CONFORMAL MOTION OF CONTACT MANIFOLDS WITH CHARACTERISTIC VECTOR FIELD IN THE \boldsymbol{k}-NULLITY DISTRIBUTION

Ramesh Sharma and David E. Blair
Dedicated to the memory of Professor Kentaro Yano

1. Introduction

It is known (see for example, [17]) that if an m-dimensional Riemannian manifold admits a maximal, i.e., an $(m+1)(m+2) / 2$-parameter group of conformal motions, then it is conformally flat. It is also known [9] that a conformally flat Sasakian (normal contact metric) manifold is of constant curvature 1. This shows that the existence of maximal conformal group places a severe restriction on the Sasakian manifold. Thus one is led to examine the effect of the existence of a single 1-parameter group of conformal motions on a Sasakian manifold. All the transformations considered in this paper are infinitesimal. Okumura [10] proved that a non-isometric conformal motion of a Sasakian manifold M of dimension $2 n+1(n>1)$ is special concircular and hence if, in addition, M is complete and connected then it is isometric to a unit sphere. The proof is based on Obata's theorem [8]: "Let M be a complete connected Riemannian manifold of dimension $m>1$. In order for M to admit a non-trivial solution ρ of the system of partial differential equations $\nabla \nabla \rho=-c^{2} \rho g$ ($c=$ a constant >0), it is necessary and sufficient that M be isometric to a unit sphere of radius $1 / c$." The purpose of this paper is (i) to extend Okumura's result to dimension 3 and (ii) to study conformal motion of the more general class of contact metric manifolds (M, η, ξ, ϕ, g) satisfying the condition that the characteristic vector field ξ belongs to the k-nullity distribution $N(k): p \rightarrow N_{p}(k)=\left\{Z\right.$ in $T_{p} M: R(X, Y) Z=$ $k(g(Y, Z) X-g(X, Z) Y)$ for any X, Y in $T_{p} M$ and a real number $\left.k\right\}$ (see Tanno [15]). For $k=1, M$ is Sasakian. For $k=0, M$ is flat in dimension 3 and in dimension $2 n+1>3$, it is locally the Riemannian product $E^{n+1} \times S^{n}(4)$ (see Blair [3]). We say that a vector field v on M is an infinitesimal contact transformation [12] if $\mathfrak{E}_{v} \eta=f \eta$ for some function f where $£$ denotes the Lie-derivative operator. We also say that a vector field v on M is an automorphism of the contact metric structure if v leaves all the structure tensors η, ξ, ϕ, g invariant (see [13]).

ThEOREM 1. Let v be a non-isometric conformal motion on a Sasakian 3-manifold M.
(A) If the scalar curvature of M is constant, then M is of constant curvature 1 and v is special concircular.
(B) If v is an infinitesimal contact transformation, then v is special concircular.

Hence in either case, if in addition, M is complete and connected, then it is isometric to a unit sphere.

In view of Watanabe's result [16] that a Sasakian 3-manifold is locally ϕ-symmetric if and only if its scalar curvature is constant and Theorem 1 we obtain the following corollary.

COROLLARY. Among all complete and simply connected ϕ-symmetric Sasakian 3 -manifolds only the unit 3 -sphere admits a non-isometric conformal motion.

Remark. For a Sasakian 3-manifold we know that the scalar curvature $R=$ $4+2 H$, where H is the ϕ-sectional curvature (i.e., the sectional curvature of plane section orthogonal to ξ). So in Theorem 1 (part (A)) we could equivalently assume H constant instead of R constant.

ThEOREM 2. Let $M^{2 n+1}$ be a contact metric manifold with ξ in $N(k)$ and v a conformal motion on $M^{2 n+1}$. For $n>1, M$ is either Sasakian or v is Killing. In the second case v is an automorphism of the contact metric structure except when $k=0$. Further for $k=0$, a Killing vector field orthogonal to ξ cannot be an infinitesimal automorphism of the associated contact metric structure. For $n=1, M$ is either flat or Sasakian or v is an automorphism of the contact metric structure.

Remark. Theorem 2 shows that the existence of a non-isometric conformal motion on contact metric manifolds M with ξ in $N(k)$ singles out those with $k=1$, i.e., Sasakian manifolds.

COROLLARY. Let M be a contact metric manifold of dimension ≥ 5 with ξ in $N(k), k \neq 0$. If M admits a vector field leaving the Riemann curvature tensor of type $(1,3)$ invariant then v is an automorphism of the contact metric structure.

2. Preliminaries

A differentiable $(2 n+1)$-dimensional manifold M is called a contact manifold if it carries a global 1-form η such that $\eta \wedge(d \eta)^{n} \neq 0$ everywhere on M. It is well known that given η there exists a unique vector field ξ (called the characteristic vector field)
such that $(d \eta)(\xi, X)=0$ and $\eta(\xi)=1$. Polarizing $d \eta$ on the contact subbundle $\eta=0$, one obtains a Riemannian metric g and a (1,1)-tensor field ϕ such that

$$
\begin{equation*}
(d \eta)(X, Y)=g(\phi X, Y), \eta(X)=g(X, \xi) \text { and } \phi^{2}=-I+\eta \otimes \xi \tag{2.1}
\end{equation*}
$$

g is called an associated metric of η and (ϕ, η, ξ, g) a contact metric structure (see [2] as a general reference). Following [3] we denote the tensor (1/2) $\mathfrak{\xi}_{\xi} \phi$ by $h . h$ is self-adjoint and satisfies

$$
\begin{equation*}
h \xi=0, \quad \operatorname{Tr} h=0, \quad \operatorname{Tr}(h \phi)=0, \quad h \phi=-\phi h . \tag{2.2}
\end{equation*}
$$

