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Abstract. In this paper we introduce, in the Riemannian setting, the notion of conformal Ricci soliton,

which includes as particular cases Einstein manifolds, conformal Einstein manifolds and (generic and

gradient) Ricci solitons. We provide here some necessary integrability conditions for the existence of

these structures that also recover, in the corresponding contexts, those already known in the literature

for conformally Einstein manifolds and for gradient Ricci solitons. A crucial tool in our analysis is the

construction of some appropriate and highly nontrivial (0, 3)-tensors related to the geometric structures,

that in the special case of gradient Ricci solitons become the celebrated tensor D recently introduced

by Cao and Chen. A significant part of our investigation, which has independent interest, is the

derivation of a number of commutation rules for covariant derivatives (of functions and tensors) and of

transformation laws of some geometric objects under a conformal change of the underlying metric.

1. Introduction

In recent years the pioneering works of R. Hamilton ([18]) and G. Perelman ([30]) towards the solution

of the Poincaré conjecture in dimension 3 have produced a flourishing activity in the research of self

similar solutions, or solitons, of the Ricci flow. The study of the geometry of solitons, in particular their

classification in dimension 3, has been essential in providing a positive answer to the conjecture; however,

in higher dimension and in the complete, possibly noncompact case, the understanding of the geometry

and the classification of solitons seems to remain a desired goal for a not too proximate future. In the

generic case a soliton structure on the Riemannian manifold (M, g) is the choice (if any) of a smooth

vector field X on M and a real constant λ satisfying the structural requirement

(1.1) Ric+
1

2
LXg = λg,

where Ric is the Ricci tensor of the metric g and LXg is the Lie derivative of this latter in the direction of

X. In what follows we shall refer to λ as to the soliton constant. The soliton is called expanding, steady

or shrinking if, respectively, λ < 0, λ = 0 or λ > 0. When X is the gradient of a potential f ∈ C∞(M),

the soliton is called a gradient Ricci soliton and the previous equation (1.1) takes the form

(1.2) Ric+Hess f = λg.

Both equations (1.1) and (1.2) can be considered as perturbations of the Einstein equation

(1.3) Ric = λg

and reduce to this latter in case X or ∇f are Killing vector fields. When X = 0 or f is constant we call

the underlying Einstein manifold a trivial Ricci soliton. The great interest raised by these structures is

also shown by the rapidly increasing number of works devoted to their study; for instance, just to cite a
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few of them, we mention in particular [19], [29], [16], [28], [36], [3], [27], [31], [9], [6], [12], [32], [10], [11],

[8], [5], [25], [13] (and references therein) on Ricci solitons and [20], [2], [33], [34], [24] (and references

therein) on Einstein manifolds.

A natural question, which arises for instance in conformal geometry, is to construct conformally

Einstein manifolds, i.e. Riemannian manifolds (M, g) for which there exists a pointwise conformal

deformation g̃ = e2ug, u ∈ C∞(M), such that the new metric g̃ is Einstein. This problem has received a

considerable amount of attention by mathematicians and physicists in the last decades: just to mention

some old and recent papers we cite the pioneering work of Brinkmann, [4], Yano and Nagano, [35], Gover

and Nurowski, [17], Kapadia and Sparling, [21], Derdzisnki and Maschler, [15], and references therein.

In particular in [17] the authors describe two necessary integrability conditions for the existence of the

conformal deformation g̃ realizing the Einstein metric. They are of course related to the system

(1.4) R̃ic = λg̃,

where tilded quantities refer to the metric g̃, and they are expressed in terms of the Cotton, Weyl and

Bach tensors and the gradient of u in the background metric g (see Section 2 for precise definitions);

precisely, performing a computation in some sense reminiscent of the classical Cartan’s approach to the

treatment of differential systems, Gover and Nurowski show that if (M, g) is a conformally Einstein

Riemannian manifold, then the Cotton tensor, the Weyl tensor, the Bach tensor and the exponent u of

the stretching factor satisfy the conditions (see also Proposition 6.4)

Cijk − (m− 2)utWtijk = 0,(1.5)

Bij − (m− 4)utukWitjk = 0.(1.6)

On the other hand, Cao and Chen in [7] and [8] study the geometry of Bach flat gradient solitons,

introducing a (0, 3)-tensor D related to the geometry of the level surfaces of the potential f that generates

the soliton structure. The vanishing of D, obtained via the vanishing of the Bach tensor, is a crucial

ingredient in their classification of a wide family of complete gradient Ricci solitons; in particular in their

proof they show that every gradient Ricci soliton satisfies the two conditions

Cijk + ftWtijk = Dijk,(1.7)

Bij =
1

m− 2

[
Dijk,k +

(
m− 3

m− 2

)
ftCjit

]
.(1.8)

The above equations must be intended as integrability conditions for solitons, in the same way as (1.5) and

(1.6) are related to conformally Einstein manifolds. We observe that the aforementioned classification

result has been recently generalized by the present authors in [14] to a new general structure (which

includes Ricci solitons, Yamabe solitons, quasi-Einstein manifolds and almost Ricci solitons), called

(gradient) Einstein-type manifold, for which the corresponding integrability conditions have also been

computed.

In the present work we introduce for the first time the counterpart of the tensor D in the case of

generic Ricci solitons: we call it DX and we show that in this setting the integrability conditions take

the form

Cijk +XtWtijk = DX
ijk,(1.9)

Bij =
1

m− 2

(
DX

ijk,k +
m− 3

m− 2
XtCjit +

1

2
(Xtk −Xkt)Witjk

)
(1.10)

(see Theorem 8.2). We explicitly note that, if X = ∇f for some f ∈ C∞(M), then DX ≡ D and the

two previous equations become, as one should expect, (1.7) and (1.8) respectively.

Since Einstein metrics are trivial solitons, it is now natural to study conformal Ricci solitons, i.e. to

search for pointwise conformal transformations of the metric as above, such that the manifold (M, g̃) is
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a gradient Ricci soliton, that is for some f ∈ C∞(M) and λ ∈ R we have the structural relation

(1.11) R̃ic + H̃ess(f) = λg̃.

One of the main aims of the paper is to produce integrability conditions corresponding to these struc-

tures; in their study we introduce here for the first time a natural (0, 3)-tensor, which we denote by D(u,f)

(see (7.8)) and which allows to interpret the corresponding integrability conditions as interpolations be-

tween those associated to conformally Einstein manifolds (1.5) and (1.6), and those related to gradient

Ricci solitons (1.7) and (1.8). Moreover, D(u,f) vanishes identically in the case of a conformally Einstein

manifold, while it reduces to the tensor D on a gradient Ricci soliton. More precisely, in Section 7 we

obtain two integrability conditions for (1.11) (see Theorems 7.6 and 7.10), which tell us that if (M, g) is

a conformal gradient Ricci soliton then

(1.12) Cijk − [(m− 2)ut − ft]Wtijk = D
(u,f)
ijk

and

(1.13) Bij =
1

m− 2

{
D

(u,f)
ijk,k −

(
m− 3

m− 2

)
[(m− 2)ut − ft]Cjit + [ftuk + fkut − (m− 2)utuk]Witjk

}
.

In Section 9 we further extend our results to the very general case of a conformal generic Ricci soliton,

that is a Riemannian manifold (M, g) such that, for a conformal change of the metric g̃ = e2ug with

u ∈ C∞(M), there exist a smooth vector field X, not necessarily a gradient, and a constant λ such that

R̃ic +
1

2
LX g̃ = λg̃.

In this case the integrability conditions that we produce (see Theorems 9.6 and 9.8) involve the con-

struction of the appropriate generalization of both the tensors DX and D(u,f), that we call D(u,X) and

which reduces to the previous ones in the corresponding cases. As one can expect, these new conditions

capture all those appearing in the aforementioned settings.

As it will become apparent to the reader, the analysis carried out in this paper is very heavy from

the computational point of view; in order to ease the comprehension and also to provide help for future

investigations, another aim of this paper is to present, in a organized way, a number of useful formulas

ranging from transformation laws for certain tensors to commutation rules for covariant derivatives that,

to the best of our knowledge, are either difficult to find or not even present in the literature. In performing

our calculations we exploit the moving frame formalism, that turns out to be particularly appropriate

for very long and involved computations like those appearing in our work.

The paper is organized as follows. In Section 2 we recall the relevant definitions and notation; in

Section 3 we compute the transformations laws of the previously introduced geometric objects under a

conformal change of the underlying metric, while in Section 4 we provide (and prove, in some particular

cases) a number of useful commutation rules of covariant derivatives of functions, vector fields and

geometric tensors. Sections 5 and 6 are brief reviews of results related to Ricci solitons and conformally

Einstein manifolds, respectively. In Section 7 we study conformal gradient Ricci solitons, introducing

the tensor D(u,f) and the related integrability conditions. The subsequent Sections 8 and 9 are devoted

to the analysis of generic Ricci solitons and their conformal counterparts, involving the tensors DX and

D(u,X). In Section 10 we come back to the case of gradient Ricci solitons and we deduce the third

and fourth integrability conditions. We end the paper with a final section in which we describe some

interesting open problems, which - we hope - will inspire further investigations in these challenging but

stimulating lines of research.

2. Definitions and notation

We begin by introducing some classical notions and objects we will be dealing with in the sequel (see

also [26] and [14]).
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To perform computations, we use the moving frame notation with respect to a local orthonormal

coframe. Thus we fix the index range 1 ≤ i, j, . . . ≤ m and recall that the Einstein summation convention

will be in force throughout.

We denote by R the Riemann curvature tensor (of type (1, 3)) associated to the metric g, and by

Ric and S the corresponding Ricci tensor and scalar curvature, respectively. The (0, 4)-versions of the

Riemann curvature tensor and of the Weyl tensor W are related in the following way:

(2.1) Rijkt = Wijkt +
1

m− 2
(Rikδjt −Ritδjk +Rjtδik −Rjkδit)−

S

(m− 1)(m− 2)
(δikδjt − δitδjk)

and they satisfy the symmetry relations:

(2.2) Rijkt = −Rjikt = −Rijtk = Rktij ;

(2.3) Wijkt = −Wjikt = −Wijtk = Wktij .

A simple checking shows that the Weyl tensor is also totally trace-free and that it vanishes if m = 3.

According to the above the (components of the) Ricci tensor and the scalar curvature are given by

(2.4) Rij = Ritjt = Rtitj

and

(2.5) S = Rtt.

The Schouten tensor A is defined as

(2.6) A = Ric−
S

2(m− 1)
g

so that its trace is

(2.7) tr(A) = Att =
(m− 2)

2(m− 1)
S.

In terms of the Schouten tensor the decomposition of the Riemann curvature tensor reads as

(2.8) R = W+
1

m− 2
A ? g,

where ? is the Kulkarni-Nomizu product; in components,

(2.9) Rijkt = Wijkt +
1

m− 2
(Aikδjt −Aitδjk +Ajtδik −Ajkδit).

We note that W (more precisely, its (1, 3)-version) is a conformal invariant (see e.g. [26]), hence the above

decomposition shows that the Schouten tensor is crucial in the study of conformal transformations.

