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ABSTRACT. — In this work the spinor extension of the conformal algebra
is investigated. The transformation law of superfields under the conformal
coordinate inversion R defined in the superspace is derived. Using R-techni-
que, the superconformally covariant two-point and three-point correlation
functions are found.

1. INTRODUCTION

During the last years the possibilities of extending Poincaré invariance
in particle physics are widely discussed. The theory of conformal inva-
riance [I-7] is a typical example. As a space-time symmetry group, the
conformal group is the most general group which leaves the light cone
invariant. Many interesting ideas in quantum field theory, as well as many
theoretical developments in the theory of strong interaction have been for-
mulated and investigated by means of the conformal group. A noteworthy
fact is that the requirements of invariance under conformal transformations
allow us to define the two-point and three-point correlation functions almost
unambiguously [8-12].

In the recent time many attentions are paid to the spinor extension of
the Poincaré group [/3-16], and the associated symmetry is called super-
symmetry. A characteristic feature of supersymmetry is that it allows us
to combine together bosons and fermions into finite irreducible multiplets.
Supersymmetry has much enriched the elementary particle physics—the
simplest supersymmetric models possess many unexpected and attractive
properties due to the relations between the Green functions of bosons and
fermions.

A problem naturally arises—the spinor extension of the conformal
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426 DAO VONG DUC

group. This problem has been examined first in the papers of Wess and
Zumino [I5], Ferrara [/7], Dondi and Sohnius [/8], and the author [/9],
and also in refs. [20-22]. In this work we consider this problem in more
details, using the coordinate inversion transformation R defined in the
superspace. The content of the paper is arranged as follows. Section 2 is
devoted to the superconformal algebra, its realization and the transfor-
mation law of the superfields. In section 3 we consider the coordinate
inversion transformation R in superspace, the transformation law of super-
fields under this operation. In section 4, using the R-technique, we obtain

the superconformally covariant two-point and three-point correlation
functions.

2. SUPERCONFORMAL TRANSFORMATIONS

The superconformal algebra consists, besides of the conformal genera-
tors M,,, P,, K, and D, of two Majorana bispinor generators S,, Q,, and
a chiral charge E. They obey the following commutation relations

@1 MuSi= 308 M Ql= -~ 6.

22 8.5} =~ GOuP"

@3 {QnQ} =~ (OuK"

@A) (S0 Q)= = 5 (0uO0M" — iCyD 3 irsC)sE
i

2.5) [D, S =58,

2.6 [D,Q]=-Q,

2.7 [P QJ = — (7S
(2.8) Ky 8 = = (7.Q)s
(2.9) [Se, E] = — i(y5S),
(2.10)  [Q, El = i(y5Q)a '
@2.11) [P, S,] = [K,, QJ = [P, E] = [M,,, E] = [K,, E] = [D, E] = 0

Other commutators including the conformal generators only are well-
known and missed here. Operating on the functions defined in the super-
space (x,, 0,) [16], these generators can be realized as follows:

. 1 0
(2.12) M, = i(x,0, — x,0,) — i(a,w)ﬁe,, T

6,
(2.13) P, =10, . 1 ; 5
. v i - - A~
(2.149) K, =i2x,x"0, — xzaﬂ) + g(eofau + 3 00(y,9). 07(1 + i(xy,0), 6_9:
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ot —lg O

(2.15) D= —ix,0 29“69,
. 0
210 E= —i(ys)s 5~

o 1
2.17) S, = — i< +-(3,0),0"
(2.17) P 2()’u)
L0
22

| &

i N I _ 0
2.18) Q,= + = (5C)qp0750 0. + ;(vsv"C)aﬂﬂvsvﬁgg—

* 2 0,, B
AN a i A~ M 1 - u
— (xC)yp 3, ) (xy,0),0" + i 00(y,0),0

!

Consider now the transformation laws of the field operators under the
superconformal transformations. From (2.12)-(2.18) we note that the point
(x = 0, 0 = 0) remains unchanged under the homogeneous Lorentz trans-
formations M,,, the scale transformation D, the special conformal trans-
formation K, the Q- and E-transformations. These transformations form
the little group of the superconformal group. According to any given repre-
sentation of this little group we can define the entire action of the genera-
tors of the superconformal group on the field operators @,(x, 8). This is
done by the method of the theory of induced representations [5, 23] in the
following manner.

Let
(2.19) [M,.,, 9(0, 0)] = — (Z£9(0, 0)),
(2.20) [D, 940, 0)] = — (A®(0, 0)),
(2.21) [Ku» @40, 0)] = — (KP(0, 0)),
(2.22) [Qur @400, 0)] = — (g”(0, 0)),
(2.23) [E, 940, 0)] = — (¢9(0, 0),

where Z,,, A, K,,, ¢,, e are some matrices obeying the analogous commuta-
tion relations as those for M,,, D, K, Q,, E. We are to find the commu-
tation rule [J, ,(x, )] for the elements J of the superconformal algebra
and the field operator ¢,(x, 0) (*). Choose the basis in the index space in
such a way, that the operators P, and S, do not act on the indices, . e.

