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Abstract: Akyol [Conformal anti-invariant submersions from cosymplectic manifolds, Hacettepe Journal of Mathematics
and Statistics 2017; 462: 177-192] defined and studied conformal antiinvariant submersions from cosymplectic manifolds.
The aim of the present paper is to define and study the notion of conformal slant submersions (it means the Reeb vector
field ξ is a vertical vector field) from cosymplectic manifolds onto Riemannian manifolds as a generalization of Riemannian
submersions, horizontally conformal submersions, slant submersions, and conformal antiinvariant submersions. More
precisely, we mention many examples and obtain the geometries of the leaves of vertical distribution and horizontal
distribution, including the integrability of the distributions, the geometry of foliations, some conditions related to total
geodesicness, and harmonicity of the submersions. Finally, we consider a decomposition theorem on the total space of
the new submersion.

Key words: Second fundamental form of a map, almost contact metric manifold, conformal submersion, slant submer-
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1. Introduction
O’Neill [34] and Gray [22] independently studied the notion of Riemannian submersions between Riemannian
manifolds in the 1960s. This notion is related to physics and has some applications in Yang–Mills theory [9, 49],
supergravity and superstring theories [29, 32] and Kaluza–Klein theory [10, 28]. For Riemannian submersions,
see also [27, 42]. After that, by using the notion of Riemannian submersion and the condition of almost complex
mapping, Watson [48] introduced almost Hermitian submersions. In this case, the vertical and horizontal
distributions are invariant with respect to the almost complex structure of the total manifold of the submersion.

Şahin [40] defined the notion of antiinvariant Riemannian submersions from almost Hermitian manifolds.
Afterwards, he also defined slant submersions from almost Hermitian manifolds in [41]. After that, many
geometers studied this area and obtained lots of results on the new topic (see [3, 4, 6, 13, 21, 25, 26, 36, 38, 44–
46]). Recent developments on the notion of Riemannian submersion can be found in [43].

In [14], Chinea introduced the notion of almost contact Riemannian submersions between almost contact
metric manifolds. He obtained the differential geometric properties among total space, fibers, and base spaces.

A related topic of growing interest deals with the study of the so called horizontally conformal sub-
mersions: these maps, which provide a natural generalization of Riemannian submersion, were introduced
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independently by Fuglede [20] and Ishihara [30]. As a generalization of holomorphic submersions, the notion of
conformal holomorphic submersions was defined by Gudmundsson and Wood [23, 24] (see also [1, 2, 4, 7, 15–
17, 23, 35, 37]). In 2017, Akyol and Şahin [5] defined a conformal slant submersion from almost Hermitian
manifolds onto a Riemannian manifold. In this paper, we consider conformal slant submersions from a cosym-
plectic manifold onto a Riemannian manifold.

The paper is organized as follows. In Section 2, we recall several notions and formulas for other sections.
In the third section, we introduce conformal slant submersions from cosymplectic manifolds onto Riemannian
manifolds, mention a lot of examples, investigate the geometry of leaves of the vertical distribution and the
horizontal distribution, and find necessary and sufficient conditions for a conformal slant submersion to be
totally geodesic and harmonic, respectively. Finally, we consider a decomposition theorem on total space of the
new submersion.

2. Cosymplectic manifolds

A (2n+ 1) -dimensional C∞ -manifold is said to have an almost contact structure if there exist on N a tensor
field ϕ of type (1,1), a vector field ξ , and 1-form η satisfying

ϕ2 = −I + η ⊗ ξ, ϕξ = 0, ηoϕ = 0, η(ξ) = 1. (2.1)

There always exists a Riemannian metric g on an almost contact manifold N satisfying the following conditions:

g1(ϕX1, ϕX2) = g1(X1, X2)− η(X1)η(X2), η(X1) = g1(X1, ξ), (2.2)

where X1, X2 ∈ Γ(TN).

An almost contact structure (ϕ, ξ, η) is said to be normal if the almost complex structure J1 on the
product manifold N × R is given by

J1(X1, f
d

dt
) = (ϕX1 − fξ, η(X1)

d

dt
),

where f is a C∞ -function on N × R having no torsion, i.e. J1 is integrable. The condition for normality
in terms of ϕ, ξ , and η is [ϕ, ϕ] + 2dη ⊗ ξ = 0 on N, where [ϕ, ϕ] is the Nijenhuis tensor of ϕ. Finally, the
fundamental two-form Φ is defined Φ(X1, X2) = g1(X1, ϕX2).

An almost contact metric structure (ϕ, ξ, η, g) is said to be cosymplectic if it is normal and both Φ and
η are closed [8, 31], and the structure equation of a cosymplectic manifold is given by

(∇X1ϕ)X2 = 0 (2.3)

for any X1, X2 tangent to N, where ∇ denotes the Riemannian connection of the metric g on N. Moreover,
for a cosymplectic manifold, we have,

∇X1
ξ = 0. (2.4)

The canonical example of a cosymplectic manifold is given by the product B2n×R Kaehler manifold B2n(J, g)

with the R real line. Now we will introduce a well-known cosymplectic manifold example of R2n+1.

Example 2.1 ([12, 33]) We consider R2n+1 with Cartesian coordinates (ui, vi, t) (i = 1, 2, ..., n) and its usual
contact one-form η = dt . The Reeb vector field ξ is given by ∂

∂t and its Riemannian metric gR2n+1 and tensor
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field ϕ are given by

gR2n+1 = (dt)2 +

n∑
i=1

((dui)
2 + (dvi)

2), φ =

 0 δij 0
−δij 0 0
0 0 0

 .

