
ILLINOIS JOURNAL OF MATHEMATICS
Volume 40, Number 4, Winter 1996

CONFORMAL MOTION OF CONTACT MANIFOLDS WITH
CHARACTERISTIC VECTOR FIELD
IN THE k-NULLITY DISTRIBUTION

RAMESH SHARMA AND DAVID E. BLAIR

Dedicated to the memory of Professor Kentaro Yano

1. Introduction

It is known (see for example, 17]) that if an m-dimensional Riemannian manifold
admits a maximal, i.e., an (m + 1)(m + 2)/2-parameter group of conformal motions,
then it is conformally flat. It is also known [9] that a conformally flat Sasakian (normal
contact metric) manifold is of constant curvature 1. This shows that the existence
of maximal conformal group places a severe restriction on the Sasakian manifold.
Thus one is led to examine the effect of the existence of a single 1-parameter group
of conformal motions on a Sasakian manifold. All the transformations considered
in this paper are infinitesimal. Okumura 10] proved that a non-isometric conformal
motion of a Sasakian manifold M of dimension 2n + (n > 1) is special concircular
and hence if, in addition, M is complete and connected then it is isometric to a
unit sphere. The proof is based on Obata’s theorem [8]: "Let M be a complete
connected Riemannian manifold of dimension m > 1. In order for M to admit a
non-trivial solution p of the system of partial differential equations VVp -c2pg
(c a constant > 0), it is necessary and sufficient that M be isometric to a unit sphere
ofradius 1/c." The purpose ofthis paper is (i) to extend Okumura’s result to dimension
3 and (ii) to study conformal motion of the more general class of contact metric
manifolds (M, r/, se, p, g) satisfying the condition that the characteristic vector field
belongs to the k-nullity distribution N(k): p --> Np(k) {Z in TpM: R(X, Y)Z
k(g(Y, Z)X-g(X, Z)Y) for any X, Y in TpM and a real number k} (see Tanno [15]).
For k 1, M is Sasakian. For k 0, M is flat in dimension 3 and in dimension
2n + > 3, it is locally the Riemannian product En+l S" (4) (see Blair [3]). We say
that a vector field v on M is an infinitesimal contact transformation 12] if
for some function f where denotes the Lie-derivative operator. We also say that a
vector field v on M is an automorphism of the contact metric structure if v leaves all
the structure tensors r/, , p, g invariant (see [13]).
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THEOREM 1. Let v be a non-isometric conformal motion on a Sasakian 3-mani-
fold M.

(A) If the scalar curvature of M is constant, then M is of constant curvature and
v is special concircular.

(B) If v is an infinitesimal contact transformation, then v is special concircular.

Hence in either case, if in addition, M is complete and connected, then it is isometric
to a unit sphere.

In view ofWatanabe’s result 16] that a Sasakian 3-manifold is locally 4-symmetric
if and only if its scalar curvature is constant and Theorem we obtain the following
corollary.

COROLLARY. Among all complete and simply connected 4-symmetric Sasakian
3-manifolds only the unit 3-sphere admits a non-isometric conformal motion.

Remark. For a Sasakian 3-manifold we know that the scalar curvature R
4 + 2H, where H is the 4-sectional curvature (i.e., the sectional curvature of plane
section orthogonal to ). So in Theorem (part (A)) we could equivalently assume
H constant instead of R constant.

THEOREM 2. Let M2n+l be a contact metric manifold with in N(k) and v a
conformal motion on M2n+l. For n > 1, M is either Sasakian or v is Killing. In the
second case v is an automorphism of the contact metric structure except when k 0.
Further for k 0, a Killing vector field orthogonal to cannot be an infinitesimal
automorphism of the associated contact metric structure. For n 1, M is either fiat
or Sasakian or v is an automorphism of the contact metric structure.

Remark. Theorem 2 shows that the existence of a non-isometric conformal mo-
tion on contact metric manifolds M with in N (k) singles out those with k 1, i.e.,
Sasakian manifolds.

