34 = 1 free hypermultiplets, in agreement with
the fact that the non-Higgsable SCFT has 24(c− a) equal to 1/5, which is expected
to be that of the (A1, A2) theory whose rank is 1.

8This quiver has

dimH HB (4.33) = 4N2 + 3N− 2 ,

dimH CB (4.33) = 4N2 + 6N + 3 ,

which are equal to the CB and HB dimensions of the 4d D4N(SO(4N + 4)) theory, respectively. Moreover,
it has the CB symmetry SO(4N + 4)× SO(2)2, which is the same as the flavor symmetry of the 4d theory.
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• Let us take N = 40 and p = 30. Here x = 2. The 4d theory has 24(c − a) =
7658/5 = 1531 + (3/5) and it has rank 578. The proposed mirror theory has CB
dimension 1531 and HB dimension 575. We thus have 578− 575 = 3 free hypermul-
tiplets, in agreement with the fact that the non-Higgsable SCFT has 24(c− a) equal
to 3/5, which is expected to be that of the (A1, A2)⊗3 theory whose rank is 3.

5 The 3d mirror of (Dn, Dm) theories

In this section, we discuss the 3d mirror of (Dn, Dm) theories where, without loss of gen-
erality, we assume that m ≥ n. It is convenient to arrange the discussion according to
the number of mass parameters of the (Dn, Dm) theories. In terms of 3d mirror theo-
ries, such parameter corresponds to the rank of topological symmetry that arises from D1
gauge nodes as well as the balanced C-type gauge nodes. All information regarding CB
dimension, central charges, and number of mass parameters for all (Dn, Dm) theories can
be computed, for instance, using the code given in [58].

5.1 Theories with 1 mass parameter

The (Dn, Dm) theories with one mass parameter have both n and m odd and either
n−1

GCD(n−1,m−1) or m−1
GCD(n−1,m−1) is even; see (3.18). For definiteness, we take m > n. Ac-

cording to (3.26), such a theory has Higgs branch dimension (n − 1)/2. Indeed, this is
in agreement with the observation that the value of 24(c − a) of the 4d theory is at least
(n− 1)/2, with a possibility of an additional fractional number. The latter corresponds to
the value of 24(c − a) of the non-Higgsable sector present on the Higgs branch of the 4d
theory. On the other hand, the rank of the 4d theory in this class is 1

2(mn− 1).
Since the number of mass parameters of the 4d theory (which is one) corresponds to

the rank of the topological symmetry of the 3d mirror theory, we conclude that the latter
should contain either one D1 gauge group or one balanced C-type gauge group, but not
both. Given that the Higgs branch dimension of the 4d theory is (n− 1)/2, the 3d mirror
must have the Coulomb branch dimension (n − 1)/2. A more plausible option would be
the latter. We thus propose that the mirror theory should be described by the C(n−1)/2
SQCD with n flavors, namely

C(n−1)/2 − [Dn] , (5.1)

together with

Hfree = 1
2(mn− n2 + n− 1) (5.2)

free hypermultiplets. This number of free hypermultiplets precisely coincides with the rank
of the non-Higgsable SCFT along the Higgs branch of the 4d theory. In the next subsection,
we provide a derivation of such a proposal for the (D4n−1, D4m+4n−3) theory, with m, n ≥ 1.

Let us consider the special case of n = 3 and m = 4m + 1, i.e. the (D3, D4m+1) ∼=
(A3, D4m+1) theory. The 3d mirror is given below ([38], (6.7)), with µ→ 2, m→ 1, N→ m,
and is described by the SQED with 4 flavors with 6m−2 free hypermultiplets. This theory
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is indeed dual to the USp(2) SQCD with 3 flavors, given by (5.1), with Hfree = 6m− 2 free
hypermultiplets, given by (5.2), as expected.

In the special case that m − n divides m − 1, we conjecture that the non-Higgsable
SCFT can be identified as (

Am−n, Dm−1
m−n

+n−1

)
. (5.3)

The value of 24(c−a) of this theory is precisely the difference between the value of 24(c−a)
of the (Dn, Dm) in question and (n−1)/2. Moreover, such a non-Higgsable SCFT has rank
equal to Hfree, given by (5.2), as it should be. Let us demonstrate this in the example of
n = 7 and m = 9, i.e. the (D7, D9) theory. The value of 24(c − a) is 23/7 = 3 + (2/7).
According to (3.26), the Higgs branch dimension of the (D7, D9) theory is 3. Hence,
the value of 24(c − a) of the non-Higgsable SCFT is 2/7. We identify the latter as the
(A2, D10) theory, as claimed in (5.3). This theory has rank 10, corresponding to 10 free
hypermultiplets as proposed in (5.2).

If m − n does not divide m − 1, the structure of non-Higgsable SCFT could be more
complicated. Let us consider the example of the (D5, D11) theory. The value of 24(c− a)
is 2 + (5/7) and the Higgs branch dimension is 2, so we expect the non-Higgsable SCFT to
have 24(c− a) equal to 5/7. Since (5.2) gives 17 free hypermultiplets, we expect also that
the non-Higgsable SCFT has rank 17. One of the possibilities that fits these data is to
identify the non-Higgsable SCFT in question as (A2, A3)⊗ (A2, D4)⊗ (A2, D10), although
we cannot confirm this. We leave the identification of the non-Higgsable SCFT in this case
as an open problem for future work.

5.1.1 Derivation of the 3d mirror for (D4n−1, D4m+4n−3)
In this section we focus on a subclass of theories with one mass parameter, i.e. those with
n = 4n− 1 and m = 4m− 2 + n, namely (D4n−1, D4m+4n−3), with m, n ≥ 1.