The Cotton tensor C can be introduced as the obstruction for the Schouten tensor to be Codazzi,

that is,

(2.10) Cijk = Aij,k −Aik,j = Rij,k −Rik,j −
1

2(m− 1)
(Skδij − Sjδik).

We recall that, for m ≥ 4, the Cotton tensor can also be defined as one of the possible divergences of the

Weyl tensor:

(2.11) Cijk =

(
m− 2

m− 3

)
Wtikj,t = −

(
m− 2

m− 3

)
Wtijk,t.

A computation shows that the two definitions coincide (see again [26]). The Cotton tensor enjoys skew-

symmetry in the second and third indices (i.e. Cijk = −Cikj) and furthermore is totally trace-free (i.e.

Ciik = Ciki = Ckii = 0).
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In what follows a relevant role will be played by the Bach tensor, first introduced in general relativity

by Bach, [1]. Its componentwise definition is

(2.12) Bij =
1

m− 3
Wikjl,lk +

1

m− 2
RklWikjl =

1

m− 2
(Cjik,k +RklWikjl).

A computation using the commutation rules for the second covariant derivative of the Weyl tensor

or of the Schouten tensor (see the next section for both) shows that the Bach tensor is symmetric (i.e.

Bij = Bji); it is also evidently trace-free (i.e. Bii = 0). As a consequence we observe that we can write

Bij =
1

m− 2
(Cijk,k +RklWikjl).

It is worth reporting here the following interesting formula for the divergence of the Bach tensor (see e.

g. [8] for its proof)

(2.13) Bij,j =
m− 4

(m− 2)
2RktCkti.

We also recall the definition of the Einstein tensor, which in components is given by

(2.14) Eij = Rij −
S

2
δij .

One of the main objects of our investigation are Ricci solitons, which are defined through equation

(1.1); we explicitly note that in components this latter becomes

(2.15) Rij +
1

2
(Xij +Xji) = λδij , λ ∈ R

and, in the gradient case,

(2.16) Rij + fij = λδij , λ ∈ R.

The tensor D, introduced by Cao and Chen in [6], turns out to be a fundamental tool in the study

of the geometry of gradient Ricci solitons and, more in general, of gradient Einstein-type manifolds, as

observed in [14]; in components it is defined as

Dijk =
1

m− 2
(fkRij − fjRik) +

1

(m− 1)(m− 2)
ft(Rtkδij −Rtjδik)−

S

(m− 1)(m− 2)
(fkδij − fjδik).

(2.17)

The D tensor is skew-symmetric in the second and third indices (i.e. Dijk = −Dikj) and totally trace-

free (i.e. Diik = Diki = Dkii = 0). Note that our convention for the tensor D differs from that in [8]. A

simple computation, using the definitions of the tensors involved, equation (2.16) and the fact that, for

gradient Ricci solitons, the fundamental identity

Si = 2ftRti

holds (see Section 4), shows that the tensor D can be written in four equivalent ways:

Dijk =
1

m− 2
(fkRij − fjRik) +

1

(m− 1)(m− 2)
ft(Rtkδij −Rtjδik)−

S

(m− 1)(m− 2)
(fkδij − fjδik)

(2.18)

=
1

m− 2
(fkRij − fjRik) +

1

2(m− 1)(m− 2)
(Skδij − Sjδik)−

S

(m− 1)(m− 2)
(fkδij − fjδik)

=
1

m− 2
(fkAij − fjAik) +

1

(m− 1)(m− 2)
ft(Etkδij − Etjδik)

=
1

m− 2
(fjfik − fkfij) +

1

(m− 1)(m− 2)
ft(ftjδik − ftkδij)−

∆f

(m− 1)(m− 2)
(fjδik − fkδij).
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3. Transformation laws under a conformal change of the metric

Let (M, g) be a Riemannian manifold of dimension m ≥ 3. The moving frame formalism is extremely

useful in the calculation of the transformation laws of geometric tensors under a conformal change of

the metric and in the derivation of commutation rules, as we shall see in the next section. For the sake

of completeness (see [26] for details) we recall that, having fixed a (local) orthonormal coframe
{
θi
}
,

i = 1, . . . ,m with dual frame {ei}, i = 1, . . . ,m, the corresponding Levi-Civita connection forms
{
θij
}
,

i, j = 1, . . . ,m are the unique 1-forms satisfying

dθi = −θij ∧ θj (first structure equations),(3.1)

θij + θ
j
i = 0.(3.2)

The curvature forms
{
Θi

j

}
, i, j = 1, . . . ,m, associated to the coframe are the 2-forms defined through

the second structure equations

(3.3) dθij = −θik ∧ θkj +Θi
j .

They are skew-symmetric (i.e. Θi
j +Θj

i = 0) and they can be written as

(3.4) Θi
j =

1

2
Ri

jktθ
k ∧ θt =

∑

k<t

Ri
jktθ

k ∧ θt,

where Ri
jkt are precisely the coefficients of the ((1, 3)-version of the) Riemann curvature tensor.

The covariant derivative of a vector field X ∈ X(M) is defined as

∇X = (dXi +Xjθij)⊗ ei = Xi
kθ

k ⊗ ei,

while the covariant derivative of a 1-form ω is defined as

∇ω = (dωi − wjθ
j
i )⊗ θi = ωikθ

k ⊗ θi.

The divergence of the vector field X ∈ X(M) is the trace of ∇X, that is,

(3.5) divX = tr (∇X) = g(∇eiX, ei) = Xi
i .

For a function f ∈ C∞(M) we can write

(3.6) df = fiθ
i,

for some smooth coefficients fi ∈ C∞(M). The Hessian of f , Hess(f), is the (0, 2)-tensor defined as

(3.7) Hess(f) = ∇df = fijθ
j ⊗ θi,

with

(3.8) fijθ
j = dfi − ftθ

t
i

and

fij = fji

(see also next section). The Laplacian of f is the trace of the Hessian, that is

∆f = tr(Hess(f)) = fii.

Now we are ready to recall (and prove, in some cases) the transformation laws that will be useful in our

computations.

We consider the conformal change of the metric (written in “exponential form”)

(3.9) g̃ = e2ug, u ∈ C∞(M);

eu is called the stretching factor of the conformal change. We use the superscript ˜ to denote quantities

related to the metric g̃.
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It is obvious that in the new metric g̃ the 1-forms

(3.10) θ̃i = euθi, i = 1, ...,m,

give a local orthonormal coframe. It is easy to deduce that, if du = utθ
t, the 1-forms

(3.11) θ̃ij = θij + ujθ
i − uiθ

j

are skew-symmetric and satisfy the first structure equation. Hence, they are the connection forms relative

to the coframe defined in (3.10). A straightforward computation using the structure equations and (3.8)

shows that the curvature forms relative to the coframe (3.10) are

(3.12) Θ̃i
j = Θi

j +
[
(ujk − ujuk)δ

i
t − (uik − uiuk)δ

j
t − |∇u|

2
δikδ

j
t

]
θk ∧ θt.

Equation (3.12) is the starting point for the next transformation laws that we list without further

comments.

• Riemann curvature tensor:

(3.13)

e2uR̃ijkt = Rijkt+(ujk − ujuk)δit−(ujt − ujut)δik−(uik − uiuk)δjt+(uit − uiut)δjk−|∇u|
2
(δikδjt − δitδjk).

Proof. The previous equation follows easily skew-symmetrizing the coefficients of the wedge

products on the right hand side of (3.12), and recalling equation (3.4). �

Tracing (3.13) we get

• Ricci tensor:

(3.14) R̃ic = Ric−(m− 2)Hess (u) + (m− 2)du⊗ du−∆u g − (m− 2)|∇u|
2
g,

that, in components, reads as

(3.15) e2uR̃ij = Rij − (m− 2)uij + (m− 2)uiuj −∆u δij − (m− 2)|∇u|
2
δij .

Tracing (3.14) we deduce

• Scalar curvature:

(3.16) e2uS̃ = S − 2(m− 1)∆u− (m− 1)(m− 2)|∇u|
2
.

Next we derive the transformation laws for the

• Covariant derivative of the Ricci tensor:

e3uR̃ij,k = Rij,k − (m− 2)uijk − (uttk − 2uk∆u)δij(3.17)

− (2Rijuk + uiRjk + ujRik) + ut(Rtiδjk +Rtjδik)

+ 2(m− 2)(uiujk + ujuik + ukuij)− (m− 2)ut(utiδjk + utjδik + 2utkδij)

− 4(m− 2)uiujuk + (m− 2)|∇u|
2
(uiδjk + ujδik + 2ukδij).

Proof. The definition of covariant derivative implies that

(3.18) Rij,kθ
k = dRij −Rtjθ

t
i −Ritθ

t
j .

Now equation (3.17) follows from (3.18), from the fact that

e3uR̃ij,kθ
k = d

(
e2uR̃ij

)
−
(
e2uR̃tj

)
θ̃ti −

(
e2uR̃it

)
θ̃tj − R̃ijd

(
e2u

)

and from (3.15). �
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• Second Covariant derivative of the Ricci tensor:

e4uR̃ij,kt = Rij,kt − (m− 2)uijkt − ussktδij + 3(utussk + ukusst)δij − g(∇u,∇∆u)δijδkt

(3.19)

+ 2∆u
(
ukt − 4ukut + |∇u|

2
δkt

)
δij

+ ulRli,tδjk + ulRlj,tδik + ulRil,kδjt + ulRlj,kδit + ulRij,lδkt +Rilultδjk +Rjlultδik

− (uiRjk,t + ujRik,t + uiRjt,k + ujRit,k + 3ukRij,t + 3utRij,k)

− (uitRjk + ujtRik + 2uktRij)

+ (m− 2)(2uiujkt + uiujtk + 2ujuikt + ujuitk + 3ukuijt + 3utuijk)

+ 2(m− 2)(uijukt + uikujt + ujkuit)− (m− 2)(2ululktδij + ululjtδik + ululitδjk)

− (m− 2)(2uklultδij + ujlultδik + uilultδjk)

− (Rtluluiδjk +Rtlulujδik + 3Rilulutδjk + 3Rjlulutδik) + Ric (∇u,∇u)(δjkδit + δikδjt)

+ 4(uiutRjk + ujutRik + 2ukutRij) + (2uiujRkt + 3uiukRjt + 3ujukRit)

− 8(m− 2)(uiujutk + uiukujt + ujukuit + uiutujk + ujutuik + ukutuij)

− (m− 2)(ululjkδit + ululikδjt + uluijlδkt)− |∇u|
2
(Rjkδit +Rikδjt + 2Rijδkt)

− (ujulRlkδit + uiulRlkδjt + uiulRljδkt + ujulRliδkt + 2ukulRljδit + 2ukulRliδjt)

+ 3(m− 2)(uiulultδjk + ujulultδik + 2ukulultδij + uiulultδjk + ujulultδik + 2ukulultδij)

+ 2(m− 2)(uiululkδjt + ujululkδit + uiululjδkt + ujululiδkt + ukululiδjt + ukululjδit)

+ (m− 2)|∇u|
2
(uitδjk + ujtδik + 2uktδij + 2uijδkt + 2uikδjt + 2ujkδit)

− (m− 2)Hess (u)(∇u,∇u)(δjkδit + δikδjt + 2δijδkt)

+ 24(m− 2)uiujukut

− 4(m− 2)|∇u|
2
(ujukδit + uiukδjt + uiujδkt + uiutδjk + ujutδik + 2ukutδij)

+ (m− 2)|∇u|
4
(δjkδit + δikδjt + 2δijδkt).