COROLLARY. Let M be a contact metric manifold of dimension >_ 5 with in
N (k), k - 0. If M admits a vector field leaving the Riemann curvature tensor of type
(1, 3) invariant then v is an automorphism of the contact metric structure.

2. Preliminaries

A differentiable (2n + 1)-dimensional manifold M is called a contact manifold if it
carries a global 1-form r/such that r//x (d0) 7 0 everywhere on M. It is well known
that given 0 there exists a unique vector field (called the characteristic vector field)
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such that (dr/)(, X) 0 and r/() 1. Polarizing dr/on the contact subbundle
r/= 0, one obtains a Riemannian metric g and a (1, 1)-tensor field 4 such that

(2.1) (dr/)(X, Y) g(4X, Y), r/(X) g(S, ) and 42 -I + r/(R) .
g is called an associated metric of r/and (4, r/, , g) a contact metric structure (see
[2] as a general reference). Following [3] we denote the tensor (1/2)4 by h. h is
self-adjoint and satisfies

(2.2) h 0, Tr h 0, Tr(hq) 0, h4 -qh.

The contact metric structure is called a K-contact structure if is Killing. A contact
metric structure is K-contact if and only if h 0. For a contact metric manifold

(2.3) Vx =X-hX

where V is the Riemannian connection of g. The contact structure on M is said to be
normal if the almost complex structure on M x R defined by J(X, fd/dt) (X
f, r/(X)d/dt), where f is a real-valued function, is integrable. A normal contact
metric manifold is called a Sasakian manifold. Sasakian manifolds are K-contact and
3-dimensional K-contact manifolds are Sasakian. If R(X, Y) k(r/(Y)X- r/(X) Y)
for a function k on a contact metric manifold then k is constant (see [11]). This
generalizes Schur’s theorem on contact Riemannian manifolds. We let (xa) be a
local coordinate system on M. For a contact metric manifold (see Lemma 2.1 in
[15]) VaVar/b Rabr/a --4nr/a, Ra b denoting the Ricci operator. Since the deRham
Laplacian AdR d6 + 6d (6 denoting codifferential operator) acts on a vector field
X as AdRXa --VbVbXa + RbaXb, we obtain AdR 4n.

PROPOSITION. The characteristic vector field of a contact metric manifold is an
eigenvector of the associated deRham Laplacian with eigenvalue 4n.

Next if lies in the k-nullity distribution N(k) then

(2.4) r/dRcbad k(r/cgba r/bgca).

For such manifolds we know [5] that k < 1, h2 (k 1)42 and

(2.5) Rabc abRc 4(n 1)abhca.

Furthermore following [5] and using (2.5) one can show that

(2.6) dpa,.Rb + (1/2)CdRc,ab (2n 2 + k)qbab + 2(n 1)4).bha.
For k 1, M is Sasakian. For k < (see [5]) we have

(2.7) Rab 2(n 1)(gab + hab) + 2(nk + n)r/ar/b.
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(2.8) R 2n(2n 2 + k).

In dimension 3 (n 1) the condition (2.4) is equivalent (see [6]) to

(2.9) gab (1/2){(R 2k)gab -1- (6k- R)riarib}.

Moreover contact metric 3-manifold satisfying (2.4) or (2.9) is Sasakian (k 1), flat
(k 0), or of constant non-zero -sectional curvature k < and constant q-sectional
curvature -k (see [6]). (By -sectional curvature we mean sectional curvature of a
plane section containing and by q-sectional curvature the sectional curvature of a
plane section spanned by a vector X and 4X where X is orthogonal to ). In the
last case M is locally isometric to a left-invariant metric on the Lie-group SU (2) for
k > 0 and SL(2, R) for k < 0 (see [4]).
A vector field v in an m-dimensional Riemannian manifold (M, g) is called a

conformal motion if there is a smooth scalar function p such that

(2. 0) g 2pg.

A conformal motion defined by (2.10) satisfies (see 17])

(2.11) vRcbad gbdVcPa 6cdVbPa -[ gcaVbPd gbaVcPd,

(2.12) vRab --(m 2)VaPb + (AP)gab,

(2.13) R -2,oR + 2(m 1)Ap,

wherep Vap, Ap --Vap and R is the scalar curvature, v is said to be
concircular if VaPb ag,b and special concircular if a Clp + C2 where c’s are
constants.

