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Abstract

We extend conformal prediction methodology beyond the case of exchangeable
data. In particular, we show that a weighted version of conformal prediction can be
used to compute distribution-free prediction intervals for problems in which the
test and training covariate distributions differ, but the likelihood ratio between the
two distributions is known—or, in practice, can be estimated accurately from a
set of unlabeled data (test covariate points). Our weighted extension of conformal
prediction also applies more broadly, to settings in which the data satisfies a certain
weighted notion of exchangeability. We discuss other potential applications of our
new conformal methodology, including latent variable and missing data problems.

1 Introduction

Let (Xi, Yi) ∈ R
d×R, i = 1, . . . , n denote training data, assumed to be i.i.d. from an arbitrary distri-

bution P . Given a desired coverage rate 1− α ∈ (0, 1), consider the problem of constructing a band
Ĉn : Rd → {subsets of R}, based on the training data such that, for a new i.i.d. point (Xn+1, Yn+1),

P

{
Yn+1 ∈ Ĉn(Xn+1)

}
≥ 1− α, (1)

where this probability is taken over the n+ 1 points (Xi, Yi), i = 1, . . . , n+ 1 (the n training points
and the test point). Crucially, we will require (1) to hold with no assumptions whatsoever on the
underlying distribution P .

Conformal prediction, a framework pioneered by Vladimir Vovk and colleagues in the 1990s, provides
a means for achieving this goal, relying only on exchangeablility of the training and test data. The
definitive reference is the book by Vovk et al. [2005]; see also Shafer and Vovk [2008], Vovk et al.
[2009], Vovk [2013], Burnaev and Vovk [2014], and http://www.alrw.net for an often-updated list
of conformal prediction work by Vovk and colleagues. Moreover, see Lei and Wasserman [2014], Lei
et al. [2018] for recent developments in the areas of nonparametric and high-dimensional regression.

In this work, we extend conformal prediction beyond the setting of exchangeable data, allowing for
provably valid inference even when the training and test data are not drawn from the same distribution.
We begin by reviewing the basics of conformal prediction, in this section. In Section 2, we describe
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an extension of conformal prediction to the setting of covariate shift, and give supporting empirical
results. In Section 3, we cover the mathematical details behind our conformal extension. We conclude
in Section 4 with a short discussion.

1.1 Quantile lemma

Before explaining the basic ideas behind conformal inference (i.e., conformal prediction, we will use
these two terms interchangeably), we introduce some notation. We denote by Quantile(β;F ) the
level β quantile of a distribution F , i.e., for Z ∼ F ,

Quantile(β;F ) = inf
{
z : P{Z ≤ z} ≥ β

}
.

In our use of quantiles, we will allow for distributions F on the augmented real line, R ∪ {∞}. For
values v1, . . . , vn, we write v1:n = {v1, . . . , vn} to denote their multiset. Note that this is unordered,
and allows for multiple instances of the same element; thus in the present case, if vi = vj for i 6= j,
then this value appears twice in v1:n. To denote quantiles of the empirical distribution of the values
v1, . . . , vn, we abbreviate

Quantile(β; v1:n) = Quantile

(
β;

1

n

n∑

i=1

δvi

)
,

where δa denotes a point mass at a (i.e., the distribution that places all mass at the value a). The next
result is a simple but key component underlying conformal prediction. Its proof, as with all proofs in
this paper, is deferred to the supplement.

Lemma 1. If V1, . . . , Vn+1 are exchangeable random variables, then for any β ∈ (0, 1), we have

P

{
Vn+1 ≤ Quantile

(
β;V1:n ∪ {∞}

)}
≥ β.

Furthermore, if ties between V1, . . . , Vn+1 occur with probability zero, then the above probability is
upper bounded by β + 1/(n+ 1).

