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CONFORMAL WELDINGS OF RANDOM SURFACES:
SLE AND THE QUANTUM GRAVITY ZIPPER'

BY SCOTT SHEFFIELD
Massachusetts Institute of Technology

We construct a conformal welding of two Liouville quantum gravity ran-
dom surfaces and show that the interface between them is a random frac-
tal curve called the Schramm-Loewner evolution (SLE), thereby resolving
a variant of a conjecture of Peter Jones. We also demonstrate some surpris-
ing symmetries of this construction, which are consistent with the belief that
(path-decorated) random planar maps have (SLE-decorated) Liouville quan-
tum gravity as a scaling limit. We present several precise conjectures and
open questions.
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1. Introduction.

1.1. Overview. Liouville quantum gravity and the Schramm-Loewner evo-
lution (SLE) rank among the great mathematical physics discoveries of the last
few decades. Liouville quantum gravity, introduced in the physics literature by
Polyakov in 1981 in the context of string theory, is a canonical model of a random
two-dimensional Riemannian manifold [74, 75]. The Schramm-Loewner evolu-
tion, introduced by Schramm in 1999, is a canonical model of a random path in
the plane that does not cross itself [82, 85]. Each of these models is the subject of
a large and active literature spanning physics and mathematics.

Our goal here is to connect these two objects to each other in the simplest pos-
sible way. Roughly speaking, we will show that if one glues together two indepen-
dent Liouville quantum gravity random surfaces along boundary segments (in a
boundary-length-preserving way)—and then conformally maps the resulting sur-
face to a planar domain—then the interface between the two surfaces is an SLE.

Peter Jones conjectured several years ago that SLE could be obtained in a sim-
ilar way—specifically, by gluing (what in our language amounts to) one Liouville
quantum gravity random surface and one deterministic Euclidean disc. Astala,
Jones, Kupiainen and Saksman showed that the construction Jones proposed pro-
duces a well-defined curve [5, 6], but Binder and Smirnov recently announced a
proof (involving multifractal exponents) that this curve is not a form of SLE, and
hence the original Jones conjecture is false [96] (see Section 1.5). Our construction
shows that a simple variant of the Jones conjecture is in fact true.

Beyond this, we discover some surprising symmetries. For example, it turns
out that there is one particularly natural random simply connected surface (called
a y-quantum wedge) that has an infinite-length boundary isometric to R (almost
surely) which contains a distinguished “origin.” Although this surface is simply
connected, it is almost surely highly nonsmooth and it has a random fractal struc-
ture. We will explain precisely how it is defined in Section 1.6. The origin di-
vides the boundary into two infinite-length boundary arcs. Suppose we glue (in a
boundary-length preserving way) the right arc of one such surface to the left arc
of an independent random surface with the same law, then conformally map the
combined surface to the complex upper half plane H (sending the origin to the ori-
gin and oo to co—see figure below), and then erase the boundary interface. The
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F1G. 1. Welding surfaces.

geometric structure of the combined surface can be pushed forward to give geo-
metric structure (including an area measure) on H. One wonders if one can guess,
from this geometric structure on H, where the now-erased interface used to be, see
Figure 1.

We will show that the geometric structure yields no information at all. That
is, the conditional law of the interface is that of an SLE in H independently of
the underlying geometry (a fact formally stated as part of Theorem 1.8). Another
way to put this is that conditioned on the combined surface, all of the information
about the interface is contained in the conformal structure of the combined surface,
which determines the embedding in H (up to rescaling H via multiplication by a
positive constant, which does not affect the law of the path, since the law of SLE
is scale-invariant).

This apparent coincidence is actually quite natural from one point of view. We
recall that one reason (among many) for studying SLE is that it arises as the fine
mesh “scaling limit” of random simple paths on lattices. Liouville quantum grav-
ity is similarly believed (though not proved) to be the scaling limit of random
discretized surfaces and random planar maps. The independence mentioned above
turns out to be consistent with (indeed, at least heuristically, a consequence of)
certain scaling limit conjectures (and a related conformal invariance Ansatz) that
we will formulate precisely (in Section 2.2) for the first time here.
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Polyakov initially proposed Liouville quantum gravity as a model for the intrin-
sic Riemannian manifold parameterizing the space—time trajectory of a string [74].
From this point of view, the welding/subdivision of such surfaces is analogous to
the concatenation/subdivision of one-dimensional time intervals (which parame-
terize point-particle trajectories). It seems natural to try to understand complicated
string trajectories by decomposing them into simpler pieces (and/or gluing pieces
together), which should involve subdividing and/or welding the corresponding Li-
ouville quantum gravity surfaces. The purpose of this paper is to study these weld-
ings and subdivisions mathematically. We will not further explore the physical
implications here.

In a recent memoir [76], Polyakov writes that he first became convinced of
the connection between the discrete models and Liouville quantum gravity in the
1980s after jointly deriving, with Knizhnik and Zamolodchikov, the so-called KPZ
formula for certain Liouville quantum gravity scaling dimensions and comparing
them with known combinatorial results for the discrete models [46]. With Du-
plantier, the present author recently formulated and proved the KPZ formula in a
mathematical way [28, 29] (see also [9, 79]). This paper is in some sense a sequel
to [29], and we refer the reader there for references and history.

We will find it instructive to develop Liouville quantum gravity along with a
closely related construction called the AC geometry or imaginary geometry. Both
Liouville quantum gravity and the imaginary geometry are based on a simple ob-
ject called the Gaussian free field.

1.2. Random geometries from the Gaussian free field. The two-dimensional
Gaussian free field (GFF) is a natural higher dimensional analog of Brownian mo-
tion that plays a prominent role in mathematics and physics. See the survey [91]
and the introductions of [86, 87] for a detailed account. On a planar domain D, one
can define both a zero boundary GFF and a free boundary GFF (the latter being de-
fined only modulo an additive constant, which we will sometimes fix arbitrarily).
In both cases, an instance of the GFF is a random sum

h=Y aif;,

where the «; are i.i.d. mean-zero unit-variance normal random variables, and the
fi are an orthonormal basis for a Hilbert space of real-valued functions on D (or
in the free boundary case, functions modulo additive constants) endowed with the
Dirichlet inner product

(fis fo)v = 2m)~! fD Y £1(2) -V fo(2) dz.

The Hilbert space is the completion of either the space of smooth compactly sup-
ported functions f : D — R (zero boundary) or the space of all smooth functions
f : D — R modulo additive constants with (f, f)v < oo (free boundary). In each
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case, h is understood not as a random function on D but as a random distribution or
generalized function on D. (Mean values of / on certain sets are also defined, but
the value of & at a particular point is not defined.) One can fix the additive constant
for the free boundary GFF in various ways, for example, by requiring the mean
value of /& on some set to be zero. We will review these definitions in Section 3.

There are two natural ways to produce a “random geometry” from the Gaussian
free field. The first construction is (critical) Liouville quantum gravity. Here, one
replaces the usual Lebesgue measure dz on a smooth domain D with a random
measure uj, = '@ dz, where y € [0, 2) is a fixed constant and / is an instance
of (for now) the free boundary GFF on D (with an additive constant somehow
fixed—we will actually consider various ways of fixing the additive constant later
in the paper; one way is to require the mean value of /2 on some fixed set to be 0).
Since & is not defined as a function on D, one has to use a regularization procedure
to be precise:

(1.1) = [y = lin%)gyz/Zeyhg(z) dz.
e—

where dz is Lebesgue measure on D, h.(z) is the mean value of & on the circle
0B:(z) and the limit represents weak convergence (on compact subsets) in the
space of measures on D. (The limit exists almost surely, at least if ¢ is restricted
to powers of two [29].) We interpret w;, as the area measure of a random surface
conformally parameterized by D. When x € dD, we let h-(x) be the mean value
of h on DN dBg(x). On a linear segment of d D, we may define a boundary length
measure by
(1.2) v =y = lim gV /Aerhe ()2 dx,

e—0
where dx is Lebesgue measure on 0 D. (For details, see [29], which also relates
the above random measures to the curvature-based action used to define Liouville
quantum gravity in the physics literature.) _

We could also parameterize the same surface with a different domain D, and our
regularization procedure implies a simple rule for changing coordinates. Suppose
that i is a conformal map from a domain D to D and write / for the distribution
on D given by h oy + Qlog|y'| where

2y
0:= > + 5

as in Figure 2.? Then p, is almost surely the image under ¥ of the measure 2
That is, uj;(A) = up(¥ (A)) for A C D. Similarly, v, is almost surely the image

2 We use the same distribution composition notation as [29]: that is, if ¢ is a conformal map from

D to a domain D and h is a distribution on D, then we define the pullback 4 o ¢~ of h to be a distri-
bution on D defined by (h o ¢~L, 5) = (h, p) whenever p € Hy(D) and 5 = |¢'|2p o ¢~ L. (Here,
¢’ is the complex derivative of ¢, and (h, p) is the value of the distribution / integrated against p.)
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FI1G. 2. A quantum surface coordinate change.

under v of the measure v;, [29]. In fact, [29] formally defines a quantum surface
to be an equivalence class of pairs (D, h) under the equivalence transformations
(see Figure 2)

(13)  (D,h) = (D, h):= (v (D), hoy + Qlog|y’|) = (D, h),

noting that both area and boundary length are well defined for such surfaces. The
invariance of v, under (1.3) actually yields a definition of the quantum boundary
length measure v, when the boundary of D is not piecewise linear, that is, in
this case, one simply maps to the upper half plane (or any other domain with a
piecewise linear boundary) and computes the length there.

