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CONFORMAL SCATTERING OF MAXWELL FIELDS

ON REISSNER–NORDSTRÖM–DE SITTER BLACK

HOLE SPACETIMES

by Mokdad MOKDAD

Abstract. — We construct a complete conformal scattering theory for
Maxwell fields in the static exterior region of a Reissner–Nordström–de Sitter black
hole spacetime. We use uniform energy decay results, which we obtain in a separate
paper, to show that the trace operators are injective and have closed ranges. We
then solve the Goursat problem (characteristic Cauchy problem) for Maxwell fields
on the null boundaries showing that the trace operators are also surjective.

Résumé. — Nous construisons une théorie complète de scattering conforme
pour les champs de Maxwell dans l’extérieur statique de l’espace-temps de trou
noir de De Sitter–Reissner–Nordström. Nous utilisons des résultats de décroissance
que nous avons obtenus dans un article séparé, afin de montrer que les opérateurs
de trace sont injectifs et d’images fermées. Ensuite, nous résolvons le problème de
Goursat pour les champs de Maxwell sur la frontière isotrope ce qui montre que
les opérateurs de trace sont surjectifs aussi.

1. Introduction

In the classic experiment of scattering one has a field propagating in a

medium with an obstacle ; an incoming plane wave hits the obstacle and

scatters away from it as a superposition of outgoing plane waves. Scat-

tering theory is a way of summarizing this evolution, which may involve

complicated intermediate interactions of the field, described as the solution

to an evolution equation, by constructing the map that, to the asymptotic

behaviour of the solution in the distant past (incoming wave), associates its

asymptotic behaviour in the distant future (outgoing wave). This can be

Keywords: Conformal scattering, Black holes, Maxwell’s equations, Reissner–
Nordström–de Sitter metric, Goursat problem.
2010 Mathematics Subject Classification: 35Q61, 35P25, 35Q75, 83C57, 83C50.
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done provided the asymptotic behaviour characterizes the solution com-

pletely. Radar systems make use of this characterization of the solution

by its asymptotic profile to gain information about the medium and the

obstacles it contains. This reconstruction is the aim of inverse scattering.

Scattering theory proved to be a useful tool in the framework of general

relativity to study the asymptotic influence of the geometry of spacetime on

fields. Scattering theory in black holes spacetimes played an essential role

in the rigorous description of phenomena like superradiance, the Hawking

effect, and quasi-normal modes (resonances of black holes which are related

to gravitational waves). It is worth mentioning that although in this current

work we do not use an analytic approach to scattering, it is part of the origin

of conformal scattering and it helps to understand what new features the

conformal approach brings to the domain. A brief review of the history of

analytic scattering in this context can be found in [17] for example.

Conformal Scattering

In the present work, we construct a Conformal Scattering theory. Con-

formal scattering is a geometrical approach to time-dependent scattering

based on Penrose conformal compactification: a rescaling of the metric and

the fields using conformal factors. This enables the definition of a scattering

operator, the fundamental object in the theory. This operator associates to

the asymptotic behaviour of the solution in the distant past, its asymp-

totic behaviour in the distant future. The asymptotics of the solution are

the scattering data and are given as restrictions of the conformally rescaled

solution on past and future null infinities and are called radiation fields.

With suitable energy estimates, which is a crucial step in the theory, the

scattering data completely characterizes the solution. This can be viewed

as a characteristic Cauchy problem, also called a Goursat problem. This is

an initial-value problem where data is given at null infinity instead of some

spacelike hypersurface as in the non-characteristic case. The resolution of

the Goursat problem is in the core of conformal scattering theory.

The Main Ingredients

We describe the essential steps of the general strategy of conformal scat-

tering.
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Figure 1.1. Penrose diagram of M̂ the conformal compactification of

Minkowski spacetime M with timelike, spacelike, and null curves.

Conformal compactification. — In the words of R. Penrose, conformal

compactification is a technique to “make infinity finite”. A globally hy-

perbolic spacetime(1) (M , g), with suitable asymptotic structure, such as

asymptotic flatness, is rescaled and replaced by an “unphysical” Lorentzian

manifold with boundary (M̂ , ĝ). M̂ is called the conformal compactifica-

tion of M , with ∂M̂ = I representing points at infinity of (M , g), and

intM̂ = M . The new metric is conformally related to the original metric by

ĝ = Ω2g ,

for an appropriate choice of a smooth non-negative boundary defining func-

tion Ω defined on M̂ . Ω called the conformal factor. It is positive on M

and becomes zero on I , the asymptotic regions where g becomes infinite,

and dΩ|I 6= 0 (Figure 1.1). What is important is to rescale the original

metric and add a boundary in a way such that the new metric has some

differentiability on the boundary hypersurface I . Now, the asymptotics of

M can be studied using local techniques on M̂ , without resorting to com-

plicated limit arguments when studying, for example, the radiation fields

of a physical field on the original spacetime. A conformally invariant equa-

tion is an equation defined on M for g such that whenever Φ is a solution

(1) A spacetime that admits a spacelike hypersurface that intersect every inextendible
causal curve exactly once.

TOME 69 (2019), FASCICULE 5
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to the equation, then for some s ∈ R, the rescaled field(2) Φ̂ := ΩsΦ is a

solution to the same equation but defined on M̂ for the rescaled metric ĝ.

Examples of conformally invariant equations are the conformal wave equa-

tions, Dirac equation, and Maxwell’s equations. Working with this class of

equations that admit such rather explicit transformation law under con-

formal rescaling ensures that we can study the equation on the rescaled

spacetime and gain information on its behaviour in the physical spacetime.

Conformal scattering theories have been obtained on generic non-stationary

spacetimes [12, 15], but let us here assume the existence of a global Killing

timelike (or causal) vector field τ for simplicity. As the just cited works

illustrate, this symmetry assumption can be relaxed to more general situ-

ations such as asymptotically simple spacetimes defined in [2, 3, 4, 5]. We

note that not all spacetimes admit a conformal compactification with the

needed regularity of the rescaled metric at the boundary. This is in fact

related to the decay of the Weyl curvature at infinity. When the required

compactification exists, different parts of the boundary will correspond to

different ways of going to infinity (along spacelike, timelike, or null curves).

Also, in the cases of black holes, part or all of the conformal boundary

will be the horizon or horizons. Horizons are finite null hypersurfaces for

the physical metric and when the whole conformal boundary is made of

horizons, conformal rescalings are not required ; even in such a case we

talk about conformal scattering because we use the same approach based

on the resolution of a Goursat problem at the null boundary. We note that

such cases are more amenable to extending the method to non-conformally

invariant equations since there is no conformal rescaling involved. For more

details on the topic of conformal rescaling and compactification we refer

to [21, 22, 23, 24, 25].

Cauchy problem: Defining the trace operators. — The scattering oper-

ator is defined using two operators called the past and the future trace

operators T ±. The past trace operator associates to data at some finite in-

stant of time (t = 0), data in the infinite past (t = −∞). The future trace

operator is defined similarly. These operators are defined between a normed

energy space H on a Cauchy hypersurface of the compactified spacetime

M̂ and normed energy spaces H± on the boundary parts I ±. The energy

norms are defined by contracting the timelike or causal vector field τ with

the stress-energy tensor T of the studied equations in order to define the

energy current Ja = τ b
Tab, and the norm is then the energy flux across

(2) See [24] for the precise definition.

ANNALES DE L’INSTITUT FOURIER
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the considered hypersurface:

Eτ,Σ0
=

∫

Σ0

τa
Tabdσb and Eτ,I ± =

∫

I ±

τa
Tabdσ̂b .

The general construction of the future operator goes as follows: For a given

finite energy data Φ̂0 on the spacelike Cauchy hypersurface Σ0, we solve

the Cauchy problem on M̂ to get a solution Φ̂ of our equations. The future

radiation field, or the image of Φ̂0 by the future trace operator, is then

the trace (a restriction) of the solution Φ̂ to the future boundary I +, i.e.

T +(Φ̂0) = Φ̂|I + . The past trace operator is defined similarly (Figure 1.2).

Of course, not all constructions follow these exact steps. Depending on the

asymptotic structure of the spacetime and the equations we are studying,

some intermediate steps may be required, and the definition of the trace

operator may differ slightly. For example, while the above scheme generally

describes the situation of the wave equation on Minkowski spacetime, ad-

ditional steps are needed for different spacetimes depending on the nature

of the timelike and spacelike infinities, i± and i0 (see [20]). On the other

hand, the trace operators for Maxwell’s equations do not associate to the

initial Cauchy data the full restriction of the field, but rather a part of it.

This is because of the constraint equations that should be satisfied by the

solution to the evolution problem. This is the case we treat in this work.

For other situations we refer for example to [13, 15, 20].

Let us for the sake of this general overview assume that the studied

equations are linear. This entails that the trace operators themselves are

linear operators. Yet, this is not an absolute necessity for the construction

of a conformal scattering theory, see [12] for example.

Energy estimates: The trace operators are one-to-one and have closed

ranges. — The next step is to show that the trace operators are bijective.