1.2 Conformal prediction

We now return to the regression setting.1 Denote Zi = (Xi, Yi), i = 1, . . . , n. In what follows, we
describe the construction of a prediction band satisfying (1), using conformal inference, due to Vovk
et al. [2005]. We first choose a score function S, whose arguments consist of a point (x, y), and a
multiset Z.2 Informally, a low value of S((x, y), Z) indicates that the point (x, y) “conforms” to Z,
whereas a high value indicates that (x, y) is atypical relative to the points in Z. For example, we
might choose to define S by

S
(
(x, y), Z

)
= |y − µ̂(x)|, (2)

where µ̂ : Rd → R is a regression function, fitted by running an algorithm A on Z. Next, at a given
x ∈ R

d, we define Ĉn(x), the conformal prediction interval3, by repeating the following procedure
for each y ∈ R. We calculate the nonconformity scores

V
(x,y)
i = S

(
Zi, Z1:n ∪ {(x, y)}

)
, i = 1, . . . , n, and V

(x,y)
n+1 = S

(
(x, y), Z1:n ∪ {(x, y)}

)
, (3)

and include y in our prediction interval Ĉn(x) if

V
(x,y)
n+1 ≤ Quantile

(
1− α;V

(x,y)
1:n ∪ {∞}

)
,

where V
(x,y)
1:n = {V

(x,y)
1 , . . . , V

(x,y)
n }. Importantly, the symmetry in the construction of the noncon-

formity scores (3) guarantees exact coverage in finite samples. The next theorem summarizes this
coverage result. The lower bound is a standard result from the conformal literature, see Vovk et al.
[2005]; the upper bound, as far as we know, was first pointed out by Lei et al. [2018].

1Throughout this paper, we focus on regression, where the response Y is continuous, for simplicity. The
same ideas can be applied to classification, where Y is discrete.

2We emphasize that by defining Z to be a multiset, we are treating its points as unordered. Hence, to be
perfectly explicit, the score function S cannot accept the points in Z in any particular order, and it must take
them in as unordered. The same is true of the base algorithm A used to define the fitted regression function µ̂, in
the choice of absolute residual score function (2).

3For convenience, throughout, we will refer to Ĉn(x) as an “interval”, even though this may actually be a
union of multiple nonoverlapping intervals. Similarly, for simplicity, we will refer to Ĉn as a “band”.
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Theorem 1 (Vovk et al. 2005, Lei et al. 2018). Assume that (Xi, Yi) ∈ R
d × R, i = 1, . . . , n + 1

are exchangeable. For any score function S, and any α ∈ (0, 1), define the conformal band (based

on the first n samples) at x ∈ R
d by

Ĉn(x) =
{
y ∈ R : V

(x,y)
n+1 ≤ Quantile

(
1− α;V

(x,y)
1:n ∪ {∞}

)}
, (4)

where V
(x,y)
i , i = 1, . . . , n+ 1 are as defined in (3). Then Ĉn satisfies

P

{
Yn+1 ∈ Ĉn(Xn+1)

}
≥ 1− α.

Furthermore, if ties between V
(Xn+1,Yn+1)
1 , . . . , V

(Xn+1,Yn+1)
n+1 occur with probability zero, then this

probability is upper bounded by 1− α+ 1/(n+ 1).

Remark 1. Theorem 1 is stated assuming exchangeable samples (Xi, Yi), i = 1, . . . , n+ 1, which
is weaker than assuming i.i.d. samples. As we will see in what follows, it is possible to relax the
exchangeability assumption, under an appropriate modification to the conformal procedure.

Remark 2. If we use an appropriate random tie-breaking rule (to determine the rank of Vn+1 among
V1, . . . , Vn+1), then the upper bounds in Lemma 1 and Theorem 1 hold in general (without assuming
there are no ties almost surely).

The result in Theorem 1, albeit simple to prove, is quite remarkable. It gives a recipe for distribution-
free prediction intervals, having nearly exact coverage, starting from an arbitrary score function S;
e.g., absolute residuals defined using a fitted regression function from any base algorithm A, as in (2).
For more discussion of conformal prediction, its properties, and its variants, see Vovk et al. [2005],
Lei et al. [2018] and references therein.

2 Covariate shift

In this paper, we are concerned with settings in which the data (Xi, Yi), i = 1, . . . , n + 1 are no
longer exchangeable. Our primary focus will be a setting in which we observe data according to

(Xi, Yi)
i.i.d.
∼ P = PX × PY |X , i = 1, . . . , n,

(Xn+1, Yn+1) ∼ P̃ = P̃X × PY |X , independently.
(5)

Notice that the conditional distribution of Y |X is assumed to be the same for both the training and
test data. Such a setting is often called covariate shift (e.g., see Shimodaira 2000, Quinonero-Candela
et al. 2009; see also Remark 4 below for more discussion of this literature). The key realization is the
following: if we know the ratio of test to training covariate likelihoods, dP̃X/dPX , then we can still
perform a modified of version conformal inference, using a quantile of a suitably weighted empirical
distribution of nonconformity scores. The next subsection gives details; following this, we give an
empirical demonstration.