The contact metric structure is called a K-contact structure if ξ is Killing. A contact metric structure is K-contact if and only if $h=0$. For a contact metric manifold

$$
\begin{equation*}
\nabla_{X} \xi=\phi X-\phi h X \tag{2.3}
\end{equation*}
$$

where ∇ is the Riemannian connection of g. The contact structure on M is said to be normal if the almost complex structure on $M \times R$ defined by $J(X, f d / d t)=(\phi X-$ $f \xi, \eta(X) d / d t)$, where f is a real-valued function, is integrable. A normal contact metric manifold is called a Sasakian manifold. Sasakian manifolds are K-contact and 3-dimensional K-contact manifolds are Sasakian. If $R(X, Y) \xi=k(\eta(Y) X-\eta(X) Y)$ for a function k on a contact metric manifold then k is constant (see [11]). This generalizes Schur's theorem on contact Riemannian manifolds. We let (x^{a}) be a local coordinate system on M. For a contact metric manifold (see Lemma 2.1 in [15]) $\nabla^{a} \nabla_{a} \eta^{b}=R_{a}{ }^{b} \eta^{a}-4 n \eta^{b}, R_{a}{ }^{b}$ denoting the Ricci operator. Since the deRham Laplacian $\Delta_{\mathrm{dR}}=d \delta+\delta d$ (δ denoting codifferential operator) acts on a vector field X as $\Delta_{\mathrm{dR}} X^{a}=-\nabla^{b} \nabla_{b} X^{a}+{R_{b}}^{a} X^{b}$, we obtain $\Delta_{\mathrm{dR}} \xi=4 n \xi$.

Proposition. The characteristic vector field of a contact metric manifold is an eigenvector of the associated deRham Laplacian with eigenvalue $4 n$.

Next if ξ lies in the k-nullity distribution $N(k)$ then

$$
\begin{equation*}
\eta_{d} R_{c b a}^{d}=k\left(\eta_{c} g_{b a}-\eta_{b} g_{c a}\right) \tag{2.4}
\end{equation*}
$$

For such manifolds we know [5] that $k \leq 1, h^{2}=(k-1) \phi^{2}$ and

$$
\begin{equation*}
R_{a}{ }^{b} \phi_{c}{ }^{a}-\phi_{a}{ }^{b} R_{c}^{a}=4(n-1) \phi_{a}{ }^{b} h_{c}{ }^{a} . \tag{2.5}
\end{equation*}
$$

Furthermore following [5] and using (2.5) one can show that

$$
\begin{equation*}
\phi_{a c} R_{b}{ }^{c}+(1 / 2) \phi^{c d} R_{c d a b}=(2 n-2+k) \phi_{a b}+2(n-1) \phi_{c b} h_{a}^{c} . \tag{2.6}
\end{equation*}
$$

For $k=1, M$ is Sasakian. For $k<1$ (see [5]) we have

$$
\begin{equation*}
R_{a b}=2(n-1)\left(g_{a b}+h_{a b}\right)+2(n k+1-n) \eta_{a} \eta_{b} \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
R=2 n(2 n-2+k) \tag{2.8}
\end{equation*}
$$

In dimension $3(n=1)$ the condition (2.4) is equivalent (see [6]) to

$$
\begin{equation*}
R_{a b}=(1 / 2)\left\{(R-2 k) g_{a b}+(6 k-R) \eta_{a} \eta_{b}\right\} . \tag{2.9}
\end{equation*}
$$

Moreover contact metric 3-manifold satisfying (2.4) or (2.9) is Sasakian $(k=1)$, flat ($k=0$), or of constant non-zero ξ-sectional curvature $k<1$ and constant ϕ-sectional curvature $-k$ (see [6]). (By ξ-sectional curvature we mean sectional curvature of a plane section containing ξ and by ϕ-sectional curvature the sectional curvature of a plane section spanned by a vector X and ϕX where X is orthogonal to ξ). In the last case M is locally isometric to a left-invariant metric on the Lie-group $S U(2)$ for $k>0$ and $S L(2, R)$ for $k<0$ (see [4]).

A vector field v in an m-dimensional Riemannian manifold (M, g) is called a conformal motion if there is a smooth scalar function ρ such that

$$
\begin{equation*}
£_{v} g=2 \rho g . \tag{2.10}
\end{equation*}
$$

A conformal motion defined by (2.10) satisfies (see [17])

$$
\begin{gather*}
\mathfrak{£}_{v} R_{c b a}{ }^{d}=\delta_{b}{ }^{d} \nabla_{c} \rho_{a}-\delta_{c}{ }^{d} \nabla_{b} \rho_{a}+g_{c a} \nabla_{b} \rho^{d}-g_{b a} \nabla_{c} \rho^{d}, \tag{2.11}\\
£_{v} R_{a b}=-(m-2) \nabla_{a} \rho_{b}+(\Delta \rho) g_{a b}, \tag{2.12}\\
\mathfrak{£}_{v} R=-2 \rho R+2(m-1) \Delta \rho, \tag{2.13}
\end{gather*}
$$

where $\rho_{a}=\nabla_{a} \rho, \Delta \rho=-\nabla_{a} \rho^{a}$ and R is the scalar curvature. v is said to be concircular if $\nabla_{a} \rho_{b}=\sigma g_{a b}$ and special concircular if $\sigma=c_{1} \rho+c_{2}$ where c 's are constants.