In fact, the above construction of the trace operators is usually done first for

a dense subset of the finite energy space H on Σ0 such as smooth compactly

supported functions. If one proves uniform energy estimates both ways be-

tween the initial Cauchy data in the dense subset and their images under

the trace operator, then the operator extends to the whole of H as a one-

to-one map with a closed range. In some cases, one can prove exact energy

identities, and the trace operators preserve the energy norms in this case,

i.e. they are partial isometries. Ways of getting the uniform estimates de-

pend on the structure of the spacetime at infinity and the properties of the

stress-energy tensor. If the stress-energy tensor of the original unrescaled

equations is divergence-free, i.e. conserved, and conformally invariant, as

for the Maxwell’s equations, then working with the rescaled quantities Φ̂

TOME 69 (2019), FASCICULE 5
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Figure 1.2. The trace operators T ±.
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Figure 1.3. The case of regular i±.

and ĝ has the important advantage of seeing all the involved hypersurfaces

as regular hypersurfaces at finite distances, in particular I ±. If we are

on Minkowski spacetime, a simple application of Stokes’ theorem, or more

precisely the divergence theorem, yields the required energy identities:

Eτ,Σ0
= Eτ,I ± .

Even if the rescaled metric is singular at i0, as long as the initial data is

supported away from i0, finite propagation speed guarantees that the solu-

tion does not see the singular spacelike infinity since it is zero in a neigh-

bourhood of it, and the above technique can be applied without essential

modification thanks to the density of compactly supported functions in the

energy space (Figure 1.3). In the case of black hole spacetimes, timelike

infinities are singular. This constitutes an important difficulty and finite

propagation speed will not help us here since the singularity lies in the

future of any initial data no matter how small its compact support may be.

What we need is a suitable decay of the solutions near timelike infinities so

that we can rule out the accumulation of energy at these singularities. In

such situations the estimates can be obtained as follows. We consider an

achronal hypersurface Ss (s > 0) for the rescaled metric that forms a regu-

lar closed hypersurface with the future boundary I + and Σ0
(3) as shown

in Figure 1.4. Because τ is Killing, the divergence theorem now implies that

Eτ,Σ0
= Eτ,I +

s
+ Eτ,Ss

.

(3) Except possibly for i0 when it is singular, but the compact support keeps us from
running into troubles there.
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Figure 1.4. The closed hypersurfaces of the compactified spacetime.

Assume that Ss accumulates on i+ as s → +∞. Here is where the decay

is needed, namely to show that

lim
s→+∞

Eτ,Ss
= 0 ,

and the conservation law follows:

Eτ,Σ0
= Eτ,I + .

Clearly, the same can be done in the past direction. Obtaining the desired

decay is usually a separate problem that has its difficulties. This is partly

why we proved the decay results of [18]. In a different setting, such as the

wave equation on the Schwarzschild metric, the energy estimates are not as

direct since the stress-energy tensor is not conformally invariant, and hence

the stress-energy tensor of the rescaled equation is not conserved. However,

it happens that one can recover the conservation law for the wave equation

on Schwarzschild black hole spacetimes since the error term is a diver-

gence [20]. Here too a decay result [6] is needed to ensure no information

is lost at the singular i±. The current decay results use techniques that

require local information that are too precise for a scattering theory. It is

however not clear yet what are the minimal decay assumptions needed for

conformal scattering.

Goursat problem: The trace operators are onto. — The third and last

step in defining the scattering operator is to prove that the trace operators

we defined are surjective. This comes down to solving the Goursat problem

on a null hypersurface for data in dense subsets of the finite energy spaces

H±, usually, smooth and compactly supported functions. This means that

we need to find for a given smooth compactly supported Goursat data,

say Φ̂+ on I +, a Φ̂0 ∈ H such that T +(Φ̂0) = Φ̂+. Taking into account

the well-posedness of the Cauchy problem, we need then to find a finite

energy solution to the equations that has Φ̂+ as its trace on I +. One way

TOME 69 (2019), FASCICULE 5
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of solving the characteristic Cauchy problem is to approach the null con-

formal boundary by spacelike hypersurfaces. Goursat data are projected as

part of the Cauchy data on the spacelike slices by means of congruences

of null geodesics in the neighbourhood of I . The solution to the Goursat

problem is then obtained using uniform energy estimates, weak conver-

gence, and compactness methods [11, 15]. In some cases, some “reversible”

modifications to the setting are needed before applying the methods just

mentioned or the results they produce. For example, one can still apply

the results of [11] where spatial compactness is needed, to spacetimes that

are not spatially compact by a cut-extend construction that transports the

problem into a framework suitable for [11]. This is done in Section 3.3

following the construction done in [20], but there the situation needs an

additional step due to the singularity at i0.

Scattering operator. — With the Goursat problem solved, the trace op-

erators T ± become isometries between the boundary energy spaces H± on

I ± and the initial energy space H on Σ0. We can then define the scattering

operator S : H− → H+ by S = T +◦(T −)−1 and it is an isometry. Although

this explicit construction of the scattering operator relies on a choice of a

Cauchy hypersurface used to construct the trace operators T ±, the scatter-

ing operator is in fact independent of this choice. It maps the past radiation

fields to the future radiation fields independently of the choice of the inter-

mediate spacelike hypersurface and the theory is in fact truly covariant as

Penrose hinted in [23].

History

Since the introduction of the conformal compactification by R. Penrose

and Friedlander’s notion of radiation fields [7, 8, 9] in the 1960’s, many con-

formal scattering theories have been constructed. In his founding paper [10],

Friedlander treated the case of the conformal wave equation in a static

asymptotically flat spacetime with a fast enough decay at infinity to ensure

a smooth conformal compactification including at spacelike and timelike in-

finities. The principle of the construction was first to reinterpret the scat-

tering theory as the well-posedness of the Goursat problem for the rescaled

equation at null infinity, then to solve this Goursat problem. In 1990 L. Hör-

mander solved the Goursat problem for a wave equation on generic null

hypersurfaces in a spatially compact spacetime [11]. With this, L. Mason

and J.-P. Nicolas picked up Friedlander’s ideas and applied them to scalar

ANNALES DE L’INSTITUT FOURIER
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waves(4) , Dirac, and Maxwell fields on generically non-stationary asymp-

totically simple spacetimes [15]. J. Joudioux in 2012 [13] constructed a con-

formal scattering theory for a non-linear wave equation on non-stationary

backgrounds. And in 2013 J.-P. Nicolas produced a paper [20] on a confor-

mal scattering theory for the wave equation on Schwarzschild black holes.

In these recent works, [13, 15, 20] and the current work, the resolution of

the Goursat problem is based on methods following the work of Hörman-

der [11] which deals with the Goursat problem using energy estimates for

the wave equation, weak convergence, and compactness.

The ultimate purpose of conformal scattering is to use conformal methods

to construct scattering theories, not to reinterpret existing scattering the-

ories in conformal terms. The idea of replacing spectral analysis by confor-

mal geometry is the door to the extension of scattering theories to general

non-stationary situations, which may be inaccessible to spectral methods.

In [10, 15, 20], the reinterpretation is done in addition to the conformal

construction, giving more insight on questions such as the required decay

for a conformal scattering theory, or whether a conformal scattering theory

and a scattering theory defined in terms of wave operators are equivalent or

not: Some spectral scattering theories cannot be reinterpreted as conformal

scattering, but when the spacetime has the right asymptotic structure and

the equation considered is conformally invariant, the question is valid. For

the time being, the methods used require these two conditions, however it is

interesting to know whether and how they can be extended to more general

situations of conformally non-invariant equations which include the mas-

sive cases. The setting in the present paper may be suitable to construct

conformal scattering for massive fields(5) .

Work Done

Here, we address the topic of conformal scattering on the exterior re-

gion of Reissner-Nordström-de Sitter (RNDS) black holes, and construct a

scattering operator establishing the isometric correspondence between null

data on past horizons and null data on future horizons of the static exterior

region of RNDS in the case of three horizons. Namely:

We define the energy norm of a Maxwell field F across a hypersurface S

to be

ET [F ](S) =

∫

S

(T T)♯ d4x ,

(4) The result on waves was completed in another paper in 2009 [16] by the same authors.
(5) See the end of Section 1.

TOME 69 (2019), FASCICULE 5
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where the killing vector field T is given by ∂t, and T is the electromagnetic

energy-momentum tensor defined in (2.27). Let Σt be a spacelike hyper-

surface of t = cst, H
±

2 the future and past black-hole (outer) horizons,

H
±

3 the future and past cosmological horizons, of the RNDS black hole

(see Section 2). With respect to above energy norm, let the energy space

Ut be the completion of smooth compactly supported Maxwell data(6) on

Σt, and let the energy spaces H± be the completions of smooth compactly

supported Maxwell data on H
±

2 ∪ H
±

3 .

Theorem 1.1 (Existence of Scattering Operator). — There exist an

isometry S : H− −→ H+ called the scattering operator. This operator can

be obtained, independently of the choice of the {t = cst}-hypersurface, by

two intermediate isometries T± from Ut to H± called the future and past

trace operators, as the composition map

S = T+ ◦ (T−)−1 .

The paper is divided as follows.

In Section 2, we discuss the set–up of the work. Notations and tools re-

quired are introduced. Also, some of the properties of the RNDS spacetime

in the case of three horizons and its maximal extension are reviewed.