(2'24) [Pw (PA(X, 6)] = - iau(DA(xs 0)
(2.25) [Se, @alx, )] =i 0% ®a(x, 0) — %(?ne)aaﬂ(pA(x’ 0),

and, therefore

(226) ¢A(x +a+ %E))G, 0+ 8) = ei“P—‘TSq,A(x’ g)e—iaP+iES

(*) For definiteness, let pa(x, 8) be a Bose operator.
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With the help of (2.26) we can write

(2.27) [, palx, 0)] = ei"P”ie—s[J', 040, O)]e—ixP+i§S
where we denote
(2.28) J = g~ ixP+ibSy,ixP—ifs

Using the commutation relations (2.1)-(2.11), we find:
(2.29) M,, =M, + x,P, — x,P, + "-Ea,ws - isﬂvlpe“ysy*e.w
(2.30) K,=K,—2x, D + 2x,X"P, — x*P, + 2x’M,,,

4 ,,v,uﬁysyve.M’1 — isuvl‘,x Bysyl() pP? — —(60) P,

— Gy, xS — %@0.5})”8 +i67,Q + Z Foy57,0.E

(2.31) D'=D-x"P, + %Es
(232 Q)= Q,~ 5(00).M" + L 000,0)P* + (3,0).P"

D— ;(yse)aE - -5—598, + égyse(ySS),

+ }%sv,ﬂ(vsv"s)a + i(xS),

(2.33) E =E + 0y,S — %@hy,ﬂ.P"

By inserting (2.29)-(2.33) into (2.27) and taking into account (2.19)-(2.23)
we get, after some manipulations:

.34 My o5 0)= = |2 +i(s,0, = 509 = 50D focs.0
(2.35)  [K, o(x, 0] = — { £ — 2x, A 4 2ix,x*0, — ix?0, + 2x"Z2
+ ; (06)*9, + i(x7,0), % - %B‘o(m)aa—‘;x
+ 28ﬂv1p§y5yv9.2(“’)’1” + ggysyuﬂ.e(“’) +i0y,4 { o(x, 6)

(2.36) D, ¢(x, ] = — 3 A® —ixto, — 0,0 i o(x, 0)

2.3 [Qw ox, 0)= —3 7.7 - i(%0)0;2(‘“)‘” — 0, — é(‘ySe)ae(q,)

d d
- (xC), +100% 4 Ly Q),
( )50 > 60" 2}’5(3’5)136‘z
L 0ysy.0059'C)ps 2 1+ 1 : ,0
+ 7977 (757"C)ap ae,,+ 466(66),, 2(x66)a§<p(x )
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@38 [E ol 0)=—3e“”’—i(v50)a 2 Lo, 0

3. R-INVERSION

As is well-known, in studying the conformal invariance in the usual

- . . . X
x-space 1t 1s more convenient to use the discrete transformation X, > ==,
x

called R-inversion, rather than the special conformal transformation K,
(see, for example, refs. [2, 10, 24]). Owing to the relations

3.1 RPR =K,
3.2) RDR = -D
(3.3) RM,R = M,,,

the covariance (invariance) with respect to the conformal algebra, follows
from the covariance (invariance) with respect to the Poincaré algebra, the
scale and R-transformations, taken together. Here too, the R-inversion
operator is to be defined in such a way that, acting in the superspace (x, 6),
it satisfies the same relations (3. 1)-(3.3), and

3.9 R? =1
as well. It can be seen that such an operator is of the form

(3.5  Ri{x,0,)= ; - % (1 +}(§0)2)’i(x2)a B leo.eag

8 x? X 2 x?

By the use of (3.1) and (3. 5) it is easy to write out the finite special conformal
transformation:

i + x%c 1 ,e?x, — (1 + 2c¢x)c
3.6) ex,= TuTX G (g2 :
3-6) 1 4 2ex + X2 8( ) (1 + 2ex + *x?)?
B.7) &%, = 1

A l’ _ —~
T | G0+ 0.6
Now the problem is to find the transformation law of the field operator

@(x, 0) under R-inversion. We restrict ourselves to the representations for
which

(3.8) KP=0 , ¢g@=0 , 9=0 , A®_ il,
I, being the scale dimension of the field o(x, 0):
(3.9) e "Po(x, 0)e™ = p~leg(px, p'%0) |, p= e

That will be sufficient for many physical applications. Generalizing our
method [24] of finding U(R) in the usual X-space, we now put:

G10 VR, OU™'R) = |* - 10| "sx, 0pp(Res, ),
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where S”(x, ) is some matrix, which is to be defined through the equa-
tions (3.1)-(3.4).
By noting that the function

g(x, 0) = x* — %(50)2
has the property

(3.11) g(x, 0)g(R(x, 0)) = 1

we get from equation (3.4):

(3.12) S(x, O)S(R(x, 0)) = 1.