2.1 Weighted conformal prediction

In conformal prediction, we form a prediction interval by comparing the value of a nonconformity
score at a test point to the empirical distribution of nonconformity scores at the training points. In the
covariate shift case, where the covariate distributions PX , P̃X in our training and test sets differ, we
will now weight each nonconformity score V

(x,y)
i (measuring how well Zi = (Xi, Yi) conforms to

the other points) by a probability proportional to the likelihood ratio w(Xi) = dP̃X(Xi)/dPX(Xi).
Therefore, we will no longer be interested in the empirical distribution 1

n+1

∑n

i=1 δV (x,y)
i

+ 1
n+1δ∞,

as in Theorem 1, but rather, a weighted version
n∑

i=1

pwi (x)δV (x,y)
i

+ pwn+1(x)δ∞,

where the weights are defined by

pwi (x) =
w(Xi)∑n

j=1 w(Xj) + w(x)
, i = 1, . . . , n, and pwn+1(x) =

w(x)∑n

j=1 w(Xj) + w(x)
. (6)

Due this careful weighting, draws from the discrete distribution in the second to last display resemble
nonconformity scores computed on the test population, and thus, they “look exchangeable” with the
nonconformity score at our test point. Our main result below formalizes these claims.
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Corollary 1. Assume data from the model (5). Assume P̃X is absolutely continuous with respect to
PX , and denote w = dP̃X/dPX . For any score function S , and any α ∈ (0, 1), define for x ∈ R

d,

Ĉn(x) =

{
y ∈ R : V

(x,y)
n+1 ≤ Quantile

(
1− α;

n∑

i=1

pwi (x)δV (x,y)
i

+ pwn+1(x)δ∞

)}
, (7)

where V
(x,y)
i , i = 1, . . . , n+ 1 are as defined in (3), and pwi , i = 1, . . . , n+ 1 are as defined in (6).

Then Ĉn satisfies

P

{
Yn+1 ∈ Ĉn(Xn+1)

}
≥ 1− α.

Corollary 1 is a special case of a more general result presented later in Theorem 2, which extends
conformal inference to a setting in which the data are what we call weighted exchangeable.

Remark 3. The same result as in Corollary 1 holds if w ∝ dP̃X/dPX , i.e., with unknown normal-
ization constant, because this constant cancels out in the calculation of probabilities in (6).

Remark 4. Though the basic premise of covariate shift—and certainly the techniques employed
in addressing it—are related to much older ideas in statistics, the specific setup in (5) has recently
generated great interest in machine learning: e.g., see Sugiyama and Muller [2005], Sugiyama et al.
[2007], Quinonero-Candela et al. [2009], Agarwal et al. [2011], Wen et al. [2014], Reddi et al. [2015],
Chen et al. [2016] and references therein). The focus is usually on correcting estimators, model
evaluation, or model selection approaches to account for covariate shift. Correcting distribution-free
prediction intervals, as we examine in this work, is (as far as we know) a new contribution. As one
might expect, the likelihood ratio dP̃X/dPX , a key component of our conformal construction in
Corollary 1, also plays a critical role in much of the literature on covariate shift.

2.2 Airfoil data example

We demonstrate conformal prediction in the covariate shift setting using an empirical example. We
consider the airfoil data set from the UCI Machine Learning Repository [Dua and Graff, 2019], which
has N = 1503 observations of a response Y (scaled sound pressure level of NASA airfoils), and a
covariate X with d = 5 dimensions (log frequency, angle of attack, chord length, free-stream velocity,
and suction side log displacement thickness). For efficiency, we use a variant of conformal prediction
called split conformal prediction [Papadopoulos et al., 2002, Lei et al., 2015], which we extend to the
covariate shift case in the same way (using weighted quantiles); see the supplement. For R code to
reproduce the results that follow, see http://www.github.com/ryantibs/conformal/.

Creating training data, test data, and covariate shift. We repeated an experiment for 5000 trials,
where for each trial we randomly partitioned the data {(Xi, Yi)}

N
i=1 into two sets Dtrain, Dtest, and

also constructed a covariate shift test set Dshift, which have the following roles.

• Dtrain, containing 50% of the data, is our training set, i.e., (Xi, Yi), i = 1, . . . , n, used to
compute conformal prediction intervals (using the split conformal variant).