In Section 3, we construct the trace operators and show that they are

injective and norm preserving after establishing conservation laws. We

start the section by expressing the Maxwell field in null tetrad formalisms

adapted to the geometry of our spacetime. We next define the energy spaces

on the horizons associated to the smoothly extended vector field T given

by ∂t on the static exterior region, and thus specify the Goursat data. By

the decay results on achronal hypersurfaces that we obtained in [18], we es-

tablish an energy identity or a conservation law between data on the initial

Cauchy hypersurface Σ0 (t = 0) and data on the horizons. Thereby, the

energy of the Cauchy data is equal to the energy of the Goursat data. The

global hyperbolicity of the spacetime guarantees the well-posedness of the

Cauchy problem and allows us to define each trace operator between the

space of finite energy constrained Cauchy data as a partial isometry (an

isometry into its range) into the space of finite energy Goursat data. Show-

ing that the trace operators are invertible, i.e. isometries between the full

spaces of finite energy, requires solving the Goursat problem on the horizons

which we do in this section. For this, we proceed as follows. Since the spin

(6) The precise definition of the Maxwell data on Σt and the horizons is given in Sec-
tion 3.1.
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components of the Maxwell field satisfy a system of coupled wave equa-

tions. This allows us to transform the problem from Maxwell’s equations

to wave equations. We can with a simple construction adapt the setting to

the framework of Hörmander’s results in [11] that prove the well-posedness

of the Goursat problem for a general class of wave equations. This gives the

existence of the solution to our system of wave equations. The next step is

to reinterpret the solution of this system of wave equations as a Maxwell

field. The main idea of the proof is to use the fact that one can go back and

forth from Maxwell’s equations (with perturbations) to wave equations by

successive applications of the Maxwell operator. This allows us to obtain a

new system of wave equations whose well-posedness (again by [11]) entails

the required interpretation of the solution to the wave Goursat problem as

a Maxwell field.

It is worth mentioning that the conformal scattering we construct here is

done without conformal compactification! This is because scattering data

is taken on the horizons which are regular null hypersurfaces for the orig-

inal metric on the maximal extension of RNDS black hole. Nevertheless,

the results we obtain can be applied to any spherically symmetric space-

time satisfying the conditions stated in [18] with a conformal compactifica-

tion when needed. The rest goes through essentially without modifications

since Maxwell’s equations are conformally invariant and in fact the rescaled

Maxwell field tensor is equal to the unrescaled one, and the stress-energy

tensor is also conformally invariant.

Acknowledgement. The results of this paper, the mentioned decay re-

sults, and the study of the RNDS spacetimes [18, 19], were obtained during

my PhD thesis [17]. I would like to thank my thesis advisor Pr. Jean-

Philippe Nicolas for his indispensable guidance during the thesis.

2. Geometric Framework

We start by recalling the Reissner–Nordström–de Sitter metric.

2.1. Reissner–Nordström–de Sitter Spacetime

One of the spherically symmetric solutions of Einstein–Maxwell Field

equations in the presence of a positive cosmological constant is the

Reissner–Nordström–de Sitter solution (RNDS). It models a non-rotating

TOME 69 (2019), FASCICULE 5
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spherically symmetric charged black hole with mass, in a de Sitter back-

ground. The de Sitter background means that there is a cosmological hori-

zon beyond which lies a dynamic region that stretches to infinity. While

the Reissner–Nordström nature entails that near the singularity, depending

on the relation between the mass and the charge, one has a succession of

static and dynamic regions separated by horizons. The properties of this

spacetime that we summarize here, are detailed in [19].

The Reissner–Nordström–de Sitter metric is given in spherical coordi-

nates by

(2.1) gM = f(r)dt2 − 1

f(r)
dr2 − r2dω2,

where

(2.2) f(r) = 1 − 2M

r
+

Q2

r2
− Λr2 ,

and dω2 is the Euclidean metric on the 2-Sphere, S2, which in spherical

coordinates is,

dω2 = dθ2 + sin(θ)2dϕ2 ,

and gM is defined on M = Rt × ]0, +∞[r ×S2
θ,ϕ. Here M is the mass of the

black hole, Q is its charge, and Λ is the cosmological constant. We assume

that Q is real and non zero, and M and Λ are positive.

The metric in these coordinates appear to have singularities at r = 0

and at the zeros of f . Only the singularity at r = 0 is a real geometric

singularity at which the curvature blows up. The apparent singularities at

the zeros of f are artificial and due to this particular choice of coordinates.

The regions of spacetime where f vanishes are essential features of the

geometry of the black hole, they are the event horizons or horizons for

short, and f is called the horizon function. If f has one negative and three

positive zeros, then the zeros in the positive range correspond respectively,

in an increasing order, to the Cauchy horizon or inner horizon, the horizon

of the black hole or the outer horizon, and the cosmological horizon. In

this case, f changes sign at each horizon and one has static and dynamic

regions separated by these horizons.

In this work, we are interested in the construction of a conformal scatter-

ing theory for Maxwell fields on the RNDS spacetime in the case of three

horizons. Precisely, on the closure of the static region between the horizon

of the black hole and the cosmological horizon, which we refer to as the

exterior static region. This part of the spacetime contains a photon sphere

which is a hypersurface where photons orbit outside the black hole. It con-

sists of purely rotational null geodesics. The photon sphere is an important

ANNALES DE L’INSTITUT FOURIER
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feature of the geometry that affects the decay of the Maxwell solutions by

trapping them and a priori may cause a loss in the information for the

scattering operator. In fact, under the following conditions,

(2.3) Q 6= 0 and 0 < Λ <
1

12Q2
and M1 < M < M2 ,

where

R =
1√
6Λ

; ∆ = 1−12Q2Λ ; m1 = R

√
1−

√
∆ ; m2 = R

√
1+

√
∆(2.4)

M1 = m1 − 2Λm3
1 ; M2 = m2 − 2Λm3

2 ,(2.5)

we have

Proposition 2.1 (Three Positive Zeros and One Photon Sphere). —

The function f has exactly three positive distinct zeros if and only if (2.3)

holds. In this case, there is exactly one photon sphere. The photon sphere

is situated in the static exterior region of the black hole defined by the

portion between the largest two zeros of f .

Proof. — This is proved in [19]. �

Consider the following open subsets of M, which we also refer to by I,

II, III, and IV, respectively:

U1 = Rt × ]0, r1[r × S2
θ,ϕ ;

U2 = Rt × ]r1, r2[r × S2
θ,ϕ ;

U3 = Rt × ]r2, r3[r × S2
θ,ϕ ;

U4 = Rt × ]r3, +∞[r × S2
θ,ϕ ,

and let Ii be the corresponding interval of r such that

(2.6) Ui = Rt × Ii × S2
θ,ϕ .

With the assumption of (2.3), let the zeros of f be r0 < 0 < r1 < r2 < r3.

For r > 0, we define the Regge–Wheeler coordinate function r∗ by requiring

dr∗

dr
=

1

f(r)
> 0.

The Regge–Wheeler radial coordinate has the following expression:

r∗(r) =

3∑

i=0

ai ln |r−ri|+a ; ai = −r2
i

Λ

∏

j 6=i

1

(ri − rj)
; a = −

3∑

i=0

ai ln |P2−ri|

where {
r = P2 =

3M +
√

9M2 − 8Q2

2

}
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I

r

u
−

r = r1 r = r2 r = r3r = 0

γ
+

γ
−

II III IV

H
−

2

H
−

1

H
+

3

Figure 2.1. M−
F and the radial null geodesics γ±.

is the photon sphere hypersurface.

We now introduce the chart (t, r∗, θ, ϕ) over the exterior static region

N = Rt × ]r2, r3[ × S2
ω. We see that r∗ is a strictly increasing continuous

function of r (thus a bijection) over the interval ]r2, r3[, and ranges from

−∞ to +∞. We also have ∂r∗
= f∂r and dr = fdr∗. The RNDS metric in

these coordinates is:

(2.7) gN = f(r)(dt2 − dr2
∗) − r2dω2.

To cover the boundaries of N we need to introduce other charts. The

Eddington–Finkelstein retarded coordinate chart on Ui is

(u−, r, ω) ∈ Ru−
× Iir × S2

ω ,

with u− = t − r∗. In this chart the metric is:

(2.8) g = f(r)du−
2 + 2du−dr − r2dω2 ,

This expression of the metric is analytic for all values (u−, r, ω) ∈ R ×
]0, +∞[ × S2, including r = ri. The Lorentzian manifold M− = Ru−

×
]0, +∞[r × S2

ω with the metric (2.8) is called the retarded Eddington–

Finkelstein extension of the RNDS manifold. Taking the orientation of M,

(∂u−
, ∂r, ∂θ, ∂ϕ) is positively oriented on M−, and when ∂r is chosen to be

future-oriented(7) , we denote M− by M−
F and call it the future retarded

extension (Figure 2.1).

(7) This is not the coordinate vector field ∂r of the chart (t, r, ω). If we denote the
Eddington–Finkelstein retarded coordinates by (u−, r−(= r), ω) then ∂r−

= f−1∂t +∂r.
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r = ri

u
−

ω = ω0

Horizon

Horizon Generator

Geodesic

Figure 2.2. Integral curves of e
1
2

f ′(ri)u−∂u−
at r = ri are null geodesics

that generate the horizon {r = ri}.

