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1 Introduction

One of the most important challenges of high energy physics is the detection of dark matter

(DM) [1]. This discovery can explain a number of very important unsolved problems in

astrophysics, astronomy and particle physics. One of these unsolved problems is the origin

of the spontaneous symmetry breakdown of the electroweak gauge group. In the SM, the

electroweak symmetry is broken by Higgs field that has an ad hoc tachyonic mass term.

One explanation for the tachyonic mass is radiative symmetry breaking, which is known

as Coleman-Weinberg (CW) mechanism [2].

In the CW mechanism spontaneous symmetry breaking is induced at one-loop level

from classically scale invariant scalar potential. Scale invariant extensions of SM can ad-

dress the hierarchy problem which continues to be one of the most crucial questions of

modern theoretical physics. This question that why there is a huge hierarchy in the mass

scales of electroweak forces and gravity is related to the naturalness problem. Systematic

cancellation of bosonic and fermionic loop contributions to the Higgs mass within super-

symmetry can also explain the hierarchy problem. However, concerning the null results

at the first and second LHC runs [3, 4], and other popular theoretical resolutions of the

hierarchy problem, such as large extra dimensions, investigating alternative approaches

are appealing.

As it was mentioned, one approach of addressing the hierarchy problem is the radical

assumption that the fundamental theory describing Nature does not have any scale. This

idea is well worth considering for its potential to be an sparing solution to the hierarchy

problem. The CW mechanism with a Higgs does not work for the electroweak symmetry

breaking because the large top mass does not permit radiative breaking of the electroweak

symmetry, but, simple extensions of the Higgs sector with additional bosonic degrees of
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freedom are known to be phenomenologically viable (see, e.g., [5–26]). On the other hand,

the scale-invariant extension of the Higgs sector, is a generic feature of many DM models

with scalar [27–38], fermionic [39–45] and vector [46–52] DM candidates.

There are plenty astronomical and cosmological evidences that around 27 percent of

the Universe is made of DM. According to the dominant paradigm, DM consists of weakly

interacting massive particles (WIMPs) that successfully explain the large scale structures in

our Universe. However, the nature of DM is not well understood, and its particle properties

such as spin, mass and interactions all are unknown. Therefore, it is not surprising that

despite many previous models, there are still opportunities for DM model building.

In this paper we consider spin one (vector) gauge fields as DM candidates. Without

concerning scale invariance, vector DM [53–72] and some of its theoretical and phenomeno-

logical aspects such as direct detection [73–80], indirect detection [81–88], and collider

physics aspects [89–93] has already been investigated. As it is mentioned, even scale in-

variant version of vector dark matter models has already been studied. In all the previous

scale-invariant models, the dark sector gauge group is non-Abelian [46–52]. Here we study

classically scale-invariant model which apart from SM sector, contains an Abelian UD(1)

dark sector with a vector DM candidate and a scalar field (scalon). In this model the

DM couples to the SM sector via a Higgs portal. The physical Higgs will have admixtures

of the scalon which can be used to constrain the model’s parameter space. The lower

limit is set by the LHC constraints on the mixing angle between the scalon and the Higgs

scalar [94, 95]. All the masses in the DM and SM sectors come from a scale generated

dynamically by the CW mechanism.

After considering relic density and direct detection of DM candidate, we proceed to

discuss the finite temperature one-loop corrections to the potential and study electroweak

phase transition. Strongly first-order electroweak phase transition is essential for a viable

study of baryogenesis which involves investigating the Sakharov conditions [96], namely:

1) non-conservation of the baryon number, 2) violation of C and CP symmetry, and 3)

the loss of thermal equilibrium. Starting from a matter-antimatter symmetric state, pro-

cesses obeying the conditions 1 and 2 are capable of generating a net baryon asymmetry.

However, the condition 3 is necessary in order to hinder the relaxation of such created

baryon asymmetry back to zero. A strongly first-order electroweak phase transition may

promote the required departure from thermal equilibrium for the asymmetry-generating

processes. This condition is satisfied in SM only when the mass of Higgs boson is smaller

than 30 GeV [97–101]. Obviously, this range of mass is ruled out after the discovery of a

125 GeV Higgs boson at the LHC [102, 103]. However, in extensions of SM including DM

candidates it is possible to satisfy the condition for strongly first-order phase transition

(For studing electroweak phase transition including a DM candidates see, e.g., [104–122]).

