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1 Introduction

Extremal black holes have taken center stage in the modern development of quantum

gravity. They provided a concrete example where the Bekenstein-Hawking entropy was fully

accounted for by microstate counting using perturbative string theory techniques [1], and

furthermore had a central role in the advent of AdS/CFT [2]. Despite these developments,

many features of extremal black holes remain puzzling.

Perhaps the most famous one is their large zero temperature entropy. At zero tempera-

ture, the macroscopic horizon area of the black hole in Planck units presumably provides a

count of the number of ground states, at fixed charge, of some quantum mechanical system.

In the absence of supersymmetry, it is not clear what symmetry protects this huge degener-

acy. We will not address this issue in this paper, but any progress on it would be exciting.
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Another important puzzle about the extremal black holes is regarding their dynamical

degrees of freedom. Take, for example, a spherical charged extremal black hole residing

in AdS4. Its geometry interpolates between AdS4 in the UV and AdS2 × S2 in the IR,

representing how the dual boundary description is modified under RG flow. The AdS2×S2

description represents the IR fixed point of the boundary field theory. Therefore, it would

be natural to interpret the low energy excitations of the field theory as describing excitations

propagating on the AdS2 ×S2 background. From the scaling symmetry of AdS2, it can be

shown that the spectrum of these excitations must attain the form [3]

ρ(E) = Aδ(E) +B/E, (1.1)

for some dimensionless constants A and B. The second term in this expression is problem-

atic; it predicts a continuous spectrum as well as an infinite number of states below any

given energy inconsistent with the boundary theory being defined on a finite volume. One

generically expects the finite volume to induce a discrete spectrum. Setting B = 0, the

entire IR spectrum of the theory is described by the ground state degeneracy. This con-

clusion is also problematic as it would preclude all dynamics in the theory; all correlation

functions would be time independent. This is in direct tension with the bulk expectation

that long time behavior of correlators in this background adopt the conformal form in time.

This conclusion about the spectrum was also arrived at in [4] who showed that it was

not possible to maintain the AdS2 asymptotics for finite-energy states. This was further

elaborated on in [5] in a two-dimensional dilaton gravity toy model chosen to exhibit generic

behavior of spacetimes whose IR geometry is AdS2 ×X for some compact space X. The

model, which is equivalent to the Jackiw-Teitelboim (JT) model first proposed in [6, 7],

can be viewed as arising from a dimensional reduction of an action where the dilaton plays

the role of volume of the transverse space and goes to a constant in the IR. In the UV,

the dilaton solution grows and regulates the backreaction allowing for finite-energy states.

By computing the boundary correlation functions of an operator dual to a matter field, it

was shown that the AdS2 isometries are not respected in the IR. In particular, the classical

four point function deviates away from conformality below a certain ‘breaking scale’, Ebr,

which scales as ∼ G/V , where G is the higher dimensional Newton’s constant and V is

the volume of the compact space X. Moreover, it becomes singular in the limit where the

dilaton becomes constant reflecting the effect of backreaction in pure AdS2.

The existence of this breaking scale resolves the puzzle with the density of states as it

implies that the AdS2 scaling symmetry is broken for energies below Ebr. This means that

the scaling argument used to derive (1.1) does not apply for low energy states, precluding

the 1/E term.

Another peculiar feature of extremal black holes is the behavior of their thermody-

namics upon heating them up slightly. Working in the canonical ensemble, one finds that

their energy above extremality scales as αT 2, for some scale α proportional to G−1
N . This

result suggests the presence of a critical scale Mgap = 1/α below which the total energy

of the black hole is smaller than the temperature of the system [8–10]. Below Mgap, or

its ‘mass gap’, the black hole does not have sufficient energy to emit a thermal quantum

signaling the breakdown of the usual process of Hawking radiation.
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In this paper, we present evidence that the breaking scale of an extremal black hole

coincides with its mass gap, Ebr ∼ Mgap. We check this for a wide range of examples

including extremal BTZ and spherical/planar AdS Reissner-Nordstrom in any dimension.

Furthermore, we show how the model of [5] universally describes the near horizon geometry

of extremal black holes and use it to prove that Ebr ∼ Mgap holds generally. We emphasize

that this agreement is noteworthy given the presence of many scales in the problem and

that they are calculated from very different considerations.

This paper is organized as follows. In section 2, we review the notion of the thermody-

namic mass gap. In section 3, we review the JT model studied in [5] and reproduce their

four point function using another method that involves the computation of bulk Feynman

diagrams. In section 4, we explicitly compute the breaking scale and mass gap for a large

class of (near-)extremal black holes and show that they agree. In section 5, we argue that

the JT model provides a universal description of the IR physics of (near-)extremal black

holes, and, using that fact, prove that the breaking scale and mass gap will always coincide.

In section 6, we summarize our results and discuss their implications.

While this work was in preparation, related ideas were discussed from different per-

spectives in [11–13].

2 The thermodynamic mass gap of near-extremal black holes

Near-extremal black holes have this peculiar property that their semi-classical description

seems to breakdown even while being macroscopic in size. As described in [8], since the

total mass above extremality, ∆M = M−Mext (at fixed charge), scales with temperature as

∆M ≃ M−1
gapT

2, (2.1)

for some scaleMgap, it decreases faster than its temperature as T → 0. Therefore, below the

scale Mgap, the black hole will not have enough energy to emit the next Hawking quantum

with typical energy T . Therefore, the semiclassical analysis of Hawking must breakdown.

Following conventions in the literature we will call this scale the ‘thermodynamic mass gap’

or simply its mass gap.

This conclusion is clearly dependent on how the energy scales with temperature. We

show in section 5 that all near-extremal black holes in the canonical ensemble behave this

way, but this conclusion can be arrived from more general considerations.1 To see this,

consider the specific heat of the black hole at fixed charge, CQ. From the first law of

thermodyamics we have

S(T )− S(0) =

∫ T

0
CQ

dT

T
. (2.2)

S(T ) is the entropy at temperature T . Since for a finite system the l.h.s. has to be finite,

CQ must vanish as T → 0, and if it goes like Tα−1 at low temperatures, α has to be strictly

1It is important that the energy is defined for fixed charges and not fixed chemical potentials. In the

latter case, ∆M generically has a linear term in T at low temperatures. We thank Blaise Goutéraux for

pointing this out. For further discussions of this point, see appendix C.
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greater than 1. If we further assume that CQ is an analytic function of T around T = 0,

then the smallest α can be is 2. Therefore, in this case, the leading term of ∆M at low

temperatures is generically expected to be quadratic in T .2

It is tempting to interpret this literally as the mass gap in the spectrum of black hole

masses in a fixed charge sector (up to a numerical factor of order one). This interpretation,

though, does not quite follow from the above argument alone. (2.2) says that, as the

temperature increases from zero to Mgap, the black hole entropy increases by order one bit.

But, since the number of states is the exponential of the entropy, this of course does not

imply that there is necessarily a gap of order Mgap in the spectrum.3

For some examples where a microscopic description is available [9], it is possible to

see explicitly that the thermodynamic mass gap is truly a mass gap of the spectrum. This

mass gap, which is much smaller than the inverse of the effective size of the system, arises

due to the twisted sectors of the microscopic theory describing the black hole, at least from

the weak coupling point of view. [10] also argued this using a very different method not

depending on microscopic details of the theory. However, they implicitly assumed that

the first excited state of an extremal Reissner-Nordstrom black hole is an extremal Kerr-

Newman black hole. It is not clear whether this has to be the case as there could be lower

energy states with zero angular momentum.

There is a caveat in the above argument for large black holes in asymptotically AdS

spacetimes. In this case, even below the mass gap, an incoming flux of energy on horizon

can be in an equilibrium with the outgoing flux of energy, or Hawking radiation, and the

outgoing flux of energy need not be constrained by ∆M . If we seriously take the hypothesis

that there is one single degree of freedom per Planck area on the black hole horizon [15, 16],

then the horizon area should be quantized in units of the Planck area, and we could argue

from (2.2) that there is a gap in the spectrum separated from the ground state by Mgap.