This gives a cosymplectic manifold on R2n+1. The vector fields ei = ∂
∂vi

, en+i =
∂
∂ui

, ξ form a ϕ-basis for the

cosymplectic structure. On the other hand, it can be shown that R2n+1(ϕ, ξ, η, g) is a cosymplectic manifold.

3. Conformal submersions
Let ψ : (Nm, gN ) −→ (Bn, gB) be a smooth map between Riemannian manifolds, and let q ∈ N . Then ψ is
said to be horizontally weakly conformal or semiconformal at q [7] if either (i) dψq = 0 , or (ii) dψq maps the
horizontal space Hq = {ker(dψq)}⊥ conformally onto Tψ(q)B, i.e. dψq is surjective and there exists a number
Λ(q) ̸= 0 such that

gB(dψqX, dψqY ) = Λ(q)gN (X,Y ), (X,Y ∈ Hq).

We say that point q is of type (i) as a critical point if it satisfies the type (i), and we shall call the point q a
regular point if it satisfies the type (ii). At a critical point, dψq has rank 0 ; at a regular point, dψq has rank
n and ψ is submersion. Furthermore, the positive number Λ(q) is called the square dilation of ψ at q . The
map ψ is called horizontally weakly conformal or semiconformal on N if it is horizontally weakly conformal at
every point of N and it has no critical point; then we call it a horizontally conformal submersion.

A vector field X1 ∈ Γ(TN) is called a basic vector field if X1 ∈ Γ((kerψ∗)
⊥) and ψ -related with a vector

field X̄1 ∈ Γ(TB) , which means that (ψ∗qX1q) = X̄1(ψ(q)) ∈ Γ(TB) for any q ∈ Γ(TN).

Define O’Neill’s tensors T and A by

AX1
X2 = v∇hX1

hX2 + v∇hX1
vX2, (3.1)

TX1X2 = h∇vX1vX2 + v∇vX1hX2, (3.2)

where for any X1, X2 ∈ Γ(TN) and v, h are the vertical and horizontal projections (see [19]). Also, by using
(3.1) and (3.2), for X1, X2 ∈ Γ((kerψ∗)

⊥) and V1, V2 ∈ Γ(kerψ∗) , we have

∇V1
V2 = TV1

V2 + ∇̂V1
V2, (3.3)

∇V1X1 = h∇V1X1 + TV1X1, (3.4)

∇X1
V1 = AX1

V1 + v∇X1
V1, (3.5)

∇X1
X2 = h∇X1

X2 +AX1
X2, (3.6)

where ∇̂V1V2 = v∇V1V2 . If X1 is basic, then h∇V1X1 = AX1V1 . Then we easily obtain −gN (AX1E1, E2) =

gN (E1, AX1E2) and −gN (TV1E1, E2) = gN (E1, TV1E2) for all E1, E2 ∈ TxN . T is exactly the second
fundamental form of the fibers of ψ . For the special case where ψ is horizontally conformal, we have the
following:
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Proposition 3.1 ([23]) Let ψ : (N, gN ) −→ (B, gB) be a horizontally conformal submersion with dilation λ

and X1, X2 be horizontal vectors, then

AX1
X2 =

1

2
{v[X1, X2]− λ2gN (X1, X2)gradv(

1

λ2
)}. (3.7)

Let (N, gN ) and (B, gB) be Riemannian manifolds and suppose that ψ : N −→ B is a smooth map between
them. The second fundamental form of ψ is given by

(∇ψ∗)(X1, X2) = ∇ψ
X1
ψ∗(X2)− ψ∗(∇N

X1
X2) (3.8)

for any X1, X2 ∈ Γ(TN) , where ∇ψ is the pullback connection. It is obvious that the second fundamental form
(∇ψ∗ ) is symmetric.

Lemma 3.1 [47] Let (N, gN ) and (B, gB) be Riemannian manifolds and suppose that ψ : N −→ B is a smooth
map between them. Then we have

∇ψ
X1
ψ∗(X2)−∇ψ

X2
ψ∗(X1)− ψ∗([X1, X2]) = 0 (3.9)

for X1, X2 ∈ Γ(TN) .

From Lemma 2.1, for any X1 a basic vector field and V1 ∈ Γ(kerψ∗) , we obtain [X1, V1] ∈ Γ(kerψ∗).

Remark 3.1 In this paper, we assume that all horizontal vector fields are basic vector fields.

Recall that ψ is called harmonic if the tension field τ(ψ) = trace(∇ψ∗) = 0 (for details, see [7]).

Lemma 3.2 [7] Let ψ : N −→ B be a horizontally conformal submersion. Then we have:

(a) (∇ψ∗)(X1, X2) = X1(lnλ)ψ∗X2 +X2(lnλ)ψ∗X1 − gN (X1, X2)ψ∗(∇ lnλ) ,

(b) (∇ψ∗)(V1, V2) = −ψ∗(TV1
V2) ,

(c) (∇ψ∗)(X1, V1) = −ψ∗(∇N
X1
V1) = −ψ∗(AX1

V1) ,

for any V1, V2 ∈ Γ(kerψ∗) and X1, X2 ∈ Γ((kerψ∗)
⊥) .

Finally, we will mention the following from [39].
Let gN be a Riemannian metric tensor on the manifold N = N1 × N2 and assume that the canonical

foliations DN1
and DN2

intersect perpendicularly everywhere. Then gN is the metric tensor of a usual product
of Riemannian manifolds ⇐⇒ DN1 and DN2 are totally geodesic foliations.