Following the notation of (3.11), these theories correspond to a = 2, k = 1, p =
2n− 1, q = 2m + 2n− 2, and so

α = 2n− 1 , β = 2m + 2n− 2 . (5.4)

Notice that β − α is odd and β > α. According to (3.13), such a theory can be written as

(D4n−1, D4m+4n−3) = D2m+4n−3 (SO(4m + 4n− 2))−SO(4n)−D2m+4n−3 (SO(4n)) . (5.5)

where the full puncture of the theory on the left is partially closed to [(2m− 1)2, 14n].
The 3d mirror of D2m+4n−3 (SO(4m + 4n− 2)) is described in section 4.1 with x = 1

and X = m, namely T [22m,14n−2]
[14m+4n−2] [SO(4m+ 4n−2)] with 2m(n−1) free hypermultiplets. The

partial closure of the puncture leads to the mirror theory T
[22m,14n−2]
[(2m−1)2,14n][SO(4m + 4n − 2],

whose quiver is given by

[Cm]
|

D1 − C1 − D2 − C2 − · · · − C2n−1 − D2n − C2n−1 − [D2n−1]
(5.6)

together with 2m(n− 1) free hypermultiplets.
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On the other hand, the 3d mirror of D2m+4n−3 (SO(4n)) is given by ([38], (5.4)), with
m→ m, N → 2n and µ→ 1. Explicitly, this is the T [SO(4n)] theory, whose quiver is

D1 − C1 − · · · −D2n−1 − C2n−1 − [D2n] , (5.7)

together with

Hfree = 2n(m− 1) (5.8)

free hypermultiplets.
We now gauge the common SO(4n) Coulomb branch symmetry of the two aforemen-

tioned mirror theories, as indicated in (5.5). As a result, we obtain

[Cm]− [D2n]− C2n−1 − [D2n−1] (5.9)

with 2m(n− 1) + 2n(m− 1) free hypermultiplets. This theory can be rewritten as

C2n−1 − [D4n−1] (5.10)

with 2m(n − 1) + 2n(m − 1) + 4mn = 2(4mn − m − n) free hypermultiplets. This is in
agreement as the proposal (5.1) and (5.2), as it should be.

5.2 Theories with 2 mass parameters

According to (3.18), each (Dn, Dm) theory with two mass parameters falls into one of the
two categories: either n is even and m is odd, or n is odd and m is even. In the following
discussion, we assume that m > n.

Let us first discuss the case of n even and m odd. We propose that the mirror theory is

T[(n−1)2,12][SO(2n)] : [Dn]− Cn/2 −D1 (5.11)

together with the following number of free hypermultiplets:

Hfree = 1
2n(m− n− 1) . (5.12)

On the other hand, for n odd and m even, we propose that the mirror theory is

[CF ]−D1 − C(n−1)/2 − [Dn−1] (5.13)

with

F = 1
2(m− n+ 1) , (5.14)

together with the following number of free hypermultiplets:

Hfree = (n− 2)F = 1
2(n− 2)(m− n+ 1) . (5.15)
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In each case, the two mass parameters of the 4d theory correspond to two topological
symmetries of the 3d mirror theory; one arises from the D1 gauge group and the other
arises from the balanced C-type gauge group. It can be checked that the Coulomb branch
dimension of the mirror theory is in agreement with the Higgs branch of the 4d theory
given by (3.26), and that the Higgs branch dimension of the mirror theory is in agreement
with the rank of the 4d theory. Moreover, the difference between the value of 24(c−a) and
the Higgs branch dimension of the 4d theory is in agreement with the value of 24(c − a)
of the non-Higgsable SCFT, whose rank is in agreement with Hfree in each case. As an
example, we find that for the (D2n+2, D4n+3) theories, with n ≥ 1, the non-Higgsable SCFT
can be identified as (A2n, D2n+2), whose central charges satisfy a = c and whose rank is
equal to the number of free hypermultiplets, namely 2n(n + 1), as expected.

5.2.1 The special case of (D3, D2n+2) ∼= (A3, D2n+2) theories

This is a special case where n = 3 and m = 2n + 2. In this case, from (5.1) and (5.2), the
mirror theory of (D3, D2n+2) ∼= (A3, D2n+2) is described by

[Cn]−D1 − C1 − [D2]
with Hfree = n hypermultiplets .

(5.16)

However, as discussed in [38], each theory in this class can be obtained from closing the
maximal puncture of the D4n+2

4n+6(SO(4n + 4)) theory. The mirror theory for (D3, D2n+2) =
(A3, D2n+2) admits the following two descriptions. One is discussed explicitly in ([38],
section 6.1.2), namely

D1
2

D1 [2n]2 /Z2

+ n free hypermultiplets
(5.17)

The other description is a simple modification of ([38], (4.17)), namely

1 1

1

2n

2 2

+ n free hypermultiplets

(5.18)

The n free hypermultiplets arise from the non-Higgsable SCFT

(A1, A2n) . (5.19)

We thus have an isomorphism between the following three theories:

[Cn]−D1 − C1 − [D2] (5.20)

D1
2

D1 [2n]2 /Z2 (5.21)
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1 1

1

2n

2 2 (5.22)

It can be checked, for example using the Hilbert series,9 that the Higgs branches and the
Coulomb branches of the three theories agree with each other.

5.2.2 Derivation of the 3d mirror of (D11, D10m+6)
Let us consider the (D11, D10m+6) theory, with m ≥ 1. Such a theory admits the following
decomposition:

(D11, D10m+6) = D6m+9(SO(12m + 8))− SO(10)−D4m+6(SO(10)) , (5.23)

where D6m+9(SO(12m+8)) has a partially closed regular puncture labeled by the partition[
(6m− 1)2, 110].