Our model only allows for two independent parameters, the dark gauge coupling and

vector DM mass. We have constrained the model by the observed DM relic abundance as

reported by Planck [123] and WMAP [124] collaborations. We consider LHC constraints

on the scalar mixing angle and see that it is satisfied for the parameter space already

constrained by DM relic density. We have also used PandaX-II [125] experiment results

on the direct detection of DM to constrain the parameters of the model. Concerning these
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constraints the mass of the vector DM can be about 1–2 TeV and the upcoming direct

detection experiments will be able to sweep a majority of the parameter space. This range

of DM mass also implies strongly first-order electroweak phase transition.

Here is the organization of this paper. In section 2 we briefly explain the model

containing vector DM, and we study scale invariance conditions for parameters space of the

model. Then the thermal relic density via freeze-out mechanism is calculated in section 3.

DM-nucleon cross section is discussed in section 4. Finite temperature corrections to the

effective potential is studied in section 5. In section 6 we constrain our model using Planck

data for DM relic density and PandaX-II direct detection experiment and we demonstrate

that electroweak phase transition is strongly first order. Finally, our conclusion comes

in section 7.

2 The model

We introduce a complex scalar field φ which has unit charge under a dark UD(1) gauge

symmetry with a vector field Vµ. Both of these fields are neutral under SM gauge group.

We also consider an additional Z2 symmetry, under which the vector field Vµ and the scalar

field φ transform as follows:

Vµ → −Vµ , φ→ φ∗, (2.1)

which means in the dark sector we have charge conjugate symmetry. This discrete sym-

metry forbids the kinetic mixing between the vector field Vµ and SM UY (1) gauge boson

Bµ, i.e., VµνBµν . Therefore, the vector field Vµ is stable and can be considered as a dark

matter candidate. The Lagrangian is given by

L = LSM + (Dµφ)∗(Dµφ)− V (H,φ)− 1

4
VµνV

µν , (2.2)

where LSM is the SM Lagrangian without the Higgs potential term, Dµφ = (∂µ + igVµ)φ,

Vµν = ∂µVν − ∂νVµ, and the most general scale-invariant potential V (H,φ) which is renor-

malizable and invariant under gauge and Z2 symmetry is

V (H,φ) =
1

6
λH(H†H)2 +

1

6
λφ(φ∗φ)2 + 2λφH(φ∗φ)(H†H). (2.3)

Note that the quartic portal interaction, λφH(φ∗φ)(H†H), is the only connection between

the dark sector and the SM.

SM Higgs field H as well as dark scalar φ can receive VEVs breaking respectively the

electroweak and UD(1) symmetries. In unitary gauge, the imaginary component of φ can

be absorbed as the longitudinal component of Vµ. In this gauge, we can write

H =
1√
2

(
0

h1

)
and φ =

1√
2
h2, (2.4)

where h1 and h2 are real scalar fields which can get VEVs. In this gauge, the tree-level

potential becomes

V tree =
1

4!
λHh

4
1 +

1

4!
λφh

4
2 +

1

2
λφHh

2
1h

2
2. (2.5)
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Notice that Z2 symmetry still persists, making Vµ a stable particle and therefore a DM can-

didate.

Now consider the Hessian matrix, defined as

Hij(h1, h2) ≡ ∂2V tree

∂hi∂hj
. (2.6)

Necessary and sufficient conditions for local minimum of V tree, corresponding to vacuum

expectation values 〈h1〉 = ν1 and 〈h2〉 = ν2, are

∂V tree

∂hi

∣∣∣∣
ν1,ν2

= 0 (2.7)

∂2V tree

∂h2
i

∣∣∣∣
ν1,ν2

> 0 (2.8)

det(H(ν1, ν2)) > 0, (2.9)

where det(H(ν1, ν2)) is determinant of the Hessian matrix. Condition (2.7) for non-

vanishing VEVs leads to λHλφ = (3!λφH)2 and the following constraint

ν2
1

ν2
2

= −
3!λφH
λH

. (2.10)

Conditions (2.7) and (2.8) require λH > 0, λφ > 0, and λφH < 0. However, condition (2.9)

will not be satisfied, because det(H(ν1, ν2)) = 0. When the determinant of the Hessian

matrix is zero, the second derivative test is inconclusive, and the point (ν1, ν2) could be any

of a minimum, maximum or saddle point. However, in our case, constraint (2.10) defines a

direction, known as flat direction, in which V tree = 0. This is the stationary line or a local

minimum line.