4. Conformal slant submersions
In this section, we introduce the notion of conformal slant submersions from cosymplectic manifolds onto
Riemannian manifolds. We mention lots of examples and obtain the integrability of distributions, the geometry
of foliations, some conditions related to totally geodesicness, and harmonicity of the map.
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Definition 4.1 Let ψ : (N,φ, ξ, η, gN ) −→ (B, gB) be a horizontally conformal submersion, where (N,φ, ξ, η, gN )

is a cosymplectic manifold and (B, gB) is a Riemannian manifold. The map ψ is said to be slant if for any
nonzero vector V1 ∈ Γ(kerψ∗)− < ξ >, the angle ω(V1) between φV1 and the space kerψ∗ is a constant (which
is independent of the choice of p ∈ N and of V1 ∈ Γ(kerψ∗)− < ξ >). The angle ω is called the slant angle of
the conformal slant submersion.

Conformal holomorphic submersion and conformal antiinvariant submersions are conformal slant submersions
with ω = 0 and π

2 , respectively. A conformal slant submersion that is not a conformal holomorphic submersion
or conformal antiinvariant is called a proper conformal slant submersion.

Now we present some examples.

Example 4.1 R5 has a cosymplectic structure as in Example 2.1. Let ψ1 : R5 → R2 be a map defined
by ψ1(u1, u2, v1, v2, t) = e7(u1 cosα − v1 sinα, u2 sinβ − v2 cosβ). Then, by direct calculations, we obtain the
Jacobian matrix of ψ1 as:

e7
[
cosα 0 − sinα 0 0
0 sinβ 0 − cosβ 0

]
.

Since rank(ψ1∗) = 2 , the map ψ1 is a submersion. By a straightforward computation, we see that

kerψ1∗ = span{V1 = sinα ∂

∂u1
+ cosα ∂

∂v1
, V2 = cosβ ∂

∂u2
+ sinβ ∂

∂v2
, V3 = ξ =

∂

∂t
}

and

(kerψ1∗)⊥ = span{X1 = cosα ∂

∂u1
− sinα ∂

∂v1
, X2 = sinβ ∂

∂u2
− cosβ ∂

∂v2
}.

Then the map ψ1 is a conformal slant submersion with the slant angle ω and dilation λ = e7 such that
cosω =| cos(α+ β) | .

Example 4.2 R5 has a cosymplectic structure as in Example 2.1. Let ψ2 : R5 → R2 be a map defined by
ψ2(u1, u2, v1, v2, t) = π5(u1−u2√

2
, v2). Then, by direct calculations, we obtain the Jacobian matrix of ψ2 as:

π5

[ 1√
2

− 1√
2

0 0 0

0 0 0 1 0

]
.

Since the rank of this matrix is equal to 2, the map ψ2 is a submersion. After some computations, we obtain

kerψ2∗ = span{H1 =
∂

∂u1
+

∂

∂u2
, H2 =

∂

∂v1
, H3 = ξ =

∂

∂t
}

and

(kerψ2∗)⊥ = span{Z1 =
1√
2

( ∂

∂u1
− ∂

∂u2

)
, Z2 =

∂

∂v2
}.

Furthermore, ψ2(H1) = − ∂
∂v1

− ∂
∂v2

and ψ2(H2) =
∂
∂u2

imply that | g(ψ2(H1),H2) |= 1√
2
. Thus, the map ψ2

is a conformal slant submersion with the slant angle ω = π
4 and dilation λ = π5.
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Example 4.3 R7 has a cosymplectic structure as in Example 2.1. Let ψ3 : R7 → R4 be a map defined by
ψ3(u1, u2, u3, v1, v2, v3, t) = e11(u1,

v1−v2√
2
, v3, u2). Then, by direct calculations, we obtain the Jacobian matrix of

ψ3 as:

e11


1 0 0 0 0 0 0
0 0 0 1√

2
− 1√

2
0 0

0 0 0 0 0 1 0
0 1 0 0 0 0 0

 .
We easily see that the map ψ3 is a submersion. After some computations, we derive

kerψ3∗ = span{H̄1 =
∂

∂u3
, H̄2 =

1√
2
(
∂

∂v1
+

∂

∂v2
), H̄3 = ξ =

∂

∂t
}

and

(kerψ3∗)⊥ = span{Z̄1 =
∂

∂u1
, Z̄2 =

1√
2
(
∂

∂v1
− ∂

∂v2
), Z̄3 =

∂

∂u2
, Z̄4 =

∂

∂v3
}.

Moreover, ψ3(H̄1) = − ∂
∂v1

and ψ3(H̄2) =
1√
2
( ∂
∂u2

+ ∂
∂u3

) imply that | g(ψ3H̄1, H̄2) |= 1√
2
. Thus, the map ψ3

is a conformal slant submersion with the slant angle ω = π
4 and dilation λ = e11.

Example 4.4 Let (N,φ, ξ, η, gN ) be an almost contact metric manifold. Suppose that σ : TN → N is the
natural projection. Then the map σ is a conformal slant submersion with the slant angle ω = 0 and dilation
λ = 1.

Example 4.5 Let (N,φ, ξ, η, gN ) be an almost contact metric manifold and (B, gB) a Riemannian manifold.
Suppose that ψ3 : N → B is a slant submersion [18]. Then the map ψ3 is a conformal slant submersion with
dilation λ = 1.

Example 4.6 Let (N2n+1, φ, ξ, η, gN ) be an almost contact metric manifold and (B2n, gB) a Riemannian
manifold. Suppose that ψ4 : N → B is a horizontally conformal submersion with dilation λ. Then the map ψ4

is a conformal slant submersion with the slant angle ω = π
2 and dilation λ = 1 [1].