Equation (3.2) gives, taking into account (3.9) and (3.11):
(3.13) S(x, 0)S(py, p'?1) = 1

where (y, 7) denotes the inversed coordinates of (x, 6):

(1) = R(x, 0).
Equations (3.12) and (3.13) together show that S(x, 8) is a homogeneous
matrix of zeroth order:
(3.14) S(px, p'/?6) = S(x, 0).

By using (3.1), (3.12) and (2.35) (with k{ =0, ¢” =0, & = 0),
after some manipulations we obtain the following equation for the matrix
S(x, 6):

(3.15) - S(y, 10,5, 0) = 2iy"%,, — %suvlﬁysyvr.ff”

This equation taken together with equations (3.12) and (3.14) is sufficient
for defining completely the matrix S(x, 8) and, consequently, the transfor-
mation law of the field operators. For illustration, let us give some examples.

In the case of scalar superfield Z,, = 0, and the equations (3.12), (3.14)
and (3.15) give (apart from a phase factor):

(3.16) S(x,0) = 1.
Hence, we have
(3.17) UR)(x, U '(R) = 64,[::2 - %(99)2] SR, 0) , [0, =1

For the vector superfield V,(x, 6) the most general form of the matrix
S(x, 0) consistent with the Lorentz covariance is

bx,x, 00>  dx,x, .
(3.18) S,(x,0) =ag,, + x‘; + cguv(Tz) + (x;)2 (66)
Oysy*0.x° kx,x,\ 00
Sy B (b + S5 i
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Equation (3.12) then gives:

1, 2ab +b*=0, ac+f*=0, bc—f%+ad+bd=0,

a =
(3.19) hek =0

Equation (3.15) with (Z,,); = i(gm,é‘v’ - gvpé,‘j) gives, taking into account
(3.19):
1 i
(3.20) b==-2 c=z, d=-, f=3
Thus, we have finally:
_ v
(.21) RV, OU'R) = 6y = £ 06] "Stx, OV, R(x, 0,

|5vl=1

203, 1 (00)°  1x,x,(600)
(322) Su(x ) =gw— 7"+ 3803 —; o525

i Oysy*0.x*
+ _el_wl’,i‘xz—

2

The generalization for the case of tensor superfield of arbitrary rank is
trivial. We have:

(3.23) UR)T,,.,,(x, OU™'®)
= b = 5 0] S 00 . S5, T RG5O, 1501 = 1

where the matrix S(x, 0) is the same as in (3.22).

Had we derived the operators U(R) for the superfields, we can easily
find their transformation law under the special conformal transformation
by the help of equation (3.1). For example, for the scalar superfield we have

. ) _ T
(3.24) e Kg(x, )’ = [1 + 2ex + ¢*x? — écz(f)ﬂ)z] ¢q5(x’, 0,

where (x', 0") denotes the transformed value of (x, 6) and is defined by the
equations (3.6) and (3.7). Consequently, for the field components appeared
in the expansion of superfield ¢(x, 6),

d(x, 0) = A(x) + Oy(x) + %EBF(x) + %aySG.G(x) + ggysqu.A“(x)

+ %ée.ax(x) + 31—2(§9)2D(x),
we have
A'(x) = (1 + 2ex + 2x2)A(2)
¥(x) = (1 + 2ex + 2?1 + XW(z)
F'(x) = (1 + 2ex + ¢*x?)"* 7 'F(z)
G'(x) = (1 + 2¢x + 2x?)*7'G(z)
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432 DAO VONG DUC

(x,¢" — e

A (x) = (1 + 2¢x + 2x?)let [5,‘: + rl-—Zcxz_Tcz—xz
+ 2cx.x,¢" — x%c,c” — c*x,x")]A(x)
7)) =1+ 2ex + x93 (1 + xO)x(2)
— 2i(1 + 2cx + X2 qY(2)
D'(x) = (1 + 2ex + ¢2x2)'*72D(z) — 4, (1 + 2cx + c2x?)"* 7 12A(2)

—4(1 + 2ex + A2x?)* (1 + 2ex)e, — ¢*x,]0"A(2)
where we denote
X, + xzc,,
1 + 2cx + c*x*’