The mirror of D4m+6(SO(10)) has been found in ([38], (6.7)), with µ = 1 and N = 2,
to be T ρσ [SO(8m + 20)] with

ρ =
[
38, 24m−2

]
, σ =

[
(4m + 5)2, 110

]
, (5.24)

whose quiver description is

D1 − C1 − D2 − C2 − D3 − C3 − D4 − C4 − D1
| |

[D4] [C2m−1]
(5.25)

together with Hfree = 6m− 5 free hypermultiplets.
The mirror of D6m+9(SO(12m + 8)) has been found using the procedure in section 4.1

to be T σ[SO(12m + 8)] with σ =
[
26m−2, 112] and Hfree = 15m − 5 free hypermulti-

plets. Partially closing the full puncture to [(6m − 1)2, 110] yields the mirror theory
T

[26m−2,112]
ρ′ [SO(12m + 8)] where ρ′ =

[
(6m− 1)2, 110], whose quiver description is

D1 − C1 − D2 − C2 − D3 − C3 − D4 − C4 − D5 − C5
| |

[C3m−1] [D6]
(5.26)

9In general, the Higgs branch symmetry of each of these three theories is U(2n) × SO(4), and the
Coulomb branch symmetry of each theory is SO(2)2. In the duality frame (5.20), the adjoint representation
of the U(2n) factor of the Higgs branch symmetry arises from the representation [0, . . . , 0] ⊕ [2, 0, . . . , 0] ⊕
[0, 1, 0, . . . , 0] of the Cn flavour symmetry. As an example, for n = 3, the unrefined Coulomb branch Hilbert
series of these three theories reads

1 + 2t2 + 5t4 + 8t6 + 17t8 + 26t10 + 41t12 + . . . ,

where 2 is the dimension of Coulomb branch symmetry SO(2)2. The unrefined Higgs branch Hilbert series
of these three theories reads

1 + 42t2 + 48t3 + 676t4 + 1200t5 + 6888t6 + 13920t7 + 52048t8 + . . . ,

where 42 is the dimension of the Higgs branch symmetry U(6) × SO(4). These computations can be
performed as shown in ([38], appendix A).
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Finally, the mirror of (D11, D10m+6) is obtained gauging the common SO(10) Coulomb
branch symmetry between (5.25) and (5.26). This can be done by fusing the tails of the
two theories together and splitting the D5 node in the latter into D1 and [D4], we obtain
the following result

C5

D1

[D4]

[C2m−1]

[D6]

[C3m−1]
(5.27)

together with (6m− 5) + (15m− 5) = 21m− 10 free hypermultiplets. This can be rewrit-
ten as10

[C5m−2]−D1 − C5 − [D10] (5.28)

with Hfree = (24m− 8) + (21m− 10) = 45m− 18 = 9(5m− 2) free hypermultiplets.

5.3 Theories with 2M + 1 mass parameters, with M ≥ 1
In this section, we focus on the (Dn, Dm) theories with 2M + 1 mass parameters, where
M ≥ 1. They can be parametrized as

n = 4Mn− (2M − 1) , m = n+ 4Mm

GCD(2n− 1, 2m) = 1 .
(5.29)

where n,m ≥ 1 and we allow m and n to also take the values (m = 0, n = 1). We first
discuss the latter case and then proceed with the general case.

5.3.1 The (D2M+1, D2M+1) theory
Let us consider the special case m = 0 and n = 1, namely, the (D2M+1, D2M+1) theory.
It has rank M(2M + 1). The value of 24(c − a), which is also equal to the Higgs branch
dimension, is 3M . There are 2M + 1 mass parameters and 2M − 1 marginal operators.
The central charges are:

a = 1
24M(4M + 1)(4M + 5) , c = 1

3M(M + 1)(2M + 1) . (5.30)

This theory can also be realized using (3.17) with a = 2M, k = M, p = q = 1 and
α = β = M :

[SO(2)]
|

(D2M+1, D2M+1) = D2M (USp(2M)) − USp(2M) − D2M (USp(2M))
(5.31)

where [SO(2)] means a full hypermultiplet in the fundamental of USp(2M).
10This quiver has

dimH CB = 6 , dimH HB = 10m + 50 + Hfree = 55m + 32 .

They agree with the Higgs branch dimension and the rank of the 4d theory in question, respectively.
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We, in fact, observe that the (D2M+1, D2M+1) also admits the following description:

a class S theory associated with the A2M twisted sphere
with 2N minimal untwisted punctures (each labelled by [2M, 1]),
and 2 minimal twisted punctures (each labelled by [2M ]t),

(5.32)

It can indeed be checked that the (a, c) central charges11 of the two theories are equal.
This provides a non-trivial test for the following duality:

(5.31) ←→ (5.32) . (5.33)

It was pointed out in ([36], (6.16)) that, upon reduction to 3d, the (D2M+1, D2M+1)
theory also admits the following quiver description with mixed unitary and special unitary
gauge groups:

SU(1)
|

U(M)
|

SU(1) − U(M) − SU(2M) − SU(2M − 1) − · · · − SU(2) − SU(1)

(5.34)

Since the class S description of the (D2M+1, D2M+1) theory is known to be (5.32), we can
apply the prescription provided in [59, 60] to find the mirror theory, which can be described
as follows:

CM

[D1]

D1

[1]

D1

[1]

· · · D1

[1]

D1

[1]

2M legs

or CM

B0 B0

U(1)

[1]

U(1)

[1]

· · · U(1)

[1]

U(1)

[1]

2M legs

(5.35)

