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Abstract. We consider Villarceau circles as the orbits of specific com-
posite rotors in 3D conformal geometric algebra that generate knots on
nested tori. We compute the conformal parametrization of these cir-
cular orbits by giving an equivalent, position-dependent simple rotor
that generates the same parametric track for a given point. This allows
compact derivation of the quantitative symmetry properties of the Vil-
larceau circles. We briefly derive their role in the Hopf fibration and
as stereographic images of isoclinic rotations on a 3-sphere of the 4D
Clifford torus. We use the CGA description to generate 3D images of
our results, by means of GAviewer. This paper was motivated by the
hope that the compact coordinate-free CGA representations can aid in
the analysis of Villarceau circles (and torus knots) as occurring in the
Maxwell and Dirac equations.
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1. Villarceau Circles

In two recent papers, by Consa [3] and Hestenes [8], models of the electron
are proposed that involve it moving rapidly internally around a torus. The
parametrization of that motion in both papers is done by the two uniformly
increasing angles evolving from the usual Euclidean image of generating a
torus as a circle moving around a circle. In [9], Hestenes derives this form
explicitly as a solution of the Dirac equation when a Lorentz boost is factored
out.

A second physical situation in which orbits on a torus occur is in the
knotted solutions to Maxwell’s equation in vacuum, in which the Poynting
vector of the electromagnetic field lies on a torus knot [2]. Such a knot is a
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∗Corresponding author.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00006-019-0960-5&domain=pdf
http://orcid.org/0000-0003-3680-2745


44 Page 2 of 20 L. Dorst Adv. Appl. Clifford Algebras

Figure 1. Villarceau circles visible on a cut torus, from [13]

geometric object, not a path, and it no longer requires a parametrization to
describe its time dependence—the field lines themselves evolve with the speed
of light. Any convenient parametrization works, though the innate conformal
symmetry of the Maxwell equation may prefer a conformal parametrization.

In both applications, the simplest orbits or field lines are the (1, 1) torus
knots. In this paper, we analyze their remarkable properties (they are circles!)
by means of our representation from [5], where we encountered (m,n) torus
knots as the orbits of certain conformal rotors. The natural parametrization
of that solution was based on an orthogonal (commuting) decomposition,
which involves one Euclidean rotation around the torus axis, and a ‘conformal
rotation’ in the orthogonal direction. The resulting motion differs intriguingly
from the Consa/Hestenes parametrization, and the canonical orbits of the two
parametrizations are not identical.

In mathematics, the path that the (1, 1) knot on the torus traces is also
known as a Villarceau circle.1 Villarceau circles are usually introduced as two
intersecting circles that are the cross-section of a torus by a well-chosen plane
cutting it (Fig. 1). Picking one such circle and rotating it around the torus
axis, the resulting family of circles can be used to rule the torus. By nesting
tori smartly, the collection of all such circles then form a Hopf fibration of 3D
space. In the theory of Penrose twistors, the Villarceau circles occur as the
Robinson congruence, the family of light rays representing a non-null twistor;
this is yet another link to interesting physics (see e.g. [1] for a geometric
algebra treatment).

In the present paper, we prefer to consider the Villarceau circle as the
(1, 1) torus knot rather than as a planar cut, and we generate it by means of
a composite rotor in conformal geometric algebra in Sect. 2. We then char-
acterize any Villarceau circle compactly as the orbit of a location-dependent
simple rotor (after studying those in detail in Sect. 3) passing through a given

1As yet another example of a concept named for somebody who did not invent it, Vil-

larceau circles were apparently found by a Colonel Schölcher in 1891, though some of their
conformal properties were shown by Villarceau in 1903 (says Wikipedia [13]).
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point, with a varying speed determined by this rotor (Sect. 4). That com-
pact description permits the derivation of a number of geometric properties
(including the planar cut construction), many involving a specific imaginary
sphere (Sect. 5), which is a natural completion of the conformal basis. The
Hopf fibration then follows simply from letting the rotor act on arbitrary
points, and by means of spherical inversion we can relate this directly to iso-
clinic rotations on the Clifford torus in 4D (in Sect. 6). The conformal nature
of the construction allows a straightforward extension to Villarceau circles
on arbitrary Dupin cyclides, in Sect. 7.

2. Rotor Generation

In [5] we showed how 3D conformal motions can be generated as the orbit
of a rotor that is the exponential of the sum of two commuting 2-blades of
CGA. These 2-blades geometrically represent ‘orthogonal’ point pairs (with
perpendicularity properties described that paper). In the case of the torus,
one point pair is the dual of a line, the other an imaginary point pair on that
line. Both point pairs have a negative square, so that each generates periodic
orbits.