• Dtest, containing 50% of the data, is our test set (as these data points are exchangeable with
those in Dtrain, there is no covariate shift in this test set).

• Dshift is a second test set, constructed to simulate covariate shift, by sampling 25% of the
points from Dtest with replacement, with probabilities proportional to

w(x) = exp(xTβ), where β = (−1, 0, 0, 0, 1). (8)

As the original data points Dtrain ∪Dtest can be seen as draws from the same underlying distribution,
we can view w(x) as the likelihood ratio of covariate distributions between the test set Dshift and
training set Dtrain. Note that the test covariate distribution P̃X , which satisfies dP̃X ∝ exp(xTβ)dPX

as we have defined it here, is called an exponential tilting of the training covariate distribution PX .
The supplement displays kernel density estimates fit to the airfoil data set, pre and post exponential
tilting, to visualize the differences in the covariate distributions.

Loss of coverage of ordinary conformal prediction under covariate shift. First, we examine
the performance of ordinary split conformal prediction. The nominal coverage level was set to be
90% (meaning α = 0.1), here and throughout. The results are displayed in the top row of Figure 1.
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In each of the 5000 trials, we computed the empirical coverage from the split conformal intervals
over points in the test sets, and the histograms show the distribution of these empirical coverages over
the trials. We see that for the original test data Dtest (no covariate shift, shown in red), split conformal
works as expected, with the average of the empirical coverages (over the 5000 trials) being 90.2%; for
the nonuniformly subsampled test data Dshift (covariate shift, in blue), split conformal considerably
undercovers, with its average coverage being 82.2%.

Coverage of weighted conformal prediction with oracle weights. Next, displayed in the middle
row of Figure 1, we consider weighted split conformal prediction, to cover the points in Dshift (shown
in orange). At the moment, we assume oracle knowledge of the true weight function w in (8) needed
to calculate the probabilities in (6). We see that this brings the coverage back to the desired level,
with the average coverage being 90.8%. However, the histogram is more dispersed than it is when
there is no covariate shift (compare to the top row, in red). This is because, by using a quantile of
the weighted empirical distribution of nonconformity scores, we are relying on a reduced “effective
sample size”. Given training points X1, . . . , Xn, and a likelihood ratio w of test to training covariate
distributions, a popular heuristic formula from the covariate shift literature for the effective sample
size of X1, . . . , Xn is [Gretton et al., 2009, Reddi et al., 2015]:

n̂ =
[
∑n

i=1 |w(Xi)|]
2

∑n

i=1 |w(Xi)|2
=

‖w(X1:n)‖
2
1

‖w(X1:n)‖22
,

where we abbreviate w(X1:n) = (w(X1), . . . , w(Xn)) ∈ R
n. To compare weighted conformal

prediction against the unweighted method at the same effective sample size, in each trial, we ran
unweighted split conformal on the original test set Dtest, but we used only n̂ subsampled points from
Dtrain to compute the quantile of nonconformity scores. The results (the middle row of Figure 1, in
purple) line up closely with those from weighted conformal, which shows that the overdispersion in
the coverage histogram from the latter is fully explained by the reduced effective sample size.

Coverage of weighted conformal with estimated weights. Denote by X1, . . . , Xn the covariate
points in Dtrain and by Xn+1, . . . , Xn+m the covariate points in Dshift. Here we describe how to
estimate w = dP̃X/dPX , the likelihood ratio of interest, by applying logistic regression or random
forests (more generally, any classifier that outputs estimated probabilities of class membership) to
the feature-class pairs (Xi, Ci), i = 1, . . . , n +m, where Ci = 0 for i = 1, . . . , n and Ci = 1 for
i = n+ 1, . . . , n+m. Noting that

P(C = 1|X = x)

P(C = 0|X = x)
=

P(C = 1)

P(C = 0)

dP̃X

dPX

(x),

we can take the conditional odds ratio w(x) = P(C = 1|X = x)/P(C = 0|X = x) as an equivalent
representation for the oracle weight function (since we only need to know the likelihood ratio up to
a proportionality constant, recall Remark 3). Therefore, if p̂(x) is an estimate of P(C = 1|X = x)
obtained by fitting a classifier to the data (Xi, Ci), i = 1, . . . , n+m, then we can use

ŵ(x) =
p̂(x)

1− p̂(x)
(9)

as our estimated weight function for the calculation of probabilities (6) that are needed for conformal
prediction. There is in fact a sizeable literature on density ratio estimation, and the method just
describe falls into a class called probabilistic classification approaches; two other classes are based
on moment matching, and minimization of φ-divergences (e.g., Kullblack-Leibler divergence). For a
comprehensive review of these approaches, and supporting theory, see Sugiyama et al. [2012].

