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1 Introduction

Conformal field theories (CFTs) are special quantum field theories (QFTs) endowed with

a powerful invariance under a broad group of symmetries, the conformal group SO(2, d).

CFTs represent fixed points in renormalization group flows in the space of QFTs, describe

second order phase transitions in statistical physics systems, and shed light on the universal

structure of the landscape of all QFTs. Moreover, they prescribe a non-perturbative ap-

proach for the investigation of quantum gravity theories via the AdS/CFT correspondence.

A modern revival of interest in the subject was initiated by [3–6]. In recent years,

tremendous progress has been made in the exploration of CFTs, largely owing to the power

of the conformal bootstrap, a systematic program of applying consistency conditions and

crossing symmetry to carve out the space of allowed theories, an idea introduced in [7, 8].

A review of modern bootstrap and further references can be found in [9]. The ultimate
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dream of this program is to classify all CFTs as relevant deformations of a small subset of

CFTs in the spirit of the Jacobi identity.

A natural habitat for the formulation of CFTs is the embedding space, where the con-

formal transformations act linearly [10]. The organic observables in CFTs are correlation

functions of quasi-primary operators. A complete implementation of the bootstrap calls for

the determination of the four-point conformal blocks for general Lorentz representations.

Recently, a novel formalism for a unified treatment of arbitrary M -point correlations func-

tions in the embedding space was introduced in [1, 2]. This framework lays out a program

that enables the efficient computation of all possible blocks and further empowers the de-

termination of all M -point functions. It relies on a reinterpretation of the embedding space

operator product expansion (OPE) using a new uplift for general quasi-primary operators.

The OPE constitutes replacing the product of two local operators at distinct spacetime

points x1 and x2 by an infinite sum of operators at some point inside the interval [x1, x2].

While in general the OPE converges only in the asymptotic short-distance limit, in a

CFT it is known to converge at finite separation, owing to the enhanced symmetry of the

theory [11]. The OPE is therefore a well-defined fundamental quantity in a CFT, where its

utility lies in formulating M -point correlation functions in terms of (M−1)-point functions.

The OPE in a CFT expresses the product of two quasi-primary operators at non-coincident

points in terms of a series in quasi-primary operators and their descendants. Explicitly,

the embedding space OPE can be stated as

Oi(η1)Oj(η2) =
∑

k

Nijk∑

a=1

ac
k

ij aD k
ij (η1, η2)Ok(η2), (1.1)

where the sum over quasi-primary operators Ok(η2) is infinite, while the sum over the Nijk

OPE coefficients ac
k

ij with the appropriate differential operators aD k
ij (η1, η2) is finite. The

sum includes all linearly independent quasi-primary operators, while the infinite towers

of descendants are accounted for by the differential operators aD k
ij (η1, η2). In a CFT,

the form of the two-point correlation functions is completely determined by symmetry

considerations. From the OPE (1.1) in Lorentzian signature, the two-point functions are

〈Oi(η1)Oj(η2)〉 = (T N
12 Γ)(T NC

21 Γ) ·
λN c 1

ij P̂N
12

(η1 · η2)τ
. (1.2)

Hence, once the OPE is known, so are technically all possible correlation functions, up to

the OPE coefficients.

In this work, we give an explicit application of the program set forth in [1, 2], using it

to compute the general two-point function for generic Lorentz representations (see [12–20]

for various results on two- and three-point functions). This is a useful first step in the

successful implementation of the new framework. In particular, the two-point correlator

carries projection operators that encapsulate all the essential group theoretic information

which subsequently feeds in to the computations of the three-point, four-point, and general

M -point functions.

This paper is organized as follows: section 2 discusses the projection operators which

are ubiquitous in the construction of correlation functions. Section 3 describes two-point
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correlation functions in embedding space using the formalism developed in [1, 2]. The

required tensor structures are obtained in terms of the projection operators and their

normalization is chosen. In Section 4, the two-point correlation functions are projected

to position space for quasi-primary operators in general irreducible representations of the

Lorentz group. The resulting position space two-point correlation functions turn out to be

the expected correlation functions obtained from the usual symmetry arguments, and these

are shown to be covariant under conformal transformations by direct computation. Some

specific examples (with both fundamental and mixed representations) are also discussed.

This section provides a first explicit sanity check on the formalism introduced in [1, 2]. For

completeness, section 5 determines the unitarity conditions on the coefficients of two-point

functions. Finally, conclusions are presented in section 6. Throughout this paper, we use

the notation and conventions detailed in [2].

2 Hatted projection operators and half-projectors

From the formalism developed in [1, 2], non-vanishing two-point correlation functions for

quasi-primary operators Oi(η) and Oj(η) are simply and suggestively given by (1.2) where

N = {N1, . . . , Nr} denotes an irreducible Lorentz representation of the operator Oi(η) and

its corresponding Dynkin indices, while NC denotes the conjugate representation.1 We

will discuss the details in the next section.

Of interest here is P̂N
12 which is an embedding space projection operator to the repre-

sentation N , while (T N
12 Γ) is what we refer to as a half-projector. It is evident from (1.2)

that the particulars of the projection operators are central in the determination of two-

point correlation functions of quasi-primary operators in general irreducible representations

of the Lorentz group. Hence, the projection operators are the focus of this section.

It is more instructive to discuss the projectors and half-projectors in position space

first. The corresponding quantities in the embedding space are directly related to the ones

in position space. The half-projectors serve to translate the spinor indices carried by each

operator to the “dummy” vector and spinor indices that need to be summed over when

constructing correlation functions. They earned their name because they square to form

projection operators. The hatted projectors operate on the dummy indices alone.

The position space projection operators satisfy the following essential properties:

(1) the projection property P̂N · P̂N ′
= δN ′N P̂N , (2) the completeness relation∑

N |nv fixed P̂N = 1 − traces, and (3) the tracelessness condition g · P̂N = γ · P̂N =

P̂N · g = P̂N · γ = 0. We next discuss some simple algorithms for the construction of

hatted projection operators to general irreducible representations of the Lorentz group.

2.1 Projection operators for defining irreducible representations

Hatted projection operators to general irreducible representations can be built from the

corresponding operators for the defining irreducible representations. It is therefore appro-

priate to first describe the hatted projectors to defining irreducible representations.

1See section 3 for a discussion of the relation between contragredient-reflected representations and con-

jugate representations in Lorentzian signature.
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In odd spacetime dimensions, the hatted projectors to the defining irreducible repre-

sentations are

(P̂er) β
α = δ β

α , (P̂ei 6=r) ν1···νi
µi···µ1

= δ
ν1

[µ1
· · · δ νi

µi]
, (P̂2er) ν1···νr

µr···µ1
= δ

ν1
[µ1

· · · δ νr
µr]

,

(2.1)

while in even dimensions they are given by

(P̂er−1) β
α = δ β

α , (P̂er ) β̃
α̃ = δ β̃

α̃ , (P̂ei 6=r−1,r ) ν1···νi
µi···µ1

= δ
ν1

[µ1
· · · δ νi

µi]
,

(P̂er−1+er )
ν1···νr−1

µr−1···µ1
= δ

ν1

[µ1
· · · δ νr−1

µr−1]
,

(P̂2er−1) ν1···νr
µr···µ1

=
1

2
δ

ν1

[µ1
· · · δ νr

µr]
+(−1)r

K

2r!
ǫ νr···ν1

µ1···µr
,

(P̂2er ) ν1···νr
µr···µ1

=
1

2
δ

ν1

[µ1
· · · δ νr

µr]
−(−1)r

K

2r!
ǫ νr···ν1

µ1···µr
.

(2.2)

In (2.1) and (2.2), δ
ν1

[µ1
· · · δ νi

µi]
is the totally antisymmetric normalized product of δ ν

µ ,

while K is the proportionality constant in γµ1···µd = K ǫµ1···µd1 which satisfies K 2 =

(−1)r+1 with ǫ1···d = 1. From (2.1) and (2.2), it is straightforward to verify that these

operators indeed satisfy the requisite projection property and tracelessness condition. The

completeness relation can subsequently be used to generate other hatted projectors.

2.2 Projection operators for arbitrary irreducible representations

An arbitrary irreducible representation of SO(p, q) is indexed by a set of non-negative

integers, the Dynkin indices, denoted by N = {N1, . . . , Nr} ≡
∑

iNiei, where r is the

rank of the Lorentz group and ei is the usual unit vector ei ≡ (ei)j = δij . Clearly, the

defining representations are special cases of general irreducible representations.

There exist several techniques for the construction of hatted projection operators to

general irreducible representations of the Lorentz group. For example, we can resort to

Young tableaux techniques with the birdtrack notation [21–23] as well as the weight-shifting

formalism [24, 25]. Whatever the approach, the construction of the hatted projection

operators amounts to an exercise in group theory, and the path used to obtain them is

irrelevant; only the final result is of importance here.

Another construction technique is based on the tensor product decomposition, the pro-

jection property, the completeness relation, and the tracelessness condition (see e.g. [2]).

Although not particularly efficient, it can in principle be used to generate the projector

to any irreducible representation via recursion, including the general spinorial representa-

tions, which constitute a limitation for other methods. The technique can be appropriately

adapted so as to render it more efficient following [26]. For simplicity, we restrict the discus-

sion here to odd spacetime dimensions, as there is only one defining spinor representation

to consider in that case. The generalization to even dimensions is straightforward.