3. Auxiliary Results

Lemma 3.1 (OkUmura [10]). For a conformal motion v and its associated function ρ on a contact metric manifold, $\eta^{a} £_{v} \eta_{a}=\rho$.

LEMMA 3.2 (TANNO [12]). If a conformal motion v on a contact metric manifold leaves η invariant then v is an infinitesimal automorphism of the contact metric structure.

Lemma 3.3. If on a contact metric manifold with ξ in $N(k)$, there exist scalar functions ρ, σ and τ satisfying $\nabla_{a} \rho_{b}=\sigma g_{a b}+\tau \eta_{a} \eta_{b}$, then $\tau=0$.

Proof. Differentiating the equation in the hypothesis gives

$$
\nabla_{c} \nabla_{b} \rho_{a}=\left(\nabla_{c} \sigma\right) g_{a b}+\left(\nabla_{c} \tau\right) \eta_{a} \eta_{b}+\tau\left[\left(\phi_{c b}-\phi_{d b} h_{c}{ }^{d}\right) \eta_{a}+\left(\phi_{c a}-\phi_{d a} h_{c}{ }^{d}\right) \eta_{b}\right]
$$

Transvecting it with $\phi^{c b}$, using Ricci identities and transvecting with η^{a} gives $\phi^{c b} R_{c b d}{ }^{a} \eta_{a} \rho^{d}=4 n \tau$. Using (2.6) in the last equation gives $\tau=0$, completing the proof.

4. Proofs of the theorems

Before proving the theorems we first find some integrability conditions for (2.10) using (2.4), (2.10) and (2.11). Lie-differentiating (2.4) along v and using (2.11) gives

$$
\begin{align*}
R_{c b a}{ }^{d} £_{v} \eta_{d}= & \left(k £_{v} \eta_{c}+2 \rho k \eta_{c}+\eta_{d} \nabla_{c} \rho^{d}\right) g_{a b} \tag{4.1}\\
& -\left(k £_{v} \eta_{b}+2 k \rho \eta_{b}+\eta_{d} \nabla_{b} \rho^{d}\right) g_{c a}+\eta_{c} \nabla_{b} \rho_{a}-\eta_{b} \nabla_{c} \rho_{a}
\end{align*}
$$

Transvecting it with η^{c} and using (2.4) we have

$$
\begin{equation*}
\nabla_{b} \rho_{a}=-\left(2 k \rho+\eta^{c} \eta^{d} \nabla_{c} \rho_{d}\right) g_{a b}+2 k \rho \eta_{a} \eta_{b}+\eta_{c}\left(\eta_{b} \nabla_{a} \rho^{c}+\eta_{a} \nabla_{b} \rho^{c}\right) \tag{4.2}
\end{equation*}
$$

Transvecting this with $g^{b a}$ gives

$$
\begin{equation*}
\Delta \rho=4 k n \rho+(2 n-1) \eta^{a} \eta^{b} \nabla_{b} \rho_{a} \tag{4.3}
\end{equation*}
$$

Using (4.3) in (4.2),
(4.4) $\nabla_{b} \rho_{a}=\{1 /(2 n-1)\}(2 k \rho-\Delta \rho) g_{a b}+2 k \eta_{a} \eta_{b}+\eta_{c}\left(\eta_{b} \nabla_{a} \rho^{c}+\eta_{a} \nabla_{b} \rho^{c}\right)$.

Next, transvecting (4.1) with $\phi^{c b}$ we obtain

$$
\begin{equation*}
\left(\phi^{c b} R_{c b a}{ }^{d}+2 k \phi_{a}{ }^{d}\right) \mathfrak{£}_{v} \eta_{d}=-2 \eta^{d} \phi_{a}{ }^{c} \nabla_{c} \rho_{d} \tag{4.5}
\end{equation*}
$$

Proof of Theorem 1. Here $n=1, k=1$ and $h=0$. Use of (2.6) and (2.9) in (4.5) yields

$$
\begin{equation*}
(R-6) £_{v} \eta_{a}=2 \eta_{c} \nabla_{a} \rho^{c}+\left(\rho R-6 \rho-2 \eta^{d} \eta^{c} \nabla_{c} \rho_{d}\right) \eta_{a} \tag{4.6}
\end{equation*}
$$

Now applying ∇_{c} to (4.4), transvecting with $\phi^{c b}$, using the Ricci identities, equations (2.6), (4.3) and (2.9) we obtain

$$
\begin{equation*}
\eta_{c} \nabla_{a} \rho^{c}=(1 / 6)\left\{R \rho_{c}-2 \nabla_{c}(\Delta \rho)\right\} \phi_{a}{ }^{c}-(4 \rho-\Delta \rho) \eta_{a} \tag{4.7}
\end{equation*}
$$