The second construction involves “flow lines” of the unit vector field e/#/x
where x # 0 is a fixed constant (see Figure 9), or alternatively flow lines of
¢! "/X+) for a constant ¢ € [0, 27r). The author has proposed calling this collec-
tion of flow lines the AC geometry* of h, but a recent series of joint works with
Jason Miller uses the term imaginary geometry [64—67]. Makarov once proposed
the term “magnetic gravity” in a lecture, suggesting that in some sense the AC
geometry is to Liouville quantum gravity as electromagnetism is to electrostatics.
We will discuss additional interpretations in Section 2 and the Appendix.

Although 4 is a distribution and not a function, one can make sense of flow lines
using the couplings between the Schramm-Loewner evolution (SLE) and the GFF

Note that if & is a continuous function [viewed as a distribution via the map p — [, p(2)h(z) dz],
then the distribution & o ¢>_1 thus defined is the ordinary composition of ~# and ¢>_1 (viewed as a
distribution).

31t remains an open question whether the interior of a quantum surface is canonically a metric
space. A pair (D, h) is a metric space parameterized by D when, for distinct x, y € D and § > 0,
one defines the distance ds(x, y) to be the smallest number of Euclidean balls in D of wu; mass &
required to cover some continuous path from x to y in D. We conjecture but cannot prove that for
some constant 3 the limiting metric

lim 88 dy
§—0

exists a.s. and is invariant under the transformations described by (1.3).

4AC stands for “altimeter-compass.” If the graph of & is viewed as a mountainous terrain, then a
hiker holding an analog altimeter—with a needle indicating altitude modulo 27 x—in one hand and
a compass in the other can trace an AC ray by walking at constant speed (continuously changing
direction as necessary) in such a way that the two needles always point in the same direction.
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FI1G. 3. An AC surface coordinate change.

in [87, 90], which were further developed in [20] and more recently in [38, 39, 59].
The paths in these couplings are generalizations of the GFF contour lines of [87].

We define an AC surface to be an equivalence class of pairs under the following
variant of (1.3):

(1.4) (D,h) = (Y ~U(D),hoy — xargy’) = (D, h),

as in Figure 3. The reader may observe that (at least when /4 is smooth) the flow
lines of the LHS of (1.4) are the i images of the flow lines of the RHS. To check
this, first consider the simplest case: if ¥ ! is a rotation (i.e., multiplication by a
modulus-one complex number), then (1.4) ensures that the unit flow vectors eth/x
(as in Figure 9) are rotated by the same amount that D is rotated. The general claim
follows from this, since every conformal map looks locally like the composition
of a dilation and a rotation (see Section 2.1).

Recalling the conformal invariance of the GFF, if the /4 on the left-hand side
of (1.3) and (1.4) is a centered (expectation zero) Gaussian free field on D then
the distribution on the right-hand side is a centered (expectation zero) GFF on D
plus a deterministic function. In other words, changing the domain of definition
is equivalent to recentering the GFF. The deterministic function is harmonic if D
is a planar domain, but it can also be defined (as a nonharmonic function) when
D is a surface with curvature (see [29]). In what follows, we will often find it
convenient to define quantum and AC surfaces on the complex half-plane H using
a (free or zero boundary) GFF on H, sometimes recentered by the addition of a
deterministic function that we will call hy. We will state our main results in the
introduction for fairly specific choices of hy. We will extend these results to more
general underlying geometries in Section 4 and Section 5.

1.3. Theorem statements: SLE/GFF couplings. We will give explicit relation-
ships between the Gaussian free field and both “forward” and “reverse” forms of
SLE in Theorems 1.1 and 1.2 below. We will subsequently interpret these theorems
as statements about AC geometry and Liouville quantum gravity, respectively. We
will prove Theorem 1.1 in Section 4.1 using a series of calculations. These calcula-
tions are not really new to this paper, although the precise form of the argument we
give has not been published elsewhere.> Our main reason for proving Theorem 1.1

5The argument presented in Section 4.1, together with the relevant calculations, appeared in lecture
slides some time ago [90], and is by now reasonably well known. Dubédat presented another short
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in Section 4.1 is that we wish to simultaneously prove Theorem 1.2. Theorem 1.2
is completely new to this paper (and essential to the other results obtained in this
paper), but it is very closely related to Theorem 1.1. Proving the two results side
by side allows us to highlight the similarities and differences.

We will not give a detailed introduction to SLE here, but there are many ex-
cellent surveys on SLE; see, for example, the introductory references [48, 104]
for basic SLE background. To set notation, we recall that when 7 is an instance
of chordal SLE, in H from O to oo, the conformal maps g; : H \ n([0, {]) — H,
normalized so that lim,_, » |g;(z) — z| = 0, satisfy

2
1. —
(1.5) dg:(2) @ =W, dt,

with W; = \/k B; = g:(n(t)), where B; is a standard Brownian motion. In fact, this
can be taken as the definition of SLE, . Rohde and Schramm proved in [82] that for
each « and instance of By, there is almost surely a unique continuous curve 7 in H
from 0O to oo, parameterized by [0, co), for which (1.5) holds for all z. When 7 is
parameterized so that (1.5) holds, the quantity 7 is called the (half-plane) capacity
of y ([0, t]). The curve 5 is almost surely a simple curve when « € [0, 4], a self-
intersecting but nonspace-filling curve when « € (4, 8), and a space-filling curve
(ultimately hitting every point in H) when « > 8 [82].
The maps

J1(@) =g —W;
satisfy

dfi(z) = dt — \/k dB,

2
f1(2)
and f;(n(¢)) = 0. Throughout this paper, we will use f; rather than g; to describe
the Loewner flow. If n7 = n([0, T']) is a segment of an SLE trace, denote by Kt
the complement of the unbounded component of H \ nr. In the statements of The-
orem 1.1 and Theorem 1.2 below and throughout the paper, we will discuss several
kinds of random distributions on H. To show that these objects are well defined as
distributions on H, we will make implicit use of some basic facts about distribu-
tions:

1. If & is a distribution on a domain D then its restriction to a subdomain is a
distribution on that subdomain. (This follows by simply restricting the class of test
functions to those supported on the subdomain.)

derivation of this statement within a long foundational paper [20]. More recent variants appear in [38,
39], and in the series of papers [64—67], which studies the couplings in further detail. Prior to these
works, Kenyon and Schramm derived (but never published) a calculation relating SLE to the GFF
in the case x = 8. One could also have inferred the existence of such a relationship from the fact—
due to Lawler, Schramm and Werner—that SLEg is a continuum scaling limit of uniform spanning
tree boundaries [50], and the fact—due to Kenyon—that the winding number “height functions” of
uniform spanning trees have the GFF as a scaling limit [43-45].
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2. If h a distribution on a domain D and ¢ is a conformal map from D to a
domain D then h o qb_l is a distribution on D. (Recall footnote 2.)

3. An instance of the zero boundary GFF on a subdomain of D is also well
defined as a distribution on all of D. (See Section 2.1 of [87].)

4. If h is an L! function on D, then 4 can be understood as a distribution on D
defined by (, p) = [ p(2)h(z) dz.

In the proof of Theorem 1.1 in Section 4.1, we will show that even though the
function arg f; that appears in the theorem statement is a.s. unbounded, it can also
a.s. be understood as a distribution on H (see the discussion after the theorem
statement below).