We can construct the hatted projection operator to a general irreducible representation

N from the appropriate symmetrized product of the defining representations, denoted by

– 4 –
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powers in parentheses, as in

P̂N ∝
r−1∏

i=1

(P̂ei)(Ni)(P̂2er)(⌊Nr/2⌋)(P̂er)Nr−2⌊Nr/2⌋ − smaller irreducible representations.

(2.3)

Here the smaller irreducible representations can be divided into two groups: those repre-

sentations that are not explicit traces and those that are. While the latter are trivial to

remove via the tracelessness condition, the former are not and can instead be eliminated

with the aid of the tensor product decomposition and the projection property. We point

out that here the smaller irreducible representations are not directly subtracted in (2.3), as

dictated by the completeness relation. Rather, they are represented by other contributions

which encode the proper symmetry properties of the hatted projection operators.

To elucidate this point, we proceed to consider an example. One of the simplest

irreducible representations with mixed symmetry is e1 + e2. The appropriate form of the

hatted projection operator is

(P̂e1+e2)
µ′ν′1ν

′
2

ν2ν1µ = αδ µ′

µ δ
ν′1

[ν1
δ

ν′2
ν2]

− smaller irreducible representations, (2.4)

according to (2.1), (2.2), and (2.3). Here, α is a constant that will be computed later. We

can determine the smaller irreducible representations for e1 + e2 from the tensor product

decomposition e1 ⊗ e2 = (e1 + e2) ⊕ e3 ⊕ e1 where, for notational simplicity, we assume

that the rank of the Lorentz group is r > 3. It is clear from counting the number of

free indices on each smaller irreducible representation, that e3 is not a trace while e1 is.

Thus, e1 is easily subtracted via the tracelessness condition. Meanwhile, to remove e3, the

projection property P̂e3 · P̂e1+e2 = 0 can be invoked. But first, it is necessary to determine

the form of the contributions of the smaller irreducible representations. It is clear that we

can construct two independent terms, starting from the base term in (2.4), which are

δ
[ν′1

µ δ
ν′2]

[ν1
δ

µ′

ν2]
, δµ[ν1δ

µ′[ν′1δ
ν′2]

ν2]
.

These are antisymmetric over the ν (and ν ′) indices, as expected for the hatted projection

operator (2.4). Therefore, the projection operator must be a linear combination of these

terms

(P̂e1+e2)
µ′ν′1ν

′
2

ν2ν1µ = α δ µ′

µ δ
ν′1

[ν1
δ

ν′2
ν2]

+ β δ
[ν′1

µ δ
ν′2]

[ν1
δ

µ′

ν2]
+ γ δµ[ν1δ

µ′[ν′1δ
ν′2]

ν2]
,

where β and γ are two constants that will be fixed shortly. The two new terms correspond

to the contributions due to e3 and e1, respectively. To see this, we invoke the projection

property P̂e3 · P̂e1+e2 = 0 to fix β = −α, showing that the addition of the first new term

allows us to subtract e3. Further, the tracelessness condition g · P̂e1+e2 = P̂e1+e2 · g = 0

yields γ = −3α/(d − 1), demonstrating that the last term enables the removal of e1.

Finally, satisfying the projection property P̂e1+e2 · P̂e1+e2 = P̂e1+e2 requires α = 2/3, thus

resulting in the hatted projection operator

(P̂e1+e2)
µ′ν′1ν

′
2

ν2ν1µ =
2

3

(
δ µ′

µ δ
ν′1

[ν1
δ

ν′2
ν2]

− δ
[ν′1

µ δ
ν′2]

[ν1
δ

µ′

ν2]
− 3

d− 1
δµ[ν1δ

µ′[ν′1δ
ν′2]

ν2]

)
.

(2.5)
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Obviously, for more complicated irreducible representations it is necessary to construct the

hatted projectors for increasingly larger numbers of smaller irreducible representations that

are not traces in order to implement the projection property. This is not always efficient.

Nevertheless, by considering all possible permutations of indices in the base term with the

same symmetry properties, it is relatively straightforward to determine all relevant contri-

butions appearing in the hatted projection operators, up to various constants. The latter

can then be fixed, in principle, by invoking the projection property and the tracelessness

condition.

An alternative approach to constructing the P̂e1+e2 projector involves using the com-

pleteness relation, as mentioned above. Up to traces, the only three-index tensors that are

antisymmetric in two indices are e1+e2 and e3. We can thus derive P̂e1+e2 by subtracting

the projector to the e3 representation

(P̂e3)
µ′ν′1ν

′
2

ν2ν1µ = δ
[µ′

[µ δ
ν′1

ν1
δ

ν′2]

ν2]
,

from the identity operator in the subspace of interest and then, as before, discarding the

traces. One obtains

(P̂e1+e2)
µ′ν′1ν

′
2

ν2ν1µ = δ µ′

µ δ
ν′1

[ν1
δ

ν′2
ν2]

− δ
[µ′

[µ δ
ν′1

ν1
δ

ν′2]

ν2]
− 2

d− 1
δµ[ν1δ

µ′[ν′1δ
ν′2]

ν2]
. (2.6)

It turns out that the projectors in (2.5) and (2.6) are identical, as expected. Note that

the overall normalization in (2.6) is simply 1. This is guaranteed by completeness, because

we had arrived at the final form by subtracting other projectors from the identity. The

second term in the equation above is P̂e3 , while 2
d−1δµ[ν1δ

µ′[ν′1δ
ν′2]

ν2]
corresponds to the

trace representation e1, which is contained in the product e1 ⊗ e2.

2.3 Half-projectors

The position space half-projectors responsible for the proper behavior of the two-point

correlation functions under Lorentz transformations are given by

(T N )
µ1···µnv δ
α1···αn =

(
(T e1)N1 · · · (T er−1)Nr−1(T 2er)⌊Nr/2⌋(T er)Nr−2⌊Nr/2⌋

)µ′
1···µ

′
nv

δ′

α1···αn

× (P̂N )
µ1···µnv δ

δ′µ′
nv

···µ′
1

.

(2.7)

Here n = 2S = 2
∑r−1

i=1 Ni +Nr is twice the “spin” S of the irreducible representation N ;

nv =
∑r−1

i=1 iNi + r⌊Nr/2⌋ is the number of vector indices of the irreducible representation

N ; and δ is the spinor index which appears only if Nr is odd (in odd spacetime dimensions).

In (2.7), the spinor indices α1, · · · , αn match the free indices on the corresponding quasi-

primary operator, while the remaining indices µ1, · · · , µnv , δ are dummy indices that are

contracted.

Moreover, in (2.7) the position space half-projectors to the defining representations are

given by

(T ei 6=r )µ1···µi

αβ =
1√
2ri!

(γµ1···µiC−1)αβ , (T er )βα = δ β
α , (T 2er )µ1···µr

αβ =
1√
2rr!

(γµ1···µrC−1)αβ ,

– 6 –
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where

γµ1···µn =
1

n!

∑

σ∈Sn

(−1)σγµσ(1) · · · γµσ(n) ,

is the totally antisymmetric product of γ-matrices.

Finally, in (2.7) the hatted projection operator P̂N contracts with the dummy indices

of the half-projector, thus projecting onto the proper irreducible representation N .

2.4 Projectors and half-projectors in embedding space

We can easily obtain the embedding space hatted projectors P̂N
12 from the corresponding

position space quantities [(2.1) and (2.2) for the defining representations, or for any other

representation, e.g. (2.5)] by simply making the following substitutions:

gµν → AAB
12 ≡ gAB − ηA1 η

B
2

(η1 · η2)
− ηB1 η

A
2

(η1 · η2)
,

ǫµ1···µd → ǫA1···Ad

12 ≡ 1

(η1 · η2)
η1A′

0
ǫA

′
0A

′
1···A

′
d
A′

d+1η2A′
d+1

A Ad

12A′
d

· · · A A1

12A′
1

,

γµ1···µn → ΓA1···An

12 ≡ ΓA′
1···A

′
nA An

12A′
n

· · · A A1

12A′
1

∀n ∈ {0, . . . , r},

(2.8)

which have the necessary properties (trace, number of vector indices, etc.) to ensure proper

contractions with the corresponding irreducible representations in position space.

In embedding space, the corresponding half-projectors are given by

(T N

ij Γ) ≡



( √

2

(ηi·ηj)
1
2

T e2ηiAij

)N1

· · ·
( √

r

(ηi·ηj)
1
2

T erE−1ηiAij · · · Aij

)Nr−1

×
( √

r+1

(ηi·ηj)
1
2

T 2erE ηiAij · · · Aij

)⌊Nr/2⌋(
1√

2(ηi·ηj)
T erE ηi·Γηj ·Γ

)Nr−2⌊Nr/2⌋

·P̂N

ij ,

(2.9)

where

(T en+1ηiAij · · · Aij)
A1···An

ab ≡ (T en+1)
A′

0···A
′
n

ab A An

ijA′
n

· · · A A1

ijA′
1

ηiA′
0
.

Here the definition of the embedding space half-projectors to the defining representations

is the direct analog of the position space definition with the substitutions (2.8) for the

projectors and the rank of the Lorentz group r → rE = r + 1, as expected.

3 Two-point correlation functions in embedding space

This section examines two-point correlation functions in the embedding space. The most

general two-point correlation functions of operators in generic Lorentz representations are

explicitly given. All results are presented for the case of odd spacetime dimensions, with

the even-dimensional results being a straightforward generalization.