As noted above, however, there is in general no reason why the entropy has to be quan-

tized like this. Besides, it is not clear how one measures the area of a black hole to the

precision of a single Planck area given that the fluctuations are usually of the same order.

A probably stronger argument can be made if we take the AdS black hole slightly out of

equilibrium for some amount of time so that there is an imbalance between the incoming

and outgoing flux of energy. By allowing the black hole to evaporate, we will run into the

same problem as above.

2One may ask whether there are systems where α is not necessarily an integer which usually appears

for systems with Lifshitz scaling or hyperscaling violation. In fact, as we discuss in section 5, when the

dominant saddle at zero temperature is a macroscopic extremal black hole, the near-extremal near-horizon

geometry is still given by AdS2 times some transverse manifold, S(T ) ∝ T , and in the canonical ensemble

E(T ) ∝ T 2 as well. For further discussions about this, see appendix C.
3[14] discusses various alternatives for the low-lying spectrum of near-extremal black holes, given the

existence of the thermodynamic mass gap.
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3 The JT model revisited

3.1 Review of the JT model

The JT model studied in [5] is a particular example of dilaton gravity with action

S =
1

16πG

∫

d2x
√−g(Φ2R− U(Φ)) + Smatter, (3.1)

where U(Φ) = −C(Φ2 − Φ2
0) for some constants C,Φ2

0 > 0. For simplicity, Smatter is taken

to be the free massless scalar action in two dimensions. The zero-temperature solution

of this action captures many of the important features of extremal black holes in higher

dimensions. One can think of it as a dimensional reduction of an extremal black hole down

to two dimensions where the dilaton now represents the volume of the transverse directions.

The zero-temperature solution is given by

ds2 =
2

Cz2
(−dt2 + dz2), (3.2)

Φ2 = Φ2
0 +

a

z
, (3.3)

where a is a non-negative length scale that parameterizes a family of solutions.4 The role

of the parameter a is to regulate the backreaction in order to allow for asymptotic AdS2

solutions with non-zero energy. As a → 0, the dilaton becomes constant everywhere and

no finite energy state can exist with the AdS2 asymptotics.

The main result of [5] is to compute the effect of backreaction on boundary correlation

functions of the operator dual to the scalar field. One might naively expect that the

correlation functions can be computed by working in the probe limit and have their form

be constrained by the conformal symmetry of AdS2. In particular, since the scalar field is

massless, it is dual to a dimension one operator necessitating that the correlation function

〈On〉 ∼ 1/tn. However, when taking into account the backreaciton of the matter on the

geometry, the classical four point function was found to scale as 〈O4〉 ∼ 1/t4 + G/at3,

where the first piece is the disconnected contribution. The second term arises due to

backreaction, as evident from the presence of G. Notice that in the a → 0 limit, the

four point function diverges, reflecting the problem of having non-trivial dynamics in AdS2

with constant dilaton. At non-zero a we see that there is a scale E ∼ G/a below which the

correlators do not display the expected scaling symmetry.

The method used in [5] to compute the boundary correlation functions was to evaluate

the on-shell action to obtain the boundary generating functional. Due to the backreaction

of the boundary scalar sources on the dilaton, the near-boundary asymptotics of the dilaton

becomes dependent on the sources, and one has to remove this dependence by redefining

the boundary time to maintain the sourceless asypmtotics. It is in this new time coordinate

that the generating functional becomes non-Gaussian and produces the four point function

that breaks the conformal symmetry.

This method gives the impression that the loss of the conformal symmetry is a near-

boundary or UV effect in contrast to the actual result as seen in the behavior of the four

4Note that the parameter ‘a’ in this paper is half the parameter ‘a’ in [5].
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point function. We seek another method which makes the IR nature of the backreaction

more manifest. Another disadvantage of this method is its technical difficulty when applied

to more general realistic systems; the interpolation between the UV and IR geometries is

usually not as simple as in the JT model, (3.2), (3.3).

3.2 A bulk linearized quantum field theory

Here we introduce another method which overcomes the issues with the procedure of the

previous subsection and is easily generalizable for other systems. The basic idea is to

linearize the bulk fields and compute the correlation functions by evaluating bulk Feynman

diagrams. As a check, we should be able to reproduce the four point function of [5] from

a tree level diagram involving a graviton exchange.

We first need to choose the background on which to linearize. We use one diffeomor-

phism to gauge-fix the dilaton to have the form (3.3), and the other to fix the metric to be

diagonal. Our ansatz for the metric and dilaton is

ds2 = eh0(−eh+gdt2 + eh−gdz2), (3.4)

eh0 =
2

Cz2
, (3.5)

Φ2 = Φ2
0 +

a

z
. (3.6)

where h and g will be treated as two linearized graviton perturbations. Plugging this into

the action (3.1) gives

S =
1

16πG

∫

dtdz{Φ2∂2
t

(

e−g
)

− Φ2∂2
z (e

g) + Φ2∂t
(

e−g∂t(h0 + h)
)

− Φ2∂z (e
g∂z(h0 + h))

+ C(Φ2 − Φ2
0)e

h0+h}+
∫

dtdz

{

e−g (∂tf)
2

2
− eg

(∂zf)
2

2

}

, (3.7)

where f is the linearized scalar perturbation about the vacuum.

Next, we expand the action in h and g. The zeroth order terms are simply irrelevant

constants, while the linear order terms vanish by virtue of the background satisfying the

equations of motion. At the quadratic level, we find that the graviton kinetic term is

not diagonal in the fields h and g. This can easily be amended with the field redefinition

h → h − ∂z

(

a
z2g

)

/2a
z3
. Focusing only on the terms which contribute to the classical four

point function, the relevant part of the action is5

S =

∫

dtdz

(

− a

64πGz
∂zg∂zg −

1

2
ηij∂if∂jf − 1

2
δij∂if∂jf g + . . .

)

, (3.8)

where we redefined the scalar field to absorb the 1/16πG. Suppressed here are higher point

interactions between the graviton and the scalar field as well as self interactions of the

graviton.

5Working in a fixed gauge will introduce Fadeev-Popov ghosts which, however, will not affect the classical

connected four point function since they do not directly couple to the matter field.
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From the first term of this action we obtain the graviton propagator,

Gg(z, t; z
′, t′) = − i16πG

a
[z2Θ(z′ − z) + z′2Θ(z − z′)]δ(t− t′). (3.9)

Notice that this propagator is instantaneous in time, due to the absence of time derivatives

in the kinetic term. This means that the field is not a propagating degree of freedom.

Nevertheless, when coupled to matter fields, this propagator mediates their backreaction.

To compute the four point function we also need the bulk-to-boundary propagator for

the scalar field and the interaction vertex. Taking a limit of the bulk-to-bulk propagator,

we obtain

K(z, t; t′) =
1

π

z

z2 − (t− t′)2
, (3.10)

and the interaction vertex is read off from the action to be

Vffg = −i(∂1
t ∂

2
t + ∂1

z∂
2
z ), (3.11)

where the subscripts 1 and 2 refer to the two incoming scalar fields. Putting all these

ingredients together we find that the four point function, after adding all three s, t, and u

channels, is given by

A4(t1, t2, t3, t4) =

−
∫

d2xd2x′{∂tK(z, t; t1)∂tK(z, t; t2) + ∂zK(z, t; t1)∂zK(z, t; t2)}

×Gg(z, t; z
′, t′){∂t′K(z′, t′; t3)∂t′K(z′, t′; t4) + ∂z′K(z′, t′; t3)∂z′K(z′, t′; t4)}

+ (t2 ↔ t3) + (t2 ↔ t4). (3.12)

We were able to compute the above integral explicitly for the special case of time arrange-

ments {t1, t2, t3, t4} = {∆+ δ,∆, δ, 0} with ∆ > δ > 0, and obviously with any overall time

shift, and we found exact6 agreement with the result of [5]. We also evaluated this integral

numerically and found the same agreement for arbitrary times. This gives strong credence

to the bulk linearized field theory approach.