THEOREM 1.1. Fix k € (0,4] and let nt be the segment of SLE, generated
by the Loewner flow

(1.6) dfi(z) =

f't(z) dt—«/EdBt, f()(Z)=Z

up to a fixed time T > 0. Write

-2 2
bo(z) := —=argz, = - E

E TR
b (2) := hO(ft(Z)) — xarg ft/(Z)-

Here, arg( f;(2)) (wWhich is a priori defined only up to an additive multiple of 21) is
chosen to belong (0, w) when f;(z) € H; we similarly define arg f/(z) by requiring
that (when t is fixed) it is continuous on H \ n7 and tends to 0 at cc. Let h be an
instance of the zero boundary GFF on H, independent of B;. Then the following
two random distributions on H agree in law:5

h:=ho+h,
ho fr — xarg f = br +ho fr.

The two distributions above also agree in law when k € (4,8) if we replace
ho fr with a GFF on H \ n([0, t]) (which in this case means the sum of an
independent zero boundary GFF on each component of H \ n([0, t])) and take
b (2) :=limy_ 7 (;)_ bs(2) if z is absorbed at time t(z) <t.

Alternative statement of Theorem 1.1: Using our coordinate change and AC
surface definitions, we may state the theorem when k < 4 somewhat more ele-
gantly as follows: the law of the AC surface (H, #) is invariant under the operation
of independently sampling fr using a Brownian motion and (1.6), transforming

5Note that fr maps H\ K7 to H, so (H, h) and (H\ K7,h o f7 — x arg f}) describe equivalent
AC surfaces by (1.4).
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/N
ho fr — xarg fr

nr

FI1G. 4. Forward coupling.

the AC surface via the coordinate change f; ! (going from right to left in Fig-
ure 4’—see also Figure 11) in the manner of (1.4), and erasing the path n7 (to
obtain an AC surface parameterized by H instead of H \ nr). We discuss the geo-
metric intuition behind the alternative statement in Section 2.1.

Note that, as a function, h7 is not defined on 57 itself. However, we will see
in Section 4.1 that h7 is a.s. well defined as a distribution, independently of how
we define it as a function on 57 itself. This will follow from the fact that, when
k =4, this hr is almost surely a bounded function off of 7, and when « 5 4, the
restriction of h7 to any compact subset of H is almost surely in L? for each p < oo
(see Section 4). The fact that ho fr is well defined as a distribution on H (not just
as a distribution on H \ n7) follows from conformal invariance of the GFF, and
the fact (mentioned above, proved in [87]) that a zero boundary GFF instance on a
subdomain can be understood as a distribution on the larger domain.

Another standard approach for generating a segment nr of an SLE curve is
via the reverse Loewner flow, whose definition is recalled in the statement of the
following theorem. (Note that if 7 is a fixed constant, then the law of the nr
generated by reverse Loewner evolution is the same as that generated by forward
Loewner evolution; see Figures 4 and 5.)

ho fr + Qlog|fz] nr

[ ]

FIG. 5. Reverse coupling.

TAll figures in this paper are sketches, not representative simulations.
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THEOREM 1.2. Fix k > 0 and let nt be the segment of SLE, generated by a
reverse Loewner flow

)
e dt — /k dBy, fo) =z

up to a fixed time T > 0. Write

(1.7) dfi(z) =

2 2
(@) i= ——logldl, Q==+ g

h:(2) := bo(fi(2)) + Qlog| f/ (2)

and let h be an instance of the free boundary GFF on H, independent of B;. Then
the following two random distributions (modulo additive constants) on H agree in
law:®

’

h:="ho+h,
ho fr+ Qlog|fr| = br +ho fr.

Alternative statement of Theorem 1.2: A more elegant way to state the theorem
is that the law of (IH, /) is invariant under the operation of independently sam-
pling fr, cutting out K7 (equivalent to nr when « < 4), and transforming via the
coordinate change f, ! (going from right to left in Figure 5) in the manner of (1.3).

Both theorems give us an alternate way of sampling a distribution with the law
of h, that is, by first sampling the B, process (which determines 77), then sampling
a (fixed or free boundary) GFF h and taking

h=f]T+i~lofT.

This two part sampling procedure produces a coupling of n7 with /. In the forward
SLE setting of Theorem 1.1, it was shown in [20] that in any such coupling, nr is
almost surely equal to a particular path-valued function of h. (This was also done
in [87] in the case k = 4.) In other words, in such a coupling, & determines nr
almost surely. This is important for our geometric interpretations. Even though £
is not defined pointwise as a function, we would like to geometrically interpret
n as a level set of & (when x = 4) or a flow line of eM/X (when k < 4), as we
stated above and will explain in more detail in Section 2.1. It is thus conceptually
natural that such curves are uniquely determined by /% (as they would be if 7 were
a smooth function, see Section 2.1).

As mentioned earlier, this paper introduces and proves Theorem 1.2 while high-
lighting its similarity to Theorem 1.1. Indeed, it won’t take us much more work to

8Note that fr maps H to H\ K7, so (H, ho fr + Qlog |f% |) and (H\ K7, h) describe equivalent
quantum surfaces by (1.3). Indeed, (H, % o fr + Qlog |f%|) = fT_l(H \ Kr,h).
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prove Theorems 1.1 and 1.2 together than it would take to prove one of the two
theorems alone. It turns out that in both Figure 4 (which illustrates Theorem 1.1)
and Figure 5 (which illustrates Theorem 1.2), the field illustrated on the left side
of the figure (which agrees with 4 in law) actually determines n7 and the map fr,
at least when x < 4. In the former context (Figure 4), this a major result due to
Dubédat [20] (see also the exposition on this point in [64]). It says that a certain
“flow line” is a.s. uniquely determined by /. The statement in the latter context is
a major result obtained in this paper, stated in Theorems 1.3 and 1.4. With some
hard work, we will be able to show that the map fr describes a conformal welding
in which boundary arcs of equal quantum boundary length are “welded together.”
Once we have this, the fact that the boundary measure uniquely characterizes fr
will be obtained by applying a general “removability” result of Jones and Smirnov,
as we will explain in Section 1.4.

1.4. Theorem statements: Conformal weldings. We will now try to better un-
derstand Theorem 1.2 in the special case x < 4. Note that a priori the # in Theo-
rem 1.2 is defined only up to additive constant. We can either choose the constant
arbitrarily (e.g., by requiring that the mean value of 4 on some set be zero) or avoid
specifying the additive constant and consider the measures pj, and vy, to be defined
only up to a global multiplicative constant. The choice does not affect the theorem
statement below.

THEOREM 1.3. Suppose that k < 4 and that h and nt are coupled in the way
described at the end of the previous section, that is, h is generated by first sampling
the B; process up to time T in order to generate fr via a reverse Loewner flow,
and then choosing h independently and writing h = b +ho fr,and nr((0, T]) =
H\ frH.? Given a point z along the path nr, let z_ < 0 < z.. denote the two points
in R that fr (continuously extended to R) maps to z. Then almost surely

vi([z—, 01) = vi ([0, z4])
forall z on nr.

Theorem 1.3 is a relatively difficult theorem, and it will be the last thing
we prove. We next define R = Rj, : (—o0,0] — [0, 00) so that v,([x,0]) =
v, ([0, R(x)]) for all x (recall that v is a.s. atom free [29]). This R gives a home-
omorphism from [0_, 0] to [0, 0] that we call a conformal welding of these two
intervals. We stress that the values O_ and 04 depend on 7', but the overall home-
omorphism R between (—oo, 0] and [0, co) is determined by the boundary mea-
sure vy, whose law does not depend on 7 (although the coupling between #, h and

%It is not known whether an analog of Theorem 1.3 can obtained in the case x = 4. The standard
procedure for constructing the boundary measure vy breaks down when k =4, y = 2, but a scheme
was introduced [25, 26] to create a nontrivial boundary measure vj. The open problems listed in
Section 6 also address a related question in the ¥ > 4 setting.
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F1G. 6. Sketch of n with marks spaced at intervals of the same vy, length along 9D and dD;.
Here, (—o0, 0] and [0, 00) are the two open strands of the “zipper” while n is the closed (zipped up)
strand. Semicircular dots on R are “zipped together” by f,h . Circular dots on n are “pulled apart”
by ftn. (Recall that under the reverse Loewner flow f,h, the center of a semicircle on the negative
real axis will reach the origin at the same time as the center of the corresponding semicircle on the
positive real axis.) The law of (D1, hPy, (D7, hP2)) is invariant under “zipping up” by t capacity
units or “zipping down” by t capacity units.

nt described in the theorem statement clearly depends on 7'). Since nr is simple,
it clearly determines the restriction of R to [0_, 0]. (See Figure 6.) It turns out that
R also determines n7.