Let ψ : (N,φ, ξ, η, gN ) −→ (B, gB) be a conformal slant submersion from a cosymplectic manifold
(N,φ, ξ, η, gN ) to a Riemannian manifold (B, gB) . Then for any V1 ∈ Γ(kerψ∗), we write

φV1 = DV1 + EV1, (4.1)

where DV1 and EV1 are vertical and horizontal components of φV1, respectively.
Given X1 ∈ Γ(kerψ∗)

⊥, we write

φX1 = dX1 + eX1, (4.2)

where dX1 ∈ Γ(kerψ∗) and eX1 ∈ Γ(kerψ∗)
⊥.
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We denote the complementary orthogonal distribution to decomposition E(kerψ∗) in (kerψ∗)
⊥ by µ.

Then we get
(kerψ∗)

⊥ = E(kerψ∗)⊕ µ. (4.3)

From (2.4), (3.3), and (3.5) we have
TV1

ξ = 0, AX1
ξ = 0 (4.4)

for X1 ∈ Γ((kerψ∗)
⊥) and V1 ∈ Γ(kerψ∗).

By using (2.2), (4.1), and (4.2) we get the following result:

Lemma 4.1 Let ψ be a conformal slant submersion from a cosymplectic manifold (N,φ, ξ, η, gN ) onto a
Riemannian manifold (B, gB) . Then we obtain

DdX1 + deX1 = 0, (4.5)

EdX1 + e2X1 = −X1, (4.6)

D2V1 + dEV1 = φ2V1, (4.7)

EDV1 + eEV1 = 0, (4.8)

for X1 ∈ Γ((kerψ∗)
⊥) and V1 ∈ Γ(kerψ∗) .

Using (3.3), (3.4), (4.1), and (4.2) we obtain

(∇V1
D)V2 = dTV1

V2 − TV1
EV2, (4.9)

(∇V1
E)V2 = eTV1

V2 − TV1
DV2, (4.10)

where
(∇V1

D)V2 = ∇̂V1
DV2 −D∇̂V1

V2, (4.11)

(∇V1
E)V2 = h∇V1

EV2 − E∇̂V1
V2, (4.12)

for V1, V2 ∈ Γ((kerψ∗). We call D and E parallel if ∇D = 0 and ∇E = 0, respectively.
Since the proof of the following theorem is quite similar to Theorem 2.2 of [11], we do not give the proof

of it.

Theorem 4.1 Let ψ be a conformal slant submersion from a cosymplectic manifold (N,φ, ξ, η, gN ) onto a
Riemannian manifold (B, gB) . Then we obtain

D2 = − cos2 ω(I − η ⊗ ξ). (4.13)

By (2.2), (4.1), and (4.13) we have the following result.
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Corollary 4.1 Let ψ be a conformal slant submersion from a cosymplectic manifold (N,φ, ξ, η, gN ) onto a
Riemannian manifold (B, gB) . Then we obtain

gN (DV1, DV2) = cos2 ω(gN (V1, V2)− η(V1)η(V2)), (4.14)

gN (EV1, EV2) = sin2 ω(gN (V1, V2)− η(V1)η(V2)), (4.15)

for V1, V2 ∈ Γ((kerψ∗).

Proposition 4.1 Let ψ : (N, gN , φ, η, ξ) → (B, gB) be a conformal slant submersion. If N is a cosymplectic
manifold and E is parallel with respect to ∇ on (kerψ∗), then we have

TDV1
DV1 = − cos2 ωTV1

V1 (4.16)

for any V1 ∈ Γ(kerψ∗).

Proof If E is parallel, then we derive eTV1
V2 = TV1

DV2 for any V1, V2 ∈ Γ(kerψ∗). Interchanging the role of
V1 and V2, we get eTV2V1 = TV2DV1. Thus, we have

eTV1V2 − eTV2V1 = TV1DV2 − TV2DV1.

Since T is symmetric, we get TV1DV2 = TV2DX1. Then substituting V2 by DV1 we get TV1D
2V1 = TDV1DV1.

By (4.4) and (4.13) we obtain (4.16).
2

Theorem 4.2 Let ψ be a conformal slant submersion from a cosymplectic manifold (N2n+1, φ, ξ, η, gN ) onto
a Riemannian manifold (Bs, gB) . Suppose that E is parallel with slant angle ω ∈ [0, π2 ). Then all the fibers of
the map ψ are minimal.

Proof Using (4.4) and Lemma 5 of [18], we have

τ(ψ) =

n− s
2∑

i=1

(∇ψ∗)(Ei, Ei) = −
n− s

2∑
i=1

ψ∗(TEiEi + TsecωDEi secωDEi)− ψ∗(Tξξ).

Since Tξξ = 0, we get

τ = −
n− s

2∑
i=1

ψ∗(TEi
Ei + sec2 ωTDEi

DEi).

By (4.16), we have

τ = −
n− s

2∑
i=1

ψ∗(TEi
Ei + sec2 ω(− cos2 ωTEi

Ei) = −
n− s

2∑
i=1

ψ∗(TEi
Ei − TEi

Ei) = 0.

Thus, we prove that ψ is harmonic. 2

Now we deal with the integrability of the distributions and the geometry of foliations.