Conformal invariance uniquely specifies the form of the two-point function, up to an

overall normalization matrix with indices in the space of the quasi-primary operators, which

– 7 –
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we refer to as the OPE coefficient matrix. There is at most one physically allowed two-point

structure. This is transparent from the OPE, which encodes the algebraic structure of the

theory. In fact, from the OPE formalism in [1, 2] and as shown below [see also (5.5)], non-

vanishing two-point structures only exist between quasi-primary operators in irreducible

representations N = {N1, . . . , Nr} and their contragredient-reflected representations NCR

d odd: NCR = {N1, . . . , Nr} = N ,

d even: NCR =

{
{N1, . . . , Nr} = N , if r is odd

{N1, . . . , Nr−2, Nr, Nr−1}, if r is even
.

Indeed, in arbitrary signature, two-point correlation functions are non-vanishing for

representations that are contragredient-reflected with respect to each other. It is straight-

forward to see that unless this is true, the proper contraction of the indices is impossible,

and the correlator vanishes identically. In this paper, we restrict attention to CFTs in

Lorentzian signature. In this case, the contragredient-reflected representation NCR is the

same as the complex conjugate representation, NCR = NC . Expressing all two-point

functions in Lorentzian signature is convenient for understanding the unitarity conditions,

which can be determined by considering two-point correlators between quasi-primary op-

erators and their conjugates.

It is sufficient to include only independent quasi-primary operators for a complete

analysis. On the one hand, we can achieve this by considering all quasi-primary oper-

ators and their conjugates; on the other, this can be attained by reducing (almost) all

bosonic quasi-primary operators to their real components, thus effectively eliminating the

conjugate bosonic quasi-primary operators. However, the bosonic quasi-primaries in gen-

eral (anti-)self-dual representations comprise exceptions to this statement if they are not

self-conjugate. Moreover, for fermionic quasi-primaries, such a reduction is possible only

for cases when the Majorana condition can be imposed, which corresponds to spacetime

dimensions d = 1, 2, 3 mod 8 in Lorentzian signature. Otherwise, conjugate fermionic

quasi-primaries are linearly independent and therefore must be included in the OPE. In

view of these observations, in the following, quasi-primary operators and their conjugates

are included as long as they are linearly independent.

The two-point correlation functions for quasi-primary operators Oi(η) and Oj(η) in-

troduced in (1.2) can be simplified further

〈Oi(η1)Oj(η2)〉 = (T N
12 Γ)(T NC

21 Γ) ·
λN c 1

ij P̂N
12

(η1 · η2)τ
= (T N

12 Γ) · (T NC

21 Γ)
λN c 1

ij

(η1 · η2)τ
, (3.1)

where the hatted projection operator was absorbed into the half-projector, as is evident

from (2.9). Meanwhile, λN is a normalization constant and c 1

ij is a matrix of OPE

coefficients.

Altogether, the quantity in the numerator of (3.1) can be regarded as a group-theoretic

part, which constitutes an intertwiner between the representation and its conjugate, serving

to effectively join the two representations. The familiar scalar-like piece (η1 · η2)−τ is

obtained in the standard fashion by seeking the most general function of two points that is

– 8 –
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Lorentz invariant and homogeneous under scaling transformations. By construction, this

form corresponds to the invariants in N i ⊗ N j , which exist if and only if the Lorentz

irreducible representations satisfy N i = NC
j ≡ N , and the conformal dimensions match

∆i = ∆j ≡ ∆. The twist τ is given by τ = ∆ − S, with ∆ and S denoting the conformal

dimension and “spin” of the quasi-primary operators, respectively.

The normalization constant λN comes from the tensor structure

(t121ij ){aA}{bB} = λN (P̂N
12 )

{B′b′}
{aA} [(C−1

Γ )b′b]
2ξ(gB′B)

nv ,

where (gB′B)
nv ≡ gB′

nv
Bnv

· · · gB′
1B1

. Here nv denotes the number of vector indices for

the Lorentz irreducible representation N . Further, ξ = S − ⌊S⌋ vanishes for bosonic

operators, while for fermionic operators ξ = 1/2. The structure (t121ij ){aA}{bB} is defined

by contracting the projection operator P̂12, with the gA′A metric lowering vector indices,

and the (C−1
Γ )a′a acting as the corresponding metric for spinor indices (see section 3 in [2]

for the conventions on Γ matrices).

We choose the normalization constant λN such that the scalar inner product

t121ij ·t211∗ij ≡ (t121ij ){aA}{bB}(B
−1
Γ t211∗ij C∗

ΓBΓC
−1
Γ ){a′A′}{b′B′}(g

AA′

)nv [(CΓ)
aa′

]2ξ(gBB′

)nv [(CΓ)
bb′ ]2ξ

= |λN |2(P̂N

12 )
{Bb}

{aA} (gAA′

)nv [(CΓ)
aa′

]2ξ(B−1
Γ P̂N∗

21 BΓ)
{B′b′}

{a′A′} [(C−1
Γ )b′b]

2ξ(gB′B)
nv

= |λN |2(P̂N

12 )
{Aa}

{aA} = 1,

(3.2)

is normalized, although its exact value is inconsequential in the following.2

Note that this tensor structure inner product is different from the one introduced

in [1, 2], because the signature here is set to Lorentzian. This definition of the inner

product is thus an artifact of the Lorentzian signature. This observation also explains

why this particular combination of CΓ and BΓ matrices is used in (3.2). Specifically, the

presence of the BΓ matrix in the inner product stems from the definition of the conjugate

operators (see section 5).

The above identity (3.2), which is shown with the aid of the relation3 B−1
Γ P̂N∗

21 BΓ =

P̂NC

21 and (5.5) below, implies that |λN |2 = [(P̂N
12 )

{Aa}
{aA} ]−1.4 Here, the phase on the

normalization constant can be chosen such that λNC = λN ∈ R
+ without loss of generality.

Upon explicitly exposing all dummy vector and spinor indices, we find the following

form for the two-point correlation functions (3.1):

〈Oi(η1)Oj(η2)〉 = (T N
12 Γ){Aa}(T NC

21 Γ){Bb}[(C−1
Γ )ab]

2ξ(gAB)
nv

λN c 1

ij

(η1 · η2)τ
. (3.3)

2Note however that the normalization constants differ in embedding and position spaces. In embedding

space the trace of the identity matrix over spinor indices is twice that of the trace in position space.
3It is straightforward to prove the identities B−1

Γ P̂N∗
12 BΓ = P̂NC

12 and (5.5) for defining irreducible

representations. By extension, since general irreducible representations are built from the proper

(anti-)symmetrization and traces of the defining irreducible representations, these two identities in fact

hold for all irreducible representations.
4We note here that (P̂N

12 )
{Aa}

{aA} is equal to the dimension of the irreducible representation N (up to

the aforementioned factor two), a fact that can be used as a consistency check when constructing hatted

projection operators.
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4 Two-point correlation functions in position space

In this section, we compute two-point correlation functions in position space from the

embedding space results in the previous section. The computations are shown in order of

increasing complexity, from the simplest irreducible representations of the Lorentz group

to more general ones.

The most important ingredients here are the definitions of the half-projectors T N
ij Γ as

well as the particular uplift to embedding space and the conventions for Lie algebras (see

section 2.3 and previous results in [1, 2] for details). Moreover, the simple relations

xµ =
ηµ

−ηd+1 + ηd+2
, (η1 · η2) = −1

2
(−ηd+1

1 + ηd+2
1 )(−ηd+1

2 + ηd+2
2 )(x1 − x2)

2, (4.1)

between the embedding space and position space coordinates, as well as the light-cone

condition η2 = 0, are used extensively in the following.

4.1 Scalar quasi-primary operators

For scalar quasi-primary operators, (3.3) simplifies greatly to

〈Oi(η1)Oj(η2)〉 =
λ0c

1

ij

(η1 · η2)∆
,

due to the vanishing spin. Although it is of no consequence here, the normalization constant

is given by λ0 = 1, which follows straightforwardly from (3.2).

Since scalar quasi-primaries do not carry spinor indices, projecting the two-point func-

tion from embedding space to position space is trivial and corresponds to O(x)(x) =

(−ηd+1 + ηd+2)∆O(η). Using (4.1) and the light-cone condition, we find that the two-

point function for scalar quasi-primary operators is simply given by

〈
O(x)

i (x1)O(x)
j (x2)

〉
=

λ0c
1

ij[
−1

2(x1 − x2)2
]∆ , (4.2)

which has exactly the expected form. Obviously, at this point nothing special has occurred.

However, it will become apparent from more complicated examples which follow that all

irreducible representations are treated in a unified fashion in this formalism.

4.2 Spinor quasi-primary operators

We next consider the defining spinor representations. Since these differ according to the

spacetime dimension, we treat the odd- and even-dimensional cases separately.