The bottom row of Figure 1 shows the results from using weighted split conformal prediction to
cover the points in Dshift, where the weight function ŵ has been estimated as in (9), using logistic
regression (in gray) and random forests4 (in green) to fit the class probability function p̂. Note that
logistic regression is well-specified in this example, as it assumes the log odds is a linear function of
x, which is exactly as in (8). Random forests, of course, allows more flexibility in the fitted model.

4In the random forests approach, we clipped the estimated test class probability p̂(x) to lie in between 0.01
and 0.99, to prevent the estimated weight (likelihood ratio) ŵ(x) from being infinite. Without clipping, the
estimated probability of being in the test class was sometimes exactly 1 (this occurred in about 2% of the cases
encountered over all 5000 repetitions), resulting in an infinite weight, and causing numerical issues.
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Figure 1: Empirical coverages of conformal prediction intervals, computed using 5000 different random splits
of the airfoil data set. The averages of empirical coverages in each histogram are marked on the x-axis.
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Both classification approaches deliver weights that translate into good average coverage, being 91.0%
for each approach. Furthermore, their histograms are only a little more dispersed than that for the
oracle weights (middle row, in orange). For more simulation results, see the supplement.

3 Weighted exchangeability

In this section, we develop a general result on conformal prediction for settings in which the data
satisfy what we call weighted exchangeability. First we precisely define this concept, then we extend
Lemma 1 to this new setting, and extend conformal prediction as well.

3.1 Generalizing exchangeability

We first define a generalized notion of exchangeability.

Definition 1. We call random variables V1, . . . , Vn weighted exchangeable, with weight functions
w1, . . . , wn, if the density5 f of their joint distribution can be factorized as

f(v1, . . . , vn) =

n∏

i=1

wi(vi) · g(v1, . . . , vn),

where g does not depend on the ordering of its inputs, i.e., g(vσ(1), . . . , vσ(n)) = g(v1, . . . , vn) for
any permutation σ of 1, . . . , n.

Clearly, weighted exchangeability with weight functions wi ≡ 1, i = 1, . . . , n reduces to ordinary
exchangeability. Furthermore, independent draws (where all marginal distributions are absolutely
continuous with respect to, say, the first one) are always weighted exchangeable, with weight functions
given by the appropriate Radon-Nikodym derivatives, i.e., likelihood ratios. This is stated next; the
proof follows directly from Definition 1 and is omitted.

Lemma 2. Let Zi ∼ Pi, i = 1, . . . , n be independent draws, where each Pi is absolutely continuous
with respect to P1, for i ≥ 2. Then Z1, . . . , Zn are weighted exchangeable, with weight functions
w1 ≡ 1, and wi = dPi/dP1, i ≥ 2.

Lemma 2 highlights an important special case (which we note, includes the covariate shift model in
(5)). But it is worth being clear that our definition of weighted exchangeability encompasses more
than independent sampling, and allows for a nontrivial dependency structure between the variables.

3.2 Generalizing conformal prediction

Now we give a weighted generalization of Lemma 1.

Lemma 3. Let Zi, i = 1, . . . , n+1 be weighted exchangeable, with weight functions w1, . . . , wn+1.
Let Vi = S(Zi, Z1:(n+1)), for i = 1, . . . , n+ 1, and S is an arbitrary score function. Define

pwi (z1, . . . , zn+1) =

∑
σ:σ(n+1)=i

∏n+1
j=1 wj(zσ(j))

∑
σ

∏n+1
j=1 wj(zσ(j))

, i = 1, . . . , n+ 1, (10)

where the summations are taken over permutations σ of the numbers 1, . . . , n + 1. Then for any
β ∈ (0, 1),

P

{
Vn+1 ≤ Quantile

(
β;

n∑

i=1

pwi (Z1, . . . , Zn+1)δVi
+ pwn+1(Z1, . . . , Zn+1)δ∞

)}
≥ β.