From this perspective, the conformal symmetry breaking is manifestly an IR effect; the

graviton propagator scales as z2 and so the diagram receives most of its contribution in the

IR. Moreover, since the four-point function is proportional to G/a and the scalar operator

has mass dimension one, one anticipates simply from dimensional analysis that it should

scale as ∼ G/at3. Indeed, one can explicitly check that when ti → λti, the integral (3.12)

scales as ∼ G/aλ3.

3.3 Thermodynamics and mass gap in the JT model

In this subsection, we review the thermodynamics of the JT model and compute the mass

gap of the theory. We will show that it occurs at the same scale as Ebr. Consider the finite

6Up to a factor of 2. In fact, the Schwarzian term in the gravitational on-shell action missed in [5]

exactly accounts for this factor of 2 discrepancy. We thank Kristan Jensen, Juan Maldacena, and Zhenbin

Yang for pointing this out to us.
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temperature solution

ds2 =
4(µ/a)

C sinh2[
√

2µ/az]
(−dt2 + dz2), (3.13)

Φ2 = Φ2
0 +

√

2µa coth[
√

2µ/az], (3.14)

where µ is a mass scale that determines the temperature and mass of the solution. As

µ → 0, (3.13), (3.14) reduces to (3.2), (3.3). The temperature T and mass E of the above

solution are

T =
1

π

√

µ

2a
, (3.15)

E =
µ

8πG
. (3.16)

In particular, E depends on T as

E =
πa

4G
T 2, (3.17)

which gives

Mgap =
4G

πa
. (3.18)

Therefore, Mgap ∼ Ebr ∼ G/a in the JT model, consistent with our general claim. In fact,

as we will show in section 5, the JT model is a universal description of near-horizon physics

of near-extremal black holes. The fact that Mgap ∼ Ebr in the JT model then guarantees

that the same holds true for other more realistic theories.

4 Comparison of the mass gap and conformal symmetry breaking scale

As mentioned in the end of the last section, the fact that Mgap ∼ Ebr in the JT model,

together with the universality of the JT model, in principle proves the equivalence in

general. Nonetheless, it is both an instructive exercise and a useful consistency check to

directly compute and compare the scales of the mass gap and conformal symmetry breaking

in a large class of near-extremal black holes.

As outlined in the previous sections, the mass gap of a near-extremal black hole can be

easily read off from the low temperature expansion of the energy above extremality. The

conformal symmetry breaking scale, we argue, can be read off from the scale appearing

in the graviton propagator in the IR, as demonstrated in section 3.2. To apply the same

reasoning in the general case, we assume when computing the IR limit of the tree level

diagram involving the exchange of a graviton that the matter bulk-to-boundary propagator

can be approximated by its AdS2 conformal form. We find detailed agreement between

these scales.

4.1 Extremal BTZ black holes

We begin with the case of an extremal BTZ black hole in 2 + 1 dimensions. The metric of

a BTZ black hole is given by [17]

ds2 = −(r2 − r2+)(r
2 − r2−)

l2r2
dt2 +

l2r2

(r2 − r2+)(r
2 − r2−)

dr2 + r2
(

dφ+
r+r−
r2

dt
)2

. (4.1)

– 8 –
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Its mass, angular momentum, and temperature are

M =
r2+ + r2−
8Gl2

, J =
r+r−
4Gl2

, T =
r2+ − r2−
2πl2r+

. (4.2)

To compute the mass gap of the near-extremal BTZ black hole with fixed angular momen-

tum J = r20/4Gl2, we vary (r+ − r−) while maintaining r20 = r+r−. We define the energy

above extremality to be

∆E ≡ M − J =
(r+ − r−)

2

8Gl2
. (4.3)

The temperature near extremality becomes

T ≃ (r+ − r−)2r0
2πl2r0

=
r+ − r−

πl2
, (4.4)

and so

∆E ≃ π2l2T 2

8G
. (4.5)

From this relation we can read off the mass gap, ignoring numerical factors, as

Mgap ∼ G/l2. (4.6)

Next we turn to the computation of the conformal symmetry breaking scale of the

extremal BTZ black hole. To this end, we consider the action of three dimensional Einstein

gravity plus a massless scalar field,

S =
1

16πG

∫

d3x
√−g3

(

R3 +
2

l2

)

− 1

2

∫

d3x
√

−g(3)g
µν
(3)∂µf∂νf. (4.7)

We wish to focus on the s-wave sector of this theory and therefore cast it in terms of its

two dimensional truncation using the following ansatz

ds23 = gµνdx
µdxν + e−2ψl2(dφ+Aµdx

µ)2, (4.8)

where φ has period 2π. After this dimensional reduction, gµν , ψ, and Aµ respectively

become the metric, dilaton, and gauge fields of the two dimensional theory. The action for

the gravitational sector becomes [18, 19]

Sgrav =
l

8G

∫

d2x
√−ge−ψ

(

R+
2

l2
− l2

4
e−2ψF 2

)

. (4.9)

We will study perturbations around the extremal BTZ black hole, which has a near-horizon

AdS2 region, with the metric

ds23 = −(r2 − r20)
2

l2r2
dt2 +

l2r2

(r2 − r20)
2
dr2 + r2(dφ+

r20
lr2

dt)2. (4.10)

The background values of the two dimensional fields are then

ds2 = −eg0dt2 + e−g0dr2 (4.11)

e−2ψ =
r2

l2
(4.12)

Āµdx
µ =

r20
lr2

dt, (4.13)

– 9 –
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where eg0 = (r2 − r20)
2/l2r2. As r → r0, the two dimensional metric approaches AdS2,

ds2 → −4(r − r0)
2

l2
dt2 +

l2

4(r − r0)2
dr2, (4.14)

where the AdS2 radius is l/2. We want to linearize about this background and consider

the bulk linearized quantum field theory which couples the metric, gauge, and scalar per-

turbations. Consider first the action for the scalar perturbations

Sf = −1

2

∫

d3x
√

−g(3)g
µν
(3)∂µf∂νf. (4.15)

When dimensionally reducing, we assume that f has no dependence on the transverse

dimension φ, so we can set those derivatives to zero. Another simplification is offered by

working in the gauge Ar = 0 which implies no coupling between the scalar and the gauge

field. Consequently,

gµν(3)∂µf∂νf = gab∂af∂bf. (4.16)

Since the three dimensional determinant reduces to det g(3) = e−2ψl2 det g, the reduced

scalar action becomes

Sf = −Vφ

2

∫

d2x
√−gle−ψgab∂af∂bf, (4.17)

where Vφ = 2π is the coordinate volume of the transverse direction φ.

Before moving on to consider the other fields, we first discuss the expected IR behavior

of boundary correlations functions ignoring the effects of backreaction. Let’s focus on the

two point function of the operator dual to the scalar field. Notice first that the scalar

action above and that of a free massless scalar in AdS2 differ by the presence of the dilaton

term e−ψ and the background metric. However, in the near-horizon region, the dilaton

goes to a constant and the metric approaches AdS2. Therefore, one should expect that

correlation functions which probe the IR geometry, namely those with large boundary time

separations, should transform covariantly under the IR AdS2 scaling symmetry, and thus

should scale as ∼ 1/t2 .

A more direct way of seeing this emergent IR symmetry is to directly compute the two

point function in the extremal BTZ background and take the long time limit. Without

the periodic identification of φ, the extremal BTZ metric is diffeomorphic to the vacuum

AdS3. Therefore, the two point function in this case can be obtained from the two point

function in the vacuum state by a conformal transformation [20],

〈O(t, φ)O(0, 0)〉 = exp(− r0∆
l (φ− t/l))

[

(1− exp(−2r0
l (φ− t/l)))(φ+ t/l)

]∆
. (4.18)

Note that (4.18) decays exponentially in time, even though the IR geometry is AdS2. This

is because the transverse direction is infinite so that no compact perturbation from the

boundary truly becomes an s-wave, even in the long time limit.