At this point, using the hypothesis $R=$ constant in (2.13) we have $\rho R=2 \Delta \rho$ which, on differentiation, gives $R \rho_{a}=2 \nabla_{a}(\Delta \rho)$. So (4.7) yields $\eta_{c} \nabla_{a} \rho^{c}=(\rho / 2)(R-8) \eta_{a}$ and (4.4) reduces to

$$
\begin{equation*}
\nabla_{b} \rho_{a}=(\rho / 2)(4-R) g_{b a}+\rho(R-6) \eta_{a} \eta_{b} . \tag{4.8}
\end{equation*}
$$

This shows by virtue of Lemma 3.3 that $R=6$ and hence equation (2.9) provides $R_{a b}=2 g_{a b}$. Hence M is Einstein and, being 3-dimensional, is of constant curvature 1. Finally, v is special concircular from (4.8). This proves part (A). For part (B) since $\mathfrak{£}_{v} \eta_{a}=f \eta_{a}$ and $f=\rho$, from Lemma 3.1, we have from (4.6) that $\eta_{c} \nabla_{a} \rho^{c}=$ $\left(\eta^{d} \eta^{c} \nabla_{c} \rho_{d}\right) \eta_{a}$. Using this and (4.3) in (4.4) we obtain $\nabla_{b} \rho_{a}=(2 \rho-\Delta \rho) g_{a b}+$ $2(\Delta \rho-3 \rho) \eta_{a} \eta_{b}$. Applying Lemma 3.3 immediately gives $\nabla_{b} \rho_{a}=-\rho g_{a b}$, proving part (B). Thus in either case v is special concircular. And hence, if in addition, M is complete and connected then by Obata's theorem M is isometric to a unit sphere, completing the proof.

Proof Of Theorem 2. First we consider $n>1$. If $k=1$ then M is Sasakian and hence v is special concircular by Okumura's theorem. So let $k<1$. Using (2.8) in (2.13) we find

$$
\begin{equation*}
\Delta \rho=(2 n-2+k) \rho \tag{4.9}
\end{equation*}
$$

Transvecting (4.2) with $h^{a b}$ gives

$$
\begin{equation*}
h^{a b} \nabla_{a} \rho_{b}=0 \tag{4.10}
\end{equation*}
$$

As $£_{v} g_{a b}=2 \rho g_{a b}$ we have $£_{v} g^{a b}=-2 \rho g^{a b}$ and hence

$$
\begin{equation*}
\mathfrak{£}_{v} R^{a b}=\left(£_{v} R_{c d}\right) g^{c a} g^{d b}-4 \rho R^{a b} . \tag{4.11}
\end{equation*}
$$

Now using (2.7) we compute

$$
\begin{equation*}
R_{a b} R^{a b}=4 n\left[2(n-1)^{2}(2-k)+n k^{2}\right] . \tag{4.12}
\end{equation*}
$$

Hence from (4.11) we have

$$
\begin{aligned}
0 & =£_{v}\left(R_{a b} R^{a b}\right)=\left(£_{v} R_{a b}\right) R^{a b}+R_{a b}\left(£_{v} R^{a b}\right) \\
& =2\left(£_{v} R_{a b}\right) R^{a b}-4 \rho R_{a b} R^{a b} .
\end{aligned}
$$

Use of (2.12) and (4.12) in the above and simplification yields

$$
(n-1)[\Delta \rho-\{2(n-1)(2-k)+k\} \rho]=0
$$

As $n>1, \Delta \rho=(2(n-1)(2-k)+k) \rho$. Comparing with (4.9) gives $(n-1)(1-k) \rho=$ 0 . Since $n>1$ and $k<1$ we conclude $\rho=0$, showing that v is Killing. Hence $\eta^{a} \mathfrak{£}_{v} \eta_{a}=0=\eta_{a} \mathfrak{f}_{v} \eta^{a}$. That is, $\mathfrak{£}_{v} \eta^{a}$ is orthogonal to η^{a}. Thus taking the Liederivative of (2.7) along v, transvecting with η^{b} (since v is Killing) we have

$$
\begin{equation*}
(n-1)\left(\mathfrak{£}_{v} h_{a b}\right) \eta^{b}+(n k+1-n) \mathfrak{£}_{v} \eta_{a}=0 . \tag{4.13}
\end{equation*}
$$

Since $h_{a b} \eta^{b}=0$ we have $\left(£_{v} h_{a b}\right) \eta^{b}=-h_{a b} £_{v} \eta^{b}$. Hence (4.13) becomes

$$
\begin{equation*}
h X=((n k+1-n) /(n-1)) X \tag{4.14}
\end{equation*}
$$

where X is given by $X^{a}=£_{v} \eta^{a}$. If $X=0$ on M then v is an automorphism of the contact metric structure. If $X \neq 0$ in some open neighborhood of a point p of M then (4.14) says that X is an eigenvector of h with eigenvalue $(n k+1-n) /(n-1)$ in that neighborhood. But it is well-known [15] that the eigenvalues of h for eigenvectors orthogonal to ξ are $\pm(1-k)^{1 / 2}$. So $(n k+1-n) /(n-1)= \pm(1-k)^{1 / 2}$. This simplifies to $k\left(k n^{2}-n^{2}+1\right)=0$. Hence either $k=0$ or $1-n^{-2}$. However the second possibility can be ruled out as follows: Lie-differentiating (2.4) along v and using $£_{v} R_{a b c}{ }^{d}=0$ (as v is Killing) we have

$$
R_{c b a d} £_{v} \eta^{d}=k\left(g_{a b} £_{v} \eta_{c}-g_{c a} \mathfrak{£}_{v} \eta_{b}\right)
$$