As our prototype for this situation we can take B− = e1 e2 and B+ =
e3 e+, in the usual orthonormal basis {e1, e2, e3, e+, e−} of the R

4,1 Minkowski
space for the description of 3D conformal geometric algebra. Boldly denoted
are the basis vectors for the Euclidean space (which can be interpreted as
orthogonal planes at the origin), and e+ and e− are the unit real sphere and
the unit imaginary sphere, respectively. So e2

−
= −1, all other orthogonal

basis vectors square to +1. For each of the ‘real’ (positively squared) basis
elements, algebraic orthogonality is equivalent to geometric perpendicular-
ity of the corresponding geometrical primitives at their intersection. For the
‘imaginary’ sphere, algebraic orthogonality with the real planes and the real
sphere geometrically implies that the corresponding intersection should be
an equator of the imaginary sphere (see [4] Chapter 14).

We can construct 2-blades from these basis vectors, and exponentiate
them, as a canonical way of making rotors. Three different types of rotor
result, depending on the sign of the square of the 2-blade. We illustrate the
orbits of a point moving by each of them in Fig. 2. When the square is positive,
the orbit has a source and a sink; when negative, it is periodic; when zero (for
a blade containing a null vector like o = e− + e+ or ∞ = e− − e+), merely
a sink. We will analyze these cases and their parametrizations in more detail
in Sect. 3.

Since B− = e1∧e2, with B2
−

= −1, the simple rotor R− = exp(−B−φ/2)

generates periodic circular orbits x(φ) = R− x/R− around the axis (B−)
∗

,
the dual of the 2-blade B−. For any point x, its orbit is the circle x ∧ B−

in the plane x ∧ B− ∧ ∞. At a given point x, the other simple rotor R+ =
exp(−B+ψ/2), with B+ = e3 ∧ e+, also satisfying B2

+ = −1, generates a
circle x ∧ B+, which is in the plane x ∧ B+ ∧ ∞. These B+-circles shrink
as the point x gets closer to their ‘core’, i.e. the circle (B+)

∗

which is the
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Figure 2. The orbits generated by simple rotors, the expo-
nentials of a a real point pair (such as e3 e−), b a null point
pair (such as e3 (e++e−)/2 = e3 o) and c an imaginary point
pair (such as e3 e+). Equal increments of the scalar param-
eter of the 2-blade arguments generate subsequent points,
along circular orbits. The spheres denote the ‘surrounds’ of
the point pair (the smallest sphere of which it is a pair of
antipodal points). These figures are planar, residing in the
plane determined by the starting point and the point pair;
but they can be viewed as cross sections of a 3D pattern
obtained by rotation around the point pair axis

intersection of the dual plane e3 with the dual unit sphere e+. This ‘core’ is
not the Euclidean center of the circles, but acts as their conformal center.

The simple rotors R− and R+ can be composed into the product rotor

R = R+ R− = R− R+

= exp(−B−ψ/2) exp(−B+φ/2)

= exp(−B−ψ/2 − B+φ/2),

where the addition of the exponent is permitted since the 2-blades commute.
When moving in the product of the rotors, the resulting orbit resides on a
torus, see [5]. When φ and ψ are taken in a ratio of ψ = ±(m/n)φ, the
orbit is a periodic (m,n) torus knot. These knots are inscribed on the torus
in a conformal manner, cutting all B+-circles of longitude (or B−-circles of
latitude) by equal angles. This is illustrated in Fig. 3a (from [5]), which shows
the R rotor orbit in red, and also indicates the R−-orbit (in blue) and the
R+-orbit (in green). The knotted red orbit can be seen as locally composed
of small steps in each of those circular orbits.

To obtain a Villarceau circle through a point x, we choose ψ = ±φ,
generating a (1, 1) torus knot depicted in Fig. 3b. Let us define B as the sum
of the unit 2-blades:

B = B− + B+.
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Figure 3. a The (2, 3) torus knot generated by a conformal
rotor. b The (1, 1) toruskot, a Villarceau circle. In both, the
blue circles are local orbits of R−, the green circles are local
orbits of R+. The generator 2-blade of R− is the blue line,
the generator 2-blade of R+ the imaginary point pair (color
figure online)

This B is not a 2-blade (its square B2 = B2
−

+ B2
+ + 2B− ∧ B+ is not a

scalar), so it cannot be factored by the outer product. Now form a rotor by
exponentiation of B, apply it to a point x:

x(φ) = e−φ B/2 x eφ B/2, (1)

and investigate its orbit—which should be a Villarceau circle. But this is not
obvious! The orbit of a simple conformal rotor based on a 2-blade rotor is
always a circle, as we illustrated in Fig. 2 (with a line, the orbit of a translation
rotor, considered as a circle passing through infinity). The orbit of a rotor
based on a general 2-vector, such as B above, is not. To demonstrate that
in this exceptional case we still obtain a circle, we show that its orbit x ∧ B
is identical to that of a 2-blade (which will depend on x)—even though B is
not a 2-blade itself. Before we can do so, we first need to expose the simple
rotors and their parametrizations in more detail.