Note that the quivers on the left and on the right are equivalent. Each component in the
right quiver in (5.35) comes from

T[2M,1][SU(2M + 1)] : U(1)− [2M + 1] or [2M ]−U(1)− [1]
T[2M ][USp(2M)] : [CM ]−B0

(5.36)

11The contribution to the effective number of hypermultiplets and vector multiplets
(nh, nv) of the punctures [2M, 1] and [2M ]t are respectively

(
(2M + 1)2, (2M + 2)(2M)

)
and(

2
3 M

(
4M2 + 9M + 5

)
, 1

6 M
(
16M2 + 36M + 23

))
. Adding these together with the contribution of

the A2N sphere
(
− 4

3 (2M + 1)[(2M + 1)2 − 1),− 4
3 (2M + 1)[(2M + 1)2 − 1]− 2M

)
, we obtain (nh, nv) =(

2
3 M

(
4M2 + 6M + 5

)
, 1

3 M
(
8M2 + 12M + 1

))
of (5.32). Using the relation (a, c) =

( 2nv+nh
12 , 5nv+nh

24

)
,

we obtain the central charges of (5.32) to be (a, c) =
(

1
24 M(4M + 1)(4M + 5), 1

3 M(M + 1)(2M + 1)
)
.

This is indeed equal to those of the (D2M+1, D2M+1) theory; see (5.30).
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such that the CM symmetry from each theory is commonly gauged. In conclusion, we have
found a new mirror pair, namely

(5.34) mirror←→ (5.35) . (5.37)

Note that forM = 1, (5.37) is self-mirror. However, due to ([60], section 4.1) and ([38],
(4.16) with m = 1), we have the following dual descriptions:

(5.35)M=1 ←→

D1

D1 D1 /Z2 ←→

1

1

1

1 (5.38)

5.3.2 General result: the 3d mirror for theories with 2M + 1 mass parameters

Based on (5.35), we now propose a prescription to construct the 3d mirror for the (Dn, Dm)
theories with 2M + 1 mass parameters.

Let us adopt the parametrization (5.29). The quiver description for the mirror theory
in question contains the balanced C(n−1)/2 = CM(2n−1) central gauge node connected to
one flavor [D1] node and to 2M D1 gauge nodes in the following way.

1. Connect the CM(2n−1) central node to each D1 gauge node with a red line with
multiplicity 2n− 1.

2. Connect each pair of D1 gauge nodes by a blue edge with multiplicity m(2n − 1).
These form a complete graph with 2M nodes such that each node is connected by a
blue line.

3. Each D1 gauge group in the complete graph has

F = m(n + 1) + (2n− 1) (5.39)

hypermultiplets with charge 1 under the corresponding U(1) ∼= D1 gauge group.

4. There are

Hfree = 2M(m− 1)(n− 1) (5.40)

free hypermultiplets. We conjecture that the non-Higgsable SCFTs are

(Am−1, A2n−2)⊗(2M) . (5.41)

The quiver that we just described has

dimH CB = M + 2Mn ,

dimH HB = M(2M − 5)− [4M(M − 1)]m− [2M(4M − 3)]n
+ [2M(4M − 1)]mn + (8M2)n2 +Hfree .

(5.42)
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These are indeed in agreement with the Higgs branch dimension and the rank of the 4d
theory, respectively. Moreover, the value of 24(c− a) of the aforementioned non-Higgsable
SCFTs plus the above dimHCB indeed gives the value of 24(c−a) of the corresponding 4d
theory, as it should be. The 2M + 1 mass parameters in 4d theory corresponds to the 2M
FI parameters associated with 2M D1 gauge groups, and one hidden FI parameter [42]
associated with the balanced CM(2n−1) gauge group.

Let us now consider this quiver theory in various special cases. Some of these also
serve as a non-trivial test of the above proposal.

5.3.3 Example: M = 1, i.e. three mass parameters

We parametrize the theory in this class as (D4n−1, D4n−1+4m) with GCD(2n − 1, 2m) = 1.
The proposed mirror theory is

C2n−1

[D1]

D1[F ] D1 [F ]

with F = m(n + 1) + (2n− 1)

m(2n− 1)

2n− 1 (5.43)

together with

Hfree = 2(m− 1)(n− 1) (5.44)

free hypermultiplets. We emphasize that [F ] denotes F hypermultiplets of charge 1 under
the corresponding U(1) ∼= D1 in the quiver.

The special case of n = 1, namely the (D3, D4m+3) = (A3, D4m+3), is particularly
interesting. In this case, (5.43) reduces to

C1

[D1]

D1[2m + 1] D1 [2m + 1]
m

1 (5.45)

In fact, there is another description for the mirror theory for (A3, D4m+3), given
by ([38], (6.49))12 with m and N in that reference set to 1 and m + 1 respectively:

D1

D1[m]2 D1 [m]2
2m + 1

1

/Z2
(5.46)

12There is a minor typo in ([38], (6.49)) (version 2). The correction should be as follows: the blue edge
with multiplicity M = m(2N− 1) should be in between two D1 nodes attached to the wiggle lines, whereas
the remaining edges should be gray with multiplicity m.
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where [m]2 attached to the wiggle line denote m hypermultiplets with charge 2 under the
corresponding U(1) = D1 node. Note that (5.45) and (5.46) have the same Coulomb branch
dimension and the same Higgs branch dimension. The Higgs branch symmetry of each of
these theories is U(2m + 1)2 × U(m)2 × U(1), as it is manifest in each description. The
Coulomb branch symmetry of each theory is U(1)3; in (5.45) this arises from the U(1) topo-
logical symmetry of each of the two D1 nodes and the emergent U(1) topological symmetry
of the balanced C1 node [43], whereas in (5.46) such as Coulomb branch symmetry arises
from the U(1) topological symmetry of each of the three D1 nodes. It can also be checked
that the Coulomb branch Hilbert series and the Higgs branch Hilbert series of these two
theories are equal.13 We thus claim the duality:

(5.45) ←→ (5.46) . (5.47)

This also provides a non-trivial check of the proposal (5.43).