This shows $£_{v} \eta^{a}$ lies in $N(k)$. But for $k \neq 0$ and <1 it is known [1] that $N(k)$ is the linear span of ξ. It therefore follows that $£_{v} \eta^{a}=f \eta^{a}$. Since $f=\left(£_{v} \eta^{a}\right) \eta_{a}=0$ (as v is Killing) we conclude that $£_{v} \eta^{a}=0$, a contradiction. So the only case when the Killing v may not be an automorphism of the contact metric structure is $k=0$ for which we know that $N(k)$ is the tangent bundle of the factor E^{n+1} of the sphere bundle $E^{n+1} \times S^{n}(4)$ (see [1], [3]). Let us examine it more closely. For $k=0, M$ is locally $E^{n+1} \times S^{n}(4)$ and hence admits Killing vector fields orthogonal to ξ (note that ξ is tangential to E^{n+1}). Now h has eigenvalues 0 corresponding to eigenvector $\xi, 1$ corresponding to n-dimensional eigenspace $\{1\}$ and -1 corresponding to n dimensional eigenspace $\{-1\}$. If X is an eigenvector of h with eigenvalue 1 then ϕX is also an eigenvector of h with eigenvalue -1 . The eigenspace $\{-1\}$ and ξ span an integrable distribution $\xi \oplus\{-1\}$ that is tangent to E^{n+1}; and $\{1\}$ is tangent to $S^{n}(4)$. Let X be an arbitrary vector field in $\{1\}$. Then $g(X, \xi)=0$ whence $g\left(£_{v} X, \xi\right)+g\left(X, £_{v} \xi\right)=0$. But (4.14) says $£_{v} \xi$ is in $\{-1\}$, giving $g\left(\mathfrak{£}_{v} X, \xi\right)=0$. As v is orthogonal to ξ it follows that $g\left(X, \nabla_{v} \xi\right)=g\left(\nabla_{X} \xi, v\right)$. Using (2.3) and the fact that ϕh is self-adjoint, we obtain $g(\phi X, v)=0$ which shows that v is in \{1\}. Next $£_{v} \xi=\nabla_{v} \xi-\nabla_{\xi} v=-2 \phi v-\nabla_{\xi} v$. As $£_{v} \xi$ and ϕv both lie in $\{-1\}$ so does $\nabla_{\xi} v$. Therefore $h\left(\nabla_{\xi} v\right)=-\nabla_{\xi} v$; i.e., $\nabla_{\xi}(h v)-\left(\nabla_{\xi} h\right) v=-\nabla_{\xi} v$. But $h v=v$ and since $\nabla_{\xi} h=0$ (see [1]) we get $\nabla_{\xi} v=0$. Therefore $£_{v} \xi=-2 \phi v$. This shows $£_{v} \xi \neq 0$ otherwise v would vanish. Hence v can not be an automorphism of the contact metric structure on M.

Next we turn our attention to the case $n=1$. If $k=0, M$ is flat and for $k=1, M$ is Sasakian which has been discussed in Theorem 1. So we consider $k<1$ and $\neq 0$. In this case too, equations (4.1) through (4.5) hold. As stated in Section 2 we have

$$
R_{a b}=2 k \eta_{a} \eta_{b} \text { and } R=2 k
$$

Therefore from (2.13) and (4.3),

$$
\Delta \rho=k \rho \text { and } \eta^{a} \eta^{b} \nabla_{a} \rho_{b}=-3 k \rho
$$

Now (4.4) becomes

$$
\begin{equation*}
\nabla_{b} \rho_{a}=k \rho\left(g_{a b}+2 \eta_{a} \eta_{b}\right)+\eta_{d}\left(\eta_{b} \nabla_{a} \rho^{d}+\eta_{a} \nabla_{b} \rho^{d}\right) \tag{4.15}
\end{equation*}
$$

and hence $h^{a b} \nabla_{b} \rho_{a}=0$. Applying ∇_{c} on (4.15) and transvecting with $\phi^{c b}$, we get

$$
\begin{align*}
\phi^{c b} \nabla_{c} \nabla_{b} \rho_{a}= & k \rho_{c} \phi^{c}{ }_{a}+2 k \rho \eta_{a} \phi^{c b} \nabla_{c} \eta_{b}+\phi^{c b}\left(\nabla_{c} \eta_{d}\right)\left(\nabla_{b} \rho^{d}\right) \eta_{a} \tag{4.16}\\
& +\eta_{d}\left[\left(\phi^{c b} \nabla_{c} \eta_{b}\right) \nabla_{a} \rho^{d}+\phi^{c b}\left(\nabla_{c} \eta_{a}\right) \nabla_{b} \rho^{d}+\left(\phi^{c b} \nabla_{c} \nabla_{b} \rho^{d}\right) \eta_{a}\right] .
\end{align*}
$$