The two point function on the extremal BTZ background after periodically identifying

φ is obtained by the method of images in the bulk,

〈O(t, φ)O(0, 0)〉 =
∞
∑

n=−∞

exp(− r0∆
l (φ− t/l + 2πn))

[

(1− exp(−2r0
l (φ− t/l + 2πn)))(φ+ t/l + 2πn)

]∆
. (4.19)
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We focus on the case of a massless scalar field in three dimensions with ∆ = 2. In this

case, all the terms in the sum are manifestly positive and each is exponentially suppressed

in φ − t/l + 2πn times a power law which goes as 1/(φ + t/l + 2πn)2. We care about the

largest contribution at late times. This sum will be dominated by the term which is least

exponentially suppressed and thus with the minimal φ − t/l + 2πn. In fact, for generic

t > 0 we can always find an n such that φ − t/l + 2πn ∼ O(1), where 2πn ∼ t/l. More

precisely, we can always find n such that | − t/l + 2πn| < 2π. Since such a term exists for

any large t, we conclude that the two point function decays approximately as a power law

and goes as 1/t2. This is precisely the behavior one expects for a massless scalar field in

AdS2. The same story holds true for general ∆. That is, in the long time limit, the two

point function of a general massive scalar field in the extremal BTZ scales like that of the

scalar field with the same mass in AdS2.
7

Now we will demonstrate how this expectation fails once backreaction is taken into

account. First, we introduce fluctuations of the metric and gauge field about the back-

ground (4.11), (4.13) as

ds2 = −e(g0+g)+hdt2 + e−(g0+g)+hdr2, (4.20)

At = Āt + a. (4.21)

Just as in the JT model, we work in a gauge where the dilaton is fixed to (4.12). We also

work in a guage where Ar = 0. With this ansatz, the quadratic part of the action (4.9)

becomes

Squad=
l

8G

∫

dtdr

[(

−2(r4 − r40)

l3r3
g − (r2 − r20)

2

l3r2
∂rg +

2r20
l2

∂ra

)

h+
r4 + r40
l3r3

h2 +
r3

2l
(∂ra)

2

]

.

(4.22)

Notice that this action is different from what we found for the JT model in that it couples

the graviton to the gauge field. Since the graviton g is what couples to the scalar field, we

wish to find its propagator in the IR. To diagonalize the quadratic terms involving g, h, and

a, we integrate out the latter two fields simply by plugging in their respective equations of

motion back into the action. Their equations of motion are

−2r20
l2

∂rh− ∂r

[

r3

l
∂ra

]

= 0, (4.23)

−8r

l3
g − 4r2

l3
∂rg +

8r

l3
h = 0. (4.24)

7The above argument suggests that at least the bulk tree-level two point function respects the IR

conformal symmetry as naively expected. But, since the IR conformal symmetry is actually explicitly

broken as we argue below, it would be surprising if the exact two point function respects that symmetry.

Indeed, the method of images in general does not work in the boundary theory, and (4.19) is therefore not

expected to be the exact two point function.
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Solving these equations and plugging back in the solutions we find a quadratic action purely

of g to be

Squad = − 1

8Gl2

∫

dtdrr3(∂rg)
2 (4.25)

= −
∫

dtdz
l2

128Gz
(∂zg)

2, (4.26)

where in the last line we transformed to Poincare coordinates where z = l2/4(r− r0). This

has precisely the same form as (3.8) and so we can directly read off the breaking scale to be

Ebr ∼
G

l2
, (4.27)

which agrees with Mgap in (4.6). We stress that this agreement was not guaranteed simply

from dimensional analysis as there is another scale in the problem r0 which does not appear.

4.2 Spherical charged black holes in AdS

Next, we consider the case of spherical charged black holes in AdS. We will consider electri-

cally charged black holes in arbitrary dimensions, and the dyonic ones in 3+1 dimensions.

Consider first the Einstein-Maxwell theory in AdSn+1 for n ≥ 3 whose action is [21]

S =
1

16πG

∫

dn+1x
√−g

[

R+
n(n− 1)

l2
− F 2

]

. (4.28)

The charged black hole solution is given by

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2dΩ2

n−1, (4.29)

Āµdx
µ = −

√

n− 1

2(n− 2)

(

q

rn−2
− q

rn−2
+

)

dt, (4.30)

where

V (r) = 1− m

rn−2
+

q2

r2n−4
+

r2

l2
, (4.31)

and r+ is its largest root. Its asymptotic massM , chargeQ, and temperature T are given by

M =
(n− 1)wn−1

16πG
m, (4.32)

Q =

√

2(n− 1)(n− 2)wn−1

8πG
q, (4.33)

T =
2r2n−2

+ +m(n− 2)l2r2n−4
+ − 2(n− 2)q2l2

4πl2r2n−3
+

, (4.34)

where wn−1 is the volume of the n− 1 unit sphere. We can solve V (r+) = 0 for m(r+) and

express the temperature as a function of r+ and q

T =
nr2n−2

+ + (n− 2)l2r2n−4
+ − (n− 2)q2l2

4πl2r2n−3
+

. (4.35)
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When T = 0 the black hole becomes extremal and the location of its event horizon, r0, is

determined by the following equation
(

n

n− 2

)

r2n−2
0 + l2r2n−4

0 = q2l2. (4.36)

The near-horizon geometry of this solution is given by

ds2 = −(r − r0)
2

L2
dt2 +

L2

(r − r0)2
dr2 + r20dΩ

2
n−1, (4.37)

where L2 =
(

n(n−1)
l2

+ (n−2)2

r20

)−1
is the square of the AdS2 radius.

We now compute the mass gap of the near-extremal black hole. We fix the charge of

the black hole in terms of r0 by solving (4.36) and then slightly increase its mass to give it

a non-zero temperature at fixed charge. The new horizon radius increases to r+ ≡ r0 + δ,

and the mass increases from Mext to M . The latter can be expanded in terms of δ as

16πG

(n− 1)wn−1
(M −Mext) = rn−2

+ +
q2

rn−2
+

+
rn+
l2

−
(

rn−2
0 +

q2

rn−2
0

+
rn0
l2

)

=

[

1

2
(n− 2)(n− 3)rn−4

0 +
(n− 1)nrn−2

0

2l2
+

1

2
(n− 1)(n− 2)q2r−n

0

]

δ2 +O(δ3) (4.38)

=
rn−4
0

l2
[

l2(n− 2)2 + n(n− 1)r20
]

δ2 +O(δ2). (4.39)

Note that the linear term vanishes. Similarly,

T =
r−2n−2
0 (nr2n+2

0 − l2(n− 2)((3− 2n)q2r40 + r2n0 ))

4πl2
δ +O(δ2) (4.40)

=
l2(n− 2)2 + (n− 1)nr20

2πl2r20
δ +O(δ2) (4.41)

Therefore, for small δ,

M −Mext ≃ M−1
gapT

2, (4.42)

where

Mgap =
4G[(n− 2)2l2 + n(n− 1)r20]

π(n− 1)wn−1l2rn0
(4.43)

=

(

4

π(n− 1)wn−1

)

G

L2rn−2
0

(4.44)

where in the second line we re-expressed the result in terms of the AdS2 radius.

The dyonic result follows from the previous analysis simply by plugging n = 3 and

replacing q2 → q2E + q2B, the sum of the squares of the electric and magnetic charges of the

black hole respectively. Thus, the dyonic black hole mass gap is

MDyonic
gap =

2G(l2 + 6r20)

πw2l2r30
. (4.45)

=

(

2

πwn−1

)

G

L2r0
(4.46)
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Now we turn to the computation of the breaking scales of these black holes. We begin

with the dyonic case. Consider the following ansatz for the background metric and its

perturbations

ds2 = −eh+g+g0dt2 + eh−g−g0dr2 + r2dΩ2
2, (4.47)

where eg0 = V (r) is the background metric. With this ansatz, the quadratic part of the

gravitational action is

√−g

(

R+
6

l2

)

→ 2 sin θ

[

h2

2

(

1 +
3r2

l2

)

+ rV (r)g∂rh

]

(4.48)

Now we consider the Maxwell term. The field strength tensor expanded about a background

is

F 2 = (F̄ + f)µν(F̄ + f)µν

= F̄ 2 + 2fabF̄
ab + f2

ab, (4.49)

where F̄ is the background, f the fluctuation, and a, b ∈ {t, r}. These are the only allowed

perturbations which respect the dimensional reduction; see appendix A for an argument.