THEOREM 1.4. For k < 4, in the setting of Theorem 1.3, the homeomorphism
R from [0_, 0] to [0, 04] uniquely determines the curve nr. In other words, it
is almost surely the case that if nF is any other simple curve in H such that the
homeomorphism induced by its reverse Loewner flow is the same as R on [0_, 0],
then 7 = nr. In particular, h determines n almost surely.

PROOF. The author learned from Smirnov that Theorem 1.4 follows almost
immediately from Theorem 1.3 together with known results in the literature. If
there were a distinct candidate 7 with a corresponding fT, then ¢ = fT ofr -
extended from H to R by continuity, and to all of C by Schwarz reflection—would
be a nontrivial homeomorphism of C [with lim;_, », ¢ (z) — z = 0] which was con-
formal on C\ (n7 U 57), where nr denotes the complex conjugate of nr. Thus, to
prove Theorem 1.4, it suffices to show that no such map exists. In complex analysis
terminology, this is equivalent by definition to showing that the curve nr U 57 is
removable. Rohde and Schramm showed that the complement of n([0, T']) is a.s. a
Holder domain for k¥ < 4 (see Theorem 5.2 of [82]) and that 7 is a.s. a simple curve
in this setting. In particular, n7 U i is almost surely the boundary of its comple-
ment, and this complement is a Holder domain. (More about Holder continuity
appears in work of Beliaev and Smirnov [7] and Kang [42] and Lind [57].) Jones
and Smirnov showed generally that boundaries of Hélder domains are removable
(Corollary 2 of [41]). The same observations are used in [6]. [

We remark that the above arguments also show that n U 5 is removable when 7
is the entire SLE path. In the coming sections, we will often interpret the left and
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right components of H \ 7 as distinct quantum surfaces, where the right boundary
arc of one surface is welded (along 7) to the left boundary arc of another surface
in a quantum-boundary-length-preserving way. When the law of 5 is given by
SLE, with k < 4, removability implies that » is almost surely determined (up to a
constant rescaling of H) by the way that these boundary arcs are identified. In other
words, aside from constant rescalings, there is no homeomorphism of H, fixing 0
and oo, whose restriction to H \ » is conformal.

1.5. Corollary: Capacity stationary quantum zipper. This subsection contains
some discussion and interpretation of some simple consequences of Theorems 1.3
and 1.4, in particular Corollary 1.5 below. We first observe that for ¥ < 4, Theo-
rem 1.4 implies that R determines n7 almost surely for any given T > 0. In par-
ticular, this means that R determines an entire reverse Loewner evolution f, = f/*
for all £ > 0, and that this f,h is (in law) a reverse SLE, flow. Similarly, given a
chordal curve n from 0 to oo in H, we denote by f,’ the forward Loewner flow
corresponding to 1. The following is now an immediate corollary of the domain
Markov property for SLE and Theorems 1.2, 1.3 and 1.4. As usual, transformations
f(D, h) are defined using (1.3).

COROLLARY 1.5. Fixk € (0,4). Let h =g + h be as in Theorem 1.2 and let
n be an SLE, on H chosen independently of h. Let Dy be the left component of
H \ 1 and hP' the restriction of h to D1. Let Dy be the right component of H \ n
and hP? the restriction of h to Dy. Fort > 0, write

ZEP (D1, W), (D2, P2)) = (£ (D1 W), £ (D2 ™)),
(D1, K1), (D2, P2)) = (7 (D1 W), £ (D2 hP2)).

Note that both h and n are determined by the pair (D1, hP1), (D,, hP?)), and that
fth and f," are also a.s. determined by this pair, so that the maps ZFAP and ZE?P
are well defined for almost all pairs (D1, hPvY, (Dy, hP2)) chosen in the manner
described above. Then the law of (D1, hPV), (D, hP2)) is invariant under ZICAP
forallt. Also, forall s and t,

CAP __ -CAP -CAP
Zs—l—t _Zs Zt

almost surely.

Because the forward and reverse Loewner evolutions are parameterized accord-
ing to half plane capacity, we refer to the group of transformations ZICAP as the
capacity quantum zipper; see Figure 6. (The term “zipper” in the Loewner evo-
lution context has been used before; see the “zipper algorithm™ for numerically
computing conformal mappings in [61] and the references therein.) When ¢ > 0,
applying Z,CAP is called “zipping up” the pair of quantum surfaces by ¢ capacity
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units and applying ZE{*P
units.

To begin to put this construction in context, we recall that the general conformal
welding problem is usually formulated in terms of identifying unit discs D1 and D,
along their boundaries via a given homeomorphism ¢ from 91D to 9D to create
a sphere with a conformal structure. Precisely, one wants a simple loop 7 in the
complex sphere, dividing the sphere into two pieces such that if conformal maps ;
from the D; to the two pieces are extended continuously to their boundaries, then
Viov, Yis¢.In general, not every homeomorphism ¢ between disc boundaries is
a conformal welding in this way, and when it is, it does not always come from an 7
that is (modulo conformal automorphisms of the sphere) unique; in fact, arbitrarily
small changes to ¢ can lead to large changes in n and some fairly exotic behavior
(see, e.g., [13]).

The theorems of this paper can also be formulated in terms of a sphere ob-
tained by gluing two discs along their boundaries: in particular, one can zip up the
quantum surfaces of Corollary 1.5 “all the way” (see Figure 16 and Section 5.2),
which could be viewed as welding two Liouville quantum surfaces (each of which
is topologically homeomorphic to a disc) to obtain an SLE loop in the sphere,
together with an instance of the free boundary GFF on the sphere.

Note that in the construction described above, the quantum surfaces are defined
only modulo an additive constant for the GFF, and we construct the two surfaces
together in a particular way. In Section 1.6 (Theorem 1.8), we will describe a
related construction in which one takes two independent quantum surfaces (each
with its additive constant well defined) and welds them together to obtain SLE.

As mentioned in Section 1.1, Peter Jones conjectured several years ago that an
SLE loop could be obtained by (what in our language amounts to) welding a quan-
tum surface to a deterministic Euclidean disc. (The author first learned of this con-
jecture during a private conversation with Jones in early 2007 [40].) Astala, Jones,
Kupiainen and Saksman recently showed that such a welding exists and deter-
mines a unique loop (up to conformal automorphism of the sphere) [5, 6]. Binder
and Smirnov recently announced (to the author, in private communication [96])
that they have obtained a proof that the original conjecture of Jones is false. By
computing a multifractal spectrum, they showed that the loop constructed in [5, 6]
does not look locally like SLE. However, our construction, together with Theo-
rem 1.8 below, shows that a natural variant of the Jones conjecture—involving two
independent quantum surfaces instead of one quantum surface and one Euclidean
disc—is in fact true.

We also remark that the “natural” d-dimensional measure on (or parameteri-
zation of) an SLE curve of Hausdorff dimension d was only constructed fairly
recently [49, 51, 52], and it was shown to be uniquely characterized by certain
symmetries, in particular the requirement that it transforms like a d-dimensional
measure under the maps f; (i.e., if the map locally stretches space by a factor of r,
then it locally increases the measure by a factor of %). Our construction here can

is called “zipping down” or “unzipping” by ¢ capacity
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be viewed as describing, for k < 4, a natural “quantum” parameterization of SLE,,
which is similarly characterized by transformation laws, in particular the require-
ment that adding C to h—which scales area by a factor of ¢” € —scales length by
a factor of €”¢/2. These ideas are discussed further in [30].

The relationship between Euclidean and quantum natural fractal measures and
their evolution under capacity invariant quantum zipping is developed in [30] in a
way that makes use of the KPZ formula [29, 46].

1.6. Quantum wedges and quantum length stationarity. This subsection con-
tains ideas and definitions that are important for the proofs of Theorem 1.3 and 1.4,
as well as the statement of another of this paper’s main results, Theorem 1.8, which
we will actually prove before Theorem 1.3. The reader who prefers to first see
proofs of Theorems 1.1 and 1.2 and some discussion of the consequences may
read Sections 3 and 4, as well as much of Section 5, independently of this subsec-
tion.

Theorem 1.8 includes a variant of Corollary 1.5 in which one parameterizes
time by “amount of quantum length zipped up” instead of by capacity. The “sta-
tionary” picture will be described as a particular random quantum surface S with
two marked boundary points and a chordal SLE 5 connecting the two marked
points. The theorem will state that this 7 divides S into two quantum surfaces S;
and S, that are independent of each other. (One can also reverse the procedure
and first choose the S;—these are the so-called y-quantum wedges mentioned
earlie—and then weld them together to produce S and the interface 7.) As we
have already mentioned, this independence appears at first glance to be a rather
bizarre coincidence. However, as we will see in Section 2.2, this kind of result is
to be expected if SLE-decorated Liouville quantum gravity is (as conjectured) the
scaling limit of path-decorated random planar maps.