The proof of (3.19) is just a really long computation, similar to the one performed to obtain

equation (3.17).

• Differential of the scalar curvature:

(3.20)

e3uS̃k = Sk − 2(m− 1)uttk − 2(m− 1)(m− 2)ututk − 2
[
S − 2(m− 1)∆u− (m− 1)(m− 2)|∇u|

2
]
uk.

Proof. It follows from the fact that e3uS̃kθ
k = e2udS̃ = d

(
e2uS̃

)
− S̃d

(
e2u

)
and from (3.16). �

• Hessian of the scalar curvature:

e4uS̃kt = Skt − 2(m− 1)usskt − 2(m− 1)(m− 2)uksust − 2(m− 1)(m− 2)ususkt + 6(m− 1)(ukusst + utussk)

(3.21)

+ 6(m− 1)(m− 2)(ususkut + usustuk)− 3(Stuk + Skut)

− 2
[
S − 2(m− 1)∆u− (m− 1)(m− 2)|∇u|

2
](

ukt − 4ukut + |∇u|
2
δkt

)

+ [g(∇S,∇u)− 2(m− 1)g(∇u,∇∆u)− 2(m− 1)(m− 2)Hess(u)(∇u,∇u)]δkt.

Proof. Equation (3.21) follows from the fact that e4uS̃ktθ
t = d

(
e3uS̃k

)
− S̃kd

(
e3u

)
− e3uS̃tθ̃

t
k

and from (3.16) and (3.20). Alternatively, (3.21) can be obtained tracing (3.19) with respect to

i and j. �

Tracing (3.21) and using (4.9) (see next Section) we deduce
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• Laplacian of the scalar curvature:

e4u∆̃S̃ = ∆S − 2(m− 1)∆2u− 2(m− 1)(m− 2)|Hess(u)|
2

(3.22)

− 2(m− 1)(m− 2)Ric (∇u,∇u)− 4(m− 1)(m− 4)g(∇u,∇∆u))

− 2(m− 1)(m− 2)(m− 6)Hess(u)(∇u,∇u) + (m− 6)g(∇S,∇u)− 2S∆u+ 4(m− 1)(∆u)
2

+ 2(m− 1)(3m− 10)|∇u|
2
∆u+ 2(m− 1)(m− 2)(m− 4)|∇u|

4
− 2(m− 4)S|∇u|

2
.

• the Hessian of a function f ∈ C∞(M):

(3.23) H̃ess(f) = Hess(f)− (df ⊗ du+ du⊗ df) + g(∇f,∇u)g,

which in components reads as

(3.24) e2uf̃ij = fij − (fiuj + fjui) + (ftut)δij .

Proof. From du = uiθ
i = ũiθ̃

i we deduce that

(3.25) ũi = e−uui.

Now (3.24) follows from a straightforward computation using (3.25), (3.8) and (3.11). �

Tracing (3.24) we get

• the Laplacian of a function f ∈ C∞(M):

(3.26) e2u∆̃f = ∆f + (m− 2)g(∇f,∇u) = ftt + (m− 2)ftut.

• the third derivative of a function f ∈ C∞(M):

e3uf̃ijk = fijk − 2(fijuk + fikuj + fjkui)− (fiujk + fjuik) + 3(fiuj + fjui)uk + 2uiujfk

(3.27)

+ ut(ftkδij + ftjδik + ftiδjk) + ftutkδij − (ftut)(uiδjk + ujδik + 2ukδij)− |∇u|
2
(fiδjk + fjδik);

in particular,

(3.28) e3uf̃ttk = fttk − 2∆fuk + (m− 2)[ftutk + utftk − 2(ftut)uk].

Proof. By definition of covariant derivative we have

f̃ijkθ̃
k = df̃ij − f̃tj θ̃

t
i − f̃itθ̃

t
j ,

which can be written as

e3uf̃ijkθ
k = e2udf̃ij − e2uf̃tj θ̃

t
i − e2uf̃itθ̃

t
j = d

(
e2uf̃ij

)
− f̃ijd(e

2u)− e2uf̃tj θ̃
t
i − e2uf̃itθ̃

t
j .

Now equation (3.27) follows using (3.24), (3.11) and simplifying. �

• Schouten tensor:

(3.29) Ã = A− (m− 2)Hess (u) + (m− 2)du⊗ du−

(
m− 2

2

)
|∇u|

2
g,

which in components reads as

(3.30) e2uÃij = Aij − (m− 2)uij + (m− 2)uiuj −

(
m− 2

2

)
|∇u|

2
δij .

The proof of (3.29) follows easily from the definition of the Schouten tensor and from (3.14) and

(3.16).
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• Covariant derivative of the Schouten tensor:

e3uÃij,k = Aij,k − (m− 2)uijk + ulAliδjk + ulAljδik − (uiAjk + ujAik + 2ukAij)(3.31)

+ 2(m− 2)(uiujk + ujuik + ukuij)− (m− 2)(ululkδij + ululjδik + ululiδjk)

− 4(m− 2)uiujuk + (m− 2)|∇u|
2
(uiδjk + ujδik + ukδij).

Proof. The definition of covariant derivative implies that

(3.32) Aij,kθ
k = dAij −Atjθ

t
i −Aitθ

t
j .

Now equation (3.31) follows from (3.32), from the fact that

e3uÃij,kθ
k = d

(
e2uÃij

)
−

(
e2uÃtj

)
θ̃ti −

(
e2uÃit

)
θ̃tj − Ãijd

(
e2u

)

and from (3.30). �

• Second Covariant derivative of the Schouten tensor:

e4uÃij,kt = Aij,kt − (m− 2)uijkt

(3.33)

+ ulAli,tδjk + ulAlj,tδik + ulAil,kδjt + ulAlj,kδit + ulAij,lδkt +Ailultδjk +Ajlultδik

− (uiAjk,t + ujAik,t + uiAjt,k + ujAit,k + 3ukAij,t + 3utAij,k)

− (uitAjk + ujtAik + 2uktAij)

+ (m− 2)(2uiujkt + uiujtk + 2ujuikt + ujuitk + 3ukuijt + 3utuijk)

+ 2(m− 2)(uijukt + uikujt + ujkuit)− (m− 2)(ululktδij + ululjtδik + ululitδjk)

− (m− 2)(uklultδij + ujlultδik + uilultδjk)

− (Atluluiδjk +Atlulujδik + 3Ailulutδjk + 3Ajlulutδik) + A(∇u,∇u)(δjkδit + δikδjt)

+ 4(uiutAjk + ujutAik + 2ukutAij) + (2uiujAkt + 3uiukAjt + 3ujukAit)

− 8(m− 2)(uiujutk + uiukujt + ujukuit + uiutujk + ujutuik + ukutuij)

− (m− 2)(ululjkδit + ululikδjt + uluijlδkt)− |∇u|
2
(Ajkδit +Aikδjt + 2Aijδkt)

− (ujulAlkδit + uiulAlkδjt + uiulAljδkt + ujulAliδkt + 2ukulAljδit + 2ukulAliδjt)

+ (m− 2) (3uiulultδjk + 3ujulultδik + 3ukulultδij + 2uiululkδjt + 2uiululjδkt + 2ujululkδit

+ 2ukululjδit + 2ujululiδkt + 2ukululiδjt + 3ulutulkδij + 3ulutuljδik + 3ulutuliδjk)

+ |∇u|
2
(m− 2)(uitδjk + ujtδik + uktδij + 2uijδkt + 2uikδjt + 2ujkδit)

− (m− 2)Hess (u)(∇u,∇u)(δjkδit + δikδjt + δijδkt)

+ 24(m− 2)uiujukut

− 4(m− 2)|∇u|
2
(ujukδit + uiukδjt + uiujδkt + uiutδjk + ujutδik + ukutδij)

+ (m− 2)|∇u|
4
(δjkδit + δikδjt + δijδkt).

The proof of (3.33) is just a really long computation, similar to the one performed to obtain

equation (3.32).

Remark 3.1. Equations (3.31) and (3.33) can be also obtained from the corrisponding relations

for the Ricci tensor, with the aid of (3.16), (3.20) and (3.21).

• Weyl tensor ((1, 3)-version):

(3.34) e2uW̃ i
jkt = W i

jkt

For the proof of (3.34) we refer to [26], Chapter 2.
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• Cotton tensor:

(3.35) e3uC̃ijk = Cijk − (m− 2)utWtijk.

Proof. From the definition of the Cotton tensor and from (3.32) we have

e3uC̃ijk = e3uÃij,k−e3uÃik,j = Aij,k−Aik,j−(m−2)(uijk − uikj)+ut(Atjδik −Atkδij)+ujAik−ukAij .

Equation (3.35) now follows using (4.5) (see next section) and simplifying. �

• Bach tensor:

(3.36) e4uB̃ij = Bij + (m− 4)

[
utukWtikj +

1

m− 2
(Cijt + Cjit)ut

]
.

Proof. (sketch) From the definition of the Bach tensor we have

e4uB̃ij =
e4u

m− 2

[
C̃ijt,t + R̃klW̃ikjl

]
=

1

m− 2

[
e4u

(
Ãij,tt − Ãit,jt

)
+
(
e4uR̃klW̃ikjl

)]
.

The second term on the right hand side is easily computed using (3.15) and (3.34):

e4uR̃klW̃ikjl = RklWikjl − (m− 2)uklWikjl + (m− 2)ukulWikjl.

As far as the first term is concerned, we trace (3.33) with respect to the third and fourth indices

and then with respect to the second and the fourth, then we simplify with a lot of patience.

Summing up we finally obtain (3.36). �

Using the previous relations (in particular equations (3.24), (3.15), (3.17), (3.20)) and the fact

that euf̃t = ft, we can prove, with a really long but straightforward calculation, the tranformation

laws for D and ∇D.

• D tensor: If (M, g̃, f, λ) is a soliton structure, then

e3uD̃ijk =
1

m− 2
(fkRij − fjRik) +

1

(m− 1)(m− 2)
ft(Rtkδij −Rtjδik)−

S

(m− 1)(m− 2)
(fkδij − fjδik)

(3.37)

+ ui(fkuj − fjuk) + fjuik − fkuij

+
1

m− 1

[
∆u(fkδij − fjδik) + ft(utjδik − utkδij) + (ftut)(ukδij − ujδik)− |∇u|

2
(fkδij − fjδik)

]
.