4.2.1 Odd dimensions: p = 1, q = d − 1 and d = p + q = 2r + 1

In odd spacetime dimensions, there is only one irreducible spinor representation. From the

general form in (3.3), the two-point correlation functions are simply given by

〈Oi(η1)Oj(η2)〉 = (T er
12 Γ)a(T eCr

21 Γ)b(P̂er
12 )

b′

a (C−1
Γ )b′b

λer c
1

ij

(η1 · η2)τ
.
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Here the hatted projection operator is (P̂er
12 )

b′
a = δ b′

a , and hence two-point correlation

functions for spinor quasi-primary operators with embedding space spinor indices take

the form

〈Oia(η1)Ojb(η2)〉 =
1

2(η1 · η2)2
(η1 · Γη2 · Γ) a′

a (η2 · Γη1 · Γ) b′

b (C−1
Γ )a′b′

λer c
1

ij

(η1 · η2)∆−1/2

= (η1 · Γη2 · ΓC−1
Γ )ab

λer c
1

ij

(η1 · η2)∆+1/2
,

where the embedding space matrices have been properly simplified and λer =
√

1/2r+1

from (3.2). It is of interest to point out here that the tensor structure, which is proportional

to the hatted projection operator, contracts the two defining spinor representations into a

singlet in embedding space, which contrasts with the situation in position space.

We now project this expression to position space. This implies keeping only the first

half of the embedding space spinor indices for each of the two quasi-primary operators and

multiplying by the proper homogeneity factor, which corresponds to O(x)(x) = (−ηd+1 +

ηd+2)∆−1/2O+(η). Hence, in the product ΓAΓBC−1
Γ only the first diagonal block element

M11 in the block matrix representation
(

M11 M12
M21 M22

)
is relevant. All the other elements

project to zero and therefore do not contribute. Since from their definitions (see [1, 2]) Γµ

are block diagonal while Γd+1, Γd+2 and CΓ are block off-diagonal, projection to position

space constrains A to be µ and B to be d+ 1, d+ 2, or vice versa.

It emerges that the only relevant part of (η1 · Γη2 · ΓC−1
Γ )ab in position space is just

[η1µΓ
µ(η2,d+1Γ

d+1 + η2,d+2Γ
d+2)C−1

Γ + (η1,d+1Γ
d+1 + η1,d+2Γ

d+2)η2µΓ
µC−1

Γ ]αβ .

Now, the explicit form of the matrices in embedding space in terms of their position space

counterparts gives

α[(−ηd+1
2 + ηd+2

2 )η1µ − (−ηd+1
1 + ηd+2

1 )η2µ](γ
µC−1)αβ .

Converting between the position space and embedding space coordinates, the two-point

function is

〈
O(x)

iα (x1)O(x)
jβ (x2)

〉
= α(x1 − x2)µ(γ

µC−1)αβ
λer c

1

ij[
−1

2(x1 − x2)2
]∆+1/2

, (4.3)

where (4.1) and the light-cone condition have been used. Once again, we see that this is

the expected form from conformal covariance.

4.2.2 Even dimensions: p = 1, q = d − 1 and d = p + q = 2r

We next turn to the case of even spacetime dimensions d = p + q = 2r. There exist two

inequivalent irreducible spinor representations, namely er−1 and er, in contrast to the odd-

dimensional case. As explained above, their behavior under charge conjugation depends

on the rank and signature of the Lorentz group of interest. Here we consider the case of
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SO(1, d− 1) so that the signature is fixed, since q is always odd. We are therefore left with

only two separate cases to consider, namely r even and r odd.

In position space, Lorentz covariance constrains the non-vanishing two-point correla-

tion functions to quasi-primary operators in conjugate representations. Since q is odd, this

implies that both quasi-primary operators are in different (the same) irreducible spinor

representations for r even (odd). To ensure proper contraction of the embedding space

spinor indices, we note that we must take into account rE = r + 1 and qE = q + 1 in

the embedding space matrices. This fact effectively changes the parity of both parame-

ters in the embedding space, thereby properly restricting all embedding space spinor index

contractions.

With this in mind, we observe that in even spacetime dimensions for r even, the general

two-point function (3.3) form reduces to

〈Oi(η1)Oj(η2)〉|r even = (T er−1

12 Γ)a(T eCr−1

21 Γ)b̃(P̂er−1

12 ) b′

a (C−1
Γ )b′b̃

λer−1 c
1

ij

(η1 · η2)τ

=
1

2(η1 · η2)2
(η1 · Γη2 · Γ̃)a(η2 · Γ̃η1 · Γ)b̃(C−1

Γ )ab̃
λer−1 c

1

ij

(η1 · η2)∆−1/2
,

since the hatted projection operator is trivial, (P̂er−1

12 ) b′
a = δ b′

a . Upon reintroducing the

quasi-primary operator spinor indices and commuting the matrices through, we obtain

〈
Oia(η1)Ojb̃(η2)

〉∣∣∣
r even

= (η1 · Γη2 · Γ̃C−1
Γ )ab̃

λer−1 c
1

ij

(η1 · η2)∆+1/2
,

with λer−1 =
√
1/2r from (3.2).

Employing identical reasoning for the case of r odd leads to the two-point correlation

functions

〈Oia(η1)Ojb(η2)〉|r odd = (T er−1

12 Γ) a′

a (T eCr−1

21 Γ) b′

b (P̂er−1

12 ) b′′

a′ (C−1
Γ )b′′b′

λer−1 c
1

ij

(η1 · η2)τ

= (η1 · Γη2 · Γ̃C−1
Γ )ab

λer−1 c
1

ij

(η1 · η2)∆+1/2
,

〈
Oiã(η1)Ojb̃(η2)

〉∣∣∣
r odd

= (T er
12 Γ) ã′

ã (T eCr
21 Γ) b̃′

b̃
(P̂er

12 )
b̃′′

ã′ (C̃−1
Γ )b̃′′b̃′

λer c
1

ij

(η1 · η2)τ

= (η1 · Γ̃η2 · ΓC̃−1
Γ )ãb̃

λer c
1

ij

(η1 · η2)∆+1/2
,

with λer−1 = λer =
√
1/2r from (3.2).
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We subsequently project these expressions to position space, proceeding in the same

fashion as for the odd-dimensional case, which gives

〈
O(x)

iα (x1)O(x)

jβ̃
(x2)

〉∣∣∣
r even

= α(x1 − x2)µ(γ
µC̃−1)αβ̃

λer−1 c
1

ij[
−1

2(x1 − x2)2
]∆+1/2

,

〈
O(x)

iα (x1)O(x)
jβ (x2)

〉∣∣∣
r odd

= α(x1 − x2)µ(γ
µC̃−1)αβ

λer−1 c
1

ij[
−1

2(x1 − x2)2
]∆+1/2

,

〈
O(x)

iα̃ (x1)O(x)

jβ̃
(x2)

〉∣∣∣
r odd

= α(x1 − x2)µ(γ̃
µC−1)α̃β̃

λer c
1

ij[
−1

2(x1 − x2)2
]∆+1/2

,

(4.4)

exactly as expected from conformal covariance.

4.3 Antisymmetric quasi-primary operators

We now go on to consider the remaining defining representations, the n-index antisymmet-

ric tensors. Utilizing (3.3), we see that their two-point correlation functions are given by

〈Oi(η1)Oj(η2)〉 = (T en
12 Γ)A1···An(T eCn

21 Γ)B1···Bn(P̂en
12 )

B′
1···B

′
n

An···A1
gB′

nBn
· · · gB′

1B1

λen c
1

ij

(η1 · η2)τ
,

where it is understood that the r-index antisymmetric representation for odd spacetime

dimensions is denoted by 2er, while for even dimensions the (r − 1)-index, the self-dual

r-index, and the anti-self-dual r-index antisymmetric representations are referred to as

er−1 + er, 2er−1, and 2er, respectively.

From (2.8) the hatted projection operator is simply (P̂en
12 )

B′
1···B

′
n

An···A1
= A B′

1

12[A1
· · ·

A B′
n

12An]
, where the A-indices (and by proxy the B′-indices) are fully antisymmetrized.

This applies to all n-index antisymmetric representations except the self-dual and anti-

self-dual representations in even spacetime dimensions, for which

(P̂2er−1

12 )
B′

1···B
′
r

Ar···A1
=

1

2
A B′

1

12[A1
· · · A B′

r

12Ar]
+ (−1)r

K

2r!
ǫ

B′
r···B

′
1

12A1···Ar
,

(P̂2er
12 )

B′
1···B

′
r

Ar···A1
=

1

2
A B′

1

12[A1
· · · A B′

r

12Ar]
− (−1)r

K

2r!
ǫ

B′
r···B

′
1

12A1···Ar
.

Since the half-projectors are already fully antisymmetrized in their two sets of dummy

indices, the two-point correlation functions assume the form

〈Oia1a2(η1)Ojb1b2(η2)〉 =
n+ 1

(η1 · η2)
(T en+1η1A12 · · · A12)

A1···An
a1a2 (T eCn+1η2A12 · · · A12)

B1···Bn

b1b2

× gAnBn · · · gA1B1

λen c
1

ij

(η1 · η2)∆−1

=
1

2⌊(d+1)/2⌋n!
(ΓA0···AnC−1

Γ )a1a2(Γ
B0···BnC−1

Γ )b1b2

× η1A0η2B0A12A1B1 · · · A12AnBn

λen c
1

ij

(η1 · η2)∆
,
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where for simplicity we take the embedding space spinor indices on the quasi-primary

operators to be without tildes (the other cases are similar). We remark here that λen =√
n!/(d+ 1− n)n where n = r for 2er in odd spacetime dimensions, and n = r − 1 for

er−1 + er in even spacetime dimensions, while λ2er−1 = λ2er =
√

2r!/(d+ 1− r)r for the

(anti-)self-dual irreducible representations in even spacetime dimensions.