2679



GÜNDÜZALP and AKYOL/Turk J Math

Theorem 4.3 Let ψ be a conformal slant submersion from a cosymplectic manifold (N,φ, ξ, η, gN ) onto a
Riemannian manifold (B, gB) . Then the following conditions are equivalent to each other:

(i) The distribution (kerψ∗)
⊥ is integrable,

(ii) λ−2gB(∇ψ
X2
ψ∗eX1 −∇ψ

X1
ψ∗eX2, ψ∗EV1)

= gN (v∇X1
dX2 +AX1

eX2 − v∇X2
dX1 −AX2

eX1, DV1)

+ gN (AX1
dX2 −AX2

dX1 −X
1
(lnλ)eX2 +X2(lnλ)eX1

− eX2(lnλ)X1 + eX1(lnλ)X2

+ 2gN (X1, eX2)(∇ lnλ), EV1)

for any X1, X2 ∈ Γ((kerψ∗)
⊥) and V1 ∈ Γ(kerψ∗) .

Proof In view of (2.2), (2.3), and (4.4), we have

gN ([X1, X2], V1) = gN (∇X1
φX2 −∇X2

φX1, φV1) (4.17)

for any X1, X2 ∈ Γ((kerψ∗)
⊥) and V1 ∈ Γ(kerψ∗) . Then, using (4.1), (4.2), and (4.17), we derive

gM ([X,Y ],W ) = gN (∇X1
dX2, DV1) + gN (∇X1

dX2, EV1)

+ gN (∇X1
eX2, DV1) + gN (∇X1

eX2, EV1)

− gN (∇X2
dX1, DV1)− gN (∇X2

dX1, EV1)

− gN (∇X2eX1, DV1)− gN (∇X2eX1, EV1).

Using the property of ψ, (3.5), and (3.6) we get

gN ([X1, X2], V 1) = gN (v∇X1dX2 +AX1eX2 − v∇X2dX1 −AX2eX1, DV1)

+ gN (AX1dX2 + h∇X1eX2 −AX2dX1 − h∇X2eX1, EV1)

= gN (v∇X1dX2 +AX1eX2 − v∇X2dX1 −AX2eX1, DV1)

+ gN (AX1
dX2 −AX2

dX1, EV1)

+ λ−2gB(ψ∗(h∇X1
eX2 − ψ∗(h∇X2

eX1, ψ∗EV1).
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Thus, by (3.8) and Lemma 3.2 we obtain

gN ([X1, X2], V 1) = gN (v∇X1
dX2 +AX1

eX2 − v∇X2
dX1 −AX2

eX1, DV1)

+ gN (AX1
dX2 −AX2

dX1, EV1)

+ λ−2gB(−(∇ψ∗)(X1, eX2) +∇ψ
X1
ψ∗eX2 + (∇ψ∗)(X2, eX1)−∇ψ

X2
ψ∗eX1, ψ∗EV1)

= gN (v∇X1dX2 +AX1eX2 − v∇X2dX1 −AX2eX1, DV1)

+ gN (AX1
dX2 −AX2

dX1, EV1) + λ−2gB(∇ψ
X1
ψ∗eX2 −∇ψ

X2
ψ∗eX1, ψ∗EV1)

+ λ−2gB(−X1(lnλ)ψ∗eX2 − eX2(lnλ)ψ∗X1 + gN (X1, eX2)ψ∗(∇ lnλ)

+X2(lnλ)ψ∗eX1 + eX1(lnλ)ψ∗X2 − gN (X2, eX1)ψ∗(∇ lnλ), ψ∗EV1)

= gN (v∇X1dX2 +AX1eX2 − v∇X2dX1 −AX2eX1, DV1)

+ gN (AX1dX2 −AX2dX1 −X1(lnλ)eX2 +X2(lnλ)eX1 − eX2(lnλ)X1

+ eX1(lnλ)X2 + 2gN (X1, eX2)(∇ lnλ), EV1)

+ λ−2gB(∇ψ
X1
ψ∗eX2 −∇ψ

X2
ψ∗eX1, ψ∗EV1).

Hence, (i) ⇔ (ii) . 2

We note that a horizontally conformal submersion ψ : N → B is said to be horizontally homothetic if the
gradient of its dilation λ is vertical, i.e. h(gradλ) = 0 at p ∈ N , where h is the projection on the horizontal
space (kerψ∗)

⊥.

Theorem 4.4 Let ψ be a conformal slant submersion from a cosymplectic manifold (N,φ, ξ, η, gN ) onto a
Riemannian manifold (B, gB) . Suppose that the distribution (kerψ∗)

⊥ is integrable. Then the following
conditions are equivalent to each other:

(i) The map ψ is a horizontally homothetic submersion,

(ii) λ−2gB(∇ψ
X2
ψ∗eX1 −∇ψ

X1
ψ∗eX2, ψ∗EV1)

= gN (v∇X1dX2 +AX1eX2 − v∇X2dX1 −AX2eX1, DV1)

+ gN (AX1dX2 −AX2dX1, EV1)

for X1, X2 ∈ Γ((kerψ∗)
⊥) and V1 ∈ Γ(kerψ∗) .

Proof For any X1, X2 ∈ Γ((kerψ∗)
⊥) and V1 ∈ Γ(kerψ∗), by hypothesis, we get

0 = gN ([X1, X2], V1) = gN (v∇X1dX2 +AX1eX2 − v∇X2dX1 −AX2eX1, DV1)

+ gN (AX1dX2 −AX2dX1 −X1(lnλ)eX2 +X2(lnλ)eX1 (4.18)

− eX2(lnλ)X1 + eX1(lnλ)X2 + 2gN (X1, eX2)(∇ lnλ), EV1)

+ λ−2gB(∇ψ
X1
ψ∗eX2 −∇ψ

X2
ψ∗eX1, ψ∗EV1). (4.19)
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By (4.19), we obtain (i) ⇔ (ii) . Conversely, using (4.19), we have

0 = gN (−X1(lnλ)eX2 +X2(lnλ)eX1 − eX2(lnλ)X1 + eX1(lnλ)X2

+ 2gN (X1, eX2)(∇ lnλ), EV1). (4.20)