Viceversa, if (M, g, f, λ) is a soliton structure, then we have

e3u

{
1

m− 2

(
f̃kR̃ij − f̃jR̃ik

)
+

1

(m− 1)(m− 2)
f̃t

(
R̃tkδij − R̃tjδik

)
−

S̃

(m− 1)(m− 2)

(
f̃kδij − f̃jδik

)}
(3.38)

= Dijk + ui(fkuj − fjuk) + fjuik − fkuij

+
1

m− 1

[
∆u(fkδij − fjδik) + ft(utjδik − utkδij) + (ftut)(ukδij − ujδik)− |∇u|

2
(fkδij − fjδik)

]
.
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• Covariant derivative of the D tensor: If (M, g̃, f, λ) is a soliton structure, then

e4uD̃ijk,t =
1

m− 2
[(fktRij − fjtRik) + (fkRij,t − fjRik,t)]

(3.39)

+
1

(m− 1)(m− 2)
[fst(Rskδij −Rsjδik) + fs(Rsk,tδij −Rsj,tδik)]

−
1

(m− 1)(m− 2)
[St(fkδij − fjδik) + S(fktδij − fjtδik)]

+ (uikfjt − uijfkt) + (uiktfj − uijtfk) + (uiujfkt − uiukfjt) +
1

m− 1
usst(fkδij − fjδik)

−
3

m− 2
ut(fkRij − fjRik)−

1

m− 1
fs(usktδij − usjtδik)−

1

m− 2
ft(ukRij − ujRik)

+
1

m− 2
(fsus)(Rijδkt −Rikδjt) +

1

m− 2
usRsi(fkδjt − fjδkt) +

1

m− 2
usδit(fkRsj − fjRsk)

+ 3ut(fkuij − fjuik) + ft(ukuij − ujuik)− (fsus)(uijδkt − uikδjt) + (fsus)ui(ujδkt − ukδjt)

+
1

m− 1

(
∆u− |∇u|

2
)
(fktδij − fjtδik)− 5uiut(ujfk − ukfj)

−
3

m− 1

(
∆u− |∇u|

2
)
ut(fkδij − fjδik)−

1

m− 1

(
∆u− |∇u|

2
)
ft(ukδij − ujδik)

+
(fsus)

m− 1
∆u (δijδkt − δikδjt) + |∇u|

2
ui(fkδjt − fjδkt) + |∇u|

2
δit(ujfk − ukfj)

−
1

m− 2
ui(fkRjt − fjRkt)−

1

m− 2
Rit(ujfk − ukfj) + 2ui(fkujt − fjukt) + 2uit(ujfk − ukfj)

− ususi(fkδjt − fjδkt)− usδit(fkusj − fjusk)−
2

m− 1
usust(fkδij − fjδik)

−
1

m− 1
fst(uksδij − ujsδik) +

1

m− 1
usfst(ukδij − ujδik)−

3

(m− 1)(m− 2)
utfs(Rskδij −Rsjδik)

−
1

(m− 1)(m− 2)
fsRst(ukδij − ujδik) +

3

m− 1
fsut(uskδij − usjδik)

−
4

m− 1
(fsus)ut(ukδij − ujδik) +

1

m− 1
(fsus)(uktδij − ujtδik) +

2

m− 1
fsust(ukδij − ujδik)

+
1

(m− 1)(m− 2)
Ric (∇f,∇f)(δktδij − δjtδik)−

1

m− 1
Hess(u)(∇u,∇f)(δktδij − δjtδik)

+
3

(m− 1)(m− 2)
Sut(fkδij − fjδik) +

1

(m− 1)(m− 2)
Sft(ukδij − ujδik)

−
1

(m− 1)(m− 2)
(fsus)S(δktδij − δjtδik).

• Covariant derivative of a vector field and Lie derivative of the metric (see [26], Lemma

2.4)

Lemma 3.2. Let X ∈ X(M) be a vector field on the Riemannian manifold (M, g), and let

g̃ = e2ug, a conformally deformed metric. Then

(3.40) LX g̃ = e2u[LXg + 2g(X,∇u)g].

Proof. Let {ei}, i = 1, . . . ,m be the frame dual to the local coframe
{
θi
}
. From (3.10) we deduce

that ẽi = e−uei; moreover,

(3.41) X = Xiei = X̃iẽi,

thus

(3.42) X̃i = euXi.



CRS 13

From the definition of covariant derivative of a vector field we have

(3.43) ∇X = Xi
kθ

k ⊗ ei, ∇̃X = X̃i
kθ̃

k ⊗ ẽi,

with Xi
kθ

k = (dXi +Xjθij) and X̃i
kθ̃

k = (dX̃i + X̃j θ̃ij). A computation using (3.43) and (3.11)

now shows that

(3.44) X̃i
k = Xi

k +
(
Xiuk +Xjujδik − uiX

k
)
,

which implies

(3.45) X̃i
k + X̃k

i = Xi
k +Xk

i + 2Xtutδik.

Equation (3.40) now follows easily from (3.45) and from the fact that

(LXg)ij = Xi
j +X

j
i = Xij +Xji.

�

From equation (3.45) we deduce, tracing with respect to i and k,

• Divergence of a vector field X ∈ C∞(M):

(3.46) d̃ivX = divX +mg(X,∇u).

Finally, from equation (3.44) we can obtain the following transformation law for the second

covariant derivative of a vector field X ∈ X(M):

euX̃ijk = Xijk + (Xiujk −Xjuik)− (Xjk +Xkj)ui − (Xiuj −Xjui)uk + (Xtutk + utXtk)δij(3.47)

+ ut(Xitδjk +Xtjδik) + (Xtut)(ujδik − uiδjk) + |∇u|
2
(Xiδjk −Xjδik);

in particular,

(3.48) euX̃ttk = Xttk +m(Xtutk + utXtk).

Remark 3.3. If the vector field X is the gradient of a function with respect to the metric g̃, i.e.

X = ∇̃f = e−2u∇f , it is not hard to verify that (3.47) becomes equation (3.27) .

4. Commutation rules

In this section we compute commutation rules of covariant derivatives of functions, vector fields and

of the geometric tensors introduced in Section 2. Some of these results are well-known in the literature,

some already appeared in [14, Section 4] or in [26], for instance, while for many of them we are not aware

of any good, exhaustive reference. We collect all of them here for the sake of completeness. We begin

with
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Lemma 4.1. If f ∈ C∞(M) then:

fij = fji;(4.1)

fijk = fjik;(4.2)

fijk = fikj + ftRtijk;(4.3)

fijk = fikj + ftWtijk +
1

m− 2
(ftRtjδik − ftRtkδij + fjRik − fkRij)(4.4)

−
S

(m− 1)(m− 2)
(fjδik − fkδij);

fijk = fikj + ftWtijk +
1

m− 2
(ftAtjδik − ftAtkδij + fjAik − fkAij);(4.5)

fijkt = fijtk + filRljkt + fjlRlikt;(4.6)

fijkt = fikjt + fstRsijk + fsRsijk,t;(4.7)

fijkt = fktij + fisRskjt + fjsRskit + fksRsijt + ftsRsijk + fs(Rsijk,t −Rskti,j).(4.8)

In particular, tracing (4.3) and (4.8) it follows that

fitt = ftti + ftRti;(4.9)

fijtt = fttij + fitRtj + fjtRti − 2fstRisjt + ft(Rtj,i +Rti,j)− ftRij,t;(4.10)

fijtt = fttij + fitRtj + fjtRti − 2fstRisjt + ftRij,t − ft(Rsitj,s +Rsjti,s).(4.11)

Remark 4.2. Clearly Lemma 4.1 still works if f is at least of class C4(M).

Proof. Let df = fiθ
i. Differentiating and using the structure equations we get

0 = dfi ∧ θi + fidθ
i = (fijθ

j + fkθ
k
i ) ∧ θi − fiθ

i
k ∧ θk

= fijθ
j ∧ θi

=
1

2
(fij − fji)θ

j ∧ θi,

thus

0 =
∑

1≤j<i≤m

(fij − fji)θ
j ∧ θi;

since
{
θj ∧ θi

}
(1 ≤ j < i ≤ m) is a basis for the 2-forms we get equation (4.1). Equation (4.2) follows

taking the covariant derivative of (4.1). By definition of covariant derivative

(4.12) fijkθ
k = dfij − fkjθ

k
i − fikθ

k
j .

Differentiating equation (3.8) and using the structure equations we get

dfik ∧ θk − fijθ
j
k ∧ θk = −dft ∧ θti + fkθ

k
t ∧ θti − fkΘ

k
i =

= −(ftkθ
k + fkθ

k
t ) ∧ θti + fkθ

k
t ∧ θti −

1

2
fkR

k
ijtθ

j ∧ θt,

thus

(dfik − ftkθ
t
i − fitθ

t
k) ∧ θk = −

1

2
ftR

t
ijkθ

j ∧ θk,

and, by (4.12),

fikjθ
j ∧ θk = −

1

2
ftR

t
ijkθ

j ∧ θk.

Skew-symmetrizing we get
1

2
(fikj − fijk)θ

j ∧ θk = −
1

2
ftR

t
ijkθ

j ∧ θk,

that is (4.3). Equations (4.4) and (4.5) follow easily from (4.3), using the definitions of the Weyl tensor

and of the Schouten tensor (see Section 2). To prove (4.6) we start from (4.3) and we take the covariant
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derivative to deduce

(4.13) fijkt − fikjt = fstRsijk + fsRsijk, t.

Differentiating both sides of (4.12), using the structure equations and (4.12) itself, we arrive at

fijklθ
l ∧ θk = −

1

2
(ftjRtilk + fitRtjlk)θ

l ∧ θk,

from which, interchanging k and l and adding, we have the thesis. Equation (4.8) now follows using all

the previous relations, starting from (4.7) . �

For the components of a vector field and for their covariant derivatives the commutation relations are

similar to the ones proved for functions in Lemma 4.1; in particular we have the following

Lemma 4.3 (Lemma 2.1 in [25]). Let X ∈ X(M) be a vector field. Then we have

Xijk −Xikj = XtRtijk;(4.14)

Xijkl −Xikjl = RtijkXtl +Rtijk,lXt;(4.15)

Xijkl −Xijlk = RtiklXtj +RtjklXit.(4.16)

Concerning the Riemann curvature tensor, we begin with the classical Bianchi identities, that in our

formalism become

Rijkt +Ritjk +Riktj = 0 (the First Bianchi Identity);(4.17)

Rijkt,l +Rijlk,t +Rijtl,k = 0 (the Second Bianchi Identity).(4.18)

For the second and third derivatives we prove

Lemma 4.4.

Rijkt,lr −Rijkt,rl = RsjktRsilr +RisktRsjlr +RijstRsklr +RijksRstlr;(4.19)

Rijkt,lrs −Rijkt,lsr = Rvjkt,lRvirs +Rivkt,lRvjrs +Rijvt,lRvkrs +Rijkv,lRvtrs +Rijkt,vRvlrs.(4.20)

Proof. By definition of covariant derivative we have

(4.21) Rijkt,lθ
l = dRijkt −Rljktθ

l
i −Rilktθ

l
j −Rijltθ

l
k −Rijklθ

l
t

and

(4.22) Rijkt,lrθ
r = dRijkt,l −Rljkt,lθ

r
i −Rirkt,lθ

r
j −Rijrt,lθ

r
k −Rijkr,lθ

r
t −Rijkt,rθ

r
l .