The background values for the gauge field and field strength are

Āµdx
µ =

qE(r − r+)

rr+
dt+ qM cos θdφ, (4.50)

F̄ 2 = −2q2E
r4

e−2h +
2q2M
r4

. (4.51)

This gives the following contribution to the quadratic action

√−g(−F 2) → −r2 sin θ

[

h2

r4
(−q2E + q2M )− 4qE

r2
ftrh+ f2

ab

]

. (4.52)

Thus, the full quadratic action is

Squad =
1

16πG

∫

dtdr2 sin θ

[

h2

2

(

1 +
3r2

l2
+

q2E − q2M
r2

)

+ rV (r)g∂rh+ 4qEftrh− r2f2
ab

]

.

(4.53)

Just as before, it is only the metric perturbation g that couples to the scalar field, and so

we integrate out all other perturbations. Working in the gauge where ftr = −∂rat, we find

the following equations of motion for ftr and h

−4qE∂rh+ 4∂r
(

r2∂rat
)

= 0, (4.54)

−∂r (rV (r)g) + h

(

1 +
3r2

l2
+

q2E − q2M
r2

)

= 0. (4.55)

Solving these equations and plugging the solutions back in, we find the following quadratic

action for the metric perturbation g

Squad = − 1

4G

∫

d2x





(∂r[rV (r)g])2

1 + 3r2

l2
− q2

E
+q2

M

r2



 . (4.56)
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Since we are interested in the IR behavior of the graviton propagator, we expand the action

in ∆r/r0 where ∆r = r− r0. We regard ∂r as a negative power of ∆r when comparing the

relative size of each term. Using the form of the charge and mass as a function of r0

m = r0 +
q2

r0
+

r30
l2
, (4.57)

(q2E + q2M )l2 = 3r40 + l2r20, (4.58)

we find

Squad = − 1

4G

∫

d2x
l2 + 6r20
2l2r0

(r − r0)
3(∂rg)

2. (4.59)

Changing coordinates to Poincare AdS2 via 1/z = ( 6
l2
+ 1

r20
)(r − r0) the action becomes

Squad = − 1

8G

∫

dtdz
r0

( 6
l2
+ 1

r20
)z

(∂zg)
2, (4.60)

from which we can read off the breaking scale to be

Ebr ∼
G( 6

l2
+ 1

r20
)

r0
∼ G

L2r0
, (4.61)

where L is the AdS2 radius. This is precisely the same scaling we found in (4.46).

Next, we consider the case of electrically charged black holes in AdSn+1 that arise from

the action

S =
1

16πG

∫

dn+1x
√−g

[

R+
n(n− 1)

l2
− F 2

]

. (4.62)

We consider again the metric ansatz

ds2 = −eh+g+g0dt2 + eh−g−g0dr2 + r2dΩ2
n−1. (4.63)

We will write the metric determinant as
√−g = ehrn−1√gn−1, where gn−1 is the determi-

nant of the n− 1 sphere metric. Following similar steps as above we find

√−gR → √
gn−1

[

(n− 1)(n− 2)rn−3

2
h2 + (n− 1)rn−2V (r)g∂rh

]

, (4.64)

√−g
n(n− 1)

l2
→ √

gn−1
n(n− 1)

2l2
rn−1h2, (4.65)

√−g(−F 2) → √
gn−1

[

(n−1)(n−2)q2

2rn−1
h2+4g

√

(n−1)(n−2)

2
ftrh−rn−1f2

ab

]

, (4.66)

After integrating out the gauge field and metric perturbation h we end up with the action

Squad = −wn−1(n− 1)

32πG

∫

d2x

[

(

∂r
[

rn−2V (r)g
])2

W (r)

]

(4.67)

where W (r) = (n−1)(n−2)
2 rn−3 + n(n−1)

2l2
rn−1 − (n−1)(n−2)

2rn−1q2
. After performing a near-horizon

expansion and transforming to Poincare coordinates, we find

Squad = −wn−1(n− 1)

64πG

∫

dtdz
rn0 l

2

(

(n− 2)2l2 + n(n− 1)r20
)

z
(∂zg)

2. (4.68)
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Again, we find agreement with the mass gap in (4.44) and the breaking scale,

Ebr ∼
G
[

(n− 2)2l2 + n(n− 1)r20
]

rn0 l
2

∼ G

L2rn−2
0

. (4.69)

4.3 Planar charged black holes in AdS

Next, we consider the case of planar black holes in AdS. One way of obtaining these black

holes is by starting with the spherical black hole solutions of the previous subsection and

taking a scaling limit whereby the radius of the black hole is taken to infinity. The planar

black hole obtained in this way has an infinite transverse volume. This infinite volume

renders the effective Newton’s constant zero thus trivializing the effect of backreaction;

both the mass gap and breaking scale vanish in this case. Instead, we consider the situation

where the transverse directions are compactified on a torus. We will be brief in this section

as the steps are very similar to those in the spherical case. We begin with the same action

keeping in mind the topology of the transverse space,

S =
1

16πG

∫

dn+1x
√−g

[

R+
n(n− 1)

l2
− F 2

]

. (4.70)

The background solution is

ds2 = −U(r)dt2 +
dr2

U(r)
+ r2dx2i , (4.71)

Āµdx
µ = −

√

n− 1

2(n− 2)

(

q

rn−2
− q

rn−2
+

)

dt, (4.72)

where

U(r) =
r2

l2
− m

rn−2
+

q2

r2n−4
. (4.73)

Its mass M , charge Q, and temperature T are [22]

M =
(n− 1)

16πG
mV, (4.74)

Q =

√

2(n− 1)(n− 2)

8πG
qV, (4.75)

T =
2r2n−2

+ + (n− 2)l2mrn−2 − (2n− 4)q2l2

4πl2r2n−3
+

, (4.76)

where V is the (dimensionless) coordinate volume of the transverse directions xi. Us-

ing (4.73) to solve for m(r+), we express the temperature as a function of r+ and q

T =
nr2n−2

+ − (n− 2)q2l2

4πl2r2n−3
+

, (4.77)

Expanding the temperature and mass for a near-extremal black hole about extremality and

following essentially the same steps as in the previous section, we find

Mgap =
4nG

l2V rn−2
0

=
4G

(n− 1)L2V rn−2
0

, (4.78)
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where L2 = l2/n(n−1) is the IR AdS2 radius. As in the spherical case, we obtain the dyonic

black hole result by replacing q2 by q2E + q2M , with the gauge potential being modified to

Āµdx
µ = −

(

qE
r

− qE
r+

)

dt− (qMy)dx, (4.79)

but the mass gap is still given by (4.78).

Now we compute the breaking scale of these planar black holes. We use the same

ansatz as (4.47) and working in the gauge ftr = −∂rat. Integrating out all the fields except

for the graviton g, which couples to the scalar, we find the action

Squad = −V (n− 1)

32G

∫

d2x

(

∂r
[

rn−2U(r)g
])2

W (r)
(4.80)

where we defined

W (r) ≡ n(n− 1)rn−1

2l2
− (n− 1)(n− 2)q2

2rn−1
. (4.81)

In case of the dyonic black hole, q2 above should be replaced with q2E + q2M . In the near-

horizon region, the action becomes

Squad = − V

64πG

∫

dtdz
l2rn−2

0

n

1

z
(∂rg)

2, (4.82)

in terms of the Poincare coordinate z of the IR AdS2. Thus, the breaking scale is

Ebr ∼
nG

l2V rn−2
0

=
G

(n− 1)L2V rn−2
0

. (4.83)

and agrees with the mass gap (4.78).

5 Universality of the JT model

There is a sense in which the JT model gives a universal description of the near-horizon

AdS2 region of extremal black holes in a large class of dilaton gravity theories.8 Consider

a dilaton gravity theory whose action is given by

S =
1

16πG2

∫

d2x
√−g(Φ2R+ λ(∇Φ)2 − U(Φ)− f(Φ)F 2), (5.1)

for some λ, U(Φ) and f(Φ), where F 2 is a Maxwell term. This can be viewed as a dimen-

sional reduction of a (n+1)-dimensional theory where Φ2 is the coefficient of the transverse

metric raised to the power of (n− 1)/2. The total volume of this space, X, is Φ2VX where

VX is its coordinate volume. The action (5.1) describes the dimensional reduction of a

large class of well known higher dimensional theories including Einstein-Maxwell theory,

for which λ = 4(n− 2)/(n− 1). By a Weyl transformation

gab → gabΦ
−λ/2, (5.2)

8We thank Douglas Stanford for suggesting this possibility.