If X2 ∈ Γ(µ), then by (4.3) and (4.20), we derive

0 = gN (X2(lnλ)eX1 − φX2(lnλ)X1 + 2gN (X1, φX2)(∇ lnλ), EV1). (4.21)

Now, taking X1 = φX2 in (4.21), we obtain

0 = gN (X2(lnλ)φ2X2 − φX2(lnλ)φX2 + 2gN (φX2, φX2)(∇ lnλ), EV1)

= 2gN (X2, X2)gN (∇ lnλ,EV1), (4.22)

which implies

gN (∇λ,EV1) = 0, V1 ∈ Γ(kerψ∗). (4.23)

Taking X1 = EV1 in (4.21), we get

0 = gN (X2(lnλ)eEV1 − φX2(lnλ)EV1, EV1)

= −φX2(lnλ)gN (EV1, EV1),

which means

gN (∇λ,X3) = 0, X3 ∈ Γ(µ). (4.24)

Using (4.23) and (4.24), we obtain (ii) ⇔ (i). 2

Theorem 4.5 Let ψ be a conformal slant submersion from a cosymplectic manifold (N,φ, ξ, η, gN ) onto a
Riemannian manifold (B, gB) . Then the following assertions are equivalent to each other:

(i) (kerψ∗)
⊥ defines a totally geodesic foliation on the total space,

(ii) λ−2gB(∇ψ
X1
ψ∗X2, ψ∗EDV1)− λ−2gB(∇ψ

X1
ψ∗eX2, ψ∗EV1) = gN (AX1

dX2, EV1)

+ gN (−X1(lnλ)eX2 − eX2(lnλ)X1 + gN (X1, eX2)(∇ lnλ), EV1)

− gN (−X1(lnλ)X2 −X2(lnλ)X1 + gN (X1, X2)(∇ lnλ), EDV1)

for X1, X2 ∈ Γ((kerψ∗)
⊥) and V1 ∈ Γ(kerψ∗).

Proof Given X1, X2 ∈ Γ((kerψ∗)
⊥) , V1 ∈ Γ(kerψ∗) and by (2.2), (2.3), and (2.4), we get

gN (∇X1
X2, V1) = gN (∇X1

φX2, φV1).

From (2.3), (3.5), (3.6), (4.1), (4.2), and (4.13) we derive

gN (∇X1X2, V1) = gN (∇X1φX2, DV1 + EV1)

= cos2 ωgN (∇X1X2, V1)− gN (∇X1X2, EDV1)

+ gN (AX1
dX2 + h∇X1

eX2, EV1)

sin2 ωgN (∇X1
X2, V1) = −gN (∇X1

X2, EDV1) + gN (AX1
dX2 + h∇X1

eX2, EV1).
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Using the property of ψ, (3.8), and Lemma 3.2, we have

sin2 ωgN (∇X1
X2, V1) = −gN (∇X1

X2, EDV1) + gN (AX1
dX2, EV1) + λ−2gB(ψ∗h∇X1

eX2, ψ∗EV1)

= −gN (∇X1X2, EDV1) + gN (AX1dX2, EV1)

+ λ−2gB(−(∇ψ∗)(X1, eX2) +∇ψ
X1
ψ∗eX2, ψ∗EV1)

= −gN (∇X1
X2, EDV1) + gN (AX1

dX2, EV1) + λ−2gB(∇ψ
X1
ψ∗eX2, ψ∗EV1)

+ λ−2gB(−X1(lnλ)ψ∗eX2 − eX2(lnλ)ψ∗X1 + gN (X1, eX2)ψ∗(∇ lnλ), ψ∗EV1)

= −gN (∇X1X2, EDV1) + gN (AX1dX2, EV1) + λ−2gB(∇ψ
X1
ψ∗eX2, ψ∗EV1)

+ gN (−X1(lnλ)eX2 − eX2(lnλ)X1 + gN (X1, eX2)(∇ lnλ), EV1).

On the other hand,

gN (∇X1X2, EDV1) = λ−2gB(ψ∗∇X1X2, ψ∗EDV1)

= λ−2gB(−(∇ψ∗)(X1, X2) +∇ψ
X1
ψ∗X2, ψ∗EDV1)

= λ−2gB(−X1(lnλ)ψ∗X2 −X2(lnλ)ψ∗X1 + gN (X1, X2)ψ∗(∇ lnλ)

+ ∇ψ
X1
ψ∗X2, ψ∗EDV1)

= gN (−X1(lnλ)X2 −X2(lnλ)X1 + gN (X1, X2)(∇ lnλ), EDV1)

+ λ−2gB(∇ψ
X1
ψ∗X2, ψ∗EDV1).

Thus, we obtain (i) ⇔ (ii) . 2

Theorem 4.6 Let ψ be a conformal slant submersion from a cosymplectic manifold (N,φ, ξ, η, gN ) onto a
Riemannian manifold (B, gB) . Suppose that the distribution (kerψ∗)

⊥ defines a totally geodesic foliation on
the total space. Then the following assertions are equivalent to each other:

(i) The map ψ is a horizontally homothetic submersion,

(ii) λ−2gB(∇ψ
X1
ψ∗X2, ψ∗EDV1)− λ−2gB(∇ψ

X1
ψ∗eX2, ψ∗EV1) = gN (AX1

dX2, EV1)

for any X2, X1 ∈ Γ((kerψ∗)
⊥) and V1 ∈ Γ(kerψ∗) .