Differentiating equation (4.21) and using the first structure equations we get

dRijkt,s ∧ θs −Rijkt,lθ
l
s ∧ θs = −dRljkt ∧ θli +Rljkt

(
θls ∧ θsi −Θl

i

)
− dRilkt ∧ θlj +Rilkt

(
θls ∧ θsj −Θl

j

)(4.23)

− dRijlt ∧ θli +Rijlt

(
θls ∧ θsk −Θl

k

)
− dRijkl ∧ θli +Rijkl

(
θls ∧ θst −Θl

t

)
.

Now we repeatedly use (4.22) and (3.4) into the previous relation; after some manipulations we arrive at

(
dRijkt,s −Rljkt,sθ

l
i −Rilkt,sθ

l
j −Rijlt,sθ

l
k −Rijkl,sθ

l
t −Rijkt,lθ

l
s

)
∧ θs = −

1

2
(RljktRlirs +RilktRljrs

+RijltRlkrs +RijklRltrs) θ
r ∧ θs.

Renaming indices and skew-symmetrizing the left hand side, which is precisely Rijkt,srθ
r ∧ θs, we obtain

(4.19). A similar computation shows the validity of (4.20). �

For the Ricci and the Schouten tensors we have the following
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Lemma 4.5.

Rij,k −Rik,j = −Rtijk,t = Rtikj,t(4.24)

Rij,kt −Rij,tk = RliktRlj +RljktRli(4.25)

Rij,ktl −Rij,klt = Rsj,kRsitl +Ris,kRsjtl +Rij,sRsktl.(4.26)

Proof. The previous relations follow easily tracing equations (4.18), (4.19) and (4.20), respectively. �

A simple computation using the definition of the Schouten tensor, Lemma 4.5 and equations (4.1) and

(4.3) applied to the scalar curvature shows the validity of

Lemma 4.6.

Aij,k −Aik,j = Cijk =

(
m− 2

m− 3

)
Wtikj,t(4.27)

Aij,kt −Aij,tk = RliktAlj +RljktAli(4.28)

Aij,ktl −Aij,klt = Asj,kRsitl +Ais,kRsjtl +Aij,sRsktl.(4.29)

A direct consequence of the definition of the Weyl tensor and of the First Bianchi identity for the

Riemann curvature tensor is the First Bianchi identity for W :

Wijkt +Witjk +Wiktj = 0.(4.30)

As far as the first derivatives of W are concerned, we have

Lemma 4.7.

(4.31) Wijkt,l +Wijlk,t +Wijtl,k =
1

m− 2
(Citlδjk + Cilkδjt + Ciktδjl − Cjtlδik − Cjlkδit − Cjktδil).

Proof. We start by taking the covariant derivative of (2.1):

(4.32)

Rijkt,l = Wijkt,l +
1

m− 2
(Rik,lδjt −Rit,lδjk +Rjt,lδik −Rjk,lδit)−

Sl

(m− 1)(m− 2)
(δikδjt − δitδjk).

Permuting cyclically the last three indices, summing up and using (4.17) we deduce

−(Wijkt,l +Wijlk,t +Wijtl,k) =
1

m− 2
[(Rik,l −Ril,k)δjt + (Ril,t −Rit,l)δjk + (Rit,k −Rik,t)δjl]

−
1

m− 2
[(Rjk,l −Rjl,k)δit + (Rjl,t −Rjt,l)δik + (Rjt,k −Rjk,t)δil]

−
1

(m− 1)(m− 2)
[Sl(δikδjt − δitδjk) + St(δilδjk − δikδjl) + Sk(δitδjl − δilδjt)].

Using the fact that Rij,k −Rik,j = Cijk +
1

2(m−1) (Skδij − Sjδik), after some manipulation we get (4.31).

�

For the second and third derivatives of W , a computation similar to the one used in the proof of

Lemma 4.4 shows that

Lemma 4.8.

Wijkl,st −Wijkl,ts = WrjklRrist +WirklRrjst +WijrlRrkst +WijkrRrlst;(4.33)

Wijkl,trs −Wijkl,tsr = Wvjkl,tRvirs +Wivkl,tRvjrs +Wijvl,tRvkrs +Wijkv,tRvlrs +Wijkl,vRvtrs.(4.34)

Using the definition of the Weyl tensor in equation (4.33) we obtain
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Lemma 4.9.

Wijkl,st −Wijkl,ts = WrjklWrist +WirklWrjst +WijrlWrkst +WijkrWrlst(4.35)

+
1

m− 2
[Wrjkl(Rrsδit −Rrtδis +Ritδrs −Risδrt)

+Wirkl(Rrsδjt −Rrtδjs +Rjtδrs −Rjsδrt)

+Wijrl(Rrsδkt −Rrtδks +Rktδrs −Rksδrt)

+Wijkr(Rrsδlt −Rrtδls +Rltδrs −Rlsδrt)]

−
S

(m− 1)(m− 2)
[Wrjkl(δrsδit − δrtδis) +Wirkl(δrsδjt − δrtδjs)

+Wijrl(δrsδkt − δrtδks) +Wijkr(δrsδlt − δrtδls)] .

Tracing the previous relation we also get

Wtjkl,st −Wtjkl,ts = RstWtjkl +WtrklWrjst +WtjrlWrkst +WtjkrWrlst(4.36)

+
1

m− 2
(RtrWtjrkδls −RtrWtjrlδks)

+
1

m− 2
(RtkWtjsl +RtlWtjks +RtjWtskl).

Using the definition of the Weyl tensor in equation (4.34) we obtain

Lemma 4.10.

Wijkl,trs −Wijkl,tsr = Wvjkl,tWvirs +Wivkl,tWvjrs +Wijvl,tWvkrs +Wijkv,tWvlrs +Wijkl,vWvtrs

(4.37)

+
1

m− 2
[Wvjkl,t(Rvrδis −Rvsδir +Risδvr −Rirδvs)

+Wivkl,t(Rvrδjs −Rvsδjr +Rjsδvr −Rjrδvs)

+Wijvl,t(Rvrδks −Rvsδkr +Rksδvr −Rkrδvs)

+Wijkv,t(Rvrδls −Rvsδlr +Rlsδvr −Rlrδvs)

+Wijkl,v(Rvrδts −Rvsδtr +Rtsδvr −Rtrδvs)]

−
S

(m− 1)(m− 2)
[Wvjkl,t(δvrδis − δvsδir) +Wivkl,t(δvrδjs − δvsδjr)

Wijvl,t(δvrδks − δvsδkr) +Wijkv,t(δvrδls − δvsδlr)

+Wijkl,v(δvrδts − δvsδtr)] .

The First Bianchi Identities for the Weyl tensor immediately imply

(4.38) Cijk + Cjki + Ckij = 0.

From the definition of the Cotton tensor we also deduce

(4.39) Cijk,t = Aij,kt −Aik,jt = Rij,kt −Rik,jt −
1

2(m− 1)
(Sktδij − Sjtδik);

since, by Lemma 4.5 and Schur’s identity Si =
1
2Rik,k,

(4.40) Rik,jk = Rik,kj +RtijkRtk +RtkjkRti =
1

2
Sij −RtkRitjk +RitRtj ,

we obtain the following expression for the divergence of the Cotton tensor:

(4.41) Cijk,k = Rij,kk −
m− 2

2(m− 1)
Sij +RtkRitjk −RitRtj −

1

2(m− 1)
∆Sδij .

The previous relation also shows that

(4.42) Cijk,k = Cjik,k,



18 CRS

thus confirming the symmetry of the Bach tensor, see (2.12).

Taking the covariant derivative of (4.38) and using (4.42) we can also deduce that

(4.43) Ckij,k = 0.

5. Some useful relations for Ricci solitons

The aim of this short section is to recall a number of useful relations, valid on every Ricci soliton,

that have been consistently exploited in the literature to obtain several well known results.

First we have (see also [25], Lemma 2.2 and Lemma 2.3, [16]):

Proposition 5.1. Let (M, g,X) be a generic Ricci soliton structure on (M, g). Then the following

identities hold:

Rij +
1
2 (Xij +Xji) = λδij ;(5.1)

S + divX = mλ;(5.2)

Sk = −Xiik;(5.3)

RtjXt = −Xktt;(5.4)

Rij,k −Rik,j = − 1
2RlijkXl +

1
2 (Xkij −Xjik);(5.5)

Rij,k −Rkj,i =
1
2RljkiXl +

1
2 (Xkji −Xijk);(5.6)

1
2∆S = 1

2g(X,∇S) + λS − |Ric|
2
.(5.7)

If X = ∇f for some f ∈ C∞(M) then

Rij + fij = λδij ;(5.8)

S +∆f = mλ;(5.9)

Sk = 2ftRtk;(5.10)

Rij,k −Rkj,i = −ftRtijk;(5.11)

S + |∇f |
2
− 2λf = C, C ∈ R;(5.12)

1
2∆S = 1

2g(∇f,∇S) + λS − |Ric|
2
.(5.13)

From the work of Cao and Chen (see [8], Lemma 3.1 and equation (4.1); see also [14]), we have the

validity of the following integrability conditions:

Theorem 5.2. If (M, g, f) is a gradient Ricci soliton with potential function f , then the Cotton tensor,

the Weyl tensor, the Bach tensor, the potential and the tensor D satisfy the conditions:

Cijk + ftWtijk = Dijk,(5.14)

Bij =
1

m− 2

[
Dijk,k +

(
m− 3

m− 2

)
ftCjit

]
.(5.15)

Remark 5.3. From (5.14) we deduce

(5.16) ftCtij = ftDtij .

Moreover, letting [ijk] denote a summed cyclic permutation of i, j, k (for example T[ijk] = Tijk+Tjki+

Tkij), a long but straightforward calculation shows that for the tensor D the following holds:

Lemma 5.4. Let (M, g,∇f) be a gradient Ricci soliton structure on (M, g). Then the following identities

hold:

(5.17) D[ijk] = 0;

(5.18) Di[jk,t] =
1

m− 2
[fl(Clktδij + Cltjδik + Cljkδit)− (fjCikt + fkCitj + ftCijk)]
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(5.19)

Di[jk,t] =
1

m− 2
[fl(Dlktδij +Dltjδik +Dljkδit)− fj(Dikt − fsWsikt)− fk(Ditj − fsWsitj)− ft(Dijk − fsWsijk)].

(5.20) Ci[jk,t] = RsjWsikt +RskWsitj +RstWsijk.

Di[jk,t] =
m− 6

2(m− 3)

(
RsjWsikt +RskWsitj +RstWsijk − Ci[jk,t]

)
(5.21)

+
1

m− 2
[fl(Clktδij + Cltjδik + Cljkδit)− (fjCikt + fkCitj + ftCijk)].

6. Conformally Einstein metrics

In this short section we first recall the definition of a conformally Einstein manifold; then we present the

integrability conditions of Gover and Nurowski and we prove equation (6.5), which relates the Laplacian

of the scalar curvature of a conformally Einstein manifold to u (the exponent of the stretching factor)

and its covariant derivatives.