For an observer in III, light coming from the singularity and passing

through the first two event horizons of the black hole, is traveling forward

in time and hence is from the past. Therefore the observer will consider

the singularity to be in the past, as well as the past inner horizon H
−

1 =

Ru−
×{r = r1}×S2

ω, and the past outer horizon H
−

2 = Ru−
×{r = r2}×S2

ω,

which are now regular null hypersurfaces. Similarly, the observer can only

send but never receive any signal from the last horizon and I . In this

extension, we denote I by I + since it lies in the future of the observer, and

so does the future cosmological horizon H
+

3 = Ru−
× {r = r3} × S2

ω which

is a regular null hypersurface for the metric (2.8). The null horizons are

generated by null geodesics each lying in a fixed angular plane (Figure 2.2).

This means that at the horizon some “photons hover” in place at r = ri

and ω = ω0.

We refer to M− with the opposite time-orientation as M−
P the past

retarded extension. We can also define the advanced Eddington–Finkelstein

null coordinate u+ = t + r∗ and a new extension M+ covered by a single

chart (u+, r, ω) ∈ Ru+
× ]0, +∞[r × S2

ω = M+. It is endowed with the

analytic metric

(2.9) g = f(r)du+
2 − 2du+dr − r2dω2 ,
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where (∂u+
, ∂r, ∂θ, ∂ϕ) is positively oriented and −∂r is future-oriented.

This is the future advanced Eddington–Finkelstein extension M+
F . Simi-

larly, with ∂r future-oriented we get the past advanced Eddington–

Finkelstein extension M+
P . In M+

F , we have the future inner horizon H
+

1 =

Ru+
×{r = r1}×S2

ω, the future outer horizon H
+

2 = Ru+
×{r = r2}×S2

ω,

and the past cosmological horizon H
−

3 = Ru+
× {r = r3} × S2

ω. For the

past extensions, M±
P , I will be I −, and we denote the horizon by a minus

sign when we want to specify: −H
±

i .

To cover the bifurcation spheres Si where the horizons from different

charts but of the same r = ri value meet, we need to introduce the Kruskal–

Szekeres Extensions. With three families {Ak,l, Bk,l, Ck,l} of these extension

we can cover M∗ the maximal analytic extension of the RNDS manifold.

2.2. Maxwell’s Equations

Let F be a 2-form on the RNDS manifold N . The source free Maxwell’s

equations can be written as

δF = 0 ,(2.10)

dF = 0 ,(2.11)

where δ = ⋆d⋆, and ⋆ is the Hodge star operator. In abstract index notation,

∇aFab = 0 ,(2.12)

∇[aFbc] = 0 ,(2.13)

Instead of working directly with equations (2.10)–(2.13), we shall use the

tetrad formalism. Here, we use a null tetrad on N given by two null real

vectors and a two conjugate null complex vectors:

L = ∂t + ∂r∗

N = ∂t − ∂r∗

M = ∂θ +
i

sin(θ)
∂ϕ(2.14)

M = ∂θ − i

sin(θ)
∂ϕ

We shall call this tetrad the “stationary tetrad”. Using this tetrad, we

can represent the Maxwell field by three complex scalar functions Φ =

(Φ−1, Φ0, Φ1) called the spin components of the Maxwell field associated
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to the given tetrad, and defined by:

Φ1 = F (L, M)

Φ0 =
1

2

(
V −1F (L, N) + F

(
M, M

))
(2.15)

Φ−1 = F
(
N, M

)

where V = fr−2. The expression of Φ−1, Φ0, and Φ1 in terms of the com-

ponents of F in the coordinates (t, r∗, θ, ϕ) =
(
x̃0, x̃1, x̃2, x̃3

)
are:

Φ1 = F02 +
i

sin(θ)
F03 + F12 +

i

sin(θ)
F13,

Φ0 = V −1F10 +
i

sin(θ)
F23,(2.16)

Φ−1 = F02 +
i

sin(θ)
F30 + F21 +

i

sin(θ)
F13.

Conversely,

(2.17)

F10 = V ℜ(Φ0); F02 =
1

2
ℜ(Φ1 + Φ−1); F03 =

sin(θ)

2
ℑ(Φ1 − Φ−1);

F23 =
sin(θ)

2
ℑ(Φ0); F12 =

1

2
ℜ(Φ1 − Φ−1); F13 =

sin(θ)

2
ℑ(Φ1 + Φ−1).

We note that the tetrad we use, unlike those in the Newman–Penrose

formalism, are not normalized: A normalized tetrad is such that the inner

product of the two null real vectors of the tetrad with each other equals 1,

and the product of the null complex vector with its conjugate is −1, while

all other products are zero. The formalism we use is a form of Geroch-

Held-Penrose formalism (GHP), which does not require normalization(8) .

The form of Maxwell’s equations in this formalism is usually referred to as

Maxwell’s compacted equations (see [24]).

A straightforward coordinate calculation shows that in this framework,

Maxwell’s equations translate as follows.

(8) The conventional definition of spin components of an anti-symmetric tensor is slightly
different. One normally defines it without the extra factor of V −1 in the middle compo-
nent Φ0. Here we carry on with the notation we used in [18] for obtaining decay. Also the
usual way to label the components is different, conventionally, they are indexed by 0, 1,
and 2. The conformal weight and the spin weight are respectively related to the way the
component change when we rescale the complex vector of the tetrad by a complex con-
stant and the conjugate vector by the conjugate constant, and when rescaling the first
null vector of the tetrad by a real constant and the second by the inverse constant. More
precisely, the components transform as powers of the real rescaling constant, the power
being the index of the component. For more on spin–components notations see [24, 25].
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⊕ III

H
+
2 H

+
3

H
−

2 H
−

3

⊕

bc

bc

i
+

i
−

S2 S3

Figure 2.3. N : the closure of N in M∗.

Lemma 2.2 (Maxwell’s Compacted Equations). — F satisfies Maxwell’s

equations (2.10) and (2.11) if and only if its spin components (Φ1, Φ0, Φ−1)

in the stationary tetrad satisfy the compacted equations

NΦ1 = V MΦ0,(2.18)

LΦ0 = M1Φ1,(2.19)

NΦ0 = −M1Φ−1,(2.20)

LΦ−1 = −V MΦ0.(2.21)

where M1 = M + cot(θ) and M1 is its conjugate.

We need to study Maxwell fields up to the horizons, i.e. on N the closure

of N in M∗. The boundary of N consists of the future and past outer

horizons H
±

2 , the future and past cosmological horizons H
±

3 , and the two

bifurcation spheres S2 and S3. In addition we have the two singular timelike

infinities i± which are not part of N (Figure 2.3).

To get Maxwell’s compacted equations on the closure, we express

Maxwell’s equations in different null tetrads adapted to the geometry of

the horizons. Let F be a Maxwell field on N . To write down its spin

components we need to define a tetrad at each point of N . Simply ex-

tending the old tetrad {L, N, M, M} to the boundary will not work, par-

ticularly because one of the null vectors L and N , which are given by

∂t ± f∂r in (t, r, ω)-coordinates, will always vanish on two of the hori-

zons. For example, in (u−, r, ω)-coordinates, L = f∂r and thus it vanishes

on H
+

3 and H
−

2 , which means that the tetrad {L, N, M, M} is singu-

lar there and does not form a basis of the complexified tangent space.
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The same thing happens to N on H
+

2 and H
−

3 as can be seen in the

(u+, r, ω)-coordinates. However, if we rescale L by the factor f−1, the tetrad

{L̂ = f−1L = ∂r, N = 2∂u−
−f∂r, M, M} becomes a regular basis on M−

F ,

and in particular, on H
+

3 and H
−

2 . We define the spin components of F

in this tetrad as:

Φ̂1 = F
(

L̂, M
)

Φ0 =
1

2

(
V̂ −1F (L̂, N) + F

(
M, M

))
(2.22)

Φ−1 = F
(
N, M

)

where V̂ = f−1V = r−2. Since the integral curves of L̂ are the outgoing

radial null geodesics, we refer to this tetrad as the outgoing tetrad, and

the spin components as the outgoing components. Compared to (2.15), the

components in the stationary tetrad {L, N, M, M}, we have Φ̂1 = f−1Φ1

while the other two components stay the same, hence we denote them by

the same letters. The incoming tetrad {L, N̂ = f−1N, M, M} and the asso-

ciated components are defined similarly. Neither of these two new tetrads

defines a frame on the entire spacetime N , however, we can use the two

tetrads with a partition of unity subordinate to the open sets M−
F and

M+
F to define a tetrad that extends to all horizons. Using the relation

Φ̂1 = f−1Φ1 with the other components being the same, it is readily found

that Maxwell’s compacted equations (2.2) in the outgoing tetrad take the

following form:

N Φ̂1 = V̂ MΦ0 + f ′Φ̂1,(2.23)

L̂Φ0 = M1Φ̂1,(2.24)

NΦ0 = −M1Φ−1,(2.25)

L̂Φ−1 = −V̂ MΦ0.(2.26)

Similar equations for the incoming tetrad hold.