With the aid of the identity

ΓA0···An = ΓA0ΓA1···An +
n∑

i=1

(−1)igA0AiΓA1···Âi···An ,

we can further simplify the embedding space two-point functions to

〈Oia1a2(η1)Ojb1b2(η2)〉 =
1

2⌊(d+1)/2⌋n!
(η1 ·ΓΓA1···An

12 C−1
Γ )a1a2(η2 ·ΓΓA1···AnC

−1
Γ )b1b2

λen c
1

ij

(η1 · η2)∆
,

where we have taken advantage of the double-transversality property of the metric A12,

i.e. η1 · A12 = η2 · A12 = 0.

We now project to position space exactly as before by restricting to the first half of

all embedding space spinor indices, effectively picking up the top left block in the block

matrix representation of ΓA0···AnC−1
Γ and ΓB0···BnC−1

Γ . Since these products are fully anti-

symmetric, at most one index can be d+ 1, and one d+ 2. It is evident from the form of

the embedding space Γ matrices in terms of position space matrices that the only nonzero

contributions arise from the products carrying either one d+ 1 index or one d+ 2 index.

Thus, the only relevant contributions of (η1 · ΓA1···An

12 C−1
Γ )a1a2(η2 · ΓA1···AnC

−1
Γ )b1b2 in

position space are

{−n(n−1)(η1µ1Γ
µ1µ2···µnd+1C−1

Γ )α1α2(η2ν1Γ
ν1ν2···νnd+1C−1

Γ )β1β2A12µ2,d+1A12,d+1,ν2

−n(n−1)(η1µ1Γ
µ1µ2···µnd+1C−1

Γ )α1α2(η2ν1Γ
ν1ν2···νnd+2C−1

Γ )β1β2A12µ2,d+2A12,d+1,ν2

−n(n−1)(η1µ1Γ
µ1µ2···µnd+2C−1

Γ )α1α2(η2ν1Γ
ν1ν2···νnd+1C−1

Γ )β1β2A12µ2,d+1A12,d+2,ν2

−n(n−1)(η1µ1Γ
µ1µ2···µnd+2C−1

Γ )α1α2

×(η2ν1Γ
ν1ν2···νnd+2C−1

Γ )β1β2A12µ2,d+2A12,d+2,ν2}A12µ3ν3 · · · A12µnνn

+{n(η1µ1Γ
µ1µ2···µnd+1C−1

Γ )α1α2(η2ν1Γ
ν1ν2···νnd+1C−1

Γ )β1β2A12,d+1,d+1

+n(η1µ1Γ
µ1µ2···µnd+1C−1

Γ )α1α2(η2ν1Γ
ν1ν2···νnd+2C−1

Γ )β1β2A12,d+1,d+2

+n(η1µ1Γ
µ1µ2···µnd+2C−1

Γ )α1α2(η2ν1Γ
ν1ν2···νnd+1C−1

Γ )β1β2A12,d+2,d+1

+n(η1µ1Γ
µ1µ2···µnd+2C−1

Γ )α1α2(η2ν1Γ
ν1ν2···νnd+2C−1

Γ )β1β2A12,d+2,d+2

−(−1)nn(η1µ1Γ
µ1µ2···µnd+1C−1

Γ )α1α2 [(η2,d+1Γ
d+1+η2,d+2Γ

d+2)ν1···νnC−1
Γ ]β1β2A12,d+1,ν1

−(−1)nn(η1µ1Γ
µ1µ2···µnd+2C−1

Γ )α1α2 [(η2,d+1Γ
d+1+η2,d+2Γ

d+2)ν1···νnC−1
Γ ]β1β2A12,d+2,ν1

−(−1)nn[(η1,d+1Γ
d+1+η1,d+2Γ

d+2)µ1···µnC−1
Γ ]α1α2(η2ν1Γ

ν1ν2···νnd+1C−1
Γ )β1β2A12µ1,d+1

−(−1)nn[(η1,d+1Γ
d+2+η1,d+2Γ

d+2)µ1···µnC−1
Γ ]α1α2(η2ν1Γ

ν1ν2···νnd+1C−1
Γ )β1β2A12µ1,d+2

+[(η1,d+1Γ
d+1+η1,d+2Γ

d+2)µ1···µnC−1
Γ ]α1α2

×[(η2,d+1Γ
d+1+η2,d+2Γ

d+2)ν1···νnC−1
Γ ]β1β2A12µ1ν1}A12µ2ν2 · · · A12µnνn .
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The factors of −n(n−1), n and −(−1)nn can be understood from permutations of the d+1

or d + 2 indices to the last position. Indeed, the factor −n(n − 1) represents the number

of ways the indices d+1 or d+2 can occur through the various A12 metrics. The factor n

comes from the number of ways the indices d+1 or d+2 can occur through the same A12

metric. Finally, the factor −(−1)nn originates from the number of ways the index d+1 or

d+ 2 can occur through a A12 metric.

Extracting the matrices Γd+1 or Γd+2 as, for example, in Γµ1···µnd+1 = Γµ1···µnΓd+1, we

find the following form in terms of position space matrices:

α2(−ηd+1
1 + ηd+2

1 )(−ηd+1
2 + ηd+2

2 )

{
−4n(n− 1)x1µ1x2ν1(x1 + x2)µ2(x1 + x2)ν2

(x1 − x2)4

+

[
nx1µ1x2ν1
(x1 − x2)2

− 2nx1µ1(x1 + x2)ν1
(x1 − x2)2

− 2n(x1 + x2)µ1x2ν1
(x1 − x2)2

+A12µ1ν1

]
A12µ2ν2

}

×A12µ3ν3 · · · A12µnνn(γ
µ1···µnC−1)α1α2(γ

ν1···νnC−1)β1β2

= α2(−ηd+1
1 + ηd+2

1 )(−ηd+1
2 + ηd+2

2 )

×
[
A12µ1ν1A12µ2ν2 + nB12µ1ν1A12µ2ν2 +

n(n− 1)

2
B12µ1ν1B12µ2ν2

]

×A12µ3ν3 · · · A12µnνn(γ
µ1···µnC−1)α1α2(γ

ν1···νnC−1)β1β2

= α2(−ηd+1
1 + ηd+2

1 )(−ηd+1
2 + ηd+2

2 )

× Iµ1ν1(x1 − x2) · · · Iµnνn(x1 − x2)(γ
µ1···µnC−1)α1α2(γ

ν1···νnC−1)β1β2 ,

where we have used the simple relations

A12µν = Iµν(x1−x2)−B12µν , Iµν(x) = gµν−2
xµxν
x2

, B12µν = −2
x1µx1ν+x2µx2ν

(x1−x2)2
,

A12µ,d+1+A12µ,d+2 = 2
(x1+x2)µ
(x1−x2)2

,

A12,d+1,d+1+2A12,d+1,d+2+A12,d+2,d+2 =
4

(x1−x2)2
,

and the antisymmetrization property of the matrices.

We can now straightforwardly obtain the position space two-point functions for n-index

antisymmetric quasi-primary operators:

〈
O(x)

iα1α2
(x1)O(x)

jβ1β2
(x2)

〉
=

α2

2⌊(d+1)/2⌋n!
(γµ1···µnC−1)α1α2(γ

ν1···νnC−1)β1β2

× Iµ1ν1(x1 − x2) · · · Iµnνn(x1 − x2)
λen c

1

ij[
−1

2(x1 − x2)2
]∆

=
α2

2
(T en)µ1···µn

α1α2
(T eCn )ν1···νnβ1β2

× Iµ1ν1(x1 − x2) · · · Iµnνn(x1 − x2)
λen c

1

ij[
−1

2(x1 − x2)2
]∆ ,

(4.5)
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again in perfect agreement with covariance under the conformal group, as indicated by the

appearance of the inversion structure Iµν(x).
5 Note that for (anti-)self-dual representations,

the presence of the conjugate is crucial in the position-space result (4.5) (after reintroducing

the proper tilde or untilde spinor indices required in even dimensions), just as it originally

was in the embedding space (3.1). Indeed, two-point correlation functions of (anti-)self-dual

quasi-primaries are non-vanishing provided that the quasi-primary operators are conjugates

of one another, which is a straightforward observation in the context of the embedding space

[see (5.5)].

4.4 General quasi-primary operators

Quasi-primary operators in general irreducible representations of the Lorentz group can

be constructed from the defining irreducible representations already discussed. The most

general two-point correlation functions are given by (3.3), and explicit computations reveal

that position space two-point correlation functions have the form

〈
O(x)N

i (x1)O(x)NC

j (x2)
〉
=

(
α2

2

)S−ξ

(T N ){µδ}(T NC

){νǫ}(P̂N )
{ν′ǫ′}

{δµ}

×[α(x1−x2)·(γC−1)ǫ′ǫ]
2ξ[Iν′ν(x1−x2)]

nv
λN c 1

ij[
−1

2(x1−x2)2
]∆+ξ

=

(
α2

2

)S−ξ

(T N ){µδ}(T NC

){νǫ}

×[α(x1−x2)·(γC−1)δǫ]
2ξ[Iµν(x1−x2)]

nv
λN c 1

ij[
−1

2(x1−x2)2
]∆+ξ

.