Note that in other directions V tree > 0, and the tree level potential only vanishes along

the flat direction, therefore, the full potential of the theory will be dominated by higher-

loop contributions along flat direction and specifically by the one-loop effective potential.

Adding one-loop effective potential, V 1−loop
eff , can give a small curvature in the flat direction

which picks out a specific value along the ray as the minimum with V 1−loop
eff < 0 and

vacuum expectation value ν2 = ν2
1 + ν2

2 characterized by a RG scale Λ. Since at the

minimum of the one-loop effective potential V tree > 0 and V 1−loop
eff < 0, the minimum of

V 1−loop
eff along the flat direction (where V tree = 0) is a global minimum of the full potential,

therefore spontaneous symmetry breaking occurs and we should substitute h1 → ν1 + h1

and h2 → ν2 + h2. This breaks the electroweak symmetry with vacuum expectation value

ν1 = 246 GeV. We first consider the tree level potential. Since h1 and h2 mix with each

other, they can be rewritten by the mass eigenstates H1 and H2 as(
H1

H2

)
=

(
cosα − sinα

sinα cosα

)(
h1

h2

)
, (2.11)

where H2 is along the flat direction, thus MH2 = 0, and H1 is perpendicular to the flat

direction which we identify it as the SM-like Higgs observed at the LHC with MH1 =
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125 GeV. After the symmetry breaking, we have the following constraints:

ν2 =
MV

g
, sinα =

ν1√
ν2

1 + ν2
2

,

λH =
3M2

H1

ν2
1

cos2 α, λφ =
3M2

H1

ν2
2

sin2 α, λφH = −
M2
H1

2ν1ν2
sinα cosα, (2.12)

where MV is the mass of vector DM after symmetry breaking. Constraints (2.12) severely

restrict free parameters of the model up to two independent parameters. We choose MV

and g as the independent parameters of the model.

In tree level, the scalon field H2 is massless, and in this case the elastic scattering cross

section of DM off nuclei becomes severely large and the model is excluded at once by the

DM-nucleon cross section upper bounds provided by direct detection experiments. How-

ever, the radiative corrections give a mass to the massless eigenstate H2. Indeed, including

the one-loop corrections to the potential, via the Gildener-Weinberg formalism [126], the

scalon mass lifts to the values that can be even higher than the masses of the other bosons.

Along the flat direction, the one-loop effective potential, takes the general form [126]

V 1−loop
eff = aH4

2 + bH4
2 ln

H2
2

Λ2
, (2.13)

where the dimensionless constants a and b are given by

a =
1

64π2ν4

n∑
k=1

gkM
4
k ln

M2
k

ν2
, b =

1

64π2ν4

n∑
k=1

gkM
4
k . (2.14)

In (2.14), Mk and gk are, respectively, the tree-level mass and the internal degrees of

freedom of the particle k (In our convention gk takes positive values for bosons and negative

ones for fermions).

Minimizing (2.13) shows that the potential has a non-trivial stationary point at a value

of the RG scale Λ, given by

Λ = ν exp

(
a

2b
+

1

4

)
. (2.15)

Eq. (2.15) can now be used to find the form of the one-loop effective potential along the

flat direction in terms of the one-loop VEV ν

V 1−loop
eff = bH4

2

(
ln
H2

2

ν2
− 1

2

)
. (2.16)

Note that the scalon does not remain massless beyond the tree approximation. Considering

V 1−loop
eff , now the scalon mass will be

M2
H2

=
d2V 1−loop

eff

dH2
2

∣∣∣∣
ν

= 8bν2. (2.17)

Regarding (2.14), MH2 can be expressed in terms of other particle masses

M2
H2

=
1

8π2ν2

(
M4
H1

+ 6M4
W + 3M4

Z + 3M4
V − 12M4

t

)
, (2.18)
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where MW,Z,t being the masses for W and Z gauge bosons, and top quark, respectively.