Before we state Theorem 1.8 formally, we will need to spend a few paragraphs
constructing a particular kind of scale invariant random quantum surface that we
will call an “o quantum wedge.” The reader who has never encountered quantum
wedges before may wish to first read Section 1.4 of [23], which contains a more
recent and better illustrated discussion of the quantum wedge construction.

We begin this construction by making a few general remarks. Recall that given
any quantum surface represented by (D, h)—with two distinguished boundary
points—we can change coordinates via (1.3) and represent it as the pair (H, /) for
some &, where H is the upper half plane, and the two marked points are taken to be
0 and co. We will represent the “quantum wedges” we construct in this way, and
we will focus on constructions in which there is almost surely a finite amount of
wp mass and vy mass in each bounded neighborhood of 0 and an infinite amount in
each neighborhood of co. In this case, the corresponding quantum surface is half-
plane-like in the sense that it has one distinguished boundary point “at infinity” and
one distinguished “origin”—and each neighborhood of “infinity” includes infinite
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area and an infinite length portion of the surface boundary, while the complement
of such a neighborhood contains only finite area and a finite-length portion of the
surface boundary. We will let S;, denote the doubly marked quantum surface de-
scribed by £ in this way.

The h describing Sy, is canonical except that we still have one free parameter
corresponding to constant rescalings of H by (1.3). For each @ > 0, such arescaling
is given by

(1.8) (H, h) — (H, h(a-) + Qlog|al).

We can fix this parameter by requiring that w;(B1(0) NH) = 1. We will let uy
be zero on the negative half plane so that we write this slightly more compactly
as up(B1(0)) = 1. (Alternatively, one could normalize so that v, ([—1, 1]) = 1.)
We call the 4 for which this holds the canonical description of the doubly marked
quantum surface.

Now to construct a “quantum wedge” it will suffice to give the law of the corre-
sponding A. To this end, we first recall that one can decompose the Hilbert space
for the free boundary GFF into an orthogonal sum of the space of functions which
are radially symmetric about zero and the space of functions with zero mean about
all circles centered at zero [29]. Consequently, we can write h(-) = h).|(0) + (),
where hZ(O) =0 forall ¢, and & ;| (0) is (of course) a continuous and radially sym-
metric function of z. This is a decomposition of the GFF # into its projection onto
two (-, -)v orthogonal subspaces, so 4|.;(0) and h'() are independent of each other
[91]; the latter is a scale invariant random distribution and defined without an ad-
ditive constant (since its mean is set to be zero on all circles centered at the origin).
Now we define three types of quantum surfaces (the first two being defined only
up an additive constant for 4, which corresponds to a constant-factor rescaling of
the surface itself). The third may seem unmotivated; however, the reader may note
that it is similar in the spirit to the second, except that the third / is actually a well-
defined random distribution (as opposed to a random distribution modulo additive
constant), so that (H, /) is a well-defined quantum surface.

1. Definition—unscaled quantum wedge on H: The quantum surface (H, &)
where £ is an instance of the free boundary GFF (which is defined up to addi-
tive constant, so that the quantum surface is defined only up to rescaling). In this
case, h|.| agrees in law with B_oe|.| when By, ¢ € R is +/2 times a standard Brow-
nian motion defined up to a global additive constant. We think of B; as a Brownian
motion with diffusive rate 2, which will be understood throughout the discussion
below. We can write

h=h"()+ B 10g),

where A7(-) and B_ log || are independent.
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2. Definition—a-log-singular free quantum surface on H: The quantum sur-
face (H, i) where

(1.9) h=h"()+a(=log|-|) + B_og|,

with 1" and B as above (and 4 also defined only up to additive constant).
3. Definition—o-quantum wedge: for o < 0, the quantum surface (H, /) where

(1.10) h=h"()+ Q(=log|- 1) + A_iog|s

and the process A;, t € R is defined in a particular way: namely, for r > 0, A; is a
Brownian motion with drift « — Q, that is, A; = B; + (¢ — Q)t. Also, for t > 0,
the negative-time process A_; is chosen independently as a Brownian motion with
drift — (o — Q) conditioned not to revisit zero. This involves conditioning on a
probability zero event, so let us state this another way to be clear. Note that B, =
B; — (¢ — Q)t has positive drift, and hence a.s. so = sup{s : Es =0} < 00. Then
the law of A_; (for r > 0) is the law of §,+so, fort > 0.

To begin to motivate the definition above, note that applying the coordinate
transformation (1.8) to the o-quantum wedge defined by (1.10), where the coordi-
nate change map is a rescaling by a factor of a, amounts to replacing (1.10) with

h¥(a-)+ Q(—logla - [) + A_10g|a;| + Qloglal
=h'(a)+ Q(~log|- 1) + Atoga—tog

Since the law of h' is scaling invariant, we find that the coordinate change de-
scribed amounts to a horizontal translation of A by —loga. That is, the quantum
surface obtained by sampling A and then sampling 4" independently agrees in law
with the quantum surface obtained by sampling A, translating the graph of A hori-
zontally by some (possibly random) amount, and then sampling /" independently.

We think of A; as a Brownian process that drifts steadily as a Brownian motion
with drift (¢ — Q) from —oo, reaches zero at some point, and then subsequently
evolves as a regular Brownian motion with the same drift. Since translating the
graph of A; horizontally does not affect the law of the quantum surface obtained,
we choose (for concreteness) the translation for which inf{r : A; = 0} = 0. (We
remark that the process A; can also be interpreted as the log of a Bessel process,
reparameterized by quadratic variation, noting that the graph of such a reparame-
terization is a priori only defined up to a horizontal translation; this point of view
is explained and used extensively in [23].)

Now we make another simple claim: the «-quantum wedge is a doubly marked
quantum surface whose law is invariant under the multiplication of its area by a
constant. To explain what this means, let us observe that when C € R, we can
“multiply the surface area by the constant ¢©” by replacing & with & + C/y, or
equivalently, by replacing A with A+ C/y. Let o = inf{z : A, =0} and write A; =
A+ +C/y. By the definition of #y, we find that Zt (like A;) is a process that drifts
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up from —oo, reaches zero for the first time when ¢ = 0, and then subsequently
evolves as a Brownian motion with drift. Indeed, it is not hard to see that A ¢ has the
same law as A;. To deduce the claim, we then observe that the distribution of /" is
fixed; and since the radial parts /.| (0) of the GFF are continuous and independent
of ;,+ and converge to a limit in law, we may conclude that e’ gy jt CONVErges
in law.

For future reference, we mention that one has a natural notion of “convergence”
for quantum surfaces of this type: if 4!, h2, ... are the canonical descriptions of a
sequence of doubly marked quantum surfaces and # is the canonical description
of Sy, then we say that the sequence S, converges to S, if the corresponding
measures [, converge weakly to u, on all bounded subsets of H.

One motivation for the definition of a quantum wedge is the following, which
can be deduced from the description of quantum typical points given in Section 6
of [29]. It says (in a certain special setting; for a stronger result, see Proposi-
tion 5.5) that if one zooms in near a “‘quantum-boundary-measure-typical” point,
one finds that the quantum surface looks like a y-quantum wedge near that point.

PROPOSITION 1.6. Fix y €[0,2) and let D be a bounded subdomain of H
for which 3D N R is a segment of positive length. Let h be an instance of the GFF
with zero boundary conditions on d D\ R and free boundary conditions on d DNR.
Let [a, b] be any subinterval of 9D N R and let Ho be a continuous function on D
that extends continuously to the interval (a, b). Let dh be the law of hy + h, and
let vyla, b]ldh denote the measure whose Radon—Nikodym derivative w.r.t. dh is
vpla, b). (Assume that this is a finite measure, i.e., the dh expectation of vyla, b]
is finite.) Now suppose we:

1. sample h from vy[a, bldh (normalized to be a probability measure),

2. then sample x uniformly from vy, restricted to |a, b] (see Figure 7) (normal-
ized to be a probability measure),

3. and then let h* be h translated by —x units horizontally (i.e., recentered so
that x becomes the origin).