3. Orbits of Simple Conformal Rotors

To analyze the orbit of the non-simple rotor above, let us briefly derive the
properties and parametrization of simple rotors (i.e., exponentials of 2-blades)
in conformal geometric algebra. Our main focus is on the exponential of an
‘imaginary’ 2-blade (i.e. one that squares to a negative scalar). But while
we are at it, we can include real and null 2-blades with very little additional
effort, even though their characteristics differ considerably (as Fig. 2 showed).
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3.1. Imaginary Point Pair: Periodic Motions

Consider an imaginary point pair P (a 2-blade from CGA), normalized so
that P 2 = −1. For invertible P , we can split x into its projection and rejection
relative to P , and write

x(φ) ≡ e−φP/2 x eφP/2

= e−φP/2
(
(x · P )/P + (x ∧ P )/P

)
eφP/2

= (x ∧ P )/P + (x · P )/P eφP (2)

using commutation and anti-commutation properties of those split terms with
the P -rotor. For an imaginary point pair, the exponential involves trigono-
metric functions: exp(φP ) = cos(φ) + P sin(φ). Using those, x(φ) can be
expanded to:

x(φ) = (x ∧ P )/P + (x · P )/P cos φ + (x · P ) sin φ. (3)

The vectors (x ·P ), (x ·P )/P and (x∧P )/P form an orthogonal basis for the
orbit, consisting of two real spheres (x · P ) and (x · P )/P , and an imaginary
sphere (x ∧ P )/P (intersected by the real spheres in its equator). So using
CGA, we can describe a moving point on a circle as the weighted sum of
three specific orthogonal spheres.

The parametrization by φ of the points along the circle is not-equidistant,
but equiangular in a conformal manner. Since all the terms in Eq. (3) trans-
form covariantly under conformal transformations, we can design a conformal
mapping from a canonical situation that is particularly intuitive to parame-
trize, and then use that parametrization for the general case. Let us explain
this by a specific example, illustrated in Fig. 4a, b.

The Euclidean rotation with rotation rotor determined by the 2-blade
P = e1e2 has a natural equi-angular parametrization relative to the center,
the origin indicated by the conformal point vector o. The transformed points
x(φ) = exp(−φP/2)x exp(φP/2) along the orbit x ∧ P then lie on rays o ∧
x(φ) ∧ ∞, and the angular parameter makes the points traverse this orbit at
a uniform speed.

Now transforming this situation by inversion in σ = e2 + e+, the 2-
blade becomes e1 e+, and its rotor represents a ‘conformal rotation’. The
center o transforms to −σ o/σ = (e2 − e−)/2 = − 1

2 CGA(−e2), i.e. the point

at location −e2 (with weight − 1
2 ), and the point at infinity ∞ becomes

the finite point −σ ∞/σ = −e2 − e− = −CGA(e2), i.e. the point at e2

(with weight −1). As a consequence of this transformation of o and ∞, the
equiangular rays o∧x(φ)∧∞ of the Euclidean equi-angular parametrization
become circles, still equi-angular relative to the new center −σ o/σ (since the
inversion is conformal). Intersections also transform covariantly, so where the
circle with angle φ cuts the new orbit is where the transformed parametrized
point x′(φ) = −σ x(φ)/σ ends up.

This covariant relationship is illustrated in Fig. 4b, which shows how
the Euclidean situation of Fig. 4a is conformally transformed by inversion in
σ. Our figure is effectively a re-rendering of Picture 27 in Chapter 6 of the
enjoyable book by Needham [10] in Visual Complex Analysis (though we do
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x

(x · P )/P

x · P

(x ∧ P )/P
x

(x ∧ P )/P

(x · P )/P

x · PP

(b)(a)

Figure 4. a A Euclidean rotation, b a conformal rotation,
obtained from a by an inversion. Equiangular rays from the
conformal center are indicated in red. In b, (x · P )/P is an
imaginary sphere, depicted as dotted (color figure online)

not use complex numbers, and therefore are not limited to 2D). Figure 4b
also illustrates how the orthogonal basis of Fig. 4a gets transformed in an
orthogonal basis for the transformed circle. The imaginary sphere e− remains,
the planes through x and the plane perpendicular to that become orthogonal
spheres (still cutting the imaginary sphere e− in great circles).

This particular example is the typical situation: we can always design
a conformal transformation to transform the Euclidean axis 2-blade to a
desired conformal 2-blade, and the Euclidean equiangular parametrization
then transforms to the equiangular parametrization from the transformed
center. To transform e1 e2 to the product of two arbitrary orthogonal unit-
square spheres σ1 σ2, one may use the method from [6] to construct the
corresponding transformation versor as (σ1 − e1) e2 + σ2 (σ1 − e1).

3.2. A Real Point Pair: Exponential Motion from Source to Sink

The derivation of Eq. (2) also holds for a real point pair, where P 2 = 1.
The expansion now involves hyperbolic functions; substituting exp(γP ) =
cosh(γ) + P sinh(γ) we obtain

x(γ) = (x ∧ P )/P + (x · P )/P cosh γ + (x · P ) sinh γ. (4)

Again the moving point is a weighted sum of elements (x · P ), (x · P )/P and
(x ∧ P )/P , which form an orthogonal basis of three orthogonal spheres. See
Fig. 5b.