Proof Given X2, X1 ∈ Γ((kerψ∗)
⊥) and V1 ∈ Γ(kerψ∗) , from Theorem 4.5, we get

λ−2gB(∇ψ
X1
ψ∗X2, ψ∗EDV1)− λ−2gB(∇ψ

X1
ψ∗eX2, ψ∗EV1)

= gN (AX1dX2, EV1)

+ gN (−X1(lnλ)eX2 − eX2(lnλ)X1 + gN (X1, eX2)(∇ lnλ), EV1)

− gN (−X1(lnλ)X2 −X2(lnλ)X1 + gN (X1, X2)(∇ lnλ), EDV1), (4.25)

which implies (i) ⇔ (ii). Conversely, by (4.25), we obtain

0 = gN (−X1(lnλ)eX2 − eX2(lnλ)X1 + gN (X1, eX2)(∇ lnλ), EV1)

− gN (−X1(lnλ)X2 −X2(lnλ)X1 + gN (X1, X2)(∇ lnλ), EDV1). (4.26)

2683



GÜNDÜZALP and AKYOL/Turk J Math

Now, taking X2 ∈ Γ(µ), and using (4.26), we arrive at

0 = gN (−φX2(lnλ)X1 + gN (X1, φX2)(∇ lnλ), EV1)

− gN (−X2(lnλ)X1 + gN (X1, X2)(∇ lnλ), EDV1). (4.27)

Taking X1 = φX2 in (4.27) we find

0 = gN (φX1, φX2)(∇ lnλ), EV1), (4.28)

which implies

0 = gN (∇λ,EV1), V1 ∈ Γ(kerψ∗). (4.29)

Taking X1 = EX2 in (4.27) and by (4.3) and (4.15), we have

0 = −gN (EV1, EV1)gN (φX2,∇ lnλ) + gN (X2,∇ lnλ)gN (EV1, EDV1)

= −gN (EV1, EV1)gN (φX2,∇ lnλ), (4.30)

which implies

0 = gN (∇λ,X3), X3 ∈ Γ(µ). (4.31)

Using (4.29) and (4.31), we obtain (ii) ⇔ (i). 2

Theorem 4.7 Let ψ be a conformal slant submersion from a cosymplectic manifold (N,φ, ξ, η, gN ) onto a
Riemannian manifold (B, gB) . Then for any V1, V2 ∈ Γ(kerψ∗) and X1 ∈ Γ((kerψ∗)

⊥) the following assertions
are equivalent to each other:

(i) The distribution kerψ∗ defines a totally geodesic foliation on the total space,
(ii) gN (∇V1

EDV2, X1) = gN (TV1
EV2, dX1) + gN (h∇V1

EV2, eX1).

Proof For V1, V2 ∈ Γ(kerψ∗) and X1 ∈ Γ((kerψ∗)
⊥) , by (2.2) and (2.3) we obtain gN (∇V1

V2, X1) =

gN (∇V1
φV2, φX1). Using (2.2), (3.4),(4.1), (4.2), and (4.13) we arrive at

gN (∇V1V2, X1) = gN (∇V1DV2 + EV2, φX1)

= −gN (∇V1
D2V2 +∇V1

EDV2, X1) + gN (∇V1
EV2, dX1 + eX1)

= cos2 ωgN (∇V1
V2, X1)− gN (∇V1

EDV2, X1)

+ gN (TV1
EV2, dX1) + gN (h∇V1

EV2, eX1).

Thus, we have

sin2 ωgN (∇V1
V2, X1) = −gN (∇V1

EDV2, X1)

+ gN (TV1
EV2, dX1) + gN (h∇V1

EV2, eX1)

so that we obtain (i) ⇔ (ii). 2

Now we are going to investigate the harmonicity of ψ.
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Let ψ be a horizontally conformal submersion from a Riemannian manifold (N, gN ) onto a Riemannian
manifold (B, gB) with dilation λ . Then the tension field τ(ψ) of ψ is given by

τ(ψ) = −nψ∗H + (2− s)ψ∗(∇ lnλ), (4.32)

where H is the mean curvature vector field of the distribution kerψ∗, dimkerψ∗ = n, dimB = s [7].
Using Theorem 4.2 and (4.32), we have:

Corollary 4.2 Let ψ be a conformal slant submersion from a cosymplectic manifold (N,φ, ξ, η, gN ) onto a
Riemannian manifold (B, gB) with dimB > 2 . Suppose that E is parallel with the slant angle ω ∈ [0, π2 ) .
Then the following assertions are equivalent to each other:

(i) The map ψ is harmonic,

(ii) The map ψ is a horizontally homothetic submersion.

Corollary 4.3 Let ψ be a conformal slant submersion from a cosymplectic manifold (N,φ, ξ, η, gN ) onto a
Riemannian manifold (B, gB) with dimB = 2 . Suppose that E is parallel with the slant angle ω ∈ [0, π2 ) .
Then the map ψ is harmonic.

Let ψ be a conformal slant submersion from a cosymplectic manifold (N,φ, ξ, η, gN ) onto a Riemannian manifold
(B, gB) . For V1 ∈ Γ(kerψ∗) and X1 ∈ Γ(µ), we call the map ψ(Ekerψ∗, µ)− totally geodesic if it satisfies
(∇ψ∗)(EV1, X1) = 0.

Theorem 4.8 Let ψ be a conformal slant submersion from a cosymplectic manifold (N,φ, ξ, η, gN ) onto a
Riemannian manifold (B, gB) . Then the following assertions are equivalent to each other:

(i) The map ψ is a horizontally homothetic submersion,

(ii) The map ψ is (Ekerψ∗, µ)− totally geodesic.