If F is a Maxwell field, then the associated electromagnetic energy-

momentum tensor will be

(2.27) Tab =
1

4
gabF cdFcd − FacFb

c .

By direct calculations, we readily see that it is divergence-free, i.e. ∇a
Tab =

0, if Maxwell’s equations are satisfied by F .
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We define the energy flux of a Maxwell field across a hypersurface Σt =

{t = cst} by

ET [F ](t) =
1

4

∫

Σt

|Φ1|2 + 2V |Φ0|2 + |Φ−1|2 dr∗d2ω .

This norm is the natural energy associated with Maxwell’s equations and

it can be defined geometrically: Consider an energy-momentum tensor Tab

that is a (0, 2)-symmetric tensor i.e. Tab = T(ab), and which is divergence-

free i.e. ∇a
Tab = 0. Let X be a vector field and (X)πab = ∇aXb + ∇bXa

be its deformation tensor. If U is an open submanifold of N with a piece-

wise C1-boundary ∂U , then by the divergence theorem (see the appendix,

Lemma A.1) and the properties of T, we have for η a normal vector to ∂U
and τ a transverse one such that ηaτa = 1:

∫

∂U

TabXbηaiτ d4x =

∫

U

∇a
(
TabXb

)
d4x

=

∫

U

(
Xb∇a

Tab + Tab∇aXb
)

d4x

=
1

2

∫

U

(X)πabT
abd4x .(2.28)

It is particularly interesting when X is Killing and thus its deformation

tensor vanishes. Motivated by this, we define the energy of a general 2-form

F which the energy-momentum tensor depends on (aside from the metric),

on an oriented smooth hypersurface S to be:

(2.29) EX [F ](S) =

∫

S

(X T)♯ d4x ,

or if we choose ηS and τS to be vector fields respectively normal and trans-

verse to S, such that their scalar product is one(9) , it will be,

(2.30) EX [F ](S) =

∫

S

TabXbηa
SiτS

d4x .

Of course, it is understood that we are not integrating the 3-form but its

restriction on S, which is the pull back of the form by the inclusion map. If

S = Σt = {t} ×R× S2, then its unit normal is T̂ = f− 1
2 ∂t, and taking the

(9) The existence of such vector fields follows from the fact that S is a smooth orientable
hypersurface of a smooth pseudo-Riemannian manifold.
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transverse vector to be T̂ also, a simple calculation allows us to see that

ET [F ](Σt) =

∫

Σt

TabT bT̂ ai
T̂

d4x

=

∫

Σt

T00f− 1
2 f

1
2 r2dr∗

d2ω

=
1

4

∫

Σt

|Φ1|2 +
2f

r2
|Φ0|2 + |Φ−1|2dr∗d2ω = ET [F ](t) .(2.31)

This gives, by (2.28), that it is a conserved quantity as the vector field T

is Killing, i.e.

(2.32) ET [F ](t) = ET [F ](0) .

Evidently not all solutions of Maxwell’s equations decay in time. Take

for example the case where Φ is a non zero constant vector, then it satis-

fies (2.2) and clearly does not decay as it does not change with time. Even

solutions having finite energy, may not decay in time: Consider the con-

stant vector Φ = (Φ1 = 0 , Φ0 = C 6= 0 , Φ−1 = 0), it has finite energy, yet

it does not decay. Since Maxwell’s equations are linear, the last example

shows that solutions (even with finite energy) having charge do not decay,

where by the charge or stationary part of a Maxwell field we mean the

l = 0 part of the spin–weighted spherical harmonic decomposition (see Ψ0
00

below). So, we need to exclude such solutions in order to have decay.

In fact, and as known in the literature, it turns out that

Proposition 2.3 (Stationary Solutions). — The only admissible time–

periodic solutions of Maxwell’s equations with finite energy are exactly the

pure charge solutions:

(2.33) Φ =




0

C

0


 where C is a complex constant.

Proof. — See [1, 17] for example. �

The solutions we will consider from now on are finite energy solutions

with no stationary part, and by Proposition 2.3, these are the finite energy

solutions in the orthogonal complement of the l = 0 subspace, that is
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solutions of the form:

Φ±1(t, r∗, θ, ϕ) =
+∞∑

l=1

l∑

n=−l

Ψl
±1n(t, r∗)W l

±1n(θ, ϕ) Ψl
±1n ∈ L2(Rr∗

) ,

(2.34)

Φ0(t, r∗, θ, ϕ) =

+∞∑

l=1

l∑

n=−l

Ψl
0n(t, r∗)W l

0n(θ, ϕ)

√
f

r
Ψl

0n ∈ L2(Rr∗
) .

(2.35)

where

{W l
mn(θ, ϕ); l, m, n ∈ Z; l > 0, −l 6 m, n 6 l}

form an orthonormal basis of spin-weighted spherical harmonics of L2(S2).

In fact, if F is a Maxwell field on N with spin components Φ whose

spin-weighted harmonic coefficients are Ψ
l
n, then F has a global potential

if and only if the imaginary part of Ψ0
00 vanish. Thus, as a consequence

of the form (2.34) and (2.35), the solutions we consider here have global

potentials.

3. Conformal Scattering

The first step in defining the scattering operator is to define the trace

operators. We define the energy function spaces on the horizons and the

initial Cauchy hypersurface, and we obtain an energy identity up to i+.

Then by the well–posedness of the Cauchy problem on the closure of N ,

the trace operators are well defined.

3.1. Function Space and Energy Identities

Assume that F is a smooth Maxwell field defined on N . The energy flux

of the Maxwell field across an oriented hypersurface of N is defined to be

the quantity (2.30) with respect to the smooth vector field T which is given

by ∂t in the RNDS coordinate, and by ∂u±
on M±, and vanishes on the

bifurcation spheres.

For any Cauchy hypersurface of constant t, the expression of the energy

flux across it is given by (2.31). We therefore define the finite energy space

H on Σ := Σ0 as the completion of the smooth compactly supported data

consisting of triplets (Φ−1, Φ0, Φ1) ∈ (C∞
0 (Σ))

3
. However, if we look at

Maxwell’s compacted equations and subtract (2.20) from (2.19), we see that
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we have a constraint equation on the spin–components that only involves

spacial derivatives in directions tangent to Σ. It follows that in order for a

triplet in H to be the initial data of a Maxwell field, i.e. the restriction of

a Maxwell field on the Cauchy hypersurface, it must satisfy the constraint

equation. Therefore, we need to restrict our Maxwell data to this constraint

subspace of H which we will denote by U .

It is still possible to approximate data in U by smooth compactly sup-

ported data satisfying the constraint equation. In other words, (C∞
0 (Σ))

3∩U
is dense in U . One way to see this is by the fact that Maxwell’s equations

can be reformulated in terms of a potential satisfying the Lorentz gauge

condition as a hyperbolic system of four equations with four unknowns,

without constraints. This means Maxwell data can always be approached

by smooth compactly supported data. For details we refer to [17]. Since

our spacetime is globally hyperbolic, then by Leray’s theory for hyperbolic

equations [14] we have:

Proposition 3.1. — The Maxwell’s Cauchy problem on N is well-

posed in U , the constrained space of finite energy on Σ0.

Across the horizons H
+

3 and H
−

2 the energy flux can be expressed

using the outgoing tetrad defined above and the outgoing spin components

in (2.22). Precisely, in the retarded coordinates (u−, r, ω), N = 2∂u−
+ f∂r

is normal to these two horizons and is equal to 2T = 2∂u−
on these null

hypersurfaces. In addition, L̂ = ∂r is transverse to them and g(∂u−
, ∂r) = 1.

So, we take η
H

+

3

= 1
2 N and τ

H
+

3

= L̂, and we have

ET [F ](H +
3 ) =

1

4

∫

H
+

3

TabNaN bi
L̂

d4x ,

which is,

ET [F ](H +
3 ) = −1

4

∫

H
+

3

|Φ−1|2du− ∧ d2ω ,

where we have chosen to orient H
+

3 by ∂r so that i
L̂

d4x is a positively

oriented volume form on it, and the above quantity is thus positive. In

other words, (∂u−
, ∂θ, ∂ϕ) is a negatively oriented frame on the horizon

and so is the chart (u−, ω), hence,

(3.1) ET [F ](H +
3 ) =

1

4

∫

Ru−
×S2

|Φ−1|2du−d2ω .

The expression of ET [F ](H −
2 ) is exactly the same. As for the other two

horizons H
+

2 and H
−

3 which are covered by the advanced coordinates
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(u+, r, ω), we orient them by N̂ = −∂r and use the incoming tetrad and

the spin components analogous to (2.22), to have,

(3.2) ET [F ](H +
2 ) =

1

4

∫

H
+

2

TabLaLbi
N̂

d4x =
1

4

∫

Ru+
×S2

|Φ1|2du+d2ω ,

and ET [F ](H −
3 ) has the same expression.

This gives us the definition of finite energy on the horizons H
±

i . Com-

pared to the expression of the energy flux (2.31) on a spacelike slice of

constant t, we can almost see the conservation law up to the horizons:

Heuristically speaking, we see that as t goes to ±∞, the surface Σt ap-

proaches H
±

2 ∪H
±

3 respectively, and since f = 0 on the horizons, one can

hope to obtain, and at least formally see, the following identities,

lim
t→±∞

ET [F ](Σt) = ET [F ](H ±
2 ) + ET [F ](H ±

3 ),

but because of the energy conservation in (2.32), one expects the following

conservation law

(3.3) ET [F ](Σ0) = ET [F ](H ±
2 ) + ET [F ](H ±

3 ).