Using the Ricci identities and skew-symmetry of $\phi^{c b}$, we have $\phi^{c b} \nabla_{c} \nabla_{b} \rho_{a}=$ $-(1 / 2) \phi^{c b} R_{c b a}{ }^{d} \rho_{d}$. Using (2.3), $h \phi=-\phi h$ and (2.6) we get

$$
\begin{aligned}
\rho^{d}\left[\phi_{a e} R_{d}{ }^{e}-k \phi_{a d}\right]= & k \rho_{c} \phi^{c}{ }_{a}+9 k \rho \eta_{a}+3 \eta^{d} \nabla_{a} \rho_{d}+\eta^{d} h_{a}{ }^{b} \nabla_{b} \rho_{d} \\
& +\left(\phi_{d e} R_{b}{ }^{e}-k \phi_{d b}\right) \eta_{a} \eta^{d} \rho^{b},
\end{aligned}
$$

but $R_{a b}=2 k \eta_{a} \eta_{b}$ and hence

$$
\begin{equation*}
9 k \rho \eta_{a}+3 \eta^{d} \nabla_{a} \rho_{d}+h_{a}{ }^{b} \eta^{d} \nabla_{b} \rho_{d}=0 . \tag{4.17}
\end{equation*}
$$

Transvecting with $h_{c}{ }^{a}$ and using $h^{2}=(k-1) \phi^{2}$,

$$
(1-k)\left\{\eta^{d} \nabla_{c} \rho_{d}-\left(\eta^{b} \eta^{d} \nabla_{b} \rho_{d}\right) \eta_{c}\right\}+3 h_{c}{ }^{b} \eta^{d} \nabla_{b} \rho_{d}=0 .
$$

Using (4.17) and simplifying,

$$
(k+8)\left(\eta^{d} \nabla_{c} \rho_{d}+3 k \rho \eta_{c}\right)=0
$$

Thus $k=-8$ or $\eta^{d} \nabla_{c} \rho_{d}=-3 k \rho \eta_{c}$. In the second case, (4.15) reduces to $\nabla_{b} \rho_{a}=$ $k \rho\left(g_{a b}-4 \eta_{a} \eta_{b}\right)$ and hence Lemma 3.3 gives $k \rho=0$ and in turn $\rho=0$. So, in the second case v is Killing and hence $£_{v} R_{a b}=0$. Using this in $R_{a b}=2 k \eta_{a} \eta_{b}$ gives

$$
\left(\mathfrak{£}_{v} \eta_{a}\right) \eta_{b}+\eta_{a}\left(\mathfrak{£}_{v} \eta_{b}\right)=0
$$

Transvecting with η^{b} gives $£_{v} \eta_{a}=0$, because $\eta^{b} £_{v} \eta_{b}=\rho=0$. This shows, by virtue of Lemma 3.2, that v is an infinitesimal automorphism of the contact metric structure. Now the first case seems obviously unnatural. In order to dispose of this case we use the Lie-group theoretic approach. Let $\left(e_{1}, e_{2}, e_{3}\right)$ be an orthonormal basis of the Lie-algebra of vector fields on M defined by (we refer to [4] for details):

$$
\left[e_{1}, e_{2}\right]=(1+\lambda) e_{3},\left[e_{3}, e_{1}\right]=(1-\lambda) e_{2},\left[e_{2}, e_{3}\right]=2 e_{1},
$$

where $e_{1}=\xi, e_{2}$ is a unit eigenvector of h corresponding to eigenvalue λ and $e_{3}=\phi e_{2}$. In our case $k=1-\lambda^{2}<1$ and $\neq 0$. Following Milnor's classification [7] of 3-dimensional manifolds admitting the Lie-algebra defined above we see that the universal covering space of M is either $S U(2)$ for $k>0$ or $S L(2, R)$ for $k<0$. The case $k=-8$ corresponds to $\lambda= \pm 3$. As $g\left(e_{a}, e_{b}\right)=\delta_{a b}$, we have $\left(£_{v} g\right)\left(e_{a}, e_{b}\right)=$ $g\left(\left[e_{a}, v\right], e_{b}\right)+g\left(e_{a},\left[e_{b}, v\right]\right)$. Setting $v=v^{a} e_{a}$ we have

$$
\begin{equation*}
\left(\mathfrak{£}_{v} \eta\right)\left(e_{1}\right)=e_{1} v^{1},\left(£_{v} \eta\right)\left(e_{2}\right)=e_{2} v^{1}+2 v^{3},\left(\mathfrak{£}_{v} \eta\right)\left(e_{3}\right)=e_{3} v^{1}-2 v^{2} \tag{4.18}
\end{equation*}
$$

Since $£_{v} g=2 \rho g$ we get

$$
\begin{align*}
& e_{1} v^{1}=e_{2} v^{2}=e_{3} v^{3}=\rho, \tag{4.19}\\
& e_{1} v^{2}+e_{2} v^{1}+(\lambda+1) v^{3}=0, \\
& e_{1} v^{3}+e_{3} v^{1}+(\lambda-1) v^{2}=0, \\
& e_{2} v^{3}+e_{3} v^{2}-2 \lambda v^{1}=0
\end{align*}
$$

Introduce auxiliary functions a_{1}, a_{2}, a_{3} by

$$
\begin{align*}
& e_{2} v^{1}=a_{1}-((\lambda+1) / 2) v^{3}, e_{3} v^{2}=a_{2}+\lambda v^{1} \tag{4.20}\\
& e_{1} v^{3}=a_{3}-((\lambda-1) / 2) v^{2}
\end{align*}
$$

Then

$$
\begin{align*}
& e_{3} v^{1}=-a_{3}-(1 / 2)(\lambda-1) v^{2}, e_{1} v^{2}=-a_{1}-(1 / 2)(\lambda+1) v^{3} \tag{4.21}\\
& e_{2} v^{3}=-a_{2}+\lambda v^{1}
\end{align*}
$$