(4.6)

This result is a direct analog of the formulas (4.2), (4.3), (4.4) and (4.5) for quasi-primary

operators in defining representations. It merges the bosonic and fermionic cases into a

single general object. Note that in the second equality of (4.6) the hatted projection

operator was absorbed by the half-projector of the first quasi-primary operator. Hence,

the proper irreducible representation N , with all the traces removed, is obtained through

contractions with the half-projectors. We present two explicit examples below to illustrate

this point.

4.4.1 Example: symmetric-traceless quasi-primary operators

We first turn to the case of quasi-primary operators in symmetric-traceless irreducible

representations of the Lorentz group. The associated hatted projection operator in the

5Although inversions are not elements of the conformal group that are connected to the identity, a special

conformal transformation can be seen as an inversion followed by a translation and another inversion.
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embedding space is

(P̂ℓe1
12 )

B′
1···B

′
ℓ

Aℓ···A1
=

⌊ℓ/2⌋∑

i=0

(−ℓ)2i
22ii!(−ℓ+ 2− d/2)i

A12(A1A2
A(B′

1B
′
2

12 · · · A12A2i−1A2iA
B′

2i−1B
′
2i

12

×A B′
2i+1

12A2i+1
· · · A B′

ℓ
)

12Aℓ)
,

where λℓe1 =
√
ℓ!/[(d+ 2ℓ− 2)(d− 1)ℓ−1]. Therefore, from (3.1) [or directly from (4.6)],

we see that the two-point correlation functions are given by

〈
O(x),ℓe1

i (x1)O(x),ℓe1
j (x2)

〉
=

(
α2

2

)ℓ

(T ℓe1)µ1···µℓ(T ℓe1)ν1···νℓ

× Iµ1ν1(x1 − x2) · · · Iµℓνℓ(x1 − x2)
λℓe1 c

1

ij[
−1

2(x1 − x2)2
]∆ .

(4.7)

The hatted projection operator implicitly included in the half-projectors,

(P̂ℓe1)
ν′
1···ν

′
ℓ

µℓ···µ1
=

⌊ℓ/2⌋∑

i=0

(−ℓ)2i
22ii!(−ℓ+2−d/2)i

g(µ1µ2
g(ν

′
1ν

′
2 · · · gµ2i−1µ2i

gν
′
2i−1ν

′
2ig

ν′
2i+1

µ2i+1
· · · g ν′

ℓ)

µℓ)
,

is the direct equivalent of the embedding space hatted projection operator, which serves

to remove the traces in the product of the inversion structure Iµν(x). Casting (4.7) in

terms of quasi-primary operators with vector indices clearly leads to the known result for

symmetric-traceless quasi-primary operators.

To make this point explicit, we demonstrate how the conversion from spinor indices

in (4.7) to vector indices is accomplished. Exposing the spinor indices, we have

〈
O(x),ℓe1

iα1···α2ℓ
(x1)O(x),ℓe1

jβ1···β2ℓ
(x2)

〉
=

(
α2

2

)ℓ

(T ℓe1)µ1···µℓ
α1···α2ℓ

(T ℓe1)ν1···νℓβ1···β2ℓ

× Iµ1ν1(x1 − x2) · · · Iµℓνℓ(x1 − x2)
λℓe1 c

1

ij[
−1

2(x1 − x2)2
]∆ .

The transformation properties of symmetric-traceless operators in the ℓe1 representation

may be encoded via the half-projectors as either

O(x),ℓe1
α1...α2ℓ

= (T ℓe1)µℓ...µ1
α1...α2ℓ

Oℓe1
µ1...µℓ

, O(x),ℓe1
µ1...µℓ

= (Tℓe1)α2ℓ...α1
µ1...µℓ

Oℓe1
α1...α2ℓ

. (4.8)

Hence, to convert the above expression to vector indices, we need to contract each of the

operators carrying spinor indices with a half-projector, as in

(Tℓe1)α2ℓ...α1

µ′
ℓ
...µ′

1
(T ℓe1)µ1···µℓ

α1···α2ℓ
= (P̂ℓe1)

µ1···µℓ

µ′
ℓ
...µ′

1
. (4.9)

Both (4.8) and (4.9) are special cases of identities for general irreducible representations.

For example, the identity (4.9) originates from the property that position space half-

projectors satisfy TN ∗ T N = P̂N , where the star product corresponds to the complete

contraction of the spinor indices.
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This leads us to
〈
O(x),ℓe1

iµ1···µℓ
(x1)O(x),ℓe1

jν1···νℓ
(x2)

〉
=

(
α2

2

)ℓ

(P̂ℓe1)
µ′
1···µ

′
ℓ

µℓ...µ1 (P̂ℓe1)
ν′1···ν

′
ℓ

νℓ...ν1

× Iµ′
1ν

′
1
(x1 − x2) · · · Iµ′

ℓ
ν′
ℓ
(x1 − x2)

λℓe1 c
1

ij[
−1

2(x1 − x2)2
]∆

=

(
α2

2

)ℓ

(P̂ℓe1)
µ′
1···µ

′
ℓ

µℓ...µ1

× Iµ′
1ν1

(x1 − x2) · · · Iµ′
ℓ
νℓ(x1 − x2)

λℓe1 c
1

ij[
−1

2(x1 − x2)2
]∆ ,

(4.10)

where we have absorbed one of the projection operators in the second line. This result

agrees with the standard one found in the literature, where it is often expressed as

〈
O(x),ℓe1

iµ1···µℓ
(x1)O(x),ℓe1

jν1···νℓ
(x2)

〉
=

λℓe1 c
1

ij[
−1

2(x1−x2)2
]∆
[
I(µ1ν1(x1−x2) · · · Iµℓ)νℓ(x1−x2)−traces

]
.

It may be of interest to explicitly recover the well known cases of the vector and energy-

momentum tensors from the perspective of the current framework.

For the two-point function of the vector operator, we have ℓ = 1 so that the projection

operator is simply given by (P̂e1) µ′

µ = g µ′

µ . With this, (4.10) becomes

〈
O(x),e1

iµ (x1)O(x),e1
jν (x2)

〉
=

α2

2
g µ′

µ Iµ′ν(x1 − x2)
λℓe1 c

1

ij[
−1

2(x1 − x2)2
]∆ ∝ Iµν(x1 − x2)[

−1
2(x1 − x2)2

]∆ .

(4.11)

Similarly, for the spin-2 case, we find

〈
O(x),2e1

iµ1µ2
(x1)O(x),2e1

jν1ν2
(x2)

〉
=

(
α2

2

)2 [
1

2
(g

µ′
1

µ1 g
µ′
2

µ2 +g
µ′
2

µ1 g
µ′
1

µ2 )−1

d
gµ1µ2g

µ′
1µ

′
2

]

×Iµ′
1ν1

(x1−x2)Iµ′
2ν2

(x1−x2)
λℓe1 c

1

ij[
−1

2(x1−x2)2
]∆

∝ 1
[
−1

2(x1−x2)2
]∆
[
I(µ1ν1(x1−x2)Iµ2)ν2(x1−x2)−

1

d
gµ1µ2gν1ν2

]
.

(4.12)

If we further restrict to the special cases of the conserved current V µ and energy-

momentum tensor Tµν , we find that the conservation conditions ∂µV
µ = 0 and ∂µT

µν = 0

imply that ∆ = d − 1 and ∆ = d, respectively, so that our two-point functions (4.11)

and (4.12) assume the well known forms

〈Vµ(x)Vν(0)〉 =
CV

x2(d−1)
Iµν(x),

〈Tµν(x)Tρσ(0)〉 =
CT

x2d

{
1

2
[Iµρ(x)Iνσ(x) + Iµσ(x)Iνρ(x)]−

1

d
gµνgσρ

}
,

where CT is related to the central charge.
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In d = 4 spacetime dimensions, these reduce to the familiar results [27]

〈Vµ(x)Vν(0)〉 =
CV

x6
Iµν(x),

〈Tµν(x)Tρσ(0)〉 =
CT

x8

{
1

2
[Iµρ(x)Iνσ(x) + Iµσ(x)Iνρ(x)]−

1

4
gµνgσρ

}
.

The above discussion clearly demonstrates that the two-point functions obtained from

the point of view of the present formalism indeed match known results for the familiar

cases of symmetric-traceless operators.

4.4.2 Example: e1 + er quasi-primary operators

To further demonstrate the use of the formalism in arbitrary representations of the Lorentz

group, we consider operators in mixed irreducible representations. We choose the irre-

ducible representation N = e1 + er. The corresponding hatted projector is

(P̂e1+er
12 ) B′b′

aA = A B′

12A δ b′

a − 1

d
(Γ12AΓ

B′

12 )
b′

a ,

in odd spacetime dimensions, with normalization constant λe1+er =
√

1/[2r+1(d− 1)], or

(P̂e1+er
12 ) B′b̃′

ãA = A B′

12A δ b̃′

ã − 1

d
(Γ̃12AΓ

B′

12 )
b̃′

ã ,

in even spacetime dimensions, with normalization constant λe1+er =
√

1/[2r(d− 1)].