5.3.4 Example: M = 2, i.e. five mass parameters

Each theory in this class can be written as (D8n−3, D8n−3+8m) with GCD(2n− 1, 2m) = 1.
The proposed mirror theory is

C4n−2

[D1]

D1[F ] D1 [F ]

D1[F ] D1 [F ]

with F = m(n + 1) + (2n− 1)

m(2n− 1)

2n− 1

(5.48)

together with

Hfree = 4(m− 1)(n− 1) (5.49)

free hypermultiplets.
Let us provide a check for the number of free hypermultiplets via the example of

n = 2 and m = 4, i.e. the (D13, D45) theory. The value of 24(c − a) of this theory is
13As an example, for m = 2, the unrefined Higgs branch Hilbert series of (5.45) and (5.46) are

1 + 59t2 + 248t3 + 2070t4 + 10440t5 + 54650t6 + . . . ,

where 59 is the dimension of the Higgs branch symmetry U(5)2 × U(2)2 × U(1), and the Coulomb branch
Hilbert series of both theories are

1 + 3t2 + 8t4 + 16t6 + 29t8 + 47t10 + . . . ,

where 3 is the dimension of the Coulomb branch symmetry U(1)3. These computations can be performed
as shown in ([38], appendix A).
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82/7 = 10 + (12/7), where 10 is the Higgs branch dimension of the 4d theory, according
to (3.26), which is in agreement with the Coulomb branch dimension of the mirror theory.
The fraction 12/7 can be identified as the value of 24(c − a) of the non-Higgsable SCFT
(A2, A3)⊗4 ∼= (A3, A2)⊗4, in agreement with the claim (5.41). Since this theory has rank
12, we expect to have 12 free hypermultiplets, as stated above.

5.3.5 Example: M = 3, i.e. seven mass parameters

Each theory in this class can be written as (D12n−5, D12n−5+12m) with GCD(2n−1, 2m) = 1.
The proposed mirror theory is

C6n−3

[D1]

D1[F ] D1 [F ]

D1[F ] D1 [F ]

D1[F ] D1 [F ]

with F = m(n + 1) + (2n− 1)

m(2n− 1)

2n− 1

(5.50)

together with

Hfree = 6(m− 1)(n− 1) (5.51)

free hypermultiplets.
Let us provide a check for the number of free hypermultiplets via the example of

n = 2 and m = 2, i.e. the (D19, D43) theory. The value of 24(c − a) of this theory is
81/5 = 15 + (6/5), where 15 is the Higgs branch dimension of the 4d theory, according
to (3.26), which is in agreement with the Coulomb branch dimension of the mirror theory.
The fraction 6/5 can be identified as the value of 24(c − a) of the non-Higgsable SCFT
(A1, A2)⊗6, in agreement with the claim (5.41). Since this theory has rank 6, we expect to
have 6 free hypermultiplets, as stated above.

5.4 Theories with 2M + 2 mass parameters, with M ≥ 1

A theory in this class can be written as (Dn, Dm), such that

n = (4M − 2)n− (2M − 2) , m = n+ (4M − 2)m ,
GCD(2n− 1, 2m) = 1

(5.52)

where n,m ≥ 1 and we allow m and n to also take the values (m = 0, n = 1). We first
discuss the latter case and then proceed with the general case.
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5.4.1 The (D2M , D2M ) theory

Let us focus on the case of m = 0 and n = 1, i.e. the (D2M , D2M ) theory. As pointed out
in ([36], (6.6)), this theory admits the following Lagrangian description

SU(1)
|

SU(M)
|

SU(1) − SU(M) − SU(2M − 1) − SU(2M − 2) − · · · − SU(2) − SU(1)

(5.53)

where each SU(1) should be treated as one flavor of hypermultiplets transforming under
the fundamental representation of the node next to it. It can be checked that the Coulomb
branch spectrum, the rank, the Higgs branch dimension, and the (a, c) central charges of
this quiver theory14 match perfectly with those of the (D2M , D2M ) theory.

According to section 3, with a = 2M − 1, p = q = 1, k = M − 1, α = M − 1, β = M ,
there is another description of the (D2M , D2M ) theory, namely that given by (3.13):

(D2M , D2M ) = D2M (SO(2M + 2))− SO(2M)−D2M−2(SO(2M)) . (5.55)

We can use this description to find the mirror theory for the (D2M , D2M ) theory. Recall
that the mirror theory of D2n−2(SO(2n)) is described by ([38], section 6.2), namely

D1 C1 · · · Dn−1 Cn−1

D1

D1

...

D1 /Z2

n nodes (5.56)

Considering such a theory for n = M and for n = M+1 and gauging the common Coulomb
branch symmetry SO(2M), as indicated in (5.55), by fusing the two quiver tails together,
we obtain the following mirror theory for (D2M , D2M ):

CM

D1

D1

...

D1

/Z2

2M + 1 nodes (5.57)

14The central charges are

a = 1
24
(
16M3 − 7M − 5

)
, c = 1

6
(
4M3 −M − 1

)
. (5.54)

The Coulomb branch dimension (i.e. the rank) is (2M + 1)(M − 1), while the Higgs branch dimension is
3M + 1. There are 2M + 2 masses and 2M marginal operators.
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The 2M + 2 mass parameters of the 4d theory corresponds to one hidden FI parameter
of the balanced CM gauge node [42] and 2M + 1 FI parameters associated with each D1
gauge node.