Then as C — oo the random quantum surfaces Spxycy, converge in law (w.rt.
the topology of convergence of doubly-marked quantum surfaces) to a y -quantum
wedge.

a T b

F1G. 7. Point x sampled from vy, (restricted to |a, b]).
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PROOF. We first recall that in this setting the description of quantum typical
points in Section 6 of [29] implies a very explicit description of the joint law of the
pair x and 4 sampled in Proposition 1.6. The marginal law of x is absolutely con-
tinuous with respect to Lebesgue measure, and conditioned on x the law of # is that
of its original law plus a deterministic function that has the form —y log |x — -| plus
a deterministic smooth function. In a small neighborhood of x, this deterministic
smooth function is approximately constant, which means that 2* looks like (up to
additive constant) the & used to define an «-log-singular free quantum surface in
(1.9), with @ = y. If we write A} = B; + (o — Q)t, then we find that 2™ looks like
the & used to define a y-quantum wedge in (1.10), except with A replaced by A’.

Now replacing ~2* by h* + C/y corresponds to adding C/y to the process B
from (1.9), and hence also corresponds to adding C/y to the process A’, which
translates the graph of A’ vertically. Recall from above that translating the graph
of A" horizontally corresponds to a coordinate change; so we can translate A" so
that it hits zero for the first time at the origin. It is not hard to see that as C — oo,
the law of A’ thus translated converges to the law of A. Since the law of 4" is scale
invariant and can be chosen independently, this implies the proposition statement.

t

We will later show (see Proposition 5.5) that the conclusion of the proposi-
tion still holds if (when generating x and /#) we condition on particular values for
vula, x] and vy [x, b].

The following is an immediate consequence of Proposition 1.6. It tells us that
the y-quantum wedge is stationary with respect to shifting the origin by a given
amount of quantum length. (When y = 0, the proposition simply states that H it-
self is invariant under horizontal translations. Proposition 1.7 is the general quan-
tum analog of this invariance.)

PROPOSITION 1.7.  Fix a constant L > 0. Suppose that (H, h) is a y -quantum
wedge. Then choose y > 0 so that vy[0, y] = L, and let h* be h translated by —y
units horizontally (i.e., recentered so that y becomes the origin). Then (H, h*) is a
y -quantum wedge.

PROOF. Suppose that x is the point chosen uniformly from the quantum
boundary measure in Proposition 1.6, and x’ is the point translated § L quantum
length units to the right from x, so that vj[x, x'] = § L. Note that such an x’ exists
with a probability that tends to 1 as § — 0, and that the law of x” converges (in
total variation sense) to the law of x as § — 0. In the rescaled surfaces in Propo-
sition 1.6, boundary lengths are scaled by ¢¢/2, so if we set § = ¢~¢/2, then the
distance between x and x’ is L after the rescaling. Since this § tends to zero as
C — oo we conclude that the limiting surface law is (as desired) invariant under
the operation that translates the origin by L units of quantum boundary length. [

The following will be proved in Section 5.
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THEOREM 1.8. Wedge decomposition: Fix y € (0,2), and let S be a (y —
2/y)-quantum wedge with canonical description h. Let n be a chordal SLE, in H
from 0 to oo, with k = y?, chosen independently of h. Let D and D be the left
and right components of H\ n, and let h®' and hP? be the restrictions of h to these
domains. Then the quantum surfaces represented by (D1, hPvY and (D3, hP?) are
independent y -quantum wedges (marked at 0 and o), and their quantum bound-
ary lengths along n agree.

Zipper stationarity: Moreover, suppose we define

ZEN((Dr.n1). (D2, h"2))

as follows. First, find z on n for which the quantum boundary lengths along D1
and Dy (which are well defined by unzipping) along n between 0 and z are both
equal to t. Let t’ be the time that n hits z (when n is parameterized by capacity)
and define

ZLEEN((Dy, hPY), (D2, hP2)) = rescaling of (f!1(D1, hPY), f1(Da, h"2)),

where the rescaling is done via (1.8) with the parameter a chosen so that B1(0)
has area one in the transformed quantum measure. Then the following hold:

1. The inverse Z,LEN of the operation ZI_‘],EN is a.s. uniquely defined (via con-
formal welding).

2. ZHEN = ZLENZLEN gimost surely for s, t € R.

3. The law of the pair (D1, hPYY, (Dy, hP2)) is invariant under Z,LEN for all

teR.

It also follows from Theorem 1.4 and the subsequent discussion that the two
independent y-quantum wedges uniquely determine 4 and 1 almost surely. We
refer to the group of transformations Z,LEN as the length quantum zipper. When
t > 0, applying Z,LEN is called “zipping up” the pair of quantum surfaces by ¢
quantum length units and applying ZE?N is called “zipping down” or “unzipping”
by ¢ quantum length units. When we defined the operations Z,CAP , h was defined
only up to additive constant, and the zipping maps f; were independent of that
constant. By contrast, Z,LEN represents zipping by an actual quantity of quantum
length, and hence cannot be defined without the additive constant being fixed.

We will give a detailed proof in Section 5, which is in some sense the heart of the
paper. But for now, let us give a brief overview of the proof and the relationship
to our other results. We will start with the scenario described in Figure 6, with
h normalized to have mean zero on d B (0), except that the measure dh on # is
replaced by the probability measure whose Radon—Nikodym derivative w.r.t. dh is
vy (—48, 0) for some fixed § (see Figure §).

Then we will sample x from vy, restricted to (—&, 0) (normalized to be a prob-
ability measure) and “zip up” until x hits the origin (to obtain a “quantum-length-
typical” configuration). We then zoom in near the origin (multiplying the area by
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A
aB(O)
TN N

FI1G. 8. Choose h as in Theorem 1.2 [normalized by h1(0) = 0] except with the law of h weighted
by vy ([—38,0]) for some fixed 5§ € (0,1). Then conditioned on h, sample x from vy restricted to
[—6, 0] (normalized to be a probability measure). Take T so that fT is the map zipping up [x, 0] with
[0, R(x)]. Consider the three random surfaces obtained by choosing a semi-disc of quantum area &
centered at each of x and R(x) (on the left-hand side) and 0 (on the right side), and multiplying
areas by 1/& (zooming in) so that all three balls have quantum area 1. In the & — 0 limit, the left two
quantum surfaces become independent y -quantum wedges, and the right is the conformal welding
of these two.

#~1—and hence the boundary length by £~!/2—say). We then use a variant of

Proposition 1.6 (namely, Proposition 5.5) to show that (in the & — 0 limit) the
lower two rescaled surfaces on the lower left of Figure 8 become independent
y-quantum wedges.

The fact that the curve on the right in Figure 8 is (in the & — 0 limit) an SLE,
independent of the canonical description £ on the right will be shown in Section 5
by directly calculating the law of the process that “zips up” [x, 0] with [0, R(x)].
It could also be seen by showing that we can construct an equivalent pair of glued
surfaces by beginning with Figure 6 [with 4 normalized to have mean zero on
dB1(0)] and then zipping down by a random amount (chosen uniformly from an
interval) of quantum length, then zooming in by multiplying lengths by 1/&, and
then taking the & — 0 limiting law. (In this case, the domain Markov property of
the original SLE, and its independence from the original GFF, would imply that
the conditional law of the still-zipped portion of the curve is an SLE,, independent
of h.)

Similar arguments to those in [29] will show that the procedure in Figure 8
produces a configuration related to the one in Figure 5 except that it is in some
sense weighted by the amount of quantum mass near zero. It will turn out that
this weighting effectively adds —y log| - | to the ho of Theorem 1.2 and Corol-
lary 1.5. This is why Theorem 1.8 involves a (y — 2/y)-quantum wedge, instead
of a (—2/y)-quantum wedge, as one might initially guess based on Theorem 1.2.
Once we have all of this structure in place, the really crucial step will be showing
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that parameterizing time by the amount of “left boundary quantum length” zipped
up yields the same stationary picture as parameterizing time the amount of “right
boundary quantum length” zipped up. Given this, we will then use the ergodic the-
orem to show that over the long term, the amount of left bounday quantum length
zipped up approximately agrees with the amount of right boundary length zipped
up. Using scale invariance symmetries, we will then deduce that this agreement
almost surely holds exactly on all scales.

1.7. Organization. Section 2 provides heuristic justification and motivation
for the main results about AC geometry and Liouville quantum gravity. (An inter-
pretation of AC geometry in terms of “imaginary curvature” appears in the Ap-
pendix.) Section 3 gives a brief overview of the Gaussian free field. Section 4
proves Theorems 1.1 and 1.2, along with a generalization to other underlying ge-
ometries. Section 5 proves Theorems 1.8 and 1.3 (in that order), along with some
additional results about zipping processes and time changes. (Recall that we have
already proved that Theorem 1.4 is a consequence of Theorem 1.3.) Section 6,
finally, presents a list of open problems and conjectures.