– 17 –



J
H
E
P
1
0
(
2
0
1
6
)
0
5
2

one can set λ = 0 with U(Φ) → Φ−λ/2U(Φ) and f(Φ) → Φλ/2f(Φ). Since we are interested

in on-shell quantities, one can further eliminate the Maxwell term by solving the gauge field

equations of motion and plugging back its solution, as explained in appendix B, assuming no

charged matter. Therefore, without loss of generality, we will assume λ = 0 and f(Φ) = 0.

Next, we look for a general static solution of this action. Working in the gauge where

the 2 dimensional metric is

ds2 = −e2wdt2 + e−2wdr2, (5.3)

the equations of motion become

2w′(Φ2)′ + (Φ2)′′ + e−2wU(Φ) = 0, (5.4)

4(w′)2 + 2w′′ + e−2w∂Φ2U(Φ) = 0, (5.5)

(Φ2)′ = −η

2
, (5.6)

for some η which parametrizes a family of solutions. Equation (5.6) gives Φ2 = Φ2
h − η

2r,

which when plugged back in gives the following differential equation for the metric

(

e2w
)′
=

2

η
U(Φ). (5.7)

For general U(Φ), we can look for solutions near the point where Φ2 = Φ2
h by Taylor-

expanding in ηr. The differential equation becomes

(

e2w
)′
=

2

η

(

U(Φh) + ∂U(Φh)

(−η

2

)

r +
1

2
∂2U(Φh)

(−η

2

)2

r2 + · · ·
)

, (5.8)

where ∂U ≡ ∂Φ2U . Notice that truncating this expansion at first nontrivial order in ηr

would give the equation of motion of the JT model; recall that ∂n>1UAP (Φ) = 0. Therefore,

this demonstrates that the JT model correctly captures the near-horizon physics of (near-

)extremal black holes at tree level.

Integrating (5.8), the static solution near Φ2
h is given by

Φ2 = Φ2
h −

η

2
r, (5.9)

ds2 = −f(r)dt2 +
dr2

f(r)
, (5.10)

where

f(r) = e2w0 +
2

η

(

U(Φh)r +
1

2
∂U(Φh)

(−η

2

)

r2 +
1

6
∂2U(Φh)

(−η

2

)2

r3 + · · ·
)

, (5.11)

for some constant w0.

We are interested in solutions where r = 0 corresponds to a horizon, which we can

arrange for by taking w0 → −∞. Let’s study the thermodynamics of this general model.

Taking t to be the correct asymptotic time, the temperature of the solution is

T =
1

4π
∂rf(r)|r→0 =

|U(Φh)|
2πη

. (5.12)
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Thus, we see that the zero temperature solution corresponds to U(Φh) = 0; indeed, when

this happens, f(r) has a double zero at the horizon. We label this value of the dilaton as Φ0.

We can perform another expansion around the zero temperature solution, Φ2
h = Φ2

0 + δΦ2,

so that

U(Φh) = ∂U(Φ0)δΦ
2 + · · · , (5.13)

or δΦ2 = 2πηT/|∂U(Φ0)|. Using the Wald formula to compute the entropy, one finds

S =
Φ2
h

4G2
=

1

4G2

(

Φ2
0 +

2πηT

|∂U(Φ0)|
+ . . .

)

, (5.14)

for small temperatures T . This shows that it is a general result that the entropy of near-

extremal black holes has a linear dependence on T at low temperatures. Working in the

canonical ensemble, one can use the first law of thermodynamics to find the energy above

extremality to be

∆E =
πη

4G2|∂U(Φ0)|
T 2 + · · · , (5.15)

which gives

Mgap =
4G2|∂U(Φ0)|

πη
. (5.16)

Note that the low-temperature thermodynamic properties of near-extremal black holes

above have been determined purely by near-horizon data, up to an ambiguity of E(0), the

mass of the black hole at zero temperature. This ambiguity is expected, because the mass

of the black hole is determined not just by near-horizon data but by near-boundary data

and the full action including boundary counterterms. Nonetheless, we see that ∆E and in

particular Mgap are determined solely by near-horizon data and therefore by the JT model.

We can also compute the conformal symmetry breaking scale of this general model.

Setting λ = f(Φ) = 0 and linearizing the action around the zero temperature solution, we

find the following action

S =
1

16πG2

∫

dtdr

(

−U(Φ)

2
h2 + (Φ2)′e2wg∂rh

)

, (5.17)

which, after integrating out h, becomes

S =
1

16πG2

∫

dtdr

[

(Φ2)′e2w
]2

2U(Φ)
(g′)2. (5.18)

Near the horizon, we can expand this to obtain

S =
1

16πG2

∫

dtdr

(

η [−∂U(Φ0)]

16
r3(g′)2 +O(r4)

)

(5.19)

=
1

16πG2

∫

dtdz

(

η

4 [−∂U(Φ0)] z
(∂zg)

2 +O
(

1

z2

))

(5.20)

where we transformed to the Poincare coordinates defined by z =
(

2
−∂U(Φ0)

)

1
r in the

second line. We can read off the breaking scale to be

Ebr ∼
G2|∂U(Φ0)|

η
(5.21)
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in agreement with the mass gap (5.16). This constitutes a proof of the equality of the mass

gap and breaking scale for all models whose IR physics is governed by the JT model.9

Finally, we show how to identify the parameters in the examples of section 4 to those

of the JT model in section 3. First, note that by the following coordinate transformation

z = −1

2

√

a

2µ
ln

(

r̃

r̃ + (4/C)
√

2µ/a

)

, (5.22)

(3.13) and (3.14) can be put into the form

ds2 = − r̃(r̃ + (4/C)
√

2µ/a)

2/C
dt2 +

2/C

r̃(r̃ + (4/C)
√

2µ/a)
dr̃2, (5.23)

Φ2 = Φ2
0 +

√

2µa+
aC

2
r̃. (5.24)

On the other hand, a general near-extremal black hole metric in n+1 dimensions can

be written as

ds2n+1 = −V (r)dt2 +
dr2

V (r)
+ φ(r)2dx2n−1, (5.25)

where

V (r) =
(r − r+)(r − r−)

L(r)2
. (5.26)

V (r) has two real roots r± and L(r) is a smooth function nonvanishing at r = r+. dx
2
n−1 is

a (n−1)-dimensional metric having a dimensionless volume wn−1. As in (4.8), one can also

consider a non-diagonal reduction where (dθ+Aµdx
µ)2 for an internal direction θ replaces

dx2n−1. What follows is unchanged in this case with wn−1 being the coordinate volume of

S1 parametrized by θ.

The dimensional reduction of the higher dimensional theory with the ansatz (5.25)

takes the form (5.1) with

ds2 = −V (r)dt2 +
dr2

V (r)
, (5.27)

Φ2 =
G2

Gn+1
wn−1φ

n−1, (5.28)

where Gn+1 is the higher dimensional Newton’s constant. We specialize to φ(r) = r

as in our examples. Before comparing with (5.23), we need to transform to the correct

conformal gauge determined by removing the dilaton kinetic term using (5.2). Thus, the

metric becomes ds2new = Φλ/2ds2.