Remark 5. When V1, . . . , Vn+1 are exchangeable, we have wi ≡ 1 for i = 1, . . . , n, and so pwi ≡ 1
for i = 1, . . . , n. Note that, in this special case, the lower bound in Lemma 3 reduces to the ordinary
unweighted lower bound in Lemma 1. On the other hand, obtaining a meaningful upper bound on the
probability in question in Lemma 3, as was done in Lemma 1 (when we assume almost surely no ties),
does not seem possible without further conditions on the weight functions. This is because the largest
jump in the cumulative distribution function of Vn+1|Ez is of size maxi=1,...,n+1 p

w
i (z1, . . . , zn+1),

which can potentially be very large; in the unweighted case, this jump is always of size 1/(n+ 1).

5More generally, f may be the Radon-Nikodym derivative with respect to an arbitrary base measure.
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A weighted version of conformal prediction follows immediately from Lemma 3.

Theorem 2. Assume that Zi = (Xi, Yi) ∈ R
d×R, i = 1, . . . , n+1 are weighted exchangeable with

weight functions w1, . . . , wn+1. For any score function S, and any α ∈ (0, 1), define the weighted

conformal band (based on the first n samples) at a point x ∈ R
d by

Ĉn(x) =

{
y ∈ R : V

(x,y)
n+1 ≤ Quantile

(
1− α;

n∑

i=1

pwi
(
Z1, . . . , Zn, (x, y)

)
δ
V

(x,y)
i

+

pwn+1

(
Z1, . . . , Zn, (x, y)

)
δ∞

)}
, (11)

where V
(x,y)
i , i = 1, . . . , n+ 1 are as defined in (3), and pwi , i = 1, . . . , n+ 1 are as defined in (10).

Then Ĉn satisfies

P

{
Yn+1 ∈ Ĉn(Xn+1)

}
≥ 1− α.

Observe that Corollary 1 follows by taking wi ≡ 1 for i = 1, . . . , n, and wn+1((x, y)) = w(x).

4 Discussion

We described an extension of conformal prediction to handle weighted exchangeable data, covering
exchangeable data, and independent (but not identically distributed) data, as special cases. In general,
the new weighted methodology requires computing quantiles of a weighted discrete distribution of
nonconformity scores, which is combinatorially hard. But the computations simplify dramatically for
a case of significant practical interest, where the test covariate distribution P̃X differs from the training
covariate distribution PX by a known likelihood ratio dP̃X/dPX (and the conditional distribution
PY |X remains unchanged). In this case, called covariate shift, the new weighted conformal prediction
methodology is just as easy, computationally, as ordinary conformal prediction. When the likelihood
ratio dP̃X/dPX is not known, it can be estimated given access to unlabeled data (test covariate points),
which we showed empirically, on a low-dimensional example, can still yield correct coverage.

Beyond the setting of covariate shift that we have focused on (as the main application in this paper),
our weighted conformal methodology can be applied to several other closely related settings, where
ordinary conformal prediction will not directly yield correct coverage. We discuss two such settings
below; a third, on approximate conditional inference, is discussed the supplement.

Graphical models with covariate shift. Assume that the training data (Z,X, Y ) ∼ P obeys the
Markovian structure Z → X → Y . As an example, to make matters concrete, suppose that Z is a
low-dimensional covariate (such as ancenstry information), X is a high-dimensional set of features
for a person (such as genetic measurements), and Y is a real-valued outcome of interest (such as life
expectancy). Suppose that on the test data (Z,X, Y ) ∼ P̃ , the distribution of Z has changed, causing
a change in the distribution of X , and thus causing a change in the distribution of the unobserved
Y (however the distribution of X|Z is unchanged). One plausible solution to this problem would
be to just ignore Z in both training and test sets, and run weighted conformal prediction on only
(X,Y ), treating this like a usual covariate shift problem. But, as X is high-dimensional, this would
require estimating a ratio of two high-dimensional densities, which would be difficult. Since Z is
low-dimensional, we can instead estimate the weights by estimating the likelihood ratio of Z between
test and training sets, which follows because for the joint covariate (Z,X),

P̃Z,X(z, x)

PZ,X(z, x)
=

P̃Z(z)PX|Z=z(x)

PZ(z)PX|Z=z(x)
=

P̃Z(z)

PZ(z)
.

This may be a more tractable quantity to estimate for the purpose of weighted conformal inference.
These ideas may be generalized to more complex graphical settings, which we leave to future work.