3. Auxiliary Results

LEMMA 3.1 (OKUMURA 10]). For a conformal motion v and its associated func-
tion p on a contact metric manifold, riavria p.

LEMMA 3.2 (TANNO 12]). If a conformal motion v on a contact metric manifold
leaves ri invariant then v is an infinitesimal automorphism of the contact metric
structure.

LEMMA 3.3. If on a contact metric manifold with in N(k), there exist scalar
functions p, a and r satisfying VaPb gab q- r ria rib, then r 0.

Proof Differentiating the equation in the hypothesis gives

VcVbDa (VcrY)gab -Jr- (Vc’Y)riarib q- T[((/)cb --dbhcd)ria -]- ()ca --dahcd)rib]
Transvecting it with bcb, using Ricci identities and transvecfing with ria gives
dp+Rcbdariapd 4hr. Using (2.6) in the last equation gives r 0, completing
the proof.
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4. Proofs of the theorems

Before proving the theorems we first find some integrability conditions for (2.10)
using (2.4), (2.10) and (2.11). Lie-differentiating (2.4) along v and using (2.11) gives

(4.1) Rcbadvrld (kvrlc + 2pkrlc + rldVcpd)gab

(kvb + 2kprl, + TdVbpd)gca + rlcVbPa TbVcPa.

Transvecting it with r/ and using (2.4) we have

(4.2) VbPa -(2kp + rlcrldV’cPd)gab -+- 2kprlarlb + rlc(rlbVaP + rlaVbpC).

Transvecting this with gba gives

(4.3) Ap 4knp + (2n 1)rlarlVbpa.

Using (4.3) in (4.2),

(4.4) Vpa {1/(2n 1)}(2kp Ap)ga + 2krlarl + rl.(OVap + rlaVbp’).

Next, transvecting (4.1) with 4c we obtain

(4.5) (qbCb Rcbad -+- 2kqbad)vrld --2rldgpaCVcPd

Proofof Theorem 1. Here n l, k and h 0. Use of (2.6) and (2.9) in
(4.5) yields

(4.6) (R -6)vr/a 2rlcVaP + (pR -6p 2rldrlCVcPd)rla.
Now applying V, to (4.4), transvecting with 4+, using the Ricci identities, equations
(2.6), (4.3) and (2.9) we obtain

(4.7) rlcVaP (1/6){Rp. 2V.(Ap)}qSa (4p Ap)rla.

At this point, using the hypothesis R constant in (2.13) we have pR 2Ap which,
on differentiation, gives Rpa 2Va(Ap). So (4.7) yields OVap (p/2)(R 8)r/a
and (4.4) reduces to

(4.8) VblO (p/2)(4- R)gba -+- p(R 6)r/ar//.

This shows by virtue of Lemma 3.3 that R 6 and hence equation (2.9) provides
Rab 2ga. Hence M is Einstein and, being 3-dimensional, is of constant curvature
1. Finally, v is special concircular from (4.8). This proves part (A). For part (B)
since .,vla frla and f p, from Lemma 3.1, we have from (4.6) that rlcVa,O
(rldrl"V,.pd)rla. Using this and (4.3) in (4.4) we obtain VbPa (2p Ap)gab d-
2(Ap 3p)rl,,rlb. Applying Lemma 3.3 immediately gives Vbp,, --Pg,b, proving
part (B). Thus in either case v is special concircular. And hence, if in addition, M
is complete and connected then by Obata’s theorem M is isometric to a unit sphere,
completing the proof. [51
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Proof Of Theorem 2. First we consider n > 1. If k then M is Sasakian and
hence v is special concircular by Okumura’s theorem. So let k < 1. Using (2.8) in
(2.13) we find

(4.9) Ap (2n 2 + k)p.

Transvecting (4.2) with hab gives

(4.10) habVaPb O.

As v gab 2,0gab we have v gab _2pgab and hence

(4.11) Rab (Rcd)g’agdb 4pRab.