As it was mentioned before MH1 = 125 GeV, ν2 = ν2
1 + ν2

2 , and MV is the mass of vector

DM. Notice that in order to V 1−loop
eff be a minimum, it must be less than the value of the

potential at the origin, hence it must be negative. From (2.16), it is easy to see that this

can only happen if b > 0. On the other hand, considering (2.18), one can easily show that

in the absence of vector DM mass, b < 0 or equivalently M2
H2

< 0. Therefore, the presence

of vector DM is essential in this scenario. Indeed, this constraint, M2
H2

> 0, puts a limit

on the mass of DM; MV > 240 GeV.

Note that according to (2.18) and (2.12), MH2 is completely determined by the inde-

pendent parameters of the model, i.e., vector DM mass MV and the coupling g. These

constraints are due to the scale invariance conditions which were imposed to the model.

In the following sections, we check the validity of our model against DM relic density, and

direct detection experimental data.

3 Relic density via freeze-out

Our DM candidate, vector DM, is a weakly interacting massive particle (WIMP) which is its

own antiparticle. In computation of the relic density of the vector DM in freeze-out scenario,

the standard assumptions are: 1) conservation of the entropy of matter and radiation 2)

DM particles were produced thermally, i.e. via interactions with the SM particles in the

plasma 3) DM decoupled while the expansion of the Universe was dominated by radiation

4) DM particles were in kinetic and chemical equilibrium before they decoupled.

The current density of vector DM can be computed by solving the Boltzmann differ-

ential equation for the time evolution of vector DM number density nV

dnV
dt

+ 3HnV = −〈σannv〉(n2
V − n2

V,eq), (3.1)

where H is the Hubble parameter and nV,eq and 〈σannv〉 are the DM equilibrium num-

ber density and the thermally averaged total annihilation cross-section, respectively. As

it was mentioned before, in freeze-out scenario, one of the standard assumptions is the

conservation of the entropy of matter and radiation:

ds

dt
+ 3Hs = 0. (3.2)

Here s is the entropy density. Defining YV = nV /s and x = MV /T , with T the photon

temperature, combination of eq. (3.1) and (3.2) gives:

dYV
dx

=
1

3H

ds

dx
〈σannv〉(Y 2

V − Y 2
V,eq). (3.3)

In standard cosmology, the Hubble parameter is determined by the mass-energy density

ρ as H2 = 8πρ/3M2
P where MP = 1.22× 1019 GeV is the Planck mass. On the other hand,

the mass-energy density ρ and entropy density s are related to the photon temperature

by the equations ρ = π2geT
4/30 and s = 2π2heT

3/45, where ge and he are effective
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Figure 1. Evolution of YV and YV,eq during the epoch of DM chemical decoupling (freeze-out).

degrees of freedom for the energy density and entropy density, respectively. Regarding

these equations, eq. (3.3) can be written as,

dYV
dx

= −
(

45

πM2
P

)−1/2 g
1/2
∗ MV

x2
〈σannv〉(Y 2

V − Y 2
V,eq), (3.4)

where g
1/2
∗ = he

g
1/2
e

(
1 + T

3he
dhe
dT

)
.

To obtain the present vector DM abundance Y 0
V , one should solve differential equa-

tion (3.4) numerically with the initial condition YV = YV,eq at x ' 1 corresponding

to T 'MV .

To solve the differential equation (3.4), we use micrOMEGAs package [127] via

LanHEP [128]. The solution shows that at high temperatures Y closely tracks its equi-

librium value YV,eq. In fact, the interaction rate of vector DM is strong enough to keep

them in thermal and chemical equilibrium with the plasma. When the temperature de-

creases, YV,eq becomes exponentially suppressed and YV can not reach to its equilibrium

value. But as the temperature decreases, YV,eq becomes exponentially suppressed and YV
is no longer able to track its equilibrium value (see figure 1 for an illustration). At the

freeze-out temperature, when the vector DM annihilation rate becomes of the order of the

Hubble expansion rate, DM production becomes negligible and the WIMP abundance per

comoving volume reaches its final value. In figure 1, We have plotted YV for two different

values of the coupling g. In this figure, freeze-out occurs about Tf ' MV /20, where we

have chosen MV = 520 GeV. Figure 1 illustrates that smaller couplings lead to larger relic

densities. This can be understood from the fact that vector DM with larger couplings

remain in chemical equilibrium for a longer time, and hence decouple when the Universe

is colder, therefore, its density will be further suppressed.
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Figure 2. Relic density as a function of vector DM mass for differnet values of coupling g.