Missing covariates with known summaries. As another concrete example, suppose that hospital
A has collected a private training data set (Z,X, Y ) ∼ PA where Z ∈ {0, 1} is a sensitive patient
covariate, X represents other covariates, and Y is a real-valued response that is expensive to measure.
Suppose that hospital B also has its own data set, but in order to save money and not measure the
responses for their patients, it asks hospital A for help to produce prediction intervals for these
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responses. Instead of sharing the collected data (Z,X) ∼ PB for each patient with hospital A, due
to privacy concerns, hospital B only provides hospital A with the X covariate for each patient, along
with a summary statistic for Z, representing the fraction of Z values that equal one (more accurately,
the probability of drawing a patient with Z = 1 from their underlying patient population). Assume
that PA

X|Z = PB
X|Z (e.g., if Z is the sex of the patient, then this assumes there is one joint distribution

on X for males and one for females, which does not depend on the hospital). The likelihood ratio of
covariate distributions thus again reduces to calculating the likelihood ratio of Z between PB and
PA, which we can easily do, and use weighted conformal prediction.

Towards local conditional coverage? We finish by descibing how our weighted conformal method-
ology can be used to construct prediction bands with certain a approximate notion of conditional
coverage. Given i.i.d. (Xi, Yi), i = 1, . . . , n+ 1, consider, instead of the original goal (1),

P

{
Yn+1 ∈ Ĉn(x0)

∣∣∣Xn+1 = x0

}
≥ 1− α. (12)

This is (exact) conditional coverage at x0 ∈ R
d. As it turns out, asking for (12) to hold at PX -almost

every x0 ∈ R
d, and for all distributions P is far too strong: Vovk [2012], Lei and Wasserman [2014]

prove that any method with such a property must yield an interval Ĉn(x0) with infinite expected
length at any non-atom point x0, for any underlying distribution P . Thus we must relax (12) and
seek some notion of approximate conditional coverage, if we hope to achieve it with a nontrivial
prediction band. Some relaxations were recently considered in Barber et al. [2019], most of which
were also impossible to achieve in a nontrivial way. A different, natural relaxation of (12) is

∫
P
(
Yn+1 ∈ Ĉn(x0) |Xn+1 = x

)
K
(
x−x0

h

)
dPX(x)∫

K
(
x−x0

h

)
dPX(x)

≥ 1− α, (13)

where K is kernel function and h > 0 is bandwidth parameter. Here we are asking for a prediction
band whose average conditional coverage, in some locally-weighted sense around x, is at least 1− α.
We can equivalently write (13) as

P

{
Yn+1 ∈ Ĉn(x0)

∣∣∣Xn+1 = x0 + hω
}
≥ 1− α, (14)

where the probability is taken over the n+1 data points and an independent draw ω from a distribution
whose density is proportional to K. As we can see from (13) (or (14)), this kind of locally-weighted
guarantee should be close to a guarantee on conditional coverage, when the bandwidth h is small.

In order to achieve (13) in a distribution-free manner, we can invoke the weighted conformal inference
methodology. In particular, note that we can once more rewrite (14) as

Px0

{
Yn+1 ∈ Ĉn(X̃n+1)

}
≥ 1− α, (15)

where Px0 integrates over training points (Xi, Yi), i = 1, . . . , n i.i.d. from P = PX × PY |X and an
independent test point (X̃n+1, Yn+1), from P̃ = P̃X × PY |X , where dP̃X/dPX ∝ K((· − x0)/h).
Note that this precisely fits into the covariate shift setting (5). To be explicit, for any score function S ,
and any α ∈ (0, 1), given a center point x0 ∈ R

d of interest, define

Ĉn(x) =

{
y ∈ R : V

(x,y)
n+1 ≤ Quantile

(
1− α;

∑n

i=1 K
(
Xi−x0

h

)
δ
V

(x,y)
i

+K
(
x−x0

h

)
δ∞

∑n

i=1 K
(
Xi−x0

h

)
+K

(
x−x0

h

)
)}

,

where V
(x,y)
i , i = 1, . . . , n+ 1, are as in (3). Then by Corollary 1,

Px0

{
Yn+1 ∈ Ĉn(Xn+1;x0)

}
≥ 1− α. (16)

This is “almost” of the desired form (15) (equivalently (13), or (14)), except for one critical caveat.
The band Ĉn( · ;x0) in (16) was constructed based on knowing the center point x0 in advance. If
we were to ask for local conditional coverage at a new point x0, then the entire band Ĉn(·;x0) must
change (must be recomputed) in order to accommodate the new guarantee.
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