The next step is to compare the near-horizon expansion of the near-extremal black hole

solution with the finite-temperature solution of the JT model (5.23), (5.24). The key point

to keep in mind when expanding the near-extremal black hole solution around the horizon

is that r+− = r+ − r− is also taken to be as small as ∆r = r − r+. Alternatively, one can

9As mentioned in section 4, an important implicit assumption here is that the matter propagator of the

full geometry approaches that of the constant dilaton AdS2 in the IR. We believe that this is true at least

at tree level.
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think of this as a double expansion in ∆r and r+−. Also, the fact that the black hole is

in the canonical ensemble (i.e. fixed charge rather than fixed chemical potential) implies a

constraint that r+r− = r20, where r0 is the horizon radius of the extremal black hole with

the given charge. For the near-extremal black hole, this says r+− ≃ 2(r+ − r0). Taking

these into account, the near-horizon expansion of the near-extremal black hole is given by

ds2new = − r̃(r̃ + r̃+−)

L̃2
dt2 +

L̃2

r̃(r̃ + r̃+−)
dr̃2, (5.29)

Φ2 = Φ2
0 +

G2

Gn+1Φ
λ/2
0

wn−1(n− 1)rn−2
0

(

r̃+−

2
+ r̃

)

, (5.30)

where Φ0 = Φ(r0), L̃
2 = Φ

λ/2
0 L(r0)

2, r̃ = Φ
λ/2
0 r, and r̃+− = Φ

λ/2
0 r+−.

Comparing (5.23), (5.24) with (5.29), (5.30), we find that

a

G2
=

wn−1(n− 1)L2rn−2
0

Gn+1
, (5.31)

C =
2

Φ
λ/2
0 L2

, (5.32)

µ

G2
=

1

8

wn−1(n− 1)rn−2
0 r2+−

Gn+1L2
. (5.33)

With this identification, (3.8) and (3.17) indeed agree exactly with the graviton kinetic

term and ∆E(T ) in all the higher dimensional (near-)extremal black holes we considered

in section 4, including the numerical coefficient.

6 Summary and discussion

In this paper, we have argued that the thermodynamic mass gap of near-extremal black

holes and the breaking scale of the near-horizon AdS2 conformal symmetry are in fact the

same. The origins of these two scales are a priori rather different; the former is obtained

from the black hole thermodynamics, while the latter is obtained from computing the

connected four point function of a matter field at zero temperature. However, they are

both intimately connected to the strong backreaction effect in AdS2.

Recall that Hawking’s semiclassical calculation must break down at the mass gap de-

spite the macroscopic size of the horizon since the remaining energy for the black hole at

that point is smaller than the energy of the typical Hawking quantum. What goes wrong

with Hawking’s calculation in this case is the assumption that the black hole evaporation is

sufficiently slow that the quantum field theory on a fixed background is a good approxima-

tion. At temperatures as low as the mass gap, the change in the black hole geometry due

to outgoing Hawking radiation is not adiabatic, and its backreaction on the near-horizon

AdS2 throat is important.

On the other hand, the connected four point function breaks the apparent conformal

symmetry of AdS2 due to the matter field’s backreaction on the metric. More precisely,

the explicit breaking of the conformal symmetry in the UV due to the dilaton does not
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quite decouple from the IR physics. In the constant dilaton limit, where the conformal

symmetry is restored, the connected four point function diverges, and is a manifestation

of the fact that this four point function is sensitive to the strong backreaction in AdS2.

Another hint that the two scales should coincide comes from the observation that the

relation E(T ) = M−1
gapT

2 is reminiscent of 2d CFT [10]. In 2d CFT, M−1
gap = πcL/12, where

L is the size of the system and c is the central charge, and the thermal wavelength 1/T

has to be shorter than the effective size of the system in order for that relation to be valid.

In CFTs dual to black holes, the effective size is expected to be given not by the actual

size L but by cL, due to twisted sectors [9]. In fact, otherwise, the CFT would not be

able to reproduce the thermodynamics of near-extremal black holes. On the other hand,

the conformal symmetry of the CFT would also be broken at the scale of this effective

size.10 Now, if one boldly makes an analogy between the holographic CFT1 arising from

the near-horizon AdS2 and the (chiral half of) 2d CFT, one is led to a conclusion that Mgap

and the conformal breaking scale in AdS2/CFT1 have to be the same scale.11 Although

this analogy seems to fit well with other observations on AdS2/CFT1 [18], there are many

questions that remain to be answered. For example, for near-extremal black holes whose

near-horizon geometry does not contain AdS3, it is less clear how obtain a CFT2 from

which the CFT1 emerges. Another interesting question is why the holographic CFT1 obeys

Cardy’s formula. Cardy’s formula seems to reproduce the Bekenstein-Hawking entropy of

black holes in AdS2, despite the lack of a microscopic explanation [19, 24, 25]. This can

be viewed as evidence that the holographic CFT1 is closely related to 2d CFT, but we are

still lacking an explanation. A better understanding of this phenomenon is likely to shed

more light on AdS2/CFT1 as well as how it is related to 2d CFT.

Aside from the statement that the mass gap is equal to the breaking scale, we also

established that the JT model provides a universal description of near-horizon physics

of near-extremal black holes. An important exception is Kerr black holes. Since some

of their metric components depend nontrivially on compact directions, it is difficult to

dimensionally reduce them to two dimensions.12 However, despite the technical difficulty,

we believe that the four point function in the (near-)extremal Kerr background can in

principle be computed and will break the IR conformal symmetry. Moreover, we expect

that the scale at which the IR conformal symmetry is broken will coincide with the mass

gap of near-extremal Kerr black holes. It would be interesting to consider a generalization

of the JT model that describes near-extremal Kerr black holes as well. The Kerr/CFT

correspondence [27] in its current form is analogous to AdS2/CFT1 with constant dilaton.

Indeed, [28] shows that there is no finite energy state with NHEK(Near-Horizon Extreme

10That is, the underlying theory itself is still conformal, but its correlators will deviate from the conformal

form of correlators on the plane.
11In fact, on the gravity side, one can study how the holographic stress tensor in the JT model

transforms under the boundary local conformal transformation from which the central charge can be read

off. Comparing this with Mgap could provide evidence for or against the conjecture that AdS2 is dual

to a chiral half of 2d CFT [23]. This comparison is also equivalent to that of Cardy’s formula and the

Bekenstein-Hawking entropy.
12[26] considered a certain dimensional reduction of the four dimensional Einstein gravity, but their two

dimensional theory does not seem to contain the full Kerr geometry but only its near-horizon geometry.
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Kerr) asymptotics. To control the backreaction, it seems necessary to allow the transverse

directions to expand toward the boundary as in the JT model.

Throughout this paper, our discussion has largely been classical. One can use the

Feynman approach developed in section 3.2 is compute the quantum corrections to various

quantities. We saw in section 5 that the JT model correctly captures the classical IR physics

of near-extremal black holes, and thus would be interesting to see how much of quantum cor-

rections carry over. Due to the simplicity of the JT model, we can actually make some state-

ments about the quantum corrections without having to explictly perform any calculations.

Take for example the two point function of the operator O dual to the scalar field and con-

sider its quantum corrections coming from graviton/scalar loops. Since the graviton prop-

agator is proportional to the scale G/a the general form of the two point function will be

〈O(t)O(0)〉 = 1

t2

∞
∑

n=0

an

(

Gt

a

)n

, (6.1)

where n can be viewed as the number of loops in the diagram. There’s also the possibility

of renormalization introducing terms logarithmic in Gt/a. Notice that the Gt/a acts as a

coupling constant of the theory. Therefore, the theory becomes strongly coupled in the IR

once t ∼ a/G.

It would also be particularly interesting to compute quantum corrections to the par-

tition function Z(β) at a finite temperature and see their effect on the thermodynamics.

Again, we can make interesting statements simply from dimensional analysis. From di-

mensional analysis, again we have

lnZ(β) = −βF0 + lnZloops(β) (6.2)

= −βF0 +
∞
∑

n=0

cn

(

Gβ

a

)n

(6.3)

where cn are dimensionless coefficients.13 Where F0(β) is the free energy of the classical

solution we have been studying in the previous sections. The n = 0 term comes from

the one-loop determinant of the quantum fields and will be logarithmic in Gβ/a. The

higher order terms will come from higher order loop diagrams. Again, from the form of

the expansion (6.2), we see that Gβ/a acts like a coupling constant and the perturbation

theory breaks down once β ∼ a/G or when the temperature reaches the mass gap. In

particular, precisely at the mass gap, the quantum fluctuations start to dominate over the

classical contributions. This seems to be another indication that the near-horizon region

of a near-extremal black hole below the mass gap is no longer semiclassical even when

the horizon is macroscopic. This means that the semiclassical picture of the (near-horizon

region of) extremal black holes might be misleading, although we used it throughout this

paper. Perhaps, the ideas along the line of the fuzzball proposal (see, for example, [29] and

references therein) might provide a more accurate picture of them in certain contexts.