Since each gauge node in the quiver (5.53) has zero beta-function, the reduction to 3d
yields a 3d N = 4 gauge theory with the same quiver description [36, 37]. We have thus
established a new mirror pair, namely

(5.53)3d
mirror←→ (5.57) . (5.58)

5.4.2 General result: the 3d mirror for theories with 2M + 2 mass parameters

We now provide a prescription to construct the quiver description for the corresponding 3d
mirror theory as follows. The quiver in question contain the balanced Cn/2 central gauge
node connected to 2M + 1 D1 gauge nodes in the following way.

1. Choose any two of the D1 nodes (call them B1 and B2). Connect each of them to
the central Cn/2 node with a black line with multiplicity 1.

2. Connect each of the rest of the D1 nodes (call them A1, A2, · · · , A2M−1) to the
central Cn/2 node with a red line with multiplicity 2n− 1.

3. Connect any two Ai and Aj nodes with a blue line with multiplicity m(2n−1). These
form a complete graph with 2M − 1 nodes such that each node is connected by a
blue line.

4. Each of the Ai nodes has m(n − 1) flavors of hypermultiplets with carrying 2 under
U(1) = D1. Each of the Bi nodes has no flavor charged under it.

5. Connect the node B1 to each of the A1, A2, · · · , A2M−1 nodes by a gray line with
multiplicity m.

6. Quotient the above theory by an overall Z2 symmetry.

7. There are

Hfree = (2M − 1)(m− 1)(n− 1) (5.59)

free hypermultiplets. We conjecture that the non-Higgsable SCFTs are

(Am−1, A2n−2)⊗(2M−1) . (5.60)

Note that the above procedure is very similar to that described in ([38], section 6.1.2). The
quiver that we just described has

dimHCB = n(2M − 1) +M + 2 ,
dimHHB =m(2M − 1)[(M + 1)(4n− 2)− 7n + 5] + 2(M + 1)2(1− 2n)2

+ (M + 1)[6(5− 4n)n− 11] + 9n(2n− 3) + 11 +Hfree

= 2m(2M − 3)[(M + 1)(2n− 1)− 3n + 2] + 2(M + 1)2(1− 2n)2

+ (M + 1)[4(7− 6n)n− 9] + 2(2− 3n)2 .

(5.61)
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These quantities are indeed in agreement with the Higgs branch dimension and the rank
of the 4d theory, respectively. Moreover, the value of 24(c − a) of the aforementioned
non-Higgsable SCFTs plus the above dimHCB indeed gives the value of 24(c − a) of the
corresponding 4d theory, as it should be. The 2M + 2 mass parameters in 4d theory
corresponds to the 2M + 1 FI parameters associated with 2M + 1 D1 gauge groups, and
one hidden FI parameter associated with the balanced Cn/2 gauge group.

Let us now consider this quiver theory in various special cases. Some of these also
serve as a non-trivial test of the above proposal.

5.4.3 Example: M = 1, i.e. four mass parameters

The mirror theory for (D2n, D2n+2m) with GCD(2n− 1, 2m) = 1 is

CnD1

D1

D1

[m(n− 1)]2

/Z2

1

2n− 1m

+ (m− 1)(n− 1) free hypermultiplets

(5.62)

This theory has

dimHHB (5.62) = mn + m + 2n2 + n− 3 +Hfree = 2n(m + n)− 2
dimHCB (5.62) = n + 3 .

(5.63)

Note that the special case of n = 1 corresponds to (D2, D2+2m) = D2m+2(SO(4)); the
theory (5.62) reduces to the mirror theory of D2m+2(SO(4)) described by ([38], (6.34)) with
N = 1.

5.4.4 Example: M = 2, i.e. six mass parameters

The mirror theory for (D6n−2, D6n+6m−2) with GCD(2n− 1, 2m) = 1 is

C3n−1D1

D1

D1

D1

D1

[m(n− 1)]2

[m(n− 1)]2

[m(n− 1)]2

/Z2

1

2n− 1

m(2n− 1)

m

+ 3(m− 1)(n− 1) free hypermultiplets

(5.64)
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This theory has

dimHHB (5.64) = 3m(5n− 1) + 9n(2n− 1)− 4 +Hfree

= 6m(3n− 1) + 6n(3n− 2)− 1
dimHCB (5.64) = 3n + 4 .

(5.65)

In section 5.4.6, we shall derive the mirror theory (5.64) for a subclass of theories with
n = N and m = 1, i.e. (D6N−2, D6N+4). This serves as a highly non-trivial test of the
proposal (5.64).

Let us also provide a check for the number of free hypermultiplets via the example
of n = 2 and m = 4, i.e. the (D10, D34) theory. The value of 24(c − a) of this theory is
79/7 = 10 + (9/7), where 10 is the Higgs branch dimension of the 4d theory, according
to the last case of (3.26), which is in agreement with the Coulomb branch dimension of
the mirror theory. The fraction 9/7 can be identified as the value of 24(c− a) of the non-
Higgsable SCFT (A2, A3)⊗3 ∼= (A3, A2)⊗3, in agreement with the claim (5.60). Since this
theory has rank 9, we expect to have 9 free hypermultiplets, as stated above.