Finally, having Y 0
V , vector DM relic density can be read as

Ωh2 =
ρ0
V h

2

ρ0
c

=
MV s

0Y 0
V h

2

ρ0
c

' 2.755× 108MV Y
0
V GeV−1, (3.5)

where ρ0
c , s

0 are the present critical density and entropy density, respectively, and h is the

Hubble constant in units of 100 km/(s.Mpc). The observational value for DM relic density

Ωh2 is provided by the Planck collaboration [123] which is

Ωh2 = 0.120± 0.001. (3.6)

In figure 2, vector DM relic density versus its mass has been plotted for different values of

coupling constant g. In this figure, larger g leads to stronger DM-SM interaction which in

turn reduces DM relic density.

Now we can compare eq. (3.5) and (3.6) in order to constrain the parameters space of

the model. But first, let us consider another constraint in the next section which arises

from DM-nucleon cross section.

4 Direct detection

Direct detection experiments try to detect DM particles through their elastic scattering

with nuclei. These experiments probe the scattering of halo DM particles of highly shielded

targets to determine information about their interactions (cross sections) and kinematics

(mass). They have explored the parameter space without finding any evidence of DM.

Theoretical and experimental results on direct detection are usually obtained under some

simplifying assumptions on the DM profile. In particular, an isothermal profile is often

assumed, with ρ ∝ r−2 (thus, with a flat rotation curve), a local density of ρ0 = 0.3

GeVcm−3, and a Maxwell-Boltzmann velocity distribution with a characteristic velocity of

v0 = 270 Km.s−1.
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In this section, we will discuss the discovery potential of the model via direct DM

searches. In the present scenario, at tree level a vector DM particle can collide elastically a

nucleon either through H1 exchange or via H2 exchange, which results in a spin independent

cross section [53]

σDM−N =
4λ2

φHM
2
VM

2
Nµ

2
V N (M2

H1
−M2

H2
)2

πM8
H1
M4
H2

f2
N , (4.1)

where MN is the nucleon mass and µV N = MNMV /(MN +MV ) is the reduced mass (and

fN ' 0.3 parametrizes the Higgs-nucleon coupling).

The best direct detection limits come from the LUX [129], XENON1T [130], and

PandaX-II [125] experiments. Liquid xenon detectors, such as those constructed and oper-

ated by the mentioned collaborations, have been leading in detection capability for heavy-

mass WIMPs with masses larger than 10 GeV all the way up to a 100 TeV, which is way

beyond the reach of the current generation of colliders. Presently, the PandaX-II [125]

experiment has set the most stringent upper limit on the spin-independent WIMP-nucleon

cross section for a WIMP with mass larger than 100 GeV:

PandaX− II : σSI ≤ 8.6× 10−47 cm2

Since in our model the mass of the DM is larger than 240 GeV, therefore, we constrain the

model with the results of the PandaX-II experiment. It will be seen that this experiment

can severely constrain the mass range of the vector DM.

As direct DM experiments go on to enlarge in size, they will become sensitive to the

so-called neutrino floor [131], i.e., the neutrinos from astrophysical sources, including the

Sun, atmosphere, and diffuse supernovae [132–136]. The cross section corresponding to

the coherent scattering of neutrinos on nucleons will induce a signal which is similar to

the elastic scattering of a WIMP and thus represents an irreducible background [137–

141]. Despite possibilities of distinguishing signals from WIMP and neutrino scattering,

for example by combining detectors with different target materials, the neutrino floor is

usually regarded as the ultimate sensitivity for future Direct Detection experiments such

as XENONnT [142], LZ [143] and DARWIN [144]. Therefore, neutrino floor puts a limit

on discovery potential of DM.