Definition 6.1. A Riemannian manifold (M, g) is said to be conformally Einstein if there exists a

conformal change of the metric g̃ = e2ug, u ∈ C∞(M), such that (M, g̃) is Einstein, i.e.

(6.1) R̃ic =
S̃

m
g̃ = λg̃, λ ∈ R.

Since in an orthonormal frame (6.1) becomes

(6.2) R̃ij =
S̃

m
δij = λδij ,

using equations (3.15) and (3.16) we can easily deduce that (M, g) is conformally Einstein if and only if

there exists a solution u ∈ C∞(M) of the equation

(6.3) Rij − (m− 2)uij + (m− 2)uiuj =
1

m

[
S − (m− 2)∆u+ (m− 2)|∇u|

2
]
δij ,

with

(6.4) S − 2(m− 1)∆u− (m− 1)(m− 2)|∇u|
2
= λme2u.

Equation (6.3) can be also written in terms of the Schouten tensor as

(6.5) Aij − (m− 2)uij + (m− 2)uiuj =
1

m

[
(m− 2)S

2(m− 1)
− (m− 2)∆u+ (m− 2)|∇u|

2

]
δij .

Remark 6.2. Note that equation (6.4) is just the trace of (6.3). The system (6.3)-(6.4) is equivalent to

the single equation

(6.6) Rij − (m− 2)uij + (m− 2)uiuj =
[
∆u+ (m− 2)|∇u|

2
+ λe2u

]
δij .

Remark 6.3. The global version of equation (6.3) is

(6.7) Ric−(m− 2)Hess (u) + (m− 2)du⊗ du =
1

m

[
S − (m− 2)∆u+ (m− 2)|∇u|

2
]
g.

We have the following proposition, reported in Gover and Nurowski ([17], Proposition 2.1), which

describes the integrability conditions of conformally Einstein metrics:

Proposition 6.4. If (M, g) is a conformally Einstein Riemannian manifold, then the Cotton tensor,

the Weyl tensor, the Bach tensor and the exponent u of the stretching factor satisfy the conditions:

Cijk − (m− 2)utWtijk = 0,(6.8)

Bij − (m− 4)utukWitjk = 0.(6.9)

The proof of (6.8) starts from the covariant derivative of (6.5); one then skew-symmetrizes, traces

and rearranges (after a lot of simple but long calculations). Taking the divergence of (6.8), using the
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definition of the Bach tensor (3.36) and equation (6.3) one gets (6.9). We do not provide the details here

since we shall consider later a general computation including this proposition as a particular case (see

7.6 and 7.10). The interesting fact is that (6.8), (6.9) and (5.14), (5.15) are strictly related, as it will

become apparent in a short while.

Taking the covariant derivative of (6.4) and using (6.3) to substitute the Hessian of u we deduce the

interesting relation

(6.10) uttk =
Sk

2(m− 1)
− utRtk −

1

m(m− 1)
Suk +

(
m+ 2

m

)
∆uuk +

(
m− 2

m

)
|∇u|

2
uk,

which implies

(6.11)

g(∇u,∇∆u) =
1

2(m− 1)
g(∇S,∇u)−Ric (∇u,∇u)−

1

m(m− 1)
S|∇u|

2
+

(
m+ 2

m

)
∆u|∇u|

2
+

(
m− 2

m

)
|∇u|

4
.

Now we use the fact that S̃ is constant and thus

(6.12) e4u∆̃S̃ = 0;

Moreover, we observe that, from equation (6.3),

(6.13) Ric (∇u,∇u)− (m− 2)Hess(u)(∇u,∇u) =
1

m
|∇u|

2
[
S − (m− 2)∆u− (m− 1)(m− 2)|∇u|

2
]
.

Using (6.12), (6.13) and (6.11) in (3.22) and simplifying we deduce the following

Proposition 6.5. Let (M, g) be a conformally Einstein manifold. Then

1

2
[∆S − (m− 2)g(∇S,∇u)] = (m− 1)∆2u+ (m− 1)(m− 2)|Hess(u)|

2
+ S∆u− 2(m− 1)(∆u)

2

(6.14)

+

(
m+ 2

m

)
|∇u|

2
[
S − 2(m− 1)∆u− (m− 1)(m− 2)|∇u|

2
]
.

Remark 6.6. Equation (6.14) can also be obtained by taking the Laplacian of both sides of (6.4), using

the divergence of equation (6.10) and the classical Bochner-Weitzenböck formula (see e.g. [2]).

Remark 6.7. Since, by equation (6.4),
(
m+ 2

m

)
|∇u|

2
[
S − 2(m− 1)∆u− (m− 1)(m− 2)|∇u|

2
]
= (m+ 2)λe2u|∇u|

2
,

equation (6.14) can also be written as

1

2
[∆S − (m− 2)g(∇S,∇u)] = S∆u− 2(m− 1)(∆u)

2
+ (m− 1)∆2u+ (m− 1)(m− 2)|Hess(u)|

2

(6.15)

+ (m+ 2)λe2u|∇u|
2
.

Remark 6.8. If we take u = log v
2

m−2 , for some v ∈ C∞(M), v > 0, equation (6.4) becomes the classical

Yamabe equation
4(m− 1)

m− 2
∆v − Sv + S̃v

m+2

m−2 = 0,

while equation (6.3) becomes

Rij − 2
vij

v
+

2m

m− 2

vivj

v2
=

1

m

[
S − 2

∆v

v
+

2m

m− 2

|∇v|
2

v2

]
δij .

7. Conformal gradient Ricci solitons

In this section we introduce the notion of a conformal gradient Ricci soliton, inspired by the two

particular cases of Ricci solitons and conformally Einstein metrics, in order to create a link between

them.
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Definition 7.1. A Riemannian manifold (M, g) is said to be a conformal gradient Ricci soliton if there

exist a conformal change of the metric g̃ = e2ug, u ∈ C∞(M), a function f ∈ C∞(M) and a constant

λ ∈ R such that (M, g̃) is a gradient Ricci soliton, i.e.

(7.1) R̃ic + H̃ess(f) = λg̃.

In terms of the geometry of the manifold (M, g), (7.1) leads to the following

Lemma 7.2. (M, g) is a conformal gradient Ricci soliton if and only if there exist u ∈ C∞(M), a

function f ∈ C∞(M) and a constant λ ∈ R such that

Ric−(m− 2)Hess (u)+(m− 2)du⊗ du+Hess (f)− (df ⊗ du+ du⊗ df) =(7.2)

1

m

[
S − (m− 2)

(
∆u− |∇u|

2
)
+∆f − 2g(∇f,∇u)

]
g

and

S − 2(m− 1)∆u− (m− 1)(m− 2)|∇u|
2
+∆f + (m− 2)g(∇f,∇u) = mλe2u.(7.3)

Proof. In an orthonormal frame (7.1) becomes

(7.4) R̃ij + f̃ij = λδij ,

while tracing (7.1) we deduce that

(7.5) mλ = S̃ + ∆̃f.

Multiplying both sides of (7.5) through e2u and using (3.16) and (3.26) we get (7.3); multiplying both

sides of (7.4) by e2u, using (3.15), (3.24) and (7.3) we deduce

(7.6)

Rij−(m−2)uij+(m−2)uiuj+fij−(fiuj + fjui) =
1

m

[
S − (m− 2)

(
∆u− |∇u|

2
)
+∆f − 2g(∇f,∇u)

]
δij ,

that is (7.2). �

Note that equation (7.6) can be written, using the Schouten tensor, as

(7.7)

Aij−(m−2)uij+(m−2)uiuj+fij−(fiuj + fjui) =
1

m

[
m− 2

2(m− 1)
S − (m− 2)

(
∆u− |∇u|

2
)
+∆f − 2g(∇f,∇u)

]
δij .

For a conformal gradient Ricci soliton we define the tensor D(u,f) as follows:

D
(u,f)
ijk =

1

m− 2
(fkRij − fjRik) +

1

(m− 1)(m− 2)
ft(Rtkδij −Rtjδik)−

S

(m− 1)(m− 2)
(fkδij − fjδik)

(7.8)

+
∆u

m− 1
(fkδij − fjδik)− (fkuij − fjuik) + ui(fkuj − fjuk)−

1

m− 1
(ftutkδij − ftutjδik)

+
1

m− 1
(ftut)(ukδij − ujδik)−

1

m− 1
|∇u|

2
(fkδij − fjδik).

Remark 7.3. A computation using equation (7.6) shows that the tensor D(u,f) can also be written as

follows:

D
(u,f)
ijk =

1

(m− 1)(m− 2)

[
ft(ftjδik − ftkδij)− |∇f |

2
(ujδik − ukδij) + (ftut)(fjδik − fkδij)

]
(7.9)

−
1

m− 2
[fijfk − fikfj + fi(ukfj − ujfk)] +

∆f

(m− 1)(m− 2)
(fkδij − fjδik).

We have the following

Proposition 7.4. If the conformal gradient soliton is a conformal Einstein manifold (i.e. f is con-

stant) then D(u,f)
∣∣
f=const.

≡ 0, while if the conformal gradient soliton is a soliton (i.e. u = 0) then

D(u,f)
∣∣
u=0

= D(0,f) = D.
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Proof. The proof is straightforward using the definition of D(u,f) given in (7.8). Using instead the

definition (7.9), for the first condition we just observe that the right hand side of (7.9) vanishes when f

is constant. If u = 0 then equation (7.9) becomes

(7.10)

D
(0,f)
ijk =

1

(m− 1)(m− 2)
[ft(ftjδik − ftkδij)]−

1

m− 2
(fijfk − fikfj) +

∆f

(m− 1)(m− 2)
(fkδij − fjδik).

Now the conclusion follows using the solitons equation (2.16) and its traced version S +∆f = λm.

�

From the definition (7.8) of D(u,f) and from equation (3.37) we immediately deduce the following

Lemma 7.5. If (M, g) is a conformal gradient Ricci soliton then

(7.11) D(u,f) = e3uD̃.

The first main result of this section is the following

Theorem 7.6. If (M, g) is a conformal gradient Ricci soliton then

(7.12) Cijk − [(m− 2)ut − ft]Wtijk = D
(u,f)
ijk .

Remark 7.7. Equation (7.12) is the first integrability condition for a conformal gradient Ricci soliton.

Moreovoer, using Proposition 7.4, when f is constant we recover equation (6.8) of Gover and Nurowski,

while when u = 0 we recover equation (5.14) of Cao and Chen.

Proof. There are two ways to prove (7.12).

First proof (the direct one).

We start from (7.7). Taking the covariant derivative and skew-symmetryzing with respect to the

second and third index we get

Cijk − (m− 2)utRtijk + ftRtijk + (m− 2)(uikuj − uijuk) + fijuk − fikuj + uijfk − uikfj =(7.13)

+
m− 2

m

{[
Sk

2(m− 1)
− uttk +

fttk

m− 2

]
δij −

[
Sj

2(m− 1)
− uttj +

fttj

m− 2

]
δik

}

+
m− 2

m

{
2ut

[(
utk −

ftk

m− 2

)
δij −

(
utj −

ftj

m− 2

)
δik

]
−

2

m− 2
ft(utkδij − utjδik)

}
.