For the standard situation, we can actually use the same inversion as
for the rotation, but now considering the radial motions. Figure 5a shows an
exponential scaling relative to the flat center o ∧ ∞ = e+ ∧ e−. The 2-blade
for the radial rotor exp(−γ o ∧ ∞/2) transforms any point on a radial ray to
a scaled location which is e−γ of the previous distance of the center (simul-
taneously affecting its weight by a factor eγ). This rotor therefore provides
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x

(x ∧ P )/P

x · P , (x · P )/P

P

x

(x · P )/P

(x ∧ P )/P

x · PP

(b)(a)

Figure 5. a A Euclidean exponential scaling: P is a flat
point, and the real and imaginary spheres x · P and (x ·
P )/P coincide. b A conformal scaling, obtained from a by an
inversion. Circles of equal logarithmic increase are indicated
in red (color figure online)

a natural scaling parameter in the radial direction. The exponential allows
the full range of γ ∈ (−∞,∞) without leading to awkwardness at the (un-
reachable) origin, and therefore this parametrization by γ is more natural
than the customary linear radial parameter of polar coordinates. Applying
the inversion in the sphere σ = e2 + e+, the 2-blade e+ ∧ e− becomes the
real point pair e2 ∧ e−, and the radial motions become circular motions on
circles emanating from the transformed origin. Thus Fig. 5a is transformed
into Fig. 5b. Yet the parameter for ‘natural’ motion along the orbits of the
transformed rotor exp(−γ e2∧e−) is still γ, to produce the transformed point
−σ x(γ)/σ. That moving point departs from the source, and approaches the
sink, in a hyperbolic pacing along the circular path, by Eq. (4).

3.3. A Null Point Pair: Translations and Tranversion

For the noninvertible case P 2 = 0, Eq. (2) does not apply. Instead, we can
just expand the series of Eq. (6), using (x ·P ) ·P = (x ·P )P , ((x ·P ) ·P

)
·P =

(x · P )P 2 = 0. That yields x(α) = x + α (x · P )
(
1 + 1

2αP
)
, which may be

regrouped to:

x(α) ≡ e−αP/2 x eαP/2 = x + α (x · P ) exp(αP/2). (5)

Since x ·
(
(x ·P )P

)
= −(x ·P )2 �= 0, the basis formed by x, x ·P and (x ·P )P

is not orthogonal.
For null blades, the prototypical Euclidean situation is a translation

with 2-blade −α e1 ∞/2. Orthogonal to its orbit (a straight line) are the
hyperplanes with normal vector e1, equally spaced as e1 + α∞, see Fig. 6a.

An inversion in the origin sphere e+ converts this situation to the 2-blade
α o e1, which characterizes a transversion (in Fig. 6b), and the equidistant
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x

x · P

(x · P ) P = ∞

P

x

(x · P )P located at P

x · PP

(b)(a)

Figure 6. a A Euclidean translation, b a conformal
transversion, obtained from a by an inversion

planes e1 + α∞ now become the spheres e1 + 2αo passing through o with
center e1/(2α), which cut the new orbit x′ ∧ o ∧ e1 at the α-parametrized
point x′(α). Uniform translational speed towards infinity in the Euclidean
situation naturally becomes a convergence to the sink of the transversion, by
circular motions whose angle relative to the Euclidean center of the circular
orbit can be shown to vary as the arctangent of the reciprocal of α.

4. Simplifying the Villarceau Rotor

To resume our tale after Eq. (1), we look for a simple rotor (i.e. the expo-
nential of a 2-blade) of which the orbit through x is the same as that of
exp(−Bφ/2), with B = B− + B+ where B− and B+ are commuting normal-
ized 2-blades. We reiterate that this is not equivalent to rewriting the rotor
as the exponential of a single 2-blade independent of its starting point; that
cannot be done.

We will need a result from the Taylor expansion of a rotor (not necessar-
ily simple) acting on a vector, in terms of its bivector A (from [4], Chapter 7):

e−A/2 x eA/2 = x + (x · A) + 1
2! ((x · A) · A) + 1

3! (((x · A) · A) · A) + · · · .(6)

For simple rotors based on a 2-blade A, this series can be expressed in terms of
trigonometric functions (when A2 < 0), hyperbolic functions (when A2 > 0)
or linear functions (when A2 = 0), as we showed in the previous section.
The expansion then simplifies to the closed expression Eqs. (3), (4) or (5).
However, in our case the rotor is not simple (since our bivector B is not a
2-blade), so we need to proceed more carefully.