In figure 3, we show the vector DM-nucleon spin-independent elastic scattering cross

section, as a function of the vector DM mass for different values of coupling g. Additionally,

the upper limit versus WIMP mass for the spin independent WIMP-nucleon elastic cross

sections from the PandaX-II [125] experiment has been depicted. The plot also shows the

so-called neutrino floor [131], which corresponds to the sensitivity of direct detection exper-

iments to coherent scatterings of neutrinos with nuclei. According to eq. (4.1), we expect a

dip for the DM-nucleon spin-independent cross section around MH2 'MH1 . In our model,

vector dark matter interacts with nucleon via H1 and H2 mediators. The relevant interac-

tion terms of Lagrangian for H1 mediator are
mq

ν1
cosαH1qq−

M2
V
ν2

sinαH1VµV
µ and for H2

mediator are
mq

ν1
cosαH2qq +

M2
V
ν2

sinαH2VµV
µ. Therefore, the low-energy 5-dimensional

effective interaction terms for DM-quark will be
mq

ν1

M2
V
ν2

sinα cosα

(
1

M2
H2

− 1
M2

H1

)
qqVµV

µ.

– 9 –
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Figure 3. DM-nucleon cross section as a function of vector DM mass for differnet values of

coupling g.

It means around MH2 'MH1 the effective coupling between vector dark matter and quarks

goes to zero, leading to a dip in DM-nucleon corss section as it is seen in figure 3.

5 One-loop effective potential at finite temperature

In section 1, it was mentioned that spontaneous symmetry breaking can occur in the one-

loop level via Coleman-Weinberg mechanism. However, the symmetry will be restored at

high temperature. The character of the symmetry-restoring phase transition is determined

by the behavior of the effective potential (free energy) at the critical temperature Tc. At

this temperature the effective potential has two degenerate minimums. We will see that

the symmetry-restoring at high temperatures is a result of the H2
2T

2 term that occurs

in the one-loop effective potential. This term is the leading-order contribution from the

thermal fluctuations of the H2 field. As the temperature rises, the contribution from

thermal fluctuations will eventually dominate the one-loop negative (mass-squared) term

in the zero-temperature potential and symmetry will be restored. If this phase transition

is strongly first order, it can satisfy the condition of departure from thermal equilibrium.

This is one of the three Sakharov conditions [96] necessary for the generation of baryon

number asymmetry in the Universe.

At the temperature when the bubbles surrounding the broken phase start to nucleate,

one can evade the washout of the baryon number asymmetry by suppression of the baryon

number violating interactions induced by electroweak sphalerons [145]. Sphaleronic inter-

actions are suppressed immediately after the phase transition, which leads to a requirement

that νc the vacuum expectation value (VEV) of the scalon field at the broken phase is larger

than the critical temperature, namely

νc
Tc

& 1. (5.1)

This is a criteria for strongly electroweak phase transition [146, 147].
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In this section, we study conditions of strongly first-order electroweak phase transition

for the model (5.1). In section 1, it is shown that along the flat direction the one-loop

potential at zero temperature is given by eq. (2.16). The finite temperature corrections to

this potential at one-loop level can be written as [97]

V 1−loop
T (H2) =

n∑
k=1

JT (Mk(H2), T ) + δkbDT (Mk(H2),Πk, T ), (5.2)

where JT (Mk(H2), T ) is given by [148]

JT (Mk(H2), T ) = gk
T 4

2π2

∫ ∞
0

dxx2 ln
(

1∓ e−
√
x2+(Mk(H2)/T )2

)
, (5.3)

and − (+) sign in the integrand corresponds to bosons (fermions). The tree-level masses

Mk(H2) of species k depend on the scalon field, i.e., Mk(H2) = Mk
ν H2. The second term

in (5.2) including the Kronecker delta function δkb takes non-zero value only for bosons

and it is given by [97]

DT (Mb(H2),Πb, T ) = gb
T

12π

(
Mb(H2)3 − (Mb(H2)2 + Πb)

3/2
)
, (5.4)

which is the usual ring improvement (daisy diagram resummation) for bosonic degrees

of freedom depending on the Debye mass
√

Πb of the boson b. At leading order, the

second contribution of effective potential given by eq. (5.4) does not depend on scalon field

and, neglecting scalon-independent terms, the high-temperature expansion of the thermal

integral (5.3) leads to

V 1−loop
T (H2) = c T 2H2

2 , (5.5)

where

c =
1

12ν2

n∑
k=1

ckgkM
2
k , (5.6)

and ck = 1 (ck = −1
2) for bosons (fermions). Finally, the one-loop effective potential

including both one-loop zero temperature (2.16) and finite temperature (5.5) corrections

is given by

V 1−loop
eff (H2, T ) = bH4

2

(
ln
H2

2

ν2
− 1

2

)
+ c T 2H2

2 , (5.7)

where

b =
1

64π2ν4

(
M4
H1

+ 6M4
W + 3M4

Z + 3M4
V − 12M4

t

)
, (5.8)

c =
1

12ν2

(
M2
H1

+ 6M2
W + 3M2

Z + 3M2
V + 6M2

t

)
. (5.9)