Tracing equation (7.13) with respect to i and j we deduce the following interesting relation, which will

come in handy later:

Sk

2(m− 1)
− uttk +

fttk

m− 2
=

m

m− 1

(
utRtk −

1

m− 2
ftRtk

)
−

(
m− 2

m− 1

)
uuutk +

1

m− 1
(utftk + ftutk)

(7.14)

−
m

m− 1
∆uuk +

m

(m− 1)(m− 2)
(uk∆f + fk∆u).
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Substituting equation (7.14) in (7.13), using the definition of the Weyl tensor (see equation (2.1)) and

rearranging we arrive at

Cijk − [(m− 2)ut − ft]Wtijk =
1

(m− 1)(m− 2)
[(m− 2)ut − ft](Rtjδik −Rtkδij) + (Rikuj −Rijuk)

(7.15)

+
1

m− 2
(Rijfk −Rikfj) +

S

(m− 1)(m− 2)
[(m− 2)(ukδij − ujδik)− (fkδij − fjδik)]

+ uk[(m− 2)uij − fij ]− uj [(m− 2)uik − fik] + (fjuik − fkuij)

+

(
m− 2

m− 1

)
ut(utkδij − utjδik) +

1

m− 1
ut(ftjδik − ftkδij)

+
1

m− 1
ft(utjδik − utkδij) +

1

m− 1
[(m− 2)∆u−∆f ](ujδik − ukδij)

+
1

m− 1
∆u(fkδij − fjδik).

Now we use (7.6) every time the Hessian of u appears in equation (7.15); rearranging and simplifying

(with a lot of patience) we deduce (7.12).

Remark 7.8. The same argument obviously works in the case of conformally Einstein manifolds, leading

to equation (6.8).

Second proof (sketch). Since (M, g) is a conformal gradient Ricci soliton we have the validity of (5.14)

with respect to the metric g̃, i.e.

C̃ijk + f̃tW̃tijk = D̃ijk;

multiplying both members through e3u we get

e3uC̃ijk +
(
euf̃t

)(
e2uW̃tijk

)
= e3uD̃ijk.

Now using (3.34), (3.35), (3.37) and the fact that euf̃t = ft we obtain (7.12). �

Remark 7.9. The first proof of Theorem 7.6 is long but elementary, using only the definition of the

Cotton tensor and the equation defining a conformal Ricci soliton. The second proof is obviously shorter,

but requires a lot of preliminary work to deduce the necessary transformation laws.

As far as the second integrability condition is concerned we have

Theorem 7.10. If (M, g) is a conformal gradient Ricci soliton then

(7.16) Bij =
1

m− 2

{
D

(u,f)
ijk,k −

(
m− 3

m− 2

)
[(m− 2)ut − ft]Cjit + [ftuk + fkut − (m− 2)utuk]Witjk

}
;

Equivalently,

Bij =
1

m− 2

{[
(m− 2)(m− 4)utuk − (m− 4)(ukft + fkut) +

(
m− 3

m− 2

)
ftfk

]
Witjk(7.17)

−

(
m− 3

m− 2

)
[(m− 2)ut − ft]D

(u,f)
jit +D

(u,f)
ijt,t

}
.

Remark 7.11. Equation (7.16) is the second integrability condition for a conformal gradient Ricci soliton.

Moreover, if f is constant we recover equation (6.9) of Gover and Nurowski, while if u = 0 we recover

equation (5.15) of Cao and Chen.

Proof. Again, there are two ways to prove (7.16).

First proof (the direct one). We take the covariant derivative of equation (7.12) to get

(7.18) Cijk,l − [(m− 2)utl − ftl]Wtijk − [(m− 2)ut − ft]Wtijk,l = D
(u,f)
ijk,l ;
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tracing with respect to k and l and using the definition of the Bach tensor and the fact that Wtijk,k =

Wkjit,k = −
(

m−3
m−2

)
Cjit we deduce

(7.19) (m− 2)Bij − [Rtk − (m− 2)utk + ftk]Witjk +

(
m− 3

m− 2

)
[(m− 2)ut − ft]Cjit = D

(u,f)
ijk,k .

Now we note that, by equation (7.6),

Rtk−(m−2)utk+ftk = −(m−2)utuk+ftuk+fkut+
1

m

[
S − (m− 2)

(
∆u− |∇u|

2
)
+∆f − 2g(∇f,∇u)

]
δtk;

substituting in (7.19) and computing we obtain (7.16). Equation (7.17) can be now obtained using (7.12)

in (7.16) and rearranging.

Second proof (sketch). Since (M, g) is a conformal gradient Ricci soliton we have the validity of (5.15)

with respect to the metric g̃, i.e.

(m− 2)B̃ij = D̃ijt,t +

(
m− 3

m− 2

)
f̃tC̃jit;

the thesis now follows from (3.36), (3.39) (traced with respect to k and t), (3.35) and a long computation.

�

Remark 7.12. Following the second proof of Theorem 7.10 it is possibile to show that

(7.20) D
(u,f)
ijt,t = e2uD̃ijt,t − (m− 4)utD

(u,f)
ijt + utD

(u,f)
jit .

We observe that equation (7.14) gives a relation between ∇S, ∇∆u and ∇∆f for a conformal gradient

Ricci soliton. On the other hand, taking the covariant derivative of equation (7.3), we deduce that

Sk

2(m− 1)
− uttk +

fttk

2(m− 1)
= (m− 2)ututk −

m− 2

2(m− 1)
ftutk −

m− 2

2(m− 1)
utftk +

S

m− 1
uk − 2∆uuk

(7.21)

− (m− 2)|∇u|
2
uk +

1

m− 1
∆f uk +

(
m− 2

m− 1

)
(ftut)uk.

Subtracting (7.21) from (7.14) and rearranging we obtain

fttk = 2(m− 2)utRtk − 2ftRtk − 2(m− 2)
2
ututk + (m− 2)utftk + (m− 2)ftutk + 2

(m− 2)2

m
∆uuk

(7.22)

− 2
(m− 2)

m
Suk + 2

(m− 1)(m− 2)2

m
|∇u|

2
uk +

4

m
∆f uk + 2∆u fk − 2

(m− 2)2

m
(ftut)uk.

Now using equation (7.6) to substitute every term containing the Hessian of u and rearranging we deduce

the following

Proposition 7.13. Let (M, g, f, λ) be a conformal gradient Ricci soliton; then we have

fttk = ftftk − ftRtk − (m− 2)utftk +
(m− 2)(2m− 1)

m
|∇u|

2
fk + 2∆f uk +

(
3m− 2

m

)
∆u fk(7.23)

+ (m− 2)g(∇f,∇u)uk − |∇f |
2
uk −

(S +∆f)

m
fk −

(
m− 2

m

)
g(∇f,∇u)fk.

Inserting now (7.23) into (7.14) and rearranging we obtain the following, interesting expression for

∇∆u.
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Theorem 7.14. Let (M, g, f, λ) be a conformal gradient Ricci soliton; then we have

uttk =
Sk

2(m− 1)
− utRtk − utftk +

1

m− 1
ftftk +

(
m− 2

m

)
|∇u|

2
uk +

(
m− 2

m

)
g(∇f,∇u)uk(7.24)

−
S

m(m− 1)
(uk + fk) +

(
m+ 2

m

)
∆uuk −

1

m− 1
|∇f |

2
uk +

1

m
∆f uk +

2(m− 1)

m
|∇u|

2
fk

−
m− 2

m(m− 1)
g(∇f,∇u)fk +

2

m
∆u fk −

1

m(m− 1)
∆f fk.

8. Generic Ricci solitons: necessary conditions

In this section we construct, for a generic Ricci solitons(M, g,X, λ), two integrability conditions which

are a direct generalization of the ones in section 5, valid for a gradient Ricci solitons. To state them we

first need to define the tensor DX as follows:

DX
ijk =

1

m− 2
(XkRij −XjRik) +

1

(m− 1)(m− 2)
(XtRtkδij −XtRtjδik)−

S

(m− 1)(m− 2)
(Xkδij −Xjδik)

(8.1)

+
1

2
(Xkji −Xjki) +

1

2(m− 1)
[(Xtkt −Xktt)δij − (Xtjt −Xjtt)δik].

Remark 8.1. If X = ∇f for some f ∈ C∞(M), then D∇f ≡ D (since Xkji = fkji = Xjki = fjki).

The following theorem shows that DX is the natural counterpart of D in the generic case:

Theorem 8.2. If (M, g,X, λ) is a generic Ricci soliton with respect to the smooth vector field X, then

the Cotton tensor, the Weyl tensor, the Bach tensor, X and the tensor DX satisfy the conditions:

Cijk +XtWtijk = DX
ijk,(8.2)

Bij =
1

m− 2

(
DX

ijk,k +
m− 3

m− 2
XtCjit +

1

2
(Xtk −Xkt)Witjk

)
.(8.3)

Remark 8.3. If X = ∇f for some f ∈ C∞(M), equations (8.2) and (8.3) become, respectively, (5.14)

and (5.15).

Remark 8.4. From (8.2) we deduce

(8.4) XtCtij = XtDtij .

We omit here the proof, since Theorem 8.2 will be a consequence of Theorems 9.6 and 9.8 of the next

section.

9. Conformal generic Ricci solitons

As a further step toward generalization, not unexpectedly, in this section we define the notion of a

conformal generic Ricci soliton.

Definition 9.1. A Riemannian manifold (M, g) is said to be a conformal generic Ricci soliton if there

exist a conformal change of the metric g̃ = e2ug, u ∈ C∞(M), a smooth vector field X ∈ X(M) and a

constant λ ∈ R such that (M, g̃) is a generic Ricci soliton, i.e.

(9.1) R̃ic +
1

2
LX g̃ = λg̃.

In terms of the geometry of the manifold (M, g), (9.1) leads to the following

Lemma 9.2. (M, g) is a conformal generic Ricci soliton if and only if there exist u ∈ C∞(M), a smooth

vector field X ∈ X(M) and a constant λ ∈ R such that

Ric−(m− 2)Hess (u)+(m− 2)du⊗ du+
1

2
e2uLXg =

1

m

[
S − (m− 2)

(
∆u− |∇u|

2
)
+ e2u divX

]
g

(9.2)
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and

S − 2(m− 1)∆u− (m− 1)(m− 2)|∇u|
2
+ e2u(divX +mg(X,∇u)) = mλe2u.(9.3)

Proof. In an orthonormal frame (9.1) becomes

(9.4) R̃ij +
1

2

(
X̃ij + X̃ji

)
= λδij ,

while tracing (9.1) we deduce that

(9.5) mλ = S̃ + d̃ivX.