We can use Eq. (6) for a small bivector A = ǫB to understand the local
orbit. The tangent vector to the orbit at x is:

T (x) = lim
ǫ→0

x ∧
(
x + (x · ǫB)

)
/ǫ = x ∧ (x · B), (7)



44 Page 10 of 20 L. Dorst Adv. Appl. Clifford Algebras

Figure 7. A Villarceau circle generated from a point x in
the motion field of the rotor R−R+. The 2-blades of the rotor
are indicated as a dual line (solid blue), and an imaginary
point pair on it (in dashed blue). Along its stepped orbit, x
hits parallel and meridian circles x ∧ B+ (blue) and x ∧ B−

(green) on a torus. The Villarceau circle is the border of the
yellow disk. The local 2-blade BV (x) of this motion is indi-
cated as the two endpoints of the dotted black line segment;
its circle BV (x)

∗

(black) cuts the yellow disk orthogonally in
its ‘conformal center’ (black). The dotted imaginary sphere
is e−, which is cut by the Villarceau circle in two antipodal
points. Two views generated by GAViewer [7], in a cross-eyed
stereo pair (color figure online)

while the local osculating circle is:

C(x) = lim
ǫ→0

x ∧ (x + x · ǫB) ∧ (x + x · ǫB + 1
2! (x · ǫB) · ǫB)/ǫ3

= x ∧ (x · B) ∧ ((x · B) · B). (8)

In our case, the bivector B equals B = e1 e2 + e3 e+. For that particular
rotor, the tangent circle is the actual full orbit. To show this, we compute
the next term in the Taylor series of Eq. (6):

B = e1 e2 + e3 e+

x · B = (x · e1) e2 − (x · e2) e1 + (x · e+) e3 − (x · e3) e+

(x · B) · B = −(x · e1) e1 − (x · e2) e2 − (x · e3) e3 − (x · e+) e+

= −x − (x · e−) e− (9)

((x · B) · B) · B = −x · B + 0.

After three terms, we are back at the first (with a minus sign); therefore the
rest of the terms follows the same pattern. When substituting these results
in the Taylor series Eq. (6), we can collate terms to express the series exactly
on a basis of three elements, as:

e−ǫB/2 x e ǫB/2 = −e− (x · e−) +
(
x + (x · e−) e−

)
cos ǫ + (x · B) sin ǫ. (10)



Vol. 29 (2019) Conformal Villarceau Rotors Page 11 of 20 44

This is very similar to the general form of the orbit of an imaginary unit
2-blade as given in Eq. (3):

x(φ) = (x ∧ P )/P + (x · P )/P cos φ + (x · P ) sin φ.

We observe that in the general form we can establish the original 2-blade of
the rotor from the ratio of the factors of sine and cosine. Therefore in our
case, the unit 2-blade generating the motion along the Villarceau circle is:

BV (x) =
(
x + (x · e−) e−

)
−1

(x · B)

=
(
x + (x · e−) e−

)
∧ (x · B)/(x · e−)2, (11)

since due to e− · (x · B) = 0 and x · (x · B) = 0, the geometric product can
be replaced by an outer product. The factor x + (x · e−)e− is a real sphere,
with center at 2x/(1 −x

2) and with radius (1 +x
2)/(1 −x

2) (where x is the
Euclidean location of the conformal point x).

With BV (x) as its local 2-blade, the orbit at C(x) passing through x is
therefore the circle.

C(x) = x ∧ BV (x) ∝ x ∧ (x · B) ∧ e−.

Because of the final rewriting, it would seem that it should be simpler to use
instead of BV (x) the 2-blade proportional to B′

V (x) = e− ∧ (x · B), which
has the same orbit C(x) ∝ x ∧ B′

V (x). However, B′

V (x) is a real point pair,
with a source and a sink, and the parametric (time) dependency it generates
along its orbit is therefore completely different (as we derived in Sect. 3). So
if the parametrization is relevant, we should use BV rather than B′

V ; but for
properties of the orbit as a whole (such as in the EM field lines of [2]), the
simpler B′

V would be sufficient.
We conclude that the motion performed by x under the rotor with bivec-

tor B is equivalent to a pure conformal rotation induced by the imaginary
point pair BV (x), and that it generates the Villarceau circle. This point pair
BV (x) depends on x itself, so the motion by the rotor exp(B/2) is not globally

equivalent to a single conformal rotation.

5. Geometric Properties

Since the Villarceau circles are orbits of a conformal rotor, they cut the par-
allels (x ∧ B−) and meridians (x ∧ B+) of the torus at a constant angle. This
property is illustrated for the (1, 1) knot in Fig. 8. As a consequence of be-
ing conformal, all constructions and statements transform covariantly under
conformal transformations. Not only can we translate, rotate and scale them
from the standard situation, but using spherical inversion we can produce
fully analogous properties of Villarceau circles on Dupin cyclides, as we will
see in Sect. 7. For now we prefer to continue to use the torus vocabulary, as
our token example of these conformally equivalent extensions. For the same
reason, we use the unit radius sphere e+ in B+ = e3 e+; other scales can be
produced by the usual conformal scaling rotors. The covariance of the con-
formal rotor formalism makes those extensions unnecessary to prove—they
are automatic.
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Figure 8. Meridians (in red), parallels (in yellow) and the
two types of Villarceau circles (in blue and green) on a torus.
(color figure online)

The other Villarceau circle through a point x is generated by reversing

one of the rotors, say using R+ R̃−, the exponential of the bivector B+ −
B− rather than B+ + B−. The situation in Fig. 1 is rather special: there
apparently exist points in which the two Villarceau circles passing through
them are coplanar. We can easily establish where those points are, as follows.
We demand that the two Villarceau circles x ∧ e− ∧