Now using (2.7) we compute

(4.12) Rab Rab 4n[2(n 1)2(2 k) + nk2].

Hence from (4.11) we have

0 v (RabRab) (v Rab) Rab + Rab (v Rab)
2(Rab)Rab 4pRabRab.

Use of (2.12) and (4.12) in the above and simplification yields

(n 1)[Ap {2(n 1)(2 k) + k},o] O.

Asn > 1, Ap (2(n-1)(2-k)+k)p. Comparing with (4.9) gives (n-1)(1-k)p
0. Since n > and k < we conclude p 0, showing that v is Killing. Hence
rla,,Oa 0 Oavrla. That is, r/a is orthogonal to r/a. Thus taking the Lie-
derivative of (2.7) along v, transvecting with r/b (since v is Killing) we have

(4.13) (n 1)(vhab)rlb q- (nk + n)vrla O.

Since habr]b 0 we have ( hab)rlb --hab ;f-,vr] b. Hence (4.13) becomes

(4.14) hX- ((nk -4- --n)/(n- 1))X

where X is given by X ;f.,vl]a. If X 0 on M then v is an automorphism of the
contact metric structure. If X - 0 in some open neighborhood of a point p ofM then
(4.14) says that X is an eigenvector of h with eigenvalue (nk + n)/(n in that
neighborhood. But it is well-known [15] that the eigenvalues of h for eigenvectors
orthogonal to are 4-(1 k) 1/2. So (nk + n)/(n 1) 4-(1 k) 1/2. This
simplifies to k(kn2 n2

nt- 1) 0. Hence either k 0 or n-2. However the
second possibility can be ruled out as follows" Lie-differentiating (2.4) along v and
using ,Rab/ 0 (as v is Killing) we have

Rcbadvr]d k(gabvrlc gcavrlb).
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This shows vO lies in N(k). But for k 0 and < it is known [1] that N(k) is the
linear span of . It therefore follows that vr/a f oa. Since f (.,voa)oa 0
(as v is Killing) we conclude that vr/a 0, a contradiction. So the only case when
the Killing v may not be an automorphism of the contact metric structure is k 0
for which we know that N(k) is the tangent bundle of the factor En+ of the sphere
bundle En+ S(4) (see [1], [3]). Let us examine it more closely. For k 0, M
is locally E+ S (4) and hence admits Killing vector fields orthogonal to (note
that is tangential to E"+l). Now h has eigenvalues 0 corresponding to eigenvector, corresponding to n-dimensional eigenspace {1} and -1 corresponding to n-
dimensional eigenspace {-1 }. If X is an eigenvector of h with eigenvalue then

4X is also an eigenvector of h with eigenvalue -1. The eigenspace {-1} and
span an integrable distribution @ {-1 that is tangent to En+; and {1 is tangent
to S(4). Let X be an arbitrary vector field in {1 }. Then g(X, ) 0 whence
g(oX, ) + g(X,) 0. But (4.14) says is in {-1}, giving g(X, ) 0.
As v is orthogonal to it follows that g(X, Vv) g(Vx, v). Using (2.3) and the
fact that 4h is self-adjoint, we obtain g(ckX, v) 0 which shows that v is in {1 }.
Next V Vv -2bv V v. As and qv both lie in {- so does V v.
Therefore h(Vv) -Vv; i.e., V(hv) (Vh)v -Vv. But hv v and since

Vh 0 (see [1]) we get V v 0. Therefore -24v. This shows v :/: 0
otherwise v would vanish. Hence v can not be an automorphism of the contact metric
structure on M.

Next we turn our attention to the case n 1. If k 0, M is flat and for k 1, M
is Sasakian which has been discussed in Theorem 1. So we consider k < and :/: 0.
In this case too, equations (4.1) through (4.5) hold:. As stated in Section 2 we have

Rab 2krlarlb and R 2k.

Therefore from (2.13) and (4.3),

Ap kp and l’]aFIbVaOb -3kp.