Multiplying both sides of (9.5) by e2u and using (3.16) and (3.46) we get (9.3); multiplying both sides

of (9.4) by e2u, using (3.15), (3.45) and (9.3) we deduce

(9.6) Rij−(m−2)uij+(m−2)uiuj+
1

2
e2u(Xij +Xji) =

1

m

[
S − (m− 2)

(
∆u− |∇u|

2
)
+ e2u divX

]
δij ,

that is (9.2). �

Remark 9.3. If u = 0 equations (9.2) and (9.3) give

(9.7) Rij +
1

2
(Xij +Xji) =

1

m
(S + divX)δij = λδij ,

that is the equation of generic Ricci solitons; if in addition X = ∇f for some f ∈ C∞(M), we obviously

recover the equation of gradient Ricci solitons. On the other hand, if u 6≡ 0 but X is the gradient of

some function f with the respect to the metric g̃, we recover equations (7.2) and (7.3). To prove this we

observe that

X = ∇̃f = f̃iẽi = f̃ie
−uei = e−2ufiei,

so we deduce

X = ∇̃f = e−2u∇f.

Moreover we have

Xi = e−2ufi,

Xij = e−2u(fij − 2fiuj), Xji = e−2u(fij − 2fjui),

divX = Xii = e−2u(∆f − 2g(∇u,∇f)).

Substituting the previous relations in (9.6) we get (7.6).

Note that equation (9.6) can be written, using the Schouten tensor, as

(9.8)

Aij−(m−2)uij+(m−2)uiuj+
1

2
e2u(Xij +Xji) =

1

m

[
m− 2

2(m− 1)
S − (m− 2)

(
∆u− |∇u|

2
)
+ e2u divX

]
δij .

For a conformal generic Ricci soliton we now define the tensor D(u,X) as follows:

D
(u,X)
ijk = e2u

{
1

m− 2
(XkRij −XjRik) +

1

(m− 1)(m− 2)
(XtRtkδij −XtRtjδik)−

S

(m− 1)(m− 2)
(Xkδij −Xjδik)

(9.9)

+
1

2
(Xkji −Xjki) +

1

2(m− 1)
[(Xtkt −Xktt)δij − (Xtjt −Xjtt)δik]−

1

2
[(Xij +Xji)uk − (Xik +Xki)uj ]

−
1

2(m− 1)
ut[(Xtk +Xkt)δij − (Xtj +Xjt)δik] +

1

m− 1
(divX)(ukδij − ujδik)

}
.

We have the following

Proposition 9.4. If the conformal generic Ricci soliton is a conformal Einstein manifold (i.e. X ≡ 0)

then D(u,X)
∣∣
X≡0

= D(u,0) ≡ 0, while if the conformal generic Ricci soliton is a generic Ricci soliton

(i.e. u = 0) then D(u,X)
∣∣
u=0

= D(0,X) = DX .
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Proof. The proof is just a straightforward calculation. �

A computation similar to the one leading to equation (7.11) shows the validity of the following

Lemma 9.5. If (M, g) is a conformal generic Ricci soliton then

(9.10) D(u,X) = e3uD̃X .

We now come to the main result of this section, i.e. the first integrability condition for conformal

generic Ricci solitons.

Theorem 9.6. If (M, g) is a conformal generic Ricci soliton then

Cijk −
[
(m− 2)ut − e2uXt

]
Wtijk = D

(u,X)
ijk .(9.11)

Remark 9.7. If u = 0, (9.11) becomes equation (8.2); if X = 0, we recover equation (6.8); if X = ∇̃f

for some f ∈ C∞(M), we have equation (7.12).

Proof. As in the case of Theorem 7.6, there are two equivalent ways to prove (9.11).

First proof (the direct one).

We start from (9.8). Taking the covariant derivative and skew-symmetryzing with respect to the

second and third index we get

Cijk − (m− 2)utRtijk + (m− 2)(uikuj − uijuk)(9.12)

+ e2u[(Xij +Xji)uk − (Xik +Xki)uj ] +
1

2
e2uXtRtijk +

1

2
e2u(Xjik −Xkji)

−
1

m

{
(m− 2)

2(m− 1)
(Skδij − Sjδik)− (m− 2)(uttkδij − uttjδik) + e2u(Xttkδij −Xttjδik)

+2(m− 2)(ututkδij − ututjδik) + 2e2u(divX)(ukδij − ujδik)
}
= 0.

Note that, using the first Bianchi identity (4.17) and Lemma 4.3, we have

Xjik −Xkji = Xjki −Xkji +XtRtijk,

so that

(9.13)
1

2
e2uXtRtijk +

1

2
e2u(Xjik −Xkji) = e2uXtRtijk +

1

2
e2u(Xjki −Xkji).

Tracing equation (9.12) with respect to i and j we deduce the following interesting relation (compare it

with equation (7.14)):

(m− 2)

2(m− 1)
Sk − (m− 2)uttk + e2uXttk =

m

m− 1

[
(m− 2)ut − e2uXt

]
Rtk −

(m− 2)2

m− 1
uuutk +

2

m− 1
e2u(divX)uk

(9.14)

−
m(m− 2)

m− 1
∆uuk −

m

m− 1
e2uut(Xtk +Xkt) +

m

2(m− 1)
e2u(Xtkt −Xktt).
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Now we insert (9.14), (9.13) and (2.1) into (9.12); after some manipulation we arrive at

Cijk −
[
(m− 2)ut − e2uXt

]
Wtijk =

1

(m− 1)(m− 2)

[
(m− 2)ut − e2uXt

]
(Rtjδik −Rtkδij)+

(9.15)

+
1

m− 2
Rik

[
(m− 2)uj − e2uXj

]
−

1

m− 2
Rij

[
(m− 2)uk − e2uXk

]

+
S

(m− 1)(m− 2)

{[
(m− 2)uk − e2uXk

]
δij −

[
(m− 2)uj − e2uXj

]
δik

}

+ (m− 2)(uijuk − uikuj) + e2u[(Xik +Xki)uj − (Xij +Xji)uk]

+
1

2
e2u(Xkji −Xjki) +

(
m− 2

m− 1

)
ut(utkδij − utjδik)

+
2

m− 1
e2u(divX)(ukδij − ujδik)−

(
m− 2

m− 1

)
∆u(ukδij − ujδik)

−
1

m− 1
e2uut[(Xtk +Xkt)δij − (Xtj +Xjt)δik]

+
1

2(m− 1)
e2u[(Xtkt −Xktt)δij − (Xtjt −Xjtt)δik].

Using (9.6) every time the Hessian of u appears in equation (9.15), rearranging and simplifying (with a

lot of patience, again) we deduce (9.11).

Second proof (sketch). Since (M, g) is a conformal generic Ricci soliton we have the validity of (8.2)

with respect to the metric g̃, i.e.

C̃ijk + X̃tW̃tijk = D̃X
ijk.

Now one should multiply both members through e3u, use (3.34), (3.35), the fact that X̃t = euXt and

the computation producing equation (9.10). �

As far as the second integrability condition is concerned we have

Theorem 9.8. If (M, g) is a conformal generic Ricci soliton then

Bij =
1

m− 2

{
D

(u,X)
ijk,k −

(
m− 3

m− 2

)[
(m− 2)ut − e2uXt

]
Cjit +

[
1

2
e2u(Xtk −Xkt) + 2e2u(Xtuk)− (m− 2)utuk

]
Witjk

}
.

(9.16)

Remark 9.9. If u = 0, (9.16) becomes equation (8.3); if X = 0, we recover equation (6.9); if X = ∇̃f

for some f ∈ C∞(M), we have equation (7.16).

Proof. Taking the covariant derivative of equation (9.11) we get

Cijk,l −
[
(m− 2)utl − 2e2uXtul − e2uXtl

]
Wtijk −

[
(m− 2)ut − e2uXt

]
Wtijk,l = D

(u,X)
ijk,l .

Now we trace with respect to k and l and we use the definition (2.12) of the Bach tensor to deduce

(m−2)Bij−RtkWitjk+
[
(m− 2)utk − 2e2uXtuk − e2uXtk

]
Witjk−

[
(m− 2)ut − e2uXt

]
Wtijk,k = D

(u,X)
ijk,k .

Inserting (2.11) and (9.6) in the previous relation, simplifying and rearranging we get (9.16). �
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10. Higher order integrability condition for gradient Ricci solitons

In this short section we present the third and the fourth integrability conditions for gradient Ricci

solitons of dimension m ≥ 4. Starting from equation (5.15) in Theorem 5.2 we get the following

Theorem 10.1. If (M, g, f) is a gradient Ricci soliton with potential function f , then the Cotton tensor,

the Bach tensor and the tensor D satisfy the condition

(10.1) RktCkti = (m− 2)Ditk,tk,

or, equivalently,

(10.2) (divB)i = Bik,k =

(
m− 4

m− 2

)
Ditk,tk.

Proof. We take the covariant derivative of equation (5.15), obtaining

(m− 2)Bij,k = Dijt,tk +

(
m− 3

m− 2

)
(ftkCjit + ftCjit,k),

which implies, using the soliton equation,

(m− 2)Bij,k = Dijt,tk +

(
m− 3

m− 2

)
(λCjik +RtkCjti + ftCjit,k).

Tracing with respect to j and k, using equation (4.43) and the fact that the Cotton tensor is totally

trace-free we get

(m− 2)Bik,k = Dikt,tk +

(
m− 3

m− 2

)
RtkCjti.

Now we exploit (2.13) in the previous relation, obtaining (10.1). To get (10.2) we simply insert again

(2.13) into (10.1). �

Theorem 10.2. If (M, g, f) is a gradient Ricci soliton with potential function f , then the Cotton tensor,

the Bach tensor and the tensor D satisfy the condition

(10.3)
1

2
|C|

2
+ (m− 2)RijBij −RijRktWikjt = (m− 2)Ditk,tki,

or, equivalently,

(10.4) Bik,ki =

(
m− 4

m− 2

)
Ditk,tki.

Proof. Equation (10.4) follows by taking the divergence of (10.2). To get (10.3) we take the divergence

of (10.1),

Rkt,iCkti +RktCkti,i = (m− 2)Ditk,tki.

Now we use the symmetry of the Cotton tensor and the definition of the Bach tensor, obtaining

1

2
(Rkt,i −Rki,t)Ckti +Rkt[(m− 2)Bkt −RijWikjt] = (m− 2)Ditk,tki,

from which we immediately deduce (10.3). �

11. Open questions

We conclude the paper with a brief overview of interesting open problems.

First of all, sufficient conditions for a generic Riemannian manifold to be conformally equivalent

(locally or globally) to a Eistein manifold have been found by several authors, see for instance Gover-

Nurowsky [17] and Listing [22], [23]; it would be of great interest to find similar results in the Ricci

soliton case.

Another interesting result would be to deduce some a priori estimate on scalar curvature for confor-

mally Einstein manifolds or conformally Ricci solitons, using PDE methods to study scalar equations

obtained from their structure; a similar approach has been used for instance in [25] and [13].
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In the spirit of [8] and [5], rigidity and classification results for Bach-flat gradient Ricci solitons can

be derived using the first and the second integrability conditions, see also [14]. It is then natural to ask

if it is possible to obtain similar results under weaker assumptions, such as divB = 0, exploiting also

the third and fourth integrability conditions provided in the previous section. We explicitly remark that

in dimension three the condition divB = 0 is sufficient to obtain the classification, see [5]. Moreover,

in obtaining the aforementioned classification results, a key role is played by the vanishing of the tensor

D; it would be significant to identify weaker requirements on the Bach tensor and/or its divergence that

could ensure this condition.
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