The general result (4.6) then yields

〈
O(x),e1+er

i (x1)O(x),e1+er
j (x2)

〉
=

α3

2
(T e1+er)µδ(T e1+er)νǫ(x1 − x2) · (γC−1)δǫ

× Iµν(x1 − x2)
λe1+er c

1

ij[
−1

2(x1 − x2)2
]∆+1/2

,

(4.13)

in odd spacetime dimensions or

〈
O(x),e1+er

i (x1)O(x),e1+er−1

j (x2)
〉∣∣∣

r even
=

α3

2
(T e1+er)µδ̃(T e1+er−1)νǫ(x1 − x2) · (γ̃C−1)δ̃ǫ

× Iµν(x1 − x2)
λe1+er c

1

ij[
−1

2(x1 − x2)2
]∆+1/2

,

〈
O(x),e1+er

i (x1)O(x),e1+er
j (x2)

〉∣∣∣
r odd

=
α3

2
(T e1+er)µδ̃(T e1+er)νǫ̃(x1 − x2) · (γ̃C−1)δ̃ǫ̃

× Iµν(x1 − x2)
λe1+er c

1

ij[
−1

2(x1 − x2)2
]∆+1/2

,

(4.14)

in even spacetime dimensions. As expected, (4.13) and (4.14) are simply built from the

results of the appropriate defining representations and are then properly constrained to the

right irreducible representation by removing traces using

(P̂e1+er) µ′δ′

δµ = g µ′

µ δ δ′

δ − 1

d
(γµγ

µ′
) δ′

δ ,
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in odd spacetime dimensions or

(P̂e1+er) µ′δ̃′

δ̃µ
= g µ′

µ δ δ̃′

δ̃
− 1

d
(γµγ̃

µ′
) δ̃′

δ̃
,

in even spacetime dimensions. We remark that the embedding space normalization con-

stants are enhanced with respect to the corresponding ones in position space by a factor

of two, as explained earlier.

4.5 Conformal covariance

To verify that the two-point correlation functions (4.6) are indeed correct, it is sufficient

to check their covariance under conformal transformations. Ascertaining covariance under

both translation and dilatation is effortless. Covariance under Lorentz transformations is

also easy to verify since

(σµνT N ) = (T Nsµν), (L1 + L2)µν(x1 − x2)
λ = −[sµν(x1 − x2)]

λ.

Here the index-free notation of [1, 2] has been used. The only non-trivial transformations

left to verify are the special conformal transformations.

We first apply translational invariance to shift one of the two spacetime points to the

origin, which allows us to recast the two-point correlation functions (4.6) as

〈
O(x)N

i (x)O(x)NC

j (0)
〉
=

(
α2

2

)S−ξ

(T N ){µδ}(T N
C

){νǫ}[αx·(γC−1)δǫ]
2ξ[Iµν(x)]

nv
λN c 1

ij(
− 1

2x
2
)∆+ξ

.

Since the special conformal generators annihilate quasi-primary operators at the origin of

spacetime, covariance under special conformal transformations is equivalent to

−i
(
2xµx · ∂ − x2∂µ + 2∆xµ

) 〈
O(x)N

i (x)O(x)NC

j (0)
〉
= 2xν

〈
(σµνO(x)N

i )(x)O(x)NC

j (0)
〉
,

which is ensured by noting that

−i(2xµx · ∂ − x2∂µ)(αx · γC−1)2ξ = −2iξxµ(αx · γC−1)2ξ + 2ξxρ[α(sµρx) · γC−1]2ξ,

− i(2xµx · ∂ − x2∂µ)Iνλ(x) = xρ(sµρI)νλ(x),

−i(2xµx · ∂ − x2∂µ)
1

(
−1

2x
2
)∆+ξ

= 2i(∆ + ξ)xµ
1

(
−1

2x
2
)∆+ξ

.

Hence, we find that the two-point correlation functions (4.6) are indeed covariant under

conformal transformations, furnishing a first sanity check on the consistency of the embed-

ding space formalism.

5 Unitarity conditions

In a unitary CFT, two-point correlation functions must satisfy the Wightman positivity

condition [28, 29]. Usually, unitarity is verified from the correlation functions in Euclidean

signature through reflection-positivity, using radial quantization (see e.g. [30]). Since all

computations in this work are performed in Lorentzian signature, the Wightman positivity

condition can be applied directly to obtain the unitarity conditions.
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5.1 A metric in the space of quasi-primary operators

As expressed in (3.3), two-point correlation functions are non-vanishing exclusively between

quasi-primary operators in conjugate representations with respect to each other. It is

therefore convenient to use this property directly to rewrite (3.3) as follows:

〈
Oi(η1)OC

j (η2)
〉
= (−1)ξr(r+3)(T N

12 Γ){Aa}(T NC

21 Γ){Bb}[−i(C−1
Γ )ab]

2ξ(−gAB)
nv

λNcij
(η1 · η2)τ

,

(5.1)

where N i = N j = N and cij is a new OPE coefficient matrix, which will be constrained

and reinterpreted shortly. For future convenience, we introduced a phase in (5.1) that

differs from the choice made in section 4.4.

One constraint on the matrix cij can be derived by considering the complex conju-

gated two-point correlation functions and demanding that they match the original form.6

Specifically,
〈
Oi(η1)OC

j (η2)
〉
=
〈
OC∗

j (η2)O∗
i (η1)

〉∗
=
〈
(B−∗

Γ Oj)(η2)(BΓOC
i )(η1)

〉∗

=

[
(−1)ξr(r+3)(B−∗

Γ T N

21 Γ)·(BΓT N
C

12 Γ)
λNcji
(η1·η2)τ

]∗

= (−1)ξr(r+3)(T N
C

21 Γ){Aa}(T N

12 Γ){Bb}[i(B−1
Γ C−∗

Γ B−1
Γ )ab]

2ξ(−gAB)
nv

λNc∗ji
(η1·η2)τ∗

,

(5.2)

where the Lorentzian signature property B−1
Γ P̂N∗

21 = P̂NC

21 B−1
Γ was used in the last iden-

tity. Because B−1
Γ C−∗

Γ B−1
Γ = −C−T

Γ in Lorentzian signature, we find that the constraint

obtained by comparing (5.1) and (5.2) simply corresponds to

c∗ji = cij . (5.3)

Hence, we find that for all quasi-primary operators, the matrix cij is Hermitian with real

eigenvalues ci. Note that (η1 ·η2)τ was assumed to be real. This last convention, which will

be discussed in more detail later, is used to simplify the unitarity conditions. Indeed, for all

quasi-primary operators, the unitarity conditions constrain the sign of the real eigenvalues

ci of the matrix cij , making the latter a metric in the space of all quasi-primary operators.

Another constraint on the matrix cij can be derived by considering the two-point

function of self-conjugate quasi-primary operators OC
i (η) = Oi(η). Applying the OPE

to the product of permuted quasi-primary operators results in a different expression for

two-point correlation functions given by

〈Oi(η1)Oj(η2)〉 = (−1)2ξ 〈Oj(η2)Oi(η1)〉 = (−1)ξ(r+1)(r+2)(T NC

21 Γ)(T N
12 Γ) · λNcjiP̂NC

21

(η1 · η2)τ

= (T NC

21 Γ){Aa}(T N
12 Γ){Bb}(P̂NC

21 )
{B′b′}

{aA}

× [−i(C−1
Γ )b′b]

2ξ(−gB′B)
nv

(−1)ξ(r+1)(r+2)λNcji
(η1 · η2)τ

.

(5.4)

6Consistency condition implies that the complex conjugate of a product of Grassmann variables (αβ)∗

corresponds to the product of the complex conjugate Grassmann variables in inverted order β∗α∗.
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Intuitively, we expect the two distinct expressions (5.1) and (5.4) for the two-point functions

to obviously match. This observation yields another constraint on the matrix cij , which

can be obtained via the application of the identity,7

(P̂N
12 )

{B′b′}
{aA} [(C−1

Γ )b′b]
2ξ(gB′B)

nv = [(C−1
Γ )ab′ ]

2ξ(gAB′)nv(P̂NC

21 )
{B′b′}

{bB} , (5.5)

and CT
Γ = (−1)(r+1)(r+2)/2CΓ. The resulting constraint is given by

cji = (−1)ξr(r+3)cij = cij . (5.6)

The fact that fermionic quasi-primary operators that are self-conjugate (i.e. when the

Majorana condition can be imposed) exist only for r = 0, 1 was used in the last identity.

There is no analog of the above constraint for quasi-primary operators that are not self-

conjugate.

The equivalent constraints can be obtained directly in position space. First, we observe

that in (4.6), all quantities are position-space quantities, with the exception of α = ±1,±i,

which was introduced to show that the Majorana condition can be imposed in embedding

space if and only if it can be imposed in position space (see section 3 in [2]). We are free

to now fix α = 1 without loss of generality, irrespective of the Majorana condition. Hence,

the two-point correlation functions (5.1) in position space are given by

〈
O(x)N

i (x1)O(x)NC
j (x2)

〉
= (−1)ξr(r+3)

(
1

2

)S−ξ

(T N ){µδ}(T NC

){νǫ}

×[−i(x1−x2)·(γC−1)δǫ]
2ξ[−Iµν(x1−x2)]

nv
λNcij[

−1
2(x1−x2)2

]∆+ξ
,

(5.7)

with the understanding that α = 1.