" A = e—u‘KAech

4. SUPERCONFORMALLY COVARIANT TWO-POINT
AND THREE-POINT FUNCTIONS

In this section, using the R-technique developed in section 3, we derive
the formulae for the superconformally covariant two-point and three-point
correlation functions. For simplicity, we restrict ourselves to the case of
scalar superfields. Let ¢,(x, 6) and ¢,(x, 0) be scalar superfields with dimen-
sions /; and /,, and G,,(xy, 0,; X,, 0,) their two-point function:

4.1) Gyy(x4, 045 x5,0,) = CPi(xy, 01)Pa(x2, 05) >
From the translation and S-invariance it follows that:
i
(42) Cixn 002 00 = { $ics = 52 = 5001, 0,= 000:0,0) )
while D- and R-invariance requirements give, respectively:

4.3) G12(Px1, P1/291 5 PX2, p1/202) = P’leGlz(Xl, 0, ; x3, 6,)
4.9 G (315715 Y2 T2)

1 = —h 1 - —h
=[5 - g0 [t - @0 ] "Guates, 010200
where (y, 7) = R(x, 0).

Now we employ the following identity between the (x, 0)-coordinates
and their inversed ones (¥, 7):

i\ 1. - 2
@9 (31 =22 =37 — 416 - 2 — )
-1
- [ -3@00] v - 5@0r]

. 2
(xl - X3 — '5672701) - %[(91 - 0,)0, — 92)]2

-1

Annales de IInstitut Henri Poincaré - Section A



CONFORMAL TRANSFORMATIONS IN SUPERSPACE 433

to find out the explicit form of G,,(x,, 6,; x,, 0,) satisfying the equations
(4.2)-(4.4). We have:

(4.6)

i \2ol, .~ Iy
Gia(xy, 045 x5, 05) =96,,,,.G (xl — Xy — 592?91) - g[(el —0,)(0, —62)]Z

It is easy to see that the form (4.6) of G, is automatically E-invariant,
i. e. invariant under the transformation
4.7 (x;, 0;) = (x;, (cos e + y5 sin e)h)),

and also Q-covariant, namely it satisfies the following equation (see (2.37)
withX = 0,9, =0,e = 0,A = il):

@8) D QP11 013 %3, 0) = 0y, + 030G x(5s, 0y 5 33, 0)
i=1,2
where Q” stands for the differential operator (2. 18) and acts on the varia-
bles (x;, 6)).
From the two-point function (4.6) of superfields we can easily obtain
the two-point functions of field-components. We have:

4.9 (AXxDA(X,)) = G[(x; — x)*

(4.10)  {A(x)D(x,)) = — 4IG[(x; — x,)?]'"*

@.11) (P x)PP(x0) ) = iIG[(x, — x0T~ '(xy — %)°

4.12)  (Yux)2(x2)) = — 2G[(x, — x,)?] 18

(4.13)  (F(x)F(x;)) = — 20 + 2)G[(x, — x,)2I"~*

4.19)  (G(x)G(xp)) = — 2( + 2)G[(x; — x,)2'

(4.15) (A(xDA(x)) = 210 — DGI(x; — x,)7]"?

_20x; = X2)u(X1 — X2)y
(x; = xz)z

v
(4.16)  (D(x1)D(x,) ) = 16I°(* — DG(x; — x,)*]'"*
@17 LGP0y = 4il(1? = DGI(x; — x)]'72(x; — %)L

Consider now the three-point functions. Denote
(4.18) Gi23(xy, 015 X3, 055 X3, 03) = { dy(x1, 01)h2(x3, 0,)3(x3, 05) )
The requirements of D- and R-invariance tell that
4.19)  Gya3(px;, 91/291 5 PX2s 01/202 5 PX3, Pl/zes)

= Pll+12+13G123(X1’ 01 ; %3, 0, ;5 x3, 03)

(4.20) Gy23(V1s Ty 5225 T2 5 V3 T3)

1 - -1 1 - -1 1 . -1
= [t~ @007] [+ - ga0ar] [t - 0]
-Gia3(x1, 0y 5 %2, 0 5 X3, 05)
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Using again the identity (4.5), we find the following form of Gy, satisfying
equations (4.19) and (4.20):

4.21) Gyy3(xy, 04 5 X3, 0, 5 x3, 03)
L +ia-13)

R 2
=g (xl - X3 — %523’91) - 21§ [(91 - 0_2)(01 - 92)]25

1
S(2+13-11)

iz o\ 1. = 2
(xz — X3 — 593?02) - g[(ez — 05)(0, — 65)] ;

1
I3+l —12)

(x3 —x, - gaﬁos)z - %[(‘63 — 0,)(0, — 01)]2€

This form is evidently P- and S-invariant. Moreover, it is automatically
E-invariant and Q-invariant, and therefore superconformally covariant.
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