(
x · (B+ + B−)

)
and

x ∧ e− ∧
(
x · (B+ − B−)

)
are coplanar (we can now use their simplified form

with e− only, since their parametrization is immaterial to this property). This
implies:

0 = x ∧
(
x · (B+ + B−)

)
∧

(
x · (B+ − B−)

)
∧ e− ∧ ∞

= −x ∧ (x · B+) ∧ (x · B−) ∧ e− ∧ e+

= x ∧
(
x · (e1e2)

)
∧

(
0 + (x · e+)e3

)
∧ e− ∧ e+

= (x · e+)
(
(x · e1)

2 + (x · e2)
2
)
e1 ∧ e2 ∧ e3 ∧ e− ∧ e+

(remember that x is the Euclidean part of the conformal point x). A trivial
non-zero solution is x = CGA(α e3) for any α, when the circles both degen-
erate to a line. But more interesting is the set of points such that x · e+ = 0.
Thus in our standard setup, any point x on the real unit sphere e+ produces
a planar pair of Villarceau circles.

We then have to show that all Villarceau circles can be generated from
a point on this unit sphere. And indeed they can: the meet of a Villarceau
circle with the unit sphere at the origin is the point pair e+ ·

(
x∧(x ·B)∧e−

)
,

of which the square is (x
2+1
2 )2

(
(x

2
−1
2 )2 + (x · e3)

2
)
. This is non-negative, so

the point pair is real (with the only null degeneracy on the core circle of the
set of Villarceau circles, where x

2 = 1 and x · e3 = 0). Thus each Villarceau
circle intersects the unit sphere, and each can therefore be generated from
such an intersection point. In view of the pairing of Villarceau circles, starting
them from a such point on the unit sphere e+ is perhaps the most natural
way to generate the circles in our standardized setup. Of course every circle
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intersects the unit sphere in two points, so in fact only half of the unit sphere
is required; though we might use the other half to index Villarceau circles of
opposite orientation.

We can obtain some more insight in the geometry of a Villarceau circle
by substituting the series expansion terms of Eq. (9). Thus when used in the
outer product, the second order term simplifies to

C(x) ∝ x ∧ (x · B) ∧ e− = T (x) ∧ e−.

This implies that the Villarceau circle can also be defined as ‘tangent to the
local tangent vector T (x) and intersecting the unit sphere at the origin in
two antipodal points’ (since it contains the imaginary unit sphere e− as a
factor, see [4], Chapter 15 on the ‘plunge’ operation). This fact is visible in
Fig. 7.

Actually, the circle C(x) is invariant under reflection in the imaginary
sphere e−. To show this, first note that B changes sign under reflection in
e− since −e− B /e− = −B, and that −e− x/e− = e− x e− = x + 2(x · e−) e−.
Then, rather surprisingly, we find that the sphere x · B (a sphere passing
through x and orthogonal to the local tangent vector T (x)) is invariant under
the reflection:

−e− (x · B) e−

−1 = e− (x · B) e− = (x · B) + 2
(
(x · B) · e−

)
e− = x · B,

since (x · B) · e− = 0. Then we can establish that C(x) is invariant modulo a
sign

e− C(x) e− = −
(
e−

(
x ∧ (x · B)

)
e−

)
∧ e−

= −
(
x + 2(x · e−) e−

)
∧ (x · B) ∧ e−

= −x ∧ (x · B) ∧ e−

= −C(x)

In more detail, the inversion in e− exchanges the point x with a point x′ on
the other side of the conformal center of the Villarceau circle (i.e. one of the
locations where the real circle (BV )

∗

intersects the plane C(x)∧∞), along an
orthogonal circle passing through that conformal center and x. The resulting
points x and x′ are symmetric relative to the origin: x ∧ e+ ∧ x′ is a straight
line.

Inversion in an imaginary sphere like e− is easy to visualize: it is equiv-
alent to an inversion in a real sphere of the same radius and center, followed
by a point reflection in that center. For the origin-centered unit spheres of
our standard situation, this follows from e− = (e− ∧ e+) e+. When read as a
compound operator for sandwiching, the factor e− ∧ e+ = o ∧ ∞ is the flat
point at the origin producing the point reflection. It is not a rotor, yet it can
be used in the sandwiching product, see [4] Chapter 16.
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Figure 9. (Graphics and text from wikipedia page:
Rotations in 4-dimensional space.) A 4D Clifford torus
stereographically projected into 3D looks like a torus, and a
double rotation can be seen as a helical path on that torus.
For a rotation whose two rotation angles form a rational
number, the paths will eventually reconnect, while for an ir-
rational ratio they will not. An isoclinic rotation will form
a Villarceau circle on the torus, while a simple rotation will
form a circle parallel or perpendicular to the central axis

6. Hopf Fibration and Stereographic Projection from 4D

6.1. Space Filling Villarceau Circles

In the field generated by the rotor B, every point x picks out a Villarceau
circle on a torus as its orbit. The torus is determined by the circles x ∧ B−

and x ∧ B+, and the Villarceau circle is x ∧ BV (x), with BV (x) defined as in
Eq. (11). Clearly the points of 3D space can be grouped in equivalence classes
of the circles of points that are on the same Villarceau circle generated by
BV (x); this class may be indexed by a point on the unit sphere e+ (in a
double cover, or in two opposite orientations). All Villarceau circles on the
same torus are a larger equivalence class, rotationally invariant under the
rotor R−, see Fig. 9, and each indexed by a point on a shared parallel of the
unit sphere. Moving the index point x to other classes generates Villarceau
circles on a different torus, involving the conformal rotation R+.