5.4.5 Example: M = 3, i.e. eight mass parameters

The mirror theory for (D10n−4, D10n+10m−4) with GCD(2n− 1, 2m) = 1 is

C5n−2

D1

D1

D1

D1

D1 D1

D1

[F ]2

[F ]2

[F ]2

[F ]2 [F ]2

/Z2

1

2n− 1

m(2n− 1)

m

+ 5(m− 1)(n− 1) free hypermultiplets, and with F = m(n− 1)

(5.66)

This theory has

dimHHB (5.66) = 15m(3n− 1) + 5n(10n− 7)− 1 +Hfree

= 10m(5n− 2) + 10n(5n− 4) + 4
dimHCB (5.66) = 5n + 5 .

(5.67)

Let us also provide a check for the number of free hypermultiplets via the example
of n = 2 and m = 4, i.e. the (D16, D56) theory. The value of 24(c − a) of this theory is
120/7 = 15 + (15/7), where 15 is the Higgs branch dimension of the 4d theory, according
to (3.26), which is in agreement with the Coulomb branch dimension of the mirror theory.
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The fraction 15/7 can be identified as the value of 24(c − a) of the non-Higgsable SCFT
(A2, A3)⊗5 ∼= (A3, A2)⊗5, in agreement with the claim (5.60). Since this theory has rank
15, we expect to have 15 free hypermultiplets, as stated above.

5.4.6 Derivation of (5.64) in a special case of (D6N−2, D6N+4)
Let use take n = N and m = 1, i.e. (D6N−2, D6N+4). This theory admits two descriptions.
One description corresponds to (3.13) with (α = 2N− 1, β = 4N + 2):

(D6N−2, D6N+4) = D8N(SO(8N + 6))− SO(4N)−D4N(SO(4N)) , (5.68)

with the left matter sector has a full puncture partially closed to [(2N + 3)2, 14N]. The
other description corresponds to (3.14) with (α = 4N− 2, β = 2N + 1):

(D6N−2, D6N+4) = D4N(SO(4N + 4))− SO(4N + 4)−D8N(SO(8N− 2)) , (5.69)

with the right matter sector has a full puncture partially closed to [(2N− 3)2, 14N+4].
For this theory, the mirror theory is given by (5.64) with n = N and m = 1. We redraw

it as follows.

C3N−1

D1

D1

D1

D1

D1

[N− 1]2 [N− 1]2

[N− 1]2 /Z22N− 1

1

2N− 1 (5.70)

There are no free hypermultiplets for this mirror theory.
We now derive (5.70) by gluing the mirror theories of those indicated in (5.68)

and (5.69).

Gluing via (5.68). Let us first consider (5.68). The mirror theory for D8N(SO(8N+ 6))
is given in section 4.2.2, with N = 4N+ 3, p = 8N, 2N − 2 = 8N+ 4, GCD(2N − 2, p) = 4,
x = 1:

C4N D4N+2 C4N+1 −D4N+1 − · · · − C1 −D1

D1 D1[N− 1]2 [N− 1]2

D1

2N− 1

2N− 1

1 (5.71)

Upon partially closing the full puncture of D8N(SO(8N+6)) to [(2N+3)2, 14N], the mirror
theory becomes

C3N−1 D2N C2N−1 −D2N−1 − · · · − C1 −D1

D1 D1[N− 1]2 [N− 1]2

D1

2N− 1

2N− 1

1 (5.72)
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where the tail D1 − C1 − · · · − D2N−1 − C2N−1 gives rise to the SO(4N) CB symmetry
corresponding to the part 14N of the partition, whereas the balanced gauge group C3N−1
gives rise to the SO(2) CB symmetry corresponding to the part (2N− 3)2 of the partition.
Note that the D2N gauge node is overbalanced. Indeed, the tail on the right is determined
by the T[(2N+3)2,14N][SO(8N + 6)] theory.

On the other hand, the mirror theory for D4N(SO(4N)) is given by ([38], (6.35)) with
m = 1:

D2N−2 − C2N−3 −D2N−3 − · · · − C1 −D1C2N−1

[N− 1]2 D1

D1

1

2N− 1

(5.73)

Now we glue (5.72) and (5.73) together by fusing the tails D1−C1−· · ·−D2N−1−C2N−1
of the two quivers. The latter corresponds to commonly gauging the CB symmetry SO(4N)
of the two theories, as instructed by (5.68). In doing so, we split the D2N into two D1
nodes, with the connections as depicted in the left most part of (5.73). These two D1
nodes become those linked by the gray line with label “1” in (5.72). The leftmost D1 node
in (5.72) becomes the lower left D1 node in (5.70). This part of gluing indeed explains the
D1 − C3n−1 tail in (5.64). The top two D1 nodes linked by the blue line in (5.72) become
the top two D1 nodes in (5.70). Each of the three D1 nodes attached to the wiggle line are
connected together by the blue line, as in (5.72). We thus arrive at (5.70) as expected.

Gluing via (5.69). The mirror theory for D8N(SO(8N − 2)) is given by ([38], (6.48))
with m = 1:

D1 − C1 − · · · −D4N−2 C4N−2 D1

D1

D1

[N− 1]2

[N− 1]2

2N− 1

1

2N− 1 (5.74)

Upon partially closing the full puncture of D8N(SO(8N − 2)) to [(2N − 3)2, 14N+4], the
mirror theory becomes

C3ND2N+2D1 − C1 − · · · −D2N+1 − C2N+1 D1

D1

D1

[N− 1]2

[N− 1]2

2N− 1

1

2N− 1

(5.75)
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where the tail D1 −C1 − · · · −D2N+1 −C2N+1 gives rise to the SO(4N + 4) CB symmetry
corresponding to the part 14N+4 of the partition, whereas the balanced gauge group C3N
gives rise to the SO(2) CB symmetry corresponding to the part (2N− 3)2 of the partition.
Note that the D2N+2 gauge node is overbalanced. Indeed, the tail on the left is determined
by the T[(2N−3)2,14N+4][SO(8N− 2)] theory.