Assuming this conservation law holds, which we will presently prove to

be the case, we define the energy spaces on the horizons H
±

i to be the

completions of C∞
0 (H ±

i ) with respect to the norms

(3.4) ‖φ‖2
H

±

2

= ±1

2

∫

H
±

2

|φ|2du± ∧ d2ω , ;

‖φ‖2
H

±

3

= ∓1

2

∫

H
±

3

|φ|2du∓ ∧ d2ω .

On the future and past total horizons H ± := H
±

2 ∪ H
±

3 , we define the

energy space H± to be the completions of C∞
0 (H ±

2 )×C∞
0 (H ±

3 ) with respect

to the addition norm

(3.5) ‖(φ±, φ∓)‖2
H± =

1

2
‖φ±‖2

H
±

2

+
1

2
‖φ∓‖2

H
±

3

.

To show that these norms are conserved for smooth compactly supported

data, and consequently prove (3.3), we use the following decay results ob-

tained in [18] (Theorem 19):

First we define some notations. We need the following set of Killing vector

fields O = {Θ1, Θ2, Θ3} that are the generators of rotations around the
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⊕

H
+
2 (s) H

+
3 (s)

H
−

2 (s) H
−

3 (s)

⊕

bc

bc

i
+

i
−

S2 S3

u+

u+

u
−

u
− Σ0

S+(s)

S−(s)

Figure 3.1. The hypersurfaces S±(s) forming two closed hypersurfaces

(black and gray). The thick arrows indicate the orientation of the sur-

face, while the thin arrows indicate the direction of increasing coordi-

nate u± from −∞ to +∞.

x, y, and z axes in R
3, which in spherical coordinates are:

Θ1 = sin(ϕ)∂θ + cot(θ) cos(ϕ)∂ϕ ,

Θ2 = cos(ϕ)∂θ − cot(θ) sin(ϕ)∂ϕ ,

Θ3 = ∂ϕ .

We also need the vector field K = (t2 + r2
∗)∂t + 2tr∗∂r∗

= 1
2 (u2

+L + u2
−N).

The energy flux defined in (2.30) corresponding to this vector field K is

called the conform energy of the Maxwell field, and we write EK [F ](t) :=

EK [F ](Σt). Finally, since the Lie derivative of a Maxwell field with respect

to a Killing vector field is again a Maxwell field we set: For Y = T or K

and A a set of (Killing) vector fields,

EY [Lk
AF ](t) :=

∑

X1,...,Xk∈A

EY [LX1
. . . LXk

F ](t) .

Theorem 3.2 (Uniform Decay). — Let t0 > 0 be a real parameter. Let

F with spin components (Φ1, Φ0, Φ−1), be a non-stationary finite energy

solution of Maxwell’s equations (2.10) and (2.11), that is, satisfying (2.34)

and (2.35). Let S be any achronal future oriented smooth hypersurface,

such that its union with Σ0 = {0} × R × S2 is the boundary of an open

submanifold of N , and such that on S, t > |r∗|+t0. If F and its first five Lie
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derivatives with respect to O have finite energies and conformal energies

on Σ0, then the energy of the Maxwell field on S, defined by (2.30) for

X = T = ∂t, decays like t−2
0 .

In fact, there is a constant C > 0 independent of t0, F, (t, r∗, ω), and S,

such that

(3.6) ET [F ](S) 6 t0
−2C

(
1∑

k=0

EK [Lk
OF ](0) +

5∑

k=0

ET [Lk
OF ](0)

)
.

We are now ready to prove the conservation law:

Proposition 3.3 (Conservation Laws up to the Horizons). — Let F be

a Maxwell field as in Theorem 3.2. Then (3.3) holds, that is,

ET [F ](Σ0) = ET [F ](H ±
2 ) + ET [F ](H ±

3 ).

Proof. — Consider the hypersurfaces

(3.7) S±(s) = {(t, r∗, ω) ∈ R × R × S2 ; t = ±
√

1 + r2
∗ + s ; ±s > 0}.

S+(s) actually intersects H + in two spheres, one in each of the horizons

H
+

2 and H
+

3 , namely at

{s}u+
× {r2}r × S2 and {s}u−

× {r3}r × S2

respectively. Therefore if we set

H
+

2 (s) = ]−∞, s[u+
× {r2}r × S2 ,

H
+

3 (s) = ]−∞, s[u−
× {r3}r × S2 ,

then these hypersurfaces along with Σ0 and S+(s), in addition to the bi-

furcation spheres S2 and S3, form a closed hypersurface in N . The same

goes for S−(s), as shown in Figure 3.1. Thus, if F is a smooth solution of

Maxwell’s equations which is compactly supported for each t, then since T

is Killing on N , we have by (2.28),

ET [F ](Σ0) = ET [F ](H +
2 (s)) + ET [F ](H +

3 (s)) + ET [F ](S+(s)).

ET [F ](H +
2 (s)) and ET [F ](H +

3 (s)) are two positive increasing functions

of s, and from the positiveness of ET [F ](S+(s)), their sum is bounded from

above by ET [F ](Σ0). Thus they have limits when s tends to +∞, and these

limits are ET [F ](H +
2 ) and ET [F ](H +

3 ). Thanks to the uniform decay of

Theorem 3.2,

lim
s→+∞

ET [F ](S+(s)) = 0,

and the conservation law (3.3) is proved. The same holds true with past

horizons and S−(s). �
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⊕

H
+
2 H

+
3

H
−

2 H
−

3

⊕

bc

bc

i
+

i
−

S2 S3
Σ0 φ

Φ

Φ

Φ1|H +

2
Φ

−1|H +

3

Φ
−1|H −

2
Φ1|H −

3

φ

T

−

T

+

Σ0

Figure 3.2. The trace operators defined for smooth compactly sup-

ported Maxwell Cauchy data.

3.2. Trace Operators

We now define the trace operators. Since we only showed that the energy

is conserved for smooth fields with compact supports for each t, we first

define the future and past trace operators by

T
± : (C∞

0 (Σ))
3 ∩ U −→ H±,

as follows: Let F0 be the 2-form on Σ0 whose spin components

in the stationary tetrad {L, N, M, M} are the initial Cauchy data φ =

(φ1, φ0, φ−1) ∈ (C∞
0 (Σ))

3 ∩ U , and let F̃ be the unique solution to the

Cauchy problem on N with F̃ |Σ0
= F0, and whose spin components in the

tetrad {L, N, M, M} are Φ = (Φ1, Φ0, Φ−1), then

T
±(φ) = (Φ±1|

H
±

2

, Φ∓1|
H

±

3

),

as Figure 3.2 illustrates, and by (3.3)

(3.8) ‖φ‖H = ‖T±(φ)‖H± .

By the density of (C∞
0 (Σ))

3 ∩ U in U , T± extend to bounded operators

on U :

T
± : U −→ H±,

with closed range, and still satisfy (3.8).

The main result of this section is that the trace operators defined above

are invertible and hence isometries, allowing us to introduce the scattering

TOME 69 (2019), FASCICULE 5



2318 Mokdad MOKDAD

operator. Since an isometry is a surjective norm preserving linear map

between Hilbert spaces, all that is left is to show that the trace operators

are surjective.

More precisely, let (φ±, φ∓) ∈ H±, we wish to show that there exists

some Cauchy data φ ∈ U such that T±(φ) = (φ±, φ∓), and since the

trace operators are injective, the Cauchy data φ is unique if it exists. By

the well-posedness of the Cauchy problem, this will mean that there is a

unique finite energy solution Φ such that Φ|Σ0
= φ, and by the definition

of T± we have

T
±(Φ|Σ0

) = (Φ±1|
H

±

2

, Φ∓1|
H

±

3

),

and hence

(3.9) (Φ±1|
H

±

2

, Φ∓1|
H

±

3

) = (φ±, φ∓).

Therefore, what we want to do is to solve the characteristic Cauchy prob-

lem, also known as the Goursat problem, on the total horizons H ±. We

do so by showing that the ranges of the trace operators contain dense sub-

sets of the Hilbert spaces H±, and since norm preserving linear maps take

complete normed spaces to complete ones, this means that the ranges are

equal to H±. Thus, by density, it is enough to consider Goursat data in

C∞
0

(
H

±
2

)
× C∞

0

(
H

±
3

)
. As the future and the past cases are analogous,

we only work out the case of the future trace operator. To further simplify

the problem, we take advantage of the linearity of Maxwell’s equations and

assume that the non-trivial part of the initial (Goursat) data is only on one

horizon, i.e. we treat smooth compactly supported data of the form, say,

(0, φ−) ∈ H+ with φ− ∈ C∞
0

(
H

+
3

)
, which represent the trace of an outgo-

ing Maxwell solution. The case of (φ+, 0) ∈ H+ is completely analogous.