All in all, a space-filling set of circles appears, together forming a Hopf
fibration of 3-dimensional space, see Fig. 10. There are two singular tori; one
consists of the single circle (B+)

∗

(the conformal center circle of any of the
tori in the fibration), the other consists of the single line (B−)

∗

(the axis of
any torus in the fibration).

6.2. Isoclinic Rotations in 4D

As we have seen, there are two rotors involved in composing the rotations, in
our specific example produced by the commuting 2-blades B− = e1 e2 and
B+ = e3 e+. Since e2

+ = 1, we could consider the four vectors involved as just
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Figure 10. Some of the linked and nested Villarceau circles
on nested tori in the Hopf fibration, in a cross-eyed stereo
pair. The two exceptional Hopf limit circles are indicated in
red (color figure online)

an orthonormal basis of a 4-dimensional space. Let us make this explicit by
replacing e+ by e4. Then the 4-dimensional space we have constructed for
those two rotations is a Clifford torus (the product of two circular motions).

In that 4-dimensional space, a general rotation has two planes in which
it needs to be specified, and we have chosen them orthogonally. But for the
special rotor with 2-blade B = B+ + B−, those rotations are coupled and
performed at the same rate. This composite motion is called an isoclinic

rotation, and normally one would consider it primarily in the 4D Euclidean
space spanned by four orthogonal unit basis vectors {e1, e2, e3, e4}.

Our algebraically equivalent representation on the basis {e1, e2, e3, e+}
also consists of four orthogonal unit vectors (though the full basis contains an
additional negatively squared vector e−), but now all can be drawn in 3D (as
the three coordinate planes plus the unit sphere, all at the origin). Doing so
apparently shows a toroidal image of the unit 3-sphere in 4D, converting the
orbits of 3D points under an isoclinic rotation (which reside on that sphere)
into the set of circles of the Hopf fibration.

In fact, our replacing e+ by e4, which algebraically looks like a simple
relabeling, is geometrically equivalent to performing an inversion in a sphere,
of the 4D space. And the selection of a 3D subspace of the result makes this
into a stereographic projection, from the unit sphere in 4D to a flat 3D space.
These known facts take on a simple computational form in CGA, as follows.

To perform the desired stereographic projection from 4D to 3D, consider
the dual sphere e+; it resides in either space. Use σ = e4 + e+ (the real dual

sphere in 4D with center at e4 and radius
√

2) in the sandwich product
X 	→ − 1

2 σ X σ. Then the non-involved basis vectors are invariant:

e1 	→ e1, e2 	→ e2, e3 	→ e3 (and e− 	→ e−)

but e4 and e+ are swapped:

e4 	→ e+, e+ 	→ e4.
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Figure 11. Stereographic projection from 3D to 2D, by in-
version in the sphere e3+e+ (in light red) converts the green
unit sphere e+ into the yellow plane e3. The green circles
(orbits of exp(−φe1 e3/2) for a point on the unit sphere) be-
come yellow circles in the plane, orbits of exp(−φ e1e+/2)
for the stereographic projection of that point (color figure
online)

As a consequence, orbits on the unit sphere e+ in 4-space of, say, the 4D
Euclidean rotation with 2-blade e3 e4 become mapped to circles in 3D, the
orbits of a conformal rotation in 3-space with 2-blade e3 e+. Since this no
longer involves e4, we can depict the results in a (conformal) 3D space. The
inversion in σ also maps the rest of the 4D space (i.e. points not on its
unit sphere), to points outside the hyperplane e4. We do not depict those
when interpreting the mapping as a stereographic projection. Thus only the
sphere S3 (i.e. e+ in 4D) is depicted in compactified R

3 (which is the space
that constitutes all points of the 4D coordinate plane e4, plus the point at
infinity).

In an attempt to illustrate this by analogy, in Fig. 11 we show the
same principle in one dimension less. We map from 3D to 2D, employing the
versor e+ +e3 to swap the 2-sphere e+ of 3D with the plane e3, which is then
interpreted as a compactified 2D space.

To express and derive certain properties of Villarceau circles very com-
pactly, we have seen that the orthonormal basis of our algebra needs to be
completed by the imaginary sphere e−. The existence of this 5-sphere ba-
sis for 3D space was already explored in a 1934 paper by Raynor [11]. The
imaginary sphere e− is not affected by the inversion above, and so can be
considered to be part of both the 4D and the 3D spaces involved in our
construction.