2. Geometric interpretation. This section summarizes some of the conjec-
tures and intuition behind our main results, including some discrete-model-based
reasons that one would expect the coupling and welding theorems to be true. This
section may be skipped by the reader who prefers to proceed directly to the proofs.

2.1. Forward coupling: Flow lines of ¢!"/*. Fix a planar domain D, viewed
as a subset of C, a function 4 : D — R, and a constant y > 0. An AC ray of h is
a flow line of the complex vector field e/"/X beginning at a point x € D, that is, a
path 5 : [0, co) — C that is a solution to the ODE:

9 .
2.1) n'(t) = () = M/ whent > 0, n(0) = x,

until time T = inf{tr > 0: n(t) ¢ D}. When A is Lipschitz, the standard Picard—
Lindelof theorem implies that if x € D, then (2.1) has a unique solution up until
time 7 (and T is itself uniquely determined). The reader can visually follow the
flow lines in Figure 9.

If & is continuous, then the time derivative n’(z) moves continuously around the
unit circle, and 4 (n(¢)) — h(n(0)) describes the net amount of winding of " around
the circle between times 0 and ¢.

A major problem (addressed in depth in an imaginary geometry series [64—67])
is to make sense of these flow lines when / is a multiple of the Gaussian free field.
We will give here just a short overview of the way these objects are constructed.
Suppose that 7 is a smooth simple path in H beginning at the origin, with (forward)
Loewner map f; = f,'. We may assume that 7 starts out in the vertical direction,
so that the winding number is /2 for small times. Then when 7 and /& are both
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FI1G. 9. The complex vector flow e h(x, y)=y, h(x,y)= x4+ y2.

smooth, the statement that 7 is a flow line of ¢//X is equivalent to the statement
that for each x on 1((0, ¢)) we have

(2.2) xarg f/(z) > —h(x)
as z approaches x from the left side of n and
(2.3) xarg f/(z) > —h(x) + xm

as z approaches x from the right side of n (as Figure 10 illustrates). Recall that
arg f/(z)—a priori determined only up to a multiple of 27—is chosen to be con-
tinuous on H \ 7([0, ¢]) and 0 on R. If x =0, then (2.2) and (2.3) hold if and only
if & is identically zero along the path 7, that is, 1 is a zero-height contour line of h.

In [86, 87], it is shown that when one takes certain approximations 4° of an
instance & of the GFF that are piecewise linear on an e-edge-length triangular
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F1G. 10. Winding number along nt determines arg f}, which is the amount a small arrow near
nr is rotated by fr.

mesh, then conditioned on a zero chordal contour line of 4° there is in some ¢ — 0
limiting sense a constant “height gap” between the expected heights immediately
to one side of the contour line and those heights on the other. We might similarly
expect that if one looked at the expectation of /¢, given a chordal flow line n of
¢'""/X | there would be a constant order limiting height gap between the two sides;
see Figure 11.

This suggests the form of bh; given in Theorem 1.1, which comes from taking
(2.2) and (2.3) and modifying the height gap between the two sides by adding a
multiple of arg f;. (As in [87], the size of the height gap—and hence the coefficient
of arg f; in the definition of fj;—is determined by the requirement that b;(z) be a
martingale in #; see Section 4.) Interestingly, the fact that winding may be ill-
defined at a particular point on a fractal curve turns out to be immaterial. It is the
harmonic extension of the boundary winding values (the arg f;) that is needed to
define b, and this is defined even for nonsmooth curves.

The time-reversal of a flow line of ¢"*/X is a flow line of ¢! /x+7 ), which
at first glance appears to imply that there should not be a height gap between the
two sides (since if the left side were consistently smaller for the forward path,
then the right side would be consistently smaller for the reverse path). To counter
this intuition, observe that, in the left diagram in Figure 9, the left-going infinite

/N
ho fr —xarg fp

x A
¥ o A - h
¥
®
#‘-*nT ~
S, ' L
~ A ow
AR N A A 4 ¥
NN N N\ ¥ ¥ ¥ K NN N N g ¥ ¥ K ¥

FI1G. 11. Forward coupling with arrows in /X direction (sketch), illustrating the constant angle
gap between the two sides of the curve n, constant angles along the positive and negative real axes,
and random angles (not actually point-wise defined if h is the GFF) in H \ n.
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horizontal flow lines (at vertical heights of km, k odd) are “stable” in that the
flow line beginning at a generic point slightly off one of these lines will quickly
converge to the line. The right-going horizontal flow lines (at heights km, k even)
are unstable. In a stable flow line, & appears to generally be larger to the right
side of the flow line and smaller to the left side. It is reasonable to expect that a
flow line of ¢!"*/x started from a generic point would be approximately stable in
that direction—and in particular would look qualitatively different from the time
reversal of a flow line of ¢! **/X+7) started from a generic point.

2.2. Reverse coupling: Planar maps and scaling limits. In this section, we
conjecture a connection between path-decorated planar maps and SLE-decorated
Liouville quantum gravity (in particular, the quantum-length-invariant decorated
quantum wedge of Theorem 1.8). We will explain the details in just one example
based on the uniform spanning tree. (Variants based on Ising and O(n) and FK
models on random planar maps—or on random planar maps without additional
decoration besides the chordal paths—are also possible. Many rigorous results for
percolation and the Ising model have been obtained for deterministic graphs in [14,
16, 97-100] (and in many other papers we will not survey here), and one could
hope to extend these results to random graphs. One could also consider discrete
random surfaces decorated by loops and in the continuum replace SLE decorations
with CLE decorations [92, 94].) As mentioned earlier, we will see that the more
surprising elements of Theorem 1.8 are actually quite natural from the discrete
random surface point of view.

Let G be a planar map with exactly n edges (except that each edge on the outer
face is counted as half an edge) and let T be a subgraph consisting of a single
boundary cycle, a chordal path from one boundary vertex a to another boundary
vertex b that otherwise does not hit the boundary cycle, and a spanning forest
rooted at this “Figure 8” structure. (See Figure 12.) Here, T is like the wired span-
ning tree (in which the entire boundary is considered to be one vertex), except that

F1G. 12. Planar map with a distinguished outer-boundary-plus-one-chord-rooted spanning tree
(solid black edges), with chord joining marked boundary points a and b, plus image of tree under
conformally uniformizing map ¢ to H (sketch).
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there is also one chord connecting a pair of boundary vertices. What happens if we
consider the uniform measure on all pairs (G, T') of this type? This model is fairly
well understood combinatorially (tree-rooted maps on the sphere are in bijective
correspondence with certain walks in Z? — see, e.g., [73] as well as [12] and the
references therein—and our model is a simple variant of this) and in particular, it
follows from these bijections that the length of the boundary of the outer face of
this map will be of order v/n with high probability when n is large. Now, can we
understand the scaling limit of the random pair (G, T') as n — oo?

There are various ways to pose this problem. For example, one could consider G
as a metric space and aim for convergence in law w.r.t. the Gromov—Hausdorff met-
ric on metric spaces. The reader is probably aware that there is a sizable literature
on the realization of a random metric space called the Brownian map as a Gromov—
Hausdorff scaling limit of random planar maps of various types. However, since
this paper is concerned with the conformal structure of random geometry, we will
try to phrase the problem in a way that keeps track of that structure.

First, we would like to understand how to conformally map the planar map to the
half plane, as in Figure 12. We may consider G as embedded in a two-dimensional
manifold with boundary in various ways, one of which we sketch here: first add an
interior vertex to each face of G and an edge joining it to each vertex of that face (as
in Figure 13). Each interior edge of G is now part of a quadrilateral (containing one
vertex for each interior face of G and one for each vertex of G) and we will endow
that quadrilateral with the metric of a unit square [0, 1] x [0, 1]. Similarly, the
triangle containing an exterior edge of G is endowed with the metric of half a unit
square (split on its diagonal, with the exterior edge as the hypotenuse). When two
squares or half squares share an edge, the points along that edge are identified with
one another in a length preserving way. We may view the collection of (whole and
half) unit squares, glued together along boundaries, as a manifold (with isolated
conical singularities at vertices whose number of incident squares is not four) with
a uniquely defined conformal structure (note that it is trivial to define a Brownian
motion on the manifold, since it a.s. never hits the singularities). We may choose a
conformal map ¢ from this manifold to H, sending a to 0 and b to oo, as sketched
in Figure 12.