13S = d(T lnZ)/dT is a shannon entropy which is always non-negative for finite systems. This implies

that the exact non-perturbative free energy should give a non-negative entropy, although term by term in

perturbation theory S seems to diverge as T goes to zero.
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A No transverse gauge perturbation in spherical or toroidally symmetric

ansatz

Consider the most general perturbation around a spherically or toroidally symmetric

Einstein-Maxwell background in 3 + 1 dimensions that respect the symmetry. In 3 + 1

dimensions, non-vanishing transverse components of the field strength (i.e. transverse to

(t, r) directions), or magnetic fields, can be consistent with the symmetry. We argue that

transverse gauge perturbations can be consistently set to zero. Our argument below works

for both spherical and toroidal symmetry, but for definiteness we consider the toroidally

symmetric case.

One set of Maxwell’s equation,

∇[µFνσ] = 0, (A.1)

can be simplified using (anti)symmetry properties of Christoffel symbols and Fµν to

∂µFνσ + ∂νFσµ + ∂σFµν = 0. (A.2)

By assumption of the toroidal symmetry, only Ftr and Fxy can be nonzero and they depend

only on (t, r). Then, by choosing (µ, ν, σ) to be (t, x, y) and (r, x, y), we see that

∂tFxy = 0, (A.3)

∂rFxy = 0. (A.4)

This means that Fxy is constant everywhere in the spacetime. Therefore, we can consis-

tently set the transverse perturbation of Fxy to zero.

B Classical equivalence of dilaton gravity theories with and without

gauge fields

Consider14

S =

∫

d2x
√−g[Φ2R− U(Φ)− f(Φ)F 2]. (B.1)

At classical level, we can solve the gauge equations of motion (EOM), and plug back the

solution into the other EOM for the dilaton and metric. We show that, as a result of this,

the above dilaton gravity theory is equivalent at the level of EOM to another one without

gauge fields. This conclusion also holds when we add neutral matter fields. In particular,

14If there is a dilaton kinetic term, one can eliminate it by a Weyl tranformation to get this form.

– 24 –



J
H
E
P
1
0
(
2
0
1
6
)
0
5
2

Hartman-Strominger (HS) model [30], which corresponds to U(Φ) = −CΦ2 and f(Φ) = 1,

is classically equivalent to the JT model, corresponding to U(Φ) = A−CΦ2 and f(Φ) = 0.

The variations of S with respect to metric, gauge field, and dilaton are as follows:

δS

δgµν
=

√−g

[

−∇µ∇νΦ
2 +∇2Φ2gµν +

1

2
U(Φ)gµν

+f(Φ)

(

1

2
F 2gµν − 2FµσF

σ
ν

)]

, (B.2)

δS

δΦ
=

√−g[2ΦR− U ′(Φ)− f ′(Φ)F 2], (B.3)

δS

δAν
= 4∂µ(

√−gf(Φ)Fµν). (B.4)

Solving the gauge EOM gives

f(Φ)Fµν = Eǫµν , (B.5)

for some constant E. Plugging this solution in the metric and dilaton EOM gives

δS

δgµν
=

√−g

[

−∇µ∇νΦ
2 +∇2Φ2gµν +

1

2
U(Φ)gµν

+ f(Φ)−1E2gµν

]

, (B.6)

δS

δΦ
=

√−g[2ΦR− U ′(Φ) + 2f ′(Φ)f(Φ)−2E2]. (B.7)

By comparing the two sets of EOM before and after solving the gauge EOM, we conclude

that the dilaton gravity theory with U(Φ) and f(Φ) 6= 0 is classically equivalent to another

one with U(Φ) → U(Φ) + 2E2/f(Φ) and f(Φ) → 0. In particular, this implies that HS

model is classically equivalent to the JT model with A = 2E2.

C Further comments about the thermodynamic mass gap

When considering the thermodynamic mass gap, one has to be careful about whether

the system is in the canonical or grandcanonical ensemble. Throughout this paper, we

considered the canonical ensemble. In this case, since dE = TdS, S(T )−S(0) is determined

by E(T ) and gives constraint α > 1 when E(T ) ∼ Tα at low temperatures. On the

other hand, in the grandcanonical ensemble, dE = TdS + ΦdQ, so α does not have to be

necessarily greater than one. For example, in case of charged spherical or planar black

holes in AdS at a fixed chemical potential, E(T ) ∼ T at low temperatures.

Another important caveat in this discussion is whether the black hole geometry is the

dominant saddle [21]. In the canonical ensemble, near-extremal black holes are the domi-

nant saddle at sufficiently low temperatures at any nonzero charge. In the grandcanonical

ensemble, however, the same is true only above a certain critical value of the chemical

potential. Below this critical value, there exists an analog of Hawking-Page transition such

that the dominant saddle at sufficiently low temperatures is the pure AdS. In the latter

case, there is no black hole in the bulk, and thus the argument against the validity of
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Hawking’s semiclassical calculation below the mass gap simply no longer applies. More-

over, since the temperature-dependent part of E(T ) coming from the bulk fields will have

coefficients of order one, the mass gap deduced from it will not be interesting in the sense

that it is not parametrically smaller than the inverse size of the boundary system.

So far, we have discussed asymptotically AdS black holes in which case we were able to

explicitly see that α is an integer and equal to 2 at low temperatures. One may ask whether

there exist holographic systems dual to near-extremal black holes at low temperatures that

have non-integer values of α. Especially interesting in this regard are Lifshitz black holes

with or without hyperscaling violation [31]. The Schwarzschild analog of these black holes

(i.e. those whose blackening factor has a single simple real root) exhibits a scaling relation

for the entropy as a function of temperature, S(T ) ∼ T (d−θ)/z, where d is the number

of the spatial dimensions in the boundary theory, z the dynamical exponent, and θ the

hyperscaling exponent. Depending on the values of d, z, θ, one can have arbitrary scaling

relations, up to the constraint on these parameters from physical conditions like null energy

condition and thermodynamic stability. However, at low temperatures, these black holes

have a small horizon area and the spacetime near the horizon is too strongly coupled to

trust the semiclassical approximation. In fact, one has to be first careful about whether

the black hole spacetime is the dominant saddle at low temperatures.

To have a meaningful discussion of the thermodynamic mass gap, one has to look

at the Reissner-Nordstrom analog of these black holes, which may have a macroscopic

horizon at low temperatures [32, 33]. Depending on z and θ, the qualitative features of

the phase diagram in the canonical and grandcanonical ensembles may differ significantly

from the AdS case. But, regardless of the structure of the phase diagram, we can make

the following general comments. If a non-black-hole spacetime is the dominant saddle at

low temperatures, the whole mass gap issue is trivial for the same reasons as above. If

the black hole spacetime is the dominant saddle and it has a macroscopic horizon in the

zero-temperature limit, its near-horizon geometry is AdS2 times some internal manifold,

S(T ) ∼ T , and in case of the canonical ensemble E(T ) ∼ T 2 as well. Note that the behavior

of S(T ) and E(T ) at low temperatures is identical to the asymptotically AdS case even

when z and θ are nontrivial. This is because the near-horizon geometry of the near-extremal

black holes contains AdS2. In fact, the relation S(T ) ∼ T at low temperatures follows very

generally from the assumption that the horizon area is nonvanishing at zero temperature.

Let r be the horizon radius. Since the entropy is given by the horizon area,

S(T )− S(0) ∼ V (rn − rn0 ) ∼ V nrn−1
0 ∆r, (C.1)

where V is the coordinate volume of the transverse manifold, n the number of the transverse

directions, r0 the horizon radius at zero temperature, and ∆r = r−r0. On the other hand,

T ∼ (dT/dr)r=r0∆r, where (dT/dr)r=r0 is not zero since T as a function of r always has

a simple zero at r = r0. See section 5 for a more general treatment. Therefore, we have

S(T ) ∼ T at low temperatures.
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