The behavior of the finite temperature one-loop effective potential (5.7), for various

temperatures, has been depicted in figure 4. In this figure we chose parameters which

satisfy both relic density and direct detection constraint. According to this figure, at high

temperatures in the early Universe, the global minimum of the potential is located at

H2 = 0. As the Universe expands and temperature decreases, a secondary local minimum

– 11 –
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Figure 4. The behavior of the finite temperature one-loop effective potential V 1−loop
eff (H2, T ) for

various temperatures. The secondary minimum becomes degenerate with the original one at a

critical temperature Tc = 158 GeV.

begins to appear smoothly, at nonzero values of the field, H2 6= 0, with a barrier separating

the two minimums. The secondary minimum becomes degenerate with the original one

at a critical temperature Tc, signaling a first-order electroweak phase transition. At this

point the height of the barrier reaches its maximum value. With further temperature drop,

the global minimum of the potential will be located at H2 6= 0, and the barrier becomes

smaller and finally disappearing completely at zero temperature. The phase transition

takes place at the critical temperature Tc at which the finite temperature one-loop effective

potential (5.7) has two degenerate minimums at H2 = 0 and H2 = νc, i.e.,

V 1−loop
eff (0, Tc) = V 1−loop

eff (νc, Tc) = bν4
c

(
ln
ν2
c

ν2
− 1

2

)
+ c T 2

c ν
2
c = 0. (5.10)

On the other hand, H2 = νc is a local minimum, therefore

∂V 1−loop
eff (H2, Tc)

∂H2

∣∣∣∣
H2=νc

= 4bν3
c ln

ν2
c

ν2
+ 2c T 2

c νc = 0. (5.11)

Combining eqs. (5.10) and (5.11) together with (5.1), the condition for the electroweak

phase transition to be strongly first order becomes

νc
Tc

=

√
c

b
& 1. (5.12)

One can also obtain the critical temperature by combining eq. (5.10) or (5.11)

with (5.12) which yields

Tc =

√
b

c
νe−

1
4 . (5.13)

In the next section, we probe parameter space of the model which simultaneously satisfies

constraints from relic density value, direct detection experiment and strongly first-order

phase transition.
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Figure 5. (Left) Ranges of parameters space of the model in MV and g plane which are consistent

with observed relic density by Planck collaboration. (Right) DM-nucleon cross section as function

of DM mass.

6 Results

In our model, the physical Higgs have admixtures of the scalon which can be used to

constrain the parameter space of the model. We can also constrain the two free parameters

of the model, i.e., MV and g, using the Planck data [123] for DM relic density and PandaX-

II [125] direct detection experiment. The result has been depicted in figure 5. According

to this figure the parameter space constrained by relic density is also consistent with the

LHC bound on the mixing of the Higgs field to scalon, i.e., sinα ≤ 0.44.

Figure 5 (Left) shows the parameter space which can produce the Planck data for DM

relic density. We have assigned three plots showing the values of the three dependent pa-
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rameters, i.e., sinα, λφH , and MH2 , via a color bar. In figure 5 (Right), we have calculated

DM-nucleon elastic scattering for the parameter space which is already constrained by the

relic density bounds required by Planck data. Despite the very narrow parameter space,

still for DM masses heavier than around 1 TeV, we have a viable parameter space that

respect both the Planck and the PandaX-II bounds. Note that DM-nucleon cross section

for DM masses heavier than 2 TeV lies near PandaX-II upper limit and it will be found or

ruled out by the direct detection experiments in the coming years. Given the fact that the

bound will be improved greatly, makes the prospects for discovery very great.

In our model DM annihilation cross section for the parameter space which is already

constrained by DM relic density is about 2.2×10−26 cm3/s. Generally, DM annihilation in

the high density regions of the Universe could lead to indirect detection signals, i.e., fluxes

of SM particles, including the flux of continuum gamma rays, positrons, and antiprotons.