Now (4.4) becomes

(4.15) VbPa kp(gab -1- 2r/at/b) -k- ?]d(bValOd + ]aVbpd),

and hence habVbPa 0. Applying V. on (4.15) and transvecting with 4+, we get

(4.16) CbVcVbp kpcCa q- 2kprlaqbCbVcrlb + dpcb(Vcrld)(Vbpd)rla

+ l]d[(CbVcOb)ValOd -V )cb(VcOa)VbDd -or- (CbVcVbod)oa].

Using the Ricci identities and skew-symmetry of q.b, we have ckcbv.VbPa
--(1/2)qd’ R’b,, a Pa. Using (2.3), hq -4h and (2.6) we get

Pd[aeRae kaa] kpcCa + 9kprla + 3rlaV, pa + rlahabVbpa

+ ()deRb kqdb)rlaOdpb,
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but Rab 2kr/ar/b and hence

(4.17) 9kprla -t- 3rldVaPd + habrldVbPd O.

Transvecting with hc and using h2 (k 1)4)2,

(1 k){rldVcPd (brldVbPd)c + 3hcbdVbPd O.

Using (4.17) and simplifying,

(k + 8)(rldV.pd + 3kprlc) O.

Thus k -8 or rldV.pd -3kpq,. In the second case, (4.15) reduces to VbPa
kp(gab 4r/at/b) and hence Lemma 3.3 gives kp 0 and in turn p 0. So, in the
second case v is Killing and hence oRb 0. Using this in Rb 2krlarlb gives

(.v l]a l’lb -[- ]a (v l’lb O.

Transvecting with r/b gives r/o 0, because rlb,rlb p 0. This shows, by
virtue of Lemma 3.2, that v is an infinitesimal automorphism of the contact metric
structure. Now the first case seems obviously unnatural. In order to dispose of this
case we use the Lie-group theoretic approach. Let (e, e2, e3) be an orthonormal basis
of the Lie-algebra of vector fields on M defined by (we refer to [4] for details):

[el, e2] (1 -k- ))e3, [e3, el] (1 ))e2, [e2, e3] 2el,

where e , e2 is a unit eigenvector of h corresponding to eigenvalue . and
e3 Pe2. In our case k )2 < and - 0. Following Milnor’s classification [7]
of 3-dimensional manifolds admitting the Lie-algebra defined above we see that the
universal covering space of M is either SU (2) for k > 0 or SL(2, R) for k < 0. The
case k -8 corresponds to ,k 4-3. As g(ea, eb) ab, we have (vg)(ea, eb)
g([ea, V], eb) -+- g(ea, [eb, V]). Setting v v’e, we have

(4.18) (vr/)(el) ely , (vr/)(e2) e2 vl -+- 2v3, (vr/)(e3) e3 vl 2v2.

u 1)(4.19) el e2v
2

e3 p,

1)2 1)3e + ezv + () -k- 1) :0,
l)3 1)2e +e3v +(,-1) =0,

e2 v -+- e3 v
2 2)v 0.

Introduce auxiliary functions a l, a2, a3 by

(4.20) e2v a (() + 1)/2)v e3 v2 a2 -+- )v

ely a3-- (()-- 1)/2)v2.

Sinceg 2pg we get
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Then

(4.21) 132e3 v! --a3 (1/2)(1.- 1)132 el ----al- (1/2)(1. + 1)v3,

e2133 --a2 + 1.131.

Now

0 ([el, e21 (1 + 1.)e3)131

el(al ((i. + 1)/2)v3) e2p nt- (1 + 1.)(a3 nt- ((1. 1)/2)v2)

whence

elal e2p nt- ((1 + 1.)/2)a3 -+- (3/4)(1.2 1)132 0.

Similarly,

ezal nt- elp (3/2)(1 + 1.)a2 (1./2)(1 + 1.)v 0,
eza3 --t-- ela2 --1- (1/2)(3 1.)p 0,
eza3 nt- e3al -k- p O,
eza2 e3p --I- (2 + 1.)al nt- (1/2)(2 + 1. 1.2)v3 0,
e3a2 -t- ezp nt- (1. 2)a3 nt- (1/2)(1.2 + 1. 2)v2 0,
ela3 + e3p + (1/2)(1. 1)a + (3/4)(1 1.2)v3 0,
e3al + ela2 + (1/2)(3 + 1.)p 0,
e3a3 ep + (3/2)(1 1.)a2 (1./2)(1 1.)v 0.