Now

$$
\begin{aligned}
0 & =\left(\left[e_{1}, e_{2}\right]-(1+\lambda) e_{3}\right) v^{1} \\
& =e_{1}\left(a_{1}-((\lambda+1) / 2) v^{3}\right)-e_{2} \rho+(1+\lambda)\left(a_{3}+((\lambda-1) / 2) v^{2}\right)
\end{aligned}
$$

whence

$$
e_{1} a_{1}-e_{2} \rho+((1+\lambda) / 2) a_{3}+(3 / 4)\left(\lambda^{2}-1\right) v^{2}=0
$$

Similarly,

$$
\begin{aligned}
& e_{2} a_{1}+e_{1} \rho-(3 / 2)(1+\lambda) a_{2}-(\lambda / 2)(1+\lambda) v^{1}=0 \\
& e_{2} a_{3}+e_{1} a_{2}+(1 / 2)(3-\lambda) \rho=0 \\
& e_{2} a_{3}+e_{3} a_{1}+\rho=0 \\
& e_{2} a_{2}-e_{3} \rho+(2+\lambda) a_{1}+(1 / 2)\left(2+\lambda-\lambda^{2}\right) v^{3}=0 \\
& e_{3} a_{2}+e_{2} \rho+(\lambda-2) a_{3}+(1 / 2)\left(\lambda^{2}+\lambda-2\right) v^{2}=0 \\
& e_{1} a_{3}+e_{3} \rho+(1 / 2)(\lambda-1) a_{1}+(3 / 4)\left(1-\lambda^{2}\right) v^{3}=0 \\
& e_{3} a_{1}+e_{1} a_{2}+(1 / 2)(3+\lambda) \rho=0 \\
& e_{3} a_{3}-e_{1} \rho+(3 / 2)(1-\lambda) a_{2}-(\lambda / 2)(1-\lambda) v^{1}=0
\end{aligned}
$$

Solving them and setting $b_{a}=e_{a} \rho$, we get

$$
\begin{aligned}
& e_{1} a_{1}=b_{2}-(1 / 2)(\lambda+1) a_{3}-(3 / 4)\left(\lambda^{2}-1\right) v^{2}, \\
& e_{2} a_{1}=-b_{1}+(3 / 2)(1+\lambda) a_{2}+(\lambda / 2)(\lambda+1) v^{1}, \\
& e_{3} a_{1}=-(1 / 2)(\lambda+1) \rho, \\
& e_{1} a_{2}=-\rho, \\
& e_{2} a_{2}=b_{3}-(2+\lambda) a_{1}-(1 / 2)\left(2+\lambda-\lambda^{2}\right) v^{3}, \\
& e_{3} a_{2}=-b_{2}-(1 / 2)\left(\lambda^{2}+\lambda-2\right) v^{2}-(\lambda-2) a_{3}, \\
& e_{1} a_{3}=-b_{3}-(1 / 2)(\lambda-1) a_{1}-(3 / 4)\left(1-\lambda^{2}\right) v^{3}, \\
& e_{2} a_{3}=(1 / 2)(\lambda-1) \rho, \\
& e_{3} a_{3}=b_{1}+(3 / 2)(\lambda-1) a_{2}-(\lambda / 2)(\lambda-1) v^{1} .
\end{aligned}
$$

Their integrability conditions are

$$
\begin{aligned}
& e_{1} b_{2}-e_{2} b_{1}=(1+\lambda) b_{3}, \\
& e_{2} b_{3}-e_{3} b_{2}=2 b_{1}, \\
& e_{3} b_{1}-e_{1} b_{3}=(1-\lambda) b_{2}, \\
& e_{1} b_{1}+e_{2} b_{2}=2\left(\lambda^{2}-1\right) \rho \\
& e_{3} b_{1}=(1-\lambda) b_{2}+2 a_{3}\left(1-\lambda^{2}\right)+\left(3+\lambda-3 \lambda^{2}-\lambda^{3}\right) v^{3}, \\
& e_{3} b_{2}=(\lambda-1) b_{1}, \\
& e_{1} b_{3}=2\left(1-\lambda^{2}\right) a_{3}+\left(3+\lambda-3 \lambda^{2}-\lambda^{3}\right) v^{2},
\end{aligned}
$$

$$
\begin{align*}
& e_{2} b_{2}+e_{3} b_{3}=2 \rho\left(1-\lambda^{2}\right), \\
& e_{1} b_{2}=2\left(\lambda^{2}-1\right) a_{1}+\left(\lambda-3+3 \lambda^{2}-\lambda^{3}\right) v^{3}, \\
& e_{2} b_{3}=(1+\lambda) b_{1}, \\
& e_{2} b_{1}=2\left(\lambda^{2}-1\right) a_{1}-(1+\lambda) b_{3}+\left(\lambda-3+3 \lambda^{2}-\lambda^{3}\right) v^{3} \tag{4.22}\\
& e_{1} b_{1}+e_{3} b_{3}=2\left(\lambda^{2}-1\right) \rho .
\end{align*}
$$