3.3. Goursat Problem and the Scattering Operator

To solve the Goursat problem we use the results of L. Hörmander [11] by

first converting the initial-value problem from Maxwell’s equations to wave

equations, then we follow J.-P. Nicolas [20] in his approach of putting the

problem in a framework for which Hörmander’s results apply. The idea is

then to reinterpret the solution of the wave equations obtained, using the

results of [11], as a Maxwell field.

As we shall restrict our attention to the future cosmological horizon, let

us consider the outgoing tetrad and the corresponding spin components of

the Maxwell field in details. If F is a Maxwell field, then its spin components
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satisfy coupled wave equations. In particular, this is true for the outgoing

components in Φ̂ = (Φ̂1, Φ0, Φ−1).

Lemma 3.4. — Let Φ̂ = (Φ̂1, Φ0, Φ−1) be the outgoing spin compo-

nents of a smooth Maxwell field defined on M−
F , then Φ̂ satisfies the wave

equation

(3.10) Ŵ Φ̂ =




Ŵ11 −V̂ ′M 0

0 Ŵ00 0

0 −V ′M Ŵ0−1







Φ̂1

Φ0

Φ−1


 = 0,

where differentiation with respect to r is indicated by a prime, N1 = N−f ′ ,

and the diagonal entries are(10)

(3.11) Ŵ11 := L̂N1 − V̂ MM1 , Ŵ00 := L̂N − V̂ M1M ,

Ŵ0−1 := L̂N − V̂ MM1 .

Proof. — Regrouping the terms of Maxwell’s equations (2.23)–(2.26), we

set:

N1Φ̂1 − V̂ MΦ0 =: E1 ;(3.12)

L̂Φ0 − M1Φ̂1 =: E2 ;(3.13)

NΦ0 + M1Φ−1 =: E3 ;(3.14)

L̂Φ−1 + V̂ MΦ0 =: E4 .(3.15)

As [N, L̂] = f ′L̂, i.e. N1L̂ = L̂N , and M1M = M1M , we have:

L̂E1 + V̂ ME2 = Ŵ11Φ̂1 − V̂ ′MΦ0 ;(3.16)

N1E2 + M1E1 = Ŵ00Φ0 ;(3.17)

L̂E3 − M1E4 = Ŵ00Φ0 ;(3.18)

N1E4 − V̂ ME3 = Ŵ0−1Φ−1 − V ′MΦ0 .(3.19)

Finally, to see that Ŵ is indeed a modified d’Alembertian we just note that

L̂N − V̂ M1M = � + rV̂ (fL̂ − N),

(10) The indices of Ŵij indicate their expressions: Ŵij = L̂ I(N) − V̂ J(M, M1) with

i =

{
0 if I(N) = N ;

1 if I(N) = N1 ,
j =

{
1 if J(M, M1) = MM1 ;

0 if J(M, M1) = M1M = M1M ;

−1 if J(M, M1) = MM1 .
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where

(3.20) � = �g = ∇α∇α = gab(∂a∂b − Γc

ab
∂c),

is the d’Alembertian of the geometric wave equation. �

We now look at Maxwell’s equations on H
+

3 , in particular the first and

the third, E1 = 0 and E3 = 0. Since N is tangent to the horizon, equa-

tions (2.23) and (2.25) are tangent to it, i.e. contain only tangential deriva-

tives:

N1|
H

+

3

Φ̂1|
H

+

3

− V̂ (r3)MΦ0|
H

+

3

= 0 ,(3.21)

N |
H

+

3

Φ0|
H

+

3

+ M1Φ−1|
H

+

3

= 0 .(3.22)

These are the constraints on the horizon. Thus, they must be satisfied

by the restriction of the field’s spin components. It follows that if the

Goursat data φ− ∈ C∞
0

(
H

+
3

)
is to be viewed as part of a Maxwell field,

namely Φ−1|
H

+

3

, then the other two components of the field are deter-

mined uniquely on the horizon by φ− through the above constraints and

the requirement that they vanish in a neighbourhood of i+. This is be-

cause (3.21) and (3.22) force them to vanish identically from i+ to the

support of the Goursat data φ−. We choose them to be zero near i+ since

as we shall presently see, this allows us to apply Hörmander’s result. There-

fore, for φ− ∈ C∞
0

(
H

+
3

)
we define φ0, φ̂+ ∈ C∞

(
H

+
3

)
consecutively by

the constraints initial-value problems in H
+

3 :

(3.23) (C1)

{
2∂u−

φ0 = M1φ−

φ0|Sp
= 0

; (C2)

{
(2∂u−

− f ′(r3))φ̂+ = V̂ (r3)Mφ0

φ̂+|Sp
= 0

where Sp is any sphere of H
+

3 in the future of the support of φ−. The

supports of φ0 and φ̂+ may touch the bifurcation sphere S3, but this is

no problem since S3 is a finite smooth sphere in N where the Cauchy

hypersurface meets the future cosmological horizon, and no real scattering

happens at S3. We refer to the triplet

φ̂ = (φ̂+, φ0, φ−)

also as the Goursat data, since it will be the Goursat data for the wave

equations (3.10).

In [11], the author considers Lorentzian manifolds with a time function

whose level hypersurfaces are compact and spacelike. The work is actually

done for product manifolds of the form R× X where X is smooth compact

manifold without boundary on which a time dependent Riemannian metric

is defined, and the Laplace–Beltrami operator is defined with respect to

a fixed Riemannian density. The paper studies the well-posedness of the
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Cauchy problem, set on weakly spacelike hypersurfaces that are the graphs

of Lipschitz functions over X, for wave equations of the form:

(3.24) �u + Qu = h ,

where � is a modified d’Alembertian while Q is a first order operator of

essentially bounded measurable coefficients, and h is a source. In fact, Hör-

mander’s results are valid for globally hyperbolic and spatially compact

spacetimes since the product structure can be recovered by global hyper-

bolicity. While any non-degenerate change in the metric or the volume

density entails in the d’Alembertian a change that can be absorbed into

the first order operator Q.

In what comes next, we need the well-posedness of the Goursat problem

on the future total horizon for different wave equations (see Lemma 3.4)

that are of the form (3.24). And although our spacetime is not spatially

compact (without boundary), as long as the Goursat data is smooth and

supported away form i+, then its compact support in H
+

3 ∪ S3 enables

us to transform the problem into a framework suitable for Hörmander’s

results. Following the work of J.-P. Nicolas [20], this is done through the

following construction.

We pick any point P whose future does not intersect the support of the

Goursat data on the horizon, that is, a point in the future of the past of

the data. We then remove the future of this point, and set

N̂ =
(
N \ I+(p)

)
∩ I+(Σ0),

where I+(Σ0) is the future of the Cauchy hypersurface Σ0 in N . We now

extend N̂ as a globally hyperbolic cylindrical spacetime (C = R × S3, g̃).

We extend Σ0 as S3 and the remaining part of the future total horizon

as the graph of a Lipschitz function over S3, and the data by zero on the

rest of the extended hypersurface. Then [11] guarantees the existence of a

unique smooth solution on C to the wave equation we consider. We take

the restriction of the solution to N̂ . Finite propagation speed then ensures

that the solution is zero in the future of the past of the Goursat data

(Figure 3.3).

Moreover, despite the fact that (3.10) is a coupled system of three scalar

wave equations, the coupling happens only on lower order terms, mean-

ing that � is in the diagonal only. Thus, the work in [11], where a single

scalar wave equation (not a system) with scalar source is treated, can be

applied to our case, when put in the above framework, with only a slight
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⊕

H
+
2

H
+
3

⊕

bc
i+

S2 S3

b

P

Σ0

H
+
2

b

H
+
3

Σ0

⊕
S3

⊕
S2

S3

P

C

N̄ ∩ I+(Σ0)

⊕

H
+
2

H
+
3

⊕S2 S3

b

P

Σ0

N̂

N̂

φ φ

φ

I−(supp(φ))

(Graph of a function on S3)

Figure 3.3. The construction done to understand the Goursat problem

for data φ supported away from i+ in a framework suited to Hörman-

der’s result.

modification(11) . However, the results in [11] can be applied to (3.10) di-

rectly and without any modification at all since (3.10) can be considered

as three separate single scalar wave equations, two of which have a source,

and one is source-free. This is because the middle component, Φ0, satis-

fies the decoupled source-free wave equation Ŵ00Φ0 = 0, and the coupling

is only between the middle component and each of the other components

separately. Hence the terms depending on Φ0 in the other two equations

can simply be viewed as source terms after solving Ŵ00Φ0 = 0.

Theorem 3.5 (Goursat Problem). — For φ− ∈ C∞
0

(
H

+
3

)
there is a

unique smooth, finite energy, Maxwell field F defined on N , with Φ =

(Φ1, Φ0, Φ−1) its spin components in the stationary tetrad, such that

(Φ1|
H

+

2

, Φ−1|
H

+

3

) = (0, φ−).

(11) The general operator Q of first and lower order terms in the equation considered
in [11] is controlled by a priori estimates giving exponential bounds in [11]. If the lower
order term is a matrix instead of a simple scalar potential, it can be controlled in the
same manner, and the proof goes through unchanged.
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⊕

H
+
2

H
+
3

⊕

i
+

S2 S3

b

P

Σ0

N̄ ∩ I
+(Σ0)

φ

I−(supp(φ))

Φ̂ ≡ 0
Φ̂

bc

Figure 3.4. The solution of the wave equations and its support.