Solving them and setting ba eap, we get

elal b2 (1/2)(1. + 1)a3 (3/4)(1.2 1)132,
eza -b + (3/2)(1 + 1.)a2 + (1./2)(1. + 1)v l,
e3a -(1/2)(1. + 1)p,
ela2 --p,
e2a2 b3 (2 + 1.)al (1/2)(2 + 1. 1.2)v3,
e3a2 -b2 (1/2)(1.2 + 1. 2)v2 (1. 2)a3,
ea3 -b3 (1/2)(1. 1)al (3/4)(1 1.2)v3,
e2a3 (1/2) (1. 1)p,
e3a3 bl + (3/2)(1. 1)a2 (1./2)(1. 1)v 1.

Their integrability conditions are

eb2 e2b (1 + 1.)b3,
e2b3 e3b2 2bl,
e3bl elb3 (1 1.)b2,
ebl + e2b2 2(1.2- 1)p
e3bl (1 1.)b2 + 2a3(1 1.2) + (3 + 1. 31.2 1.3)v3
e3b2 (1. 1)bl,
elb3 2(1 1.2)a3 + (3 + 1. 31.2 1.3)v2,
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e2b2 if- e3b3 2p(1 2),
elb2 2(X2 1)a + (,k 3 + 3,k2 X3)v
ezb3 (1 + X)b,

(4.22) e2b 2(,k2 1)a (1 q- ,k)b3 q- (X 3 q- 3X2 )3)v3

eb q-e3b3- 2(X2- 1)p.

Therefore elbl -3(e2b2) -3(e3b3) 3(,k2 1)p. Next applying ele2 e2el
(1 + ,k)e3 0 and two other Lie-algebra equations to any two of bl, b2, b3 and using
above equations we obtain p 0, a2 --v 2a3 + (X + 3)v2 0 and for ,k :/: 3,
2al (,k 3)v 0. As p 0, ba 0. Going back to equations (4.19), (4.20)
and (4.21), (4.18) shows vr/-- 0. Hence v is an infinitesimal automorphism of the
contact metric structure. For case ,k 3, i.e., k -8, we have p 0, a2 if- v 0,
a3 / 3v2 0 and ba 0, but no information on al. However appealing to (4.22) we
obtain a 0. Again equations (4.18) through (4.21) show vr/= 0. This completes
the proof.

Proofof the Corollary to Theorem 2. In [11] it was proved that if M is a con-
tact metric manifold with non-vanishing K(, X) and K(, X) K (, 4X) every-
where and for all X orthogonal to , then a vector field v satisfying Rabcd 0
is homothetic. Now we have equation (2.4) which implies that the -sectional cur-
vature K (, X) k. By hypothesis k - 0. Thus v is homothetic. Obviously
Rabrlar]b 2nk and vRab 0 and hence Rablavob O. But Rabrl 2nkrlt, and
so (or/)r/ 0, since k :/: 0. Lie-differentiating gabrlar]b gives (vgab)rlarlb

--2(vrlb)rlb O. Now vgab Cgab (C constant) gives c (vgab)rlar]b O. Thus
v is Killing and hence from Theorem 2, v is an automorphism of the contact metric
structure.

Concluding Remark. Motivated by the result (see 14]) that conformally flat K-
contact manifolds are Sasakian manifolds of constant curvature we pose this question:
"Are there K-contact manifolds that admit a conformal motion and are not Sasakian?"

Acknowledgment. The authors appreciate Professor Luc Vrancken’s help in re-
solving the unnaturally arising case k -8 in Theorem 2 using Mathematica. R.S.
is also thankful to Professor D. Perrone for suggesting the corollary and remark fol-
lowing Theorem and to Professors M. Okumura and T. Koufogiorgos for going over
the manuscript.
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