Therefore $e_{1} b_{1}=-3\left(e_{2} b_{2}\right)=-3\left(e_{3} b_{3}\right)=3\left(\lambda^{2}-1\right) \rho$. Next applying $e_{1} e_{2}-e_{2} e_{1}-$ $(1+\lambda) e_{3}=0$ and two other Lie-algebra equations to any two of b_{1}, b_{2}, b_{3} and using above equations we obtain $\rho=0, a_{2}=-v^{1}, 2 a_{3}+(\lambda+3) v^{2}=0$ and for $\lambda \neq 3$, $2 a_{1}-(\lambda-3) v^{3}=0$. As $\rho=0, b_{a}=0$. Going back to equations (4.19), (4.20) and (4.21), (4.18) shows $£_{v} \eta=0$. Hence v is an infinitesimal automorphism of the contact metric structure. For case $\lambda=3$, i.e., $k=-8$, we have $\rho=0, a_{2}+v^{1}=0$, $a_{3}+3 v^{2}=0$ and $b_{a}=0$, but no information on a_{1}. However appealing to (4.22) we obtain $a_{1}=0$. Again equations (4.18) through (4.21) show $£_{v} \eta=0$. This completes the proof.

Proof of the Corollary to Theorem 2. In [11] it was proved that if M is a contact metric manifold with non-vanishing $K(\xi, X)$ and $K(\xi, X)=K(\xi, \phi X)$ everywhere and for all X orthogonal to ξ, then a vector field v satisfying $£_{v} R_{a b c}{ }^{d}=0$ is homothetic. Now we have equation (2.4) which implies that the ξ-sectional curvature $K(\xi, X)=k$. By hypothesis $k \neq 0$. Thus v is homothetic. Obviously $R_{a b} \eta^{a} \eta^{b}=2 n k$ and $£_{v} R_{a b}=0$ and hence $R_{a b} \eta^{a} £_{v} \eta^{b}=0$. But $R_{a b} \eta^{a}=2 n k \eta_{b}$ and so $\left(£_{v} \eta^{b}\right) \eta_{b}=0$, since $k \neq 0$. Lie-differentiating $g_{a b} \eta^{a} \eta^{b}=1$ gives $\left(£_{v} g_{a b}\right) \eta^{a} \eta^{b}=$ $-2\left(\mathfrak{£}_{v} \eta^{b}\right) \eta_{b}=0$. Now $\mathfrak{£}_{v} g_{a b}=c g_{a b}(c$ constant $)$ gives $c=\left(\mathfrak{£}_{v} g_{a b}\right) \eta^{a} \eta^{b}=0$. Thus v is Killing and hence from Theorem 2, v is an automorphism of the contact metric structure.

Concluding Remark. Motivated by the result (see [14]) that conformally flat Kcontact manifolds are Sasakian manifolds of constant curvature we pose this question: "Are there K-contact manifolds that admit a conformal motion and are not Sasakian?"

Acknowledgment. The authors appreciate Professor Luc Vrancken's help in resolving the unnaturally arising case $k=-8$ in Theorem 2 using Mathematica. R.S. is also thankful to Professor D. Perrone for suggesting the corollary and remark following Theorem 1 and to Professors M. Okumura and T. Koufogiorgos for going over the manuscript.

References

1. C. Baikoussis, D. E. Blair and T. Koufogiorgos, A decomposition of the curvature tensor of a contact manifold satisfying $R(X, Y) \xi=k(\eta(Y) X-\eta(X) Y)$, Math. Technical Report, University of Ioannina, Greece, 1992.
2. D. E. Blair, Contact manifolds in Riemannian geometry, Lecture notes in Mathematics no. 509, Springer-Verlag, Berlin 1976.
3. D. E. Blair, Two remarks on contact metric structures, Tohoku Math. J. 29 (1977), 319-324.
4. D. E. Blair and H. Chen, A classification of 3-dimensional contact metric manifolds with $Q \phi=\phi Q$ II, Bull. Inst. Math. Acad. Sinica 20 (1992), 379-383.
5. D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), 189-214.
6. D. E. Blair, T. Koufogiorgos and R. Sharma, A classification of 3-dimensional contact metric manifolds with $Q \phi=\phi Q$, Kodai Math. J. 13 (1990), 391-401.
7. J. Milnor, Curvature of left invariant metrics on Lie-groups, Adv. in Math. 21 (1976), 293-329.
8. M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333- 340.
9. M. Okumura, Some remarks on space with certain contact structures, Tohoku Math. J. 14 (1962), 135-145.
10. \longrightarrow, On infinitesimal conformal and projective transformations of normal contact spaces, Tohoku Math. J. 14 (1962), 398-412.
11. R. Sharma, On the curvature of contact metric manifolds, J. Geom. 53 (1995), 179-190.
12. S. Tanno, Note on infinitesimal transformations over contact manifolds, Tohoku Math. J. 14 (1962), 416-430.
13. \qquad Some transformations on manifolds with almost contact and contact metric structures, Tohoku Math. J. 15 (1963), 140-147.
14. —. Locally symmetric K-contact Riemannian manifolds, Proc. Japan Acad. 43 (1967), 581583.
15. \qquad ,Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J. 40 (1988), 441-448.
16. Y. Watanabe, Geodesic symmetries in Sasakian locally ϕ-symmetric spaces, Kodai Math. J. 3 (1980), 48-55.
17. K. Yano, Integral formulas in Riemannian geometry, Marcel Dekker, New York, (1970).

University of New Haven
West Haven, Connecticut
Michigan State University
East Lansing, Michigan