7. Villarceau Circles on Dupin Cyclides

Within CGA, it is easy to generalize from the specific unit-sphere and unit-
plane based generators we have employed in this paper. The conformal co-
variance of all expressions implies that we may apply any conformal versor V
to all elements, and preserve their relationships. The corresponding 2-blades



Vol. 29 (2019) Conformal Villarceau Rotors Page 17 of 20 44

Figure 12. a A Villarceau circle on a cyclide and b a Vil-
larceau circle on a degenerate unbounded cyclide. The two
imaginary point pairs generating the cyclides are indicated
as the grey halters

B− = e1 e2 and B+ = e3 e+ change into more general expressions V B+/V
and V B−/V involving non-unit-radius spheres. The role of e− in our analysis
is played by the imaginary sphere V e−/V .

In fact, there is not much more to say about this, since obviously any
property that can be formulated in a covariant manner transforms covariantly.
So we merely show some Villarceau circles on cyclides in Fig. 12 that are the
equivalent (by conformal transformations) of Fig. 3b for the torus.

We just have to be a bit careful transferring the property of Fig. 1:
namely that the two Villarceau circles can be considered as a planar cross
section of a torus. The original cut plane of the figure will transform to a
sphere under the conformal versor, and it is a trivial statement that two 3D
circles intersecting in a point pair lie on a common sphere. So the desired
cut plane of the cyclide is not the transform of the cut plane of the torus.
The proper procedure is to transfer not the plane itself, but the condition of
Eq. (12): that for each Villarceau circle generated by B+ + B− there exists a
point x on it so that the circle generated by B+−B− from that point shares a
plane with the first circle. The non-trivial solution for our standard situation
was x ·e+ = 0: we can start any Villarceau circle and its coplanar counterpart
from the same point on the unit sphere. After the conformal transformation,
that condition becomes x′ ·(V e+/V ) = 0 for transformed points x′. Points on
this transformed sphere still produce two Villarceau circles in a coplanar pair.
Therefore the cyclides, too, can be cut by a well-chosen plane to produce two
intersecting Villarceau circles. Figure 13 illustrates this fact, for an interesting
special case in which one of the Villarceau circles has become a line.

8. Maxwell–Dirac Toroids

As stated in the introduction, Villarceau circles occur in physics. When they
are specific field lines related to the electromagnetic field in vacuum, as in
[2], they are geometric objects without a need for a parametrization. Such
field lines themselves move with the speed of light, and are space filling in
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Figure 13. An unbounded cyclide (generated from the
same imaginary point pair generator as in Fig. 12a by a
well-chosen spatial point). Two Villarceau circles are indi-
cated in red—one has degenerated to a line—as well as the
cutting plane that can be thought to produce them (color
figure online)

the manner of a Hopf fibration. The electric field E and the magnetic field B

deform under this motion (or similarly, if they are considered in a different
inertial frame of reference), though their Poynting field line E × B retains
its canonical shape of a Villarceau circle in a Hopf fibration. Our way of de-
scribing this geometry compactly by a location-dependent circle may be of
some interest in that field. It is well known that Maxwell’s equation exhibits
conformal symmetries (see e.g. [12]), so one would expect conformal rotor
descriptions of the geometry it generates to be efficacious. The conformal
Villarceau orbits from this paper are a special case of the more general con-
formal (m,n) knots treated in [5], which may then apply to the more general
fields, also exposed in [2].

As for the toroidal motion of the electron (and the hypothesized internal
structure of the photon), [9] derives the Consa parametrization of the torus
directly from the Dirac equation. To do so, Hestenes employs a factorization
of the spinor wave function that splits off a Lorentz boost, leaving a purely



Vol. 29 (2019) Conformal Villarceau Rotors Page 19 of 20 44

Euclidean rotor of two factors that easily give rise to the Consa toroidal so-
lution, in the Euclidean two-angle parametrization by what we would call
simple rotors with 2-blades e1 e2 and e2 e3. That sequence of Euclidean rota-
tions makes the Consa parametrization of the torus seem natural, though the
parameter is not physical travel time—the travel speed is actually hypothe-
sized to be uniform (equal to the speed of light). We suggest that factorizing
the wave function into conformal components (in our parlance, the rotors of
e1 e2 and e3 e+) may also be feasible, and in that context the parametrization
from this paper may be useful. This is not just a change of representation:
should the electron move in a closed (1,1) knot motion along the torus, then
the geometry of the spatial orbit differs between the uniform and the confor-
mal parametrizations. The conformal parametrization would have it moving
in a plane (as we showed in this paper), but the uniform angle parametriza-
tion of the doubly-periodic motion of the Consa model is non-planar. The
different accelerations those two motions impose may lead to physically ob-
servable consequences, which would force the natural choice between them.
Motion along the general (m,n) knots would similarly be geometrically, and
hence physically, different.

The conformal description of the Robinson congruence (the guise of Vil-
larceau circles in twistor theory) has been given in terms of conformal rotors
in [1], for massless particles. Viewing the Villarceau circles of the congruence
as a special case of (m,n) conformal torus knots may perhaps allow extension
of that geometrical twistor theory to treat other particles as well.
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