On the other hand, the mirror theory for D4N(SO(4N + 4)) is described by (4.33):

C2N −D2N − · · · − C1 −D1D2N+1C2N

[N− 1]2 D1

D1

2N− 1

1

(5.76)

Now we glue (5.76) and (5.75) together by fusing the tails D1−C1−· · ·−D2N+1−C2N+1
of the two quivers. This corresponds to commonly gauging the CB symmetry SO(4N+4) of
the two theories, as instructed by (5.69). However, there is no explicit C2N+1 gauge group
in (5.76), but the D2N+1 node is connected to the C2N node and a D1 node (connected
to the wiggle line). In other word, the aforementioned C2N+1 group should be viewed as
split into C2N and C1, where the D1 subgroup of the latter is gauged. Thus, upon gluing
the two theories, we also need to split the C3N node of (5.75) into C3N−1 and C1, where
the latter C1 is then identified with the C1 group mentioned earlier whose D1 subgroup is
gauged. The central node thus becomes C3N−1 as in (5.70). The mirror theory in question
thus acquires the left part of (5.76). The lower left D1 node in (5.76) becomes the lower
left D1 node in (5.70). This part of gluing indeed explains the D1 − C3n−1 tail in (5.64).
Moreover, each D1 node connected to the wiggle lines are connected together as in the
previous case of gluing. We thus arrive at (5.70), as required.
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A Some properties of Dp(USp(2N))

In this appendix, we collect some properties of the Dp(USp(2N)) that we have found. This
theory was defined and discussed in ([38], (2.11)–(2.14)).
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First, similarly to eqs. (3.13) to (3.17), we find that a certain subclass of the
Dp(USp(2N)) theories admits a weakly coupling cusp in the conformal manifold:

D2µ+2(USp((2µ+ 2)(2m− 1))) =
=D2µ(USp(2µ(2m− 1)))−USp(2µ(2m− 1))−D2(USp((4µ+ 2)(2m− 1))) .

(A.1)

where µ ≥ 1 and m ≥ 1.
Secondly, we find that whenever N is a multiple of p, the Dp(USp(2N)) theory admits

a Lagrangian description. Let us analyze two cases according to the parity of p.

The case of p even. In this case, we write

p = 2µ , N = mp = 2mµ , µ, m ≥ 1 . (A.2)

The Lagrangian description of D2µ(USp(4mµ)) can be written as

Dm+1 − C2m −D3m+1 − · · · −D(2µ−1)m+1 − [C2µm] . (A.3)

As we commented around Footnote 5, it is not clear whether reduction of this theory on
a circle to 3d yields a 3d N = 4 gauge theory with the same quiver description. Never-
theless, if we view (A.3) as a 3d N = 4 gauge theory, this is a quiver description of the
T σρ [USp(4mµ)] theory, with

σ =
[
14µm

]
and ρ =

[
(2m)2µ, 1

]
, (A.4)

whose mirror theory is T ρσ [SO(4mµ+ 1)] and can be described by

Cµ−B2µ+1 − · · · −B(2µ−1)m−3 − C(2µ−1)m−1− B(2µ−1)m − C(2µ−1)mN −B(2µ−1)mN−1− C(2µ−1)m−1 − · · · −B1− C1−B0
| |

[B0] [Cµ]
(A.5)

We observe that the Higgs branch dimension of the mirror theory (4.2) is exactly equal
to the rank of the corresponding 4d theory. However, the Coulomb branch dimension of
the mirror theory is larger than the value 24(c− a) of the corresponding 4d theory. As we
commented in Footnote 5, it is not clear whether 24(c − a) is equal to the Higgs branch
of the 4d theory, since the orthogonal gauge groups may not be completely Higgsed at a
generic point on the Higgs branch. This is due to the fact that the orthogonal gauge group
which is conformal in 4d is underbalanced in 3d; see an explicit example in (A.6) below.

As an example, for µ = 1, the 4d theory is simply an SO(2m + 2) SQCD with 2m
flavors:

D2(USp(4m)) : Dm+1 − [C2m] . (A.6)

Viewing this as a 3d N = 4 gauge theory, the mirror theory is given by ([57], figure 17)

C1 −B1 − · · · −Bm−1 − Cm− Bm − Cm −Bm−1 − Cm−1 − · · · −B1 − C1 −B0
| |

[B0] [C1]
(A.7)
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The case of p odd. In this case, we write

p = 2µ+ 1 , N = mp = m(2µ+ 1) , µ, m ≥ 1 . (A.8)

The Lagrangian description of D2µ+1(USp(2(2µ+ 1)m)) can be written as

[D2]− Cm −D2m+1 − C3m − · · · −D2µm+1 − [C(2µ+1)m] . (A.9)

Viewing it a 3d N = 4 gauge theory, this is in fact a quiver description of the
T σρ [USp((4µ+ 2)m + 8µ)] theory, with

σ =
[
(2µ)4, 12(2µ+1)m

]
and ρ =

[
(2m + 4)2µ, 2m + 1

]
. (A.10)

whose mirror theory is T ρσ [SO((4µ+2)m+8µ+1)]. The same comments below (A.5) apply
here.

As an example, for µ = 1, we have

D3(USp(6m)) : [D2]− Cm −D2m+1 − [C3m] . (A.11)

Viewing this as a 3d N = 4 gauge theory, the mirror theory can be described as

D1 − C1 −D2 − C3 −D4 − C5 − · · · −D2m−2− C2m−1 −B2m−1 − C2m− B2m − C2m −B2m−1 − · · · − C1 −B0
| |

[B0] [C1]
(A.12)
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