Proof. — Finite energy is immediate from the law of conservation of

energy (3.3), and thus uniqueness follows directly from the injectivity of

the future trace operator and the well-posedness of the Cauchy problem on

N .

Let φ0 and φ̂+ be given by φ− and (3.23), so that

N1|
H

+

3

φ̂+ − V̂ (r3)Mφ0 = 0 ,(a)

N |
H

+

3

φ0 + M1φ− = 0 ,(b)

and set φ̂ = (φ̂+, φ0, φ−). We now extend φ̂ by zero to H
+

2 . The reason we

do so, is because Hörmander’s results apply to Goursat data defined on a

generalized Cauchy hypersurface(12) , so we consider our data to be defined

on the future total horizon H +. By [11] there is a unique smooth solution

Φ̂ = (Φ̂1, Φ0, Φ−1) to the Goursat problem

(3.25)

{
Ŵ Φ̂ = 0

Φ̂|H + = φ̂

defined on N ∩ (Σ0 ∪ I+(Σ0)). And by finite propagation speed and local

uniqueness, Φ is zero on I+(I−(supp φ)), of course except for the part of

the horizon where the support lies (Figure 3.4).

We now reinterpret Φ̂ as the spin components(13) of a solution to the

Goursat problem on H + for Maxwell’s equations with data (0, φ−).

(12) Weakly spacelike hypersurface such that every inextendible timelike curve intersect
it only once.
(13) Although the outgoing tetrad is singular on H

+

2
, Φ̂ vanishes on a neighbourhood

of H
+

2
, so we can take our generalized Cauchy hypersurface to be H

+

3
∪ S′, where S′

is a null hypersurface in I+(I−(supp φ)) as in Figure 3.5.
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Namely, the corresponding Maxwell field is given by (2.17) and Φ1 = fΦ̂1.

Let Ŵ Φ̂ = (Ω̂1, Ω0, Ω−1), then using (3.16)–(3.19) only, we have

N1Ω̂1 − V̂ MΩ0 = Ŵ01E1 + fV̂ ′ME2 ;(3.26)

L̂Ω0 − M1Ω̂1 = Ŵ10E2 ;(3.27)

N1Ω0 + M1Ω−1 = Ŵ00E3 ;(3.28)

L̂Ω−1 + V̂ MΩ0 = Ŵ1−1E4 − V̂ ′ME3 .(3.29)

where

Ŵ01 = L̂N − V̂ MM1 ;(3.30)

Ŵ10 = L̂N1 − V̂ M1M ;(3.31)

Ŵ1−1 = L̂N1 − V̂ M1M .(3.32)

Since (3.25) holds, then on the one hand, we see that the Ei’s are solu-

tions of coupled wave equations, and on the other hand, the constraints (a)

and (b) implies that E1|H + = 0 and E3|H + = 0. It follows that E3 is a

solution of the Goursat problem
{

Ŵ00E3 = 0

E3|H + = 0

and hence E3 = 0. This has an immediate effect on E4 by (3.19), i.e.

N1E4 = 0, and in particular, we now have N1|H +E4|H + = 0. But since

Φ̂ is zero in a neighbourhood of i+ which intersects the horizon, all the

derivatives of its components vanish as well, among which are L̂Φ−1 and

MΦ0. (3.15) then means that E4|H + = 0, and therefore E4 solves the

Goursat problem {
Ŵ1−1E4 = 0

E4|H + = 0

and so E4 = 0.

We could have alternatively used equation N1E4 = 0 directly to show

that E4 = 0: Because of the form of supp(Φ̂), L̂Φ−1 and MΦ0 are zero on

a hypersurface S′ of constant u− lying in the future of I−(supp φ), and so

E4|S′ = 0 (Figure 3.5). Now for the simple transport equation N1E4 = 0,

the initial-value problem {
N1E4 = 0

E4|S′ = 0

is well-posed and has a unique solution, thus, E4 = 0.
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⊕

H
+
2

H
+
3

⊕

i
+

S2 S3

Σ0

Φ̂
≡
0

Φ̂

S′

({u− = cst} hypersurfaces)

bc

Figure 3.5. The foliation by the hypersurfaces {u− = cst} for the

equation N1E4 = 0.

Because only E1 is tangential to the horizon while E2 is the one satisfying

a source-free wave equation among the two, we need to use both at the

same time. The fact that E1|H + = 0 implies that N1|H +E2|H + = 0

by (3.17) and by the fact that N is tangent to the horizon. Now by the

above argument of zero derivatives near i+, E2|H + itself is zero on some

sphere at the horizon, say Sp. Therefore E2|H + in turn solves
{

N1|H +E2|H + = 0

(E2|H +)|Sp
= 0

which is a well-posed initial-value problem on the 2-surface Sp in the hori-

zon. Thus, E2|H + = 0, and so,
{

Ŵ10E2 = 0

E2|H + = 0

i.e. E2 = 0. For E1, we now have two options, both follow from what we

have so far. Either we consider E1 as the solution of the Goursat problem
{

Ŵ01E1 = 0

E1|H + = 0

where the initial condition is given by the constraint (a), or, we use (3.16)

as a simple initial-value problem
{

L̂E1 = 0

E1|
H

+

3

= 0
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⊕

H
+
2

H
+
3

⊕

i
+

S2 S3

Σ0

Φ̂
≡
0

Φ̂

bc

(“Cauchy” hypersurfaces r = cst)

Figure 3.6. The foliation by the hypersurfaces {r = cst} for the equa-

tion L̂E1 = 0.

and since H
+

3 is a hypersurface of constant r, the problem is well-posed

(Figure 3.6). Both methods entails that E1 = 0.

Therefore, Φ̂ are the outgoing components of a Maxwell field F . The well-

posedness of the Cauchy problem on Σ0 for Maxwell’s equations ensures

the global definition of F on N as a smooth solution. The only thing left

to prove is that F has zero trace on the future outer horizon, which, since

F is smooth up to the horizons, follows from the relation fΦ̂1 = Φ1 and

the fact that Φ̂1 vanishes on a neighbourhood of the future outer horizon

H
+

2 . �

This shows that the trace operators T± have inverses and are in effect

isometries from U to H±. The scattering operator is the map S : H− −→
H+ defined as:

S = T+ ◦ (T−)−1

Appendix A. Divergence Theorem

One important tool that we use is the divergence theorem. We present a

version of this theorem which we think is better suited for

Lorentzian geometry than the usual one used for Riemannian geometry.

Let U be an oriented smooth n-manifold. Fix ω a positively oriented vol-

ume form, i.e. determining the orientation on U , and let X be a smooth

vector field on it. The divergence of X is defined to be the function div X

such that,

(A.1) LXω = (div X)ω .
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If the orientation on U is given by a pseudo-Riemannian metric g, then we

can choose ω = dVg, and the above definition of div X coincides with the

more familiar one, which is locally given by:

(A.2)
1√
|g|

∂i

(√
|g|Xi

)
,

where |g| is the absolute value of the determinant of the metric g.

From Stokes’ theorem and Cartan’s formula applied to the volume form

LXω = diXω + iXdω = diXω ,

we have:

Lemma A.1 (Divergence Theorem). — Let U be an oriented smooth

n-manifold with boundary (possibly empty), with ω a positively oriented

volume form, i.e. determining the orientation on U , and the boundary ∂U
is outward oriented (Stokes’ orientation), and let X be a smooth vector

field on U . If U is compact or X is compactly supported then,

(A.3)

∫

∂U

iXω =

∫

U

LXω =

∫

U

div Xω ,

Moreover, if the orientation on U is given by a pseudo-Riemannian metric

g, i.e. ω = dVg, then (A.3) can be reformulated as:

(A.4)

∫

∂U

N(X)iLdVg =

∫

U

LXdVg =

∫

U

div XdVg ,

where N is a conormal field to ∂U , i.e. N ♯ is a normal vector field, and L

is a vector field transverse (nowhere tangent) to ∂U , such that N(L) = 1.

If the normal vector field can be normalized (which is always the case

if the metric is Riemannian and is true in the Lorentzian case only if the

hypersurface is spacelike), one can then choose the transverse vector to be

the normal itself and thus recovering the well known form of this theorem:

(A.5)

∫

∂U

N(X)dV
g̃

=

∫

U

div XdVg , or,

∫

∂U

NaXadV
g̃

=

∫

U

∇aXadVg

g̃ being the induced metric on ∂U , and dV
g̃

= iN♯dVg.

Killing vector fields have the nice property of vanishing divergence. A

vector field X is said to be Killing if the metric is conserved along the flow

of X, i.e. LXg = 0. Thus, LXgab = ∇aXb + ∇bXa = 2∇(aXb), and for

Killing fields,

(A.6) ∇aXb + ∇bXa = 0 ,
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consequently,

(A.7) 0 = gab (∇aXb + ∇bXa) = 2∇aXa ,

hence div X = 0. Equation (A.6) is called the Killing equation, and the

(0, 2)-tensor involved is sometimes called the deformation tensor or Killing

tensor, denoted

(A.8) Xπab = 2∇(aXb) .
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