It is now a trivial matter to use (5.7) to demonstrate that the matrices cij satisfy (5.3)

and (5.6) directly in position space, assuming a space-like interval. This observation ex-

plains the choice (η1 · η2)τ ∈ R made previously.8

5.2 Positivity

For the purpose of analyzing the Wightman positivity condition, we are specifically inter-

ested in the two-point correlation functions
〈
O(x)N

i (x1)O(x)N∗
j (x2)

〉
= (−1)f(N)

〈
O(x)N

i (x1)BO(x)NC
j (x2)

〉

= (−1)ξr(r+3)

(
1

2

)S−ξ

(T N ){µδ}(T N∗){νǫ}

×[−i(x1−x2)·(γC−1BT ) ǫ
δ ]2ξ[−I ν

µ (x1−x2)]
nv

λNcij[
− 1

2 (x1−x2)2
]∆+ξ

7The identity (5.5) originates from the OPE and states that two-point correlation functions are non-

vanishing for quasi-primary operators in contragredient-reflected representations of one another [1, 2].
8In fact, from (4.1), the proper choice is (−ηd+1

1 +ηd+2
1 )(−ηd+1

2 +ηd+2
2 ) ∈ R

+ to avoid superfluous phases.

In any case, this prefactor is absorbed when quasi-primary operators are projected back to position space.
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=

(
1

2

)S−ξ

(T N ){µδ}(T N∗){νǫ}

×[−i(x1−x2)·(γA) ǫ
δ ]2ξ[−I ν

µ (x1−x2)]
nv

λNcij[
− 1

2 (x1−x2)2
]∆+ξ

,

where

f(N) =




r
[∑r−1

i=1 iNi + r⌊Nr/2⌋
]

d odd

(r + 1)
[∑r−2

i=1 (i+ 1)Ni + rmin{Nr−1, Nr}+ (r + 1)⌊|Nr−1 −Nr|/2⌋
]

d even
,

and A = γ0 in Lorentzian signature. Here the definition O(x)NC
i (x) = (−1)f(N)B−1O(x)N∗

i (x)

for the conjugate quasi-primary operators was used such that self-conjugate quasi-primary

operators satisfy O(x)NC
i (x) = O(x)N

i (x).

We now smear the quasi-primary operators with a suitable finite set of test functions

hi(x) (which are infinitely differentiable and vanish outside some bounded region of space-

time) as in

O(x)N
i (x) → O(x)(h) =

∑

i

∫
ddxhi(x) ∗ O(x)N

i (x),

where the star product corresponds to the complete contraction of the spinor indices. This

brings us to the Wightman positivity condition

∑

i,j

∫
ddx1d

dx2

〈
[hi ∗ O(x)N

i ](x1)[hj ∗ O(x)N
j ]∗(x2)

〉
≥ 0,

for all suitable test functions. Upon choosing hi(x) = gi(x) · TN , where again the dot

product corresponds to the full contraction of the dummy indices, the Wightman positivity

condition assumes the form

∑

i,j

∫
ddx1d

dx2

(
1

2

)S−ξ

(gi(x1) · P̂N ){µδ}(g∗j (x2) · P̂N∗){νǫ}

× [−i(x1 − x2) · (γγ0) ǫ
δ ]2ξ[−I ν

µ (x1 − x2)]
nv

λNcij[
−1

2(x1 − x2)2
]∆+ξ

≥ 0.

(5.8)

This last result (5.8), which is commonly written as

∑

i,j

∫
ddx1d

dx2 gi(x1) ·Wij(x1, x2) · g∗j (x2) ≥ 0, (5.9)

is the usual Wightman positivity condition for two-point correlation functions. The con-

dition (5.9) demands that the Wij(x1, x2) be Wightman functions, which is easily imple-

mented by introducing the usual iǫ-prescription x2 → x2 − iǫx0 where x2 is the norm of

xµ while x0 is the time component of xµ, i.e. −1
2(x1−x2)

2 → −1
2 [(x1−x2)

2− iǫ(x01−x02)].

The iǫ-prescription must also be imposed on I ν
µ (x1 − x2).
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Upon taking the Fourier transform of (5.9) using the fact that Wij(x1, x2) = Wij(x1−
x2), we are led to the Wightman positivity condition

∑

i,j

∫
ddp

(2π)d
g̃i(−p) · W̃ij(p) · g̃∗j (p) ≥ 0, (5.10)

in momentum space. Here g̃∗j (p) is the Fourier transform of g∗j (x), while g̃
∗
j (p) is the complex

conjugate of the Fourier transform of gj(x). Hence, for a set of real test functions gi(x)

one has g̃∗i (−p) = g̃∗i (p). Moreover, g̃i(p) decreases sufficiently quickly as p2 → ∞.

Since the Fourier transform of the scalar Wightman function is given by

W̃∆(p) =

∫
ddx

eip·x
[
−1

2(x
2 − iǫx0)

]∆ =
2d+1−∆πd/2+1

Γ(∆)Γ(∆ + 1− d/2)
θ(p0)θ(p2)(p2)∆−d/2, (5.11)

we see that the Wightman positivity condition in momentum space (5.10) with the general

Wightman function (5.9) and (5.11) translates to the statement

∑

i,j

∫
ddp

(2π)d

(
1

2

)S−ξ

λNcij(g̃i(−p) · P̂N ){µδ}(g̃∗j (−p) · P̂N∗){νǫ}

× [∂ · (γγ0) ǫ
δ ]2ξ

[
∂µ∂

ν − δ ν
µ

∂2

2

]nv

W̃∆+nv+ξ(p) ≥ 0,

for all real test functions gi(x). By choosing smearing functions centered around p0 = E > 0

and p = 0 with widths ∆E and ∆p, respectively, as in

g̃i(p) = e
−

(p0−E)2

2∆E
−

|p|2

2∆p ζi,

where ζi are polarization tensors, the last result translates to the statement

∑

i,j

cij(ζi · P̂N ){µδ}(ζ∗j · P̂N∗){νǫ}

∫
ddp

(2π)d
e
−

(p0−E)2

∆E
−

|p|2

∆p

× [∂ · (γγ0) ǫ
δ ]2ξ

[
∂µ∂

ν − δ ν
µ

∂2

2

]nv

W̃∆+nv+ξ(p) ≥ 0.

For very small widths ∆E → 0 and ∆p → 0, this becomes

∑

i,j

cij(ζi·P̂N ){µδ}(ζ∗j ·P̂N∗){νǫ}

Γ(∆+nv+ξ)Γ(∆+nv+ξ+1−d/2)
[∂·(γγ0) ǫ

δ ]2ξ
[
∂µ∂

ν−δ ν
µ

∂2

2

]nv

(p2)∆+nv+ξ

∣∣∣∣p0→E

p→0

≥ 0,

(5.12)

after using (5.11). In (5.12), it is understood that the momentum derivatives are performed

first, followed by the substitutions p0 → E and p = 0.

By appropriately choosing the polarization tensors in (5.12), we find different con-

straints on the matrix cij and the conformal dimension ∆. Together, they imply that in a

unitary CFT, the matrix cij is positive semi-definite with real non-negative eigenvalues ci,

cij → ciδij with ci ≥ 0, (5.13)
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and can thus be understood as a metric in the space of quasi-primary operators, as stated

above.9 Moreover, the conformal dimensions satisfy the proper unitarity bounds on the as-

sociated irreducible representation. This last observation is usually obtained by considering

descendants. Here, it can be seen from the smearing around a sharp region in momentum

space, which corresponds to a broad spacetime region. Hence (5.12) includes descendants.

For example, for vector quasi-primary operators, taking all polarization vectors to

vanish except the i-th one, (5.12) leads to

cii
(∆ + 1− d)|ζ0|2 + (∆− 1)|ζ|2

Γ(∆ + 1)Γ(∆ + 1− d/2)
≥ 0,

which implies that cii is non-negative and ∆ ≥ d− 1, as expected from unitarity.

6 Conclusion

We have explicitly computed the most general two-point function of quasi-primary opera-

tors in arbitrary Lorentz representations using the recent embedding space formalism [1, 2].

The complete result is specified in (3.3) and its corresponding projection to position space

is given in (4.6). We have performed several checks of the formalism by explicitly taking

the embedding space results and projecting them to position space. In all cases, we have

found that the form of the results matches expectations from conformal covariance. More-

over, we have directly verified that the most general expression for the two-point function

is covariant under the full conformal group, thus confirming its validity.

In addition, we have studied constraints on the OPE coefficient matrix cij that arise

from considering the complex conjugate of the correlator. Furthermore, because the em-

bedding space OPE is inherently not symmetric in the operator ordering, we have examined

the implications of interchanging the operator order on the coefficients. Obviously, the lack

of symmetry is spurious, implying symmetries of the OPE coefficient matrices appearing in

the two-point functions. The respective results are summarized in (5.3) and (5.6). Lastly,

we have explored unitarity conditions on generic quasi-primary operators. These constrain

the signs of the eigenvalues of the OPE matrices (5.13).

It is clearly of interest to determine the general form of the two-point functions, as it

contains some essential physical ingredients necessary for the understanding of the higher-

point functions in the newly developed formalism. The projection operators, which encode

all the essential group theoretic information, appear on the same footing in the construction

of three-point, four-point, and general M -point functions. Further, the two-point functions

encode the simplest unitarity constraints in a given theory.

This work is a first step in the application of the program of computing the most general

M -point correlation functions in the context of this formalism. In upcoming publications,

we will proceed to construct general expressions for three-point functions of quasi-primary

operators in generic Lorentz representations and then provide results for four-point func-

tions. Much exciting work lies ahead, and we anticipate that exploiting this formalism

further will eventually shed considerable light on the space of conformal field theories.

9For a vanishing eigenvalue ci = 0, the corresponding quasi-primary operator O
(x)N
i decouples from the

theory.
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