Proof For V1 ∈ Γ(kerψ∗) , X1 ∈ Γ(µ), from Lemma 3.2, we obtain

(∇ψ∗)(EV1, X1) = EV1(lnλ)ψ∗X1 +X1(lnλ)ψ∗EV1 − gN (EV1, X1)ψ∗(∇ lnλ)

= EV1(lnλ)ψ∗X1 +X1(lnλ)ψ∗EV1.

Since gB(ψ∗X1, ψ∗EV1) = λ2gN (X1, EV1) = 0, {ψ∗X1, ψ∗EV1} is linearly independent for nonzero V1, X1.

Thus, we get (i) ⇔ (ii). 2

Theorem 4.9 Let ψ be a conformal slant submersion from a cosymplectic manifold (N,φ, ξ, η, gN ) onto a
Riemannian manifold (B, gB) . Then the following assertions are equivalent to each other:

(i) The map ψ is a totally geodesic map,

(ii) (a) e(TV1DV2 + h∇V1EV2) + E(TV1EV2 + ∇̂V1DV2) = 0, (b) ψ is a horizontally homothetic map, (c)
e(AX1DV1 + h∇X1EV1) + E(AX1EV1 + v∇X1DV1) = 0

for X1 ∈ Γ((kerψ∗)
⊥) and V1, V2 ∈ Γ(kerψ∗) .
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Proof Given V1, V2 ∈ Γ(kerψ∗) , using (2.2), (2.3), and (3.8) we obtain (∇ψ∗)(V1, V2) = ψ∗(φ∇V1φV2). Using
(3.3), (3.4), (4.1), and (4.2) we obtain

∇ψ∗)(V1, V2) = ψ∗(φ(∇V1
DV2 + EV2)))

= ψ∗(φ(TV1DV2 + ∇̂V1DV2 + TV 1EV2 + h∇V1EV2))

= ψ∗(dTV1DV2 + eTV1DV2 +D∇̂V1DV2 + E∇̂V1DV2

+DTV 1EV2 + ETV 1EV2 + d∇V1
EV2 + e∇V1

EV2)

= ψ∗(eTV1
DV2 + E∇̂V1

DV2 + ETV 1EV2 + e∇V1
EV2).

Thus, we have

(∇ψ∗)(V1, V2) = 0 ⇔ eTV1DV2 + E∇̂V1DV2 + ETV 1EV2 + e∇V1EV2 = 0. (4.33)

We claim that ψ is a horizontally homothetic map if and only if (∇ψ∗)(X1, X2) = 0 for X1, X2 ∈ Γ((kerψ∗)
⊥).

From Lemma 3.2, we obtain

(∇ψ∗)(X1, X2) = X1(lnλ)ψ∗X2 +X2(lnλ)ψ∗X1 − gN (X1, X2)ψ∗(∇ lnλ) (4.34)

for X1, X2 ∈ Γ((kerψ∗)
⊥) so that the part from left to right is obtained. Conversely, using (4.34) we get

0 = X1(lnλ)ψ∗X2 +X2(lnλ)ψ∗X1 − gN (X1, X2)ψ∗(∇ lnλ). (4.35)

Applying X1 = X2 at (4.35), we have

0 = 2X1(lnλ)ψ∗X1 − gN (X1, X1)ψ∗(∇ lnλ). (4.36)

Taking the inner product with ψ∗X1 at (4.36), we derive

0 = λ2gN (X1, X1)gN (X1,∇ lnλ),

which implies the result. For X1 ∈ Γ((kerψ∗)
⊥) and V1 ∈ Γ(kerψ∗) , using (2.2), (2.3), and (3.8) we obtain

(∇ψ∗)(X1, V1) = ψ∗(φ∇X1
φV1).

From (3.5), (3.6), (4.1), and (4.2) we get

∇ψ∗)(X1, V1) = ψ∗(φ(∇X1
DV1 + EV1)))

= ψ∗(φ(AX1
DV1 + v∇X1

DV1 +AX1
EV1 + h∇X1

EV1))

= ψ∗(eAX1
DV1 + Ev∇X1

DV1 + EAX1
EV1 + e∇X1

EV1).

From here,

(∇ψ∗)(X1, V1) = 0 ⇔ eAX1DV1 + Ev∇X1DV1 + EAX1EV1 + e∇X1EV1 = 0. (4.37)

Thus, we have (i) ⇔ (ii). 2

Finally, we consider a decomposition theorem. Denote by Nkerψ∗ and N(kerψ∗)⊥ the integral manifolds of

kerψ∗ and (kerψ∗)
⊥ , respectively. By Theorem 4.5 and Theorem 4.7, we have:
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Theorem 4.10 Let ψ be a conformal slant submersion from a cosymplectic manifold (N,φ, ξ, η, gN ) onto a
Riemannian manifold (B, gB). Then the following assertions are equivalent to each other:

(i) (N, gN ) is locally product manifold of the N(kerψ∗)⊥ ×Nkerψ∗ ,

(ii) λ−2gB(∇ψ
X1
ψ∗X2, ψ∗EDV1)− λ−2gB(∇ψ

X1
ψ∗eX2, ψ∗EV1) = gN (AX1dX2, EV1)

+ gN (−X1(lnλ)eX2 − eX2(lnλ)X1 + gN (X1, eX2)(∇ lnλ), EV1)

− gN (−X1(lnλ)X2 −X2(lnλ)X1 + gN (X1, X2)(∇ lnλ), EDV1),

gN (∇V1EDV2, X1) = gN (TV1EV2, dX1) + gN (h∇V1EV2, eX1)

for X1, X2 ∈ Γ((kerπ∗)
⊥) and V1, V2 ∈ Γ(kerπ∗) .
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