Searches for all such annihilations products are not yet sensitive enough to reach the typical

values of the WIMP cross section for DM masses above 1 TeV [149] as found in our model.

We conclude that at the moment, our model is not restricted by present DM indirect

searches. However, recently the DArk Matter Particle Explorer (DAMPE) has reported

an excess in the electron-positron flux of the cosmic rays [150] which can be interpreted

as a signal of the annihilation of DM particle with the mass about 1.5 TeV in a nearby

subhalo. For a model-independent analysis of the DAMPE excess due to DM annihilation

see [151]. This feature could also be a statistical fluctuation [152] or may be due to standard

astrophysical sources.

DM annihilation in a nearby subhalo with a distance of 0.1− 0.3 kpc can explain the

DAMPE peak for the annihilation cross section about 2 − 4 × 10−26 cm3/s and the DM

density about 17–35 times greater than the local density of DM [153]. In our model, vector

DM mass around 1.5 TeV can pass relic density and direct detection constraints and its

annihilation cross section is about 2.2 × 10−26 cm3/s which is large enough that it might

account for the DAMPE peak. However, in order to explain DAMPE data it is necessary

to generalize the model such that DM annihilation through e+e− channel be dominated.

Therefore, we anticipate that including leptophilic interactions,
∑

l=e,µ,τ

gllH2l, to the model

might also explain DAMPE excess.

Finally, in figure 6 we have depicted the critical temperature in the first-order elec-

troweak phase transition as a function of parameters of the model, g and MV , which already

satisfied the DM relic density constraint. It is seen that viable range for the mass of DM

constrained by relic density and direct detection is about 1–2 TeV. According to figure 6,

this range implies that Tc is about 100–200 GeV. In the end, we have depicted the distri-

bution of the order parameter νc/Tc in figure 7 for the samples which are satisfying DM

relic density constraint. According to this figure νc/Tc > 7 implying a strongly first order

electroweak phase transition which can address electroweak baryogenesis.

7 Conclusion

In this paper, we studied a simple conformal extension of the SM in which radiative sym-

metry breaking within the Coleman-Weinberg mechanism can take place. Conformal ex-
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Figure 7. The frequency distribution of the order parameter νc/Tc for the samples which are

satisfying DM relic density constraint. This figure shows that νc/Tc > 7, implying a strongly first

order phase transition.

tensions of the SM are a possible solution to the hierarchy problem through the dynamical

generation of mass scales. Here we proposed a minimal classically scale invariant ver-

sion of the SM, enlarged by a dark UD(1) gauge group which incorporates a vector boson

(vector DM) and a scalar field (scalon). The dark sector was radiatively broken through

the Coleman-Weinberg mechanism and a mass scale was communicated to the electroweak

through the portal interactions of the scalon with the Higgs field. We obtained one-loop

scalar potential employing Gildener-Weinberg formalism and observed that scalon mass,

although zero at tree level, can receive large quantum corrections. Due to scale invariance,

the model has only two independent parameters.
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After setting up the model, we proceed to calculate relic density by solving the Boltz-

mann equation, and then we obtained DM-nucleon cross section. We also studied finite

temperature effects and obtained one-loop effective potential at high temperatures in or-

der to investigate electroweak phase transition. In order to prevent the washout of the

matter-antimatter asymmetry, strongly first-order electroweak phase transition is a nec-

essary condition for the successful implementation of electroweak baryogenesis. Matching

calculated relic density and DM-nucleon cross section to the observed values coming from

Planck and PandaX-II experiments, respectively, we constrained the two independent pa-

rameters of the model. It is shown that a part of the parameter space of the model will

be excluded and the rest of the parameter space is within the reach of the future direct

detection experiments. It has shown that the parameter space constrained by relic density

demonstrate strongly first-order electroweak phase transition. Considering constraint com-

ing from PandaX-II direct detection experiment, we obtained viable mass range for DM

which is about 1–2 TeV. This range puts a limit on critical temperature, Tc= 100–200 GeV.

The model is also compatible with the experimental bound on the mixing of Higgs field to

other scalar which is given by sinα ≤ 0.44.

Conformal extension of the SM that we considered here, predicts new scalar boson

(scalon), and vector DM with a definite mass range that can be discovered by future

colliders and probed by upcoming direct detection experiments.
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