FI1G. 13. An arbitrary planar map can be used to construct a collection of stitched-together unit
squares and half unit squares. The result is viewed as a two-dimensional manifold with boundary.
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This ¢ is determined only up to scaling, but we can fix the scaling in many
ways. We will do so by considering a number k& < n and requiring that the area of
d)‘l (B1(0)) be equal to k. Then ¢ determines a random measure on H (the image
of the area measure on the manifold) in which the measure of B;(0) is determin-
istically equal to k; let u, s denote this random measure divided by k, so that
n.k(B1(0)) = 1. We expect that if one lets n and k tend to oo in such a way that
n/k tends to oo, then the random measures p, x will converge in law with respect
to the metric of weak convergence on bounded subsets of H to the u = uj, corre-
sponding to the canonical description % of the (y — 2/y)-quantum wedge of The-
orem 1.8. [By compactness, the laws of the u, x restricted to the closure of B;(0)
have at least a subsequential limit.] We similarly conjecture that v, —defined to
be 1/+/k times the image of the manifold’s boundary measure—will converge in
law to the corresponding v,. (We remark that one could alternatively formulate
the conjecture by taking an infinite volume limit first, that is, letting n go to infin-
ity while keeping k constant to define a limiting measure ftoo k = limy— o0 tn k-
This kind of infinite volume limit of random planar maps was constructed in [3].
One can subsequently take k — oo and conjecture that the limit is @y. A similar
conjecture in [29] was formulated in terms of infinite volume limits.)

We are currently unable to prove these conjectures, but related questions about
Brownian motion on random surfaces have been explored in [32], where it was
shown that certain infinite random triangulations and quadrangulations (without
boundaries) are parabolic (as opposed to hyperbolic) Riemann surfaces [32]. (This
is equivalent to showing that a Brownian motion visits each face infinitely often
almost surely; see analogous discrete results in [3].)

Now let us make some more observations. If we take k, n, and n/k to be large
and condition on G, a, and b, then what is the conditional law of ¢(T), as de-
picted in Figure 12? The conditional law of T itself is uniform among all valid
8-rooted spanning forest configurations. The physics literature frequently invokes
a kind of “conformal invariance Ansatz” which suggests that this random path (and
many other random sets in critical two-dimensional statistical physics) should be
a conformally invariant object.

In this case, we claim that the law of the chordal path should be approximately
that of a chordal SLE; even after we have conditioned on G, a, and b, which deter-
mine the measure [iy ;. The reason for our claim is that a related SLE, convergence
result is obtained in [50] in the case that G is a deterministic lattice graph, and this
was generalized substantially in [105] where it was shown that if a graph can be
embedded in the plane in such a way that simple random walk approximates Brow-
nian motion, then the uniform spanning tree paths approximate a form of SLE,.
We do not know whether the hypotheses of [105] hold in our setting. Brownian
motion is conformally invariant, but it is not clear whether simple random walk on
our random G approximates Brownian motion on the corresponding quadrangu-
lated manifold with high probability. However, it seems very natural to conjecture
that the hypotheses hold. In any case, we stress the following: if our scaling limit
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conjecture holds, then the asymptotic independence of the chordal path from i, &
would be consistent with the independence of n and 4 in Theorem 1.8.

Next let D1 and D; be the wired-spanning-tree decorated manifolds to the left
and right of the chordal path. Note that once we condition on the length of the
chordal path in (G, T') and the number of edges on each side of it, the laws of D
and D; are independent of one another. We might guess that the local behavior
of Dy and D; near a would be approximately independent of these global num-
bers. We expect a similar property to hold in the scaling limit, which would be
consistent with the independence of the left and right quantum surfaces described
in Theorem 1.8. (The idea of gluing together independent discrete surfaces in this
manner has been explored in many works by Duplantier and others, beginning per-
haps in [22]. The idea of gluing a whole series of discrete surfaces was used in [21]
to heuristically derive certain “cascade relations” via the KPZ formula.)

Finally, if we condition on the point » and on D; and D, then the length of
the path along which D; and Dj are glued to each other is uniform among all
possibilities (which range between 1 and the minimum M of the boundary lengths
of the two D;’s minus 1). In other words, once D; and D, and b are all fixed, we
can randomly decide how far to “zip up” or “unzip” these two surfaces (moving
the vertex a accordingly). If r is the random number of steps we zip, then r and
r 4+ m have approximately the same law (as long as m /M is small). We expect a
similar property to hold in the scaling limit, which would be consistent with the
quantum-length-zipper invariance described in Theorem 1.8.

3. Gaussian free field overview. We refer the reader to [91] for a survey of
the Gaussian free field (GFF) and several additional references. For completeness,
we include a short overview, closely following [87, 91]. For the reader who is
already familiar with the zero and free boundary GFF, it may be sufficient (to set
notation) to read only the numbered equations in this section and the statement of
Proposition 3.1.

3.1. GFF definitions.

3.1.1. Dirichlet inner product. Fix a simply connected planar domain D C C
(with D £ C). Let Hy(D) be the space of smooth, compactly supported functions
on D, and let H(D) [sometimes denoted by H(l)(D) or W2(D)] be its Hilbert
space closure under the Dirichlet inner product

(fi, f2)y = @) fD V@) V) dz.

Let ¥ be a conformal map from another domain D to D. Then an elementary
change of variables calculation shows that

/~V(f1 oY) - V(froP)dx = f (Vfi -V f)dx.
D D
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In other words, the Dirichlet inner product is invariant under conformal transfor-
mations.

We write (f1, f2) = [p fi1(x) f2(x) dx for the L? inner product on D. We write

Ll = (f. HY2 and || fllv := (f, HY2IE f1, f2 € Hy(D), then integration by

parts gives
1

(3.1 (f1. fav = 2—(f1, —Af2).
b4

3.1.2. Distributions and the Laplacian. 1t is conventional to use H (D) as
a space of test functions. This space is a topological vector space in which the
topology is defined so that ¢ — 0 in Hy(D) if and only if there is a compact
set on which all of the ¢, are supported and the mth derivative of ¢ converges
uniformly to zero for each integer m > 1.

A distribution on D is a continuous linear functional on H (D). Since Hy (D) C
L*(D), we may view every h € L?(D) as a distribution p — (h, p). A modulo-
additive-constant distribution on D is a continuous linear functional on the sub-
space of H, (D) consisting of p for which [, p(z) dz = 0. We will frequently abuse
notation and use ~—or more precisely the map denoted by p — (h, p)—to rep-
resent a general distribution (which is a functional of p), even though 4 may not
correspond to an element of L2(D). [Later, we will further abuse notation and use
p to represent a nonsmooth function or a measure; in the latter case (4, p), when
defined, will represent the integral of / against that measure.]

We define partial derivatives and integrals of distributions in the usual way (via
integration by parts), that is, for p € Hs(D),

(ee)==(50)
0x )= ’8x'0'

In particular, if £ is a distribution then A# is a distribution defined by (A#, p) :=
(h, Ap). When 4 is a distribution and p € H; (D), we also write

1 1
(h, p)v := z—(=Ah, p) = —(h, —Ap).
2 2

When x € D is fixed, we let G +(¥) be the harmonic extension to y € D of the
function of y on dD given by —log|y — x|. Then Green’s function in the domain
D is defined by

G(x,y)=—logly — x| — G (y).

When x € D is fixed, Green’s function may be viewed as a distributional solution
of AG(x, ) = —2m8,(-) with zero boundary conditions [91]. It is nonnegative for
all x,ye Dand G(x,y) =G(y, x).

For any p € Hg(D), we write

1
—A—lp:=ZfDG<~,y)p(y>dy.
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This is a C*® function in D whose Laplacian is —p. Indeed, a similar definition can
be made if p is any signed measure (with finite positive and finite negative mass)
rather than a smooth function. Recalling (3.1), if fi = —2x A_lpl then (h, fi)v =
(h, p1), and similarly if f, = —271A_1p2. Now (f1, f2)v = (p1, —27rA_1,02) de-
scribes a covariance that can (by the definition of —A~! p2 above) be rewritten
as

(32) Cov((h, p1), (h, p2)) = /

Dx

N X)G(x,y)p2(y)dx dy.

If p € Hy(D), may define the map (4, -) by (h, p) := (h, —27TA_lp)v, and
this definition describes a distribution [91]. [It is not hard to see that —27 A~} pE
H (D), since its Dirichlet energy is given explicitly by (3.2).]

3.1.3. Zero boundary GFF. An instance of the GFF with zero boundary con-
ditions on D is a random sum of the form & = Z?‘;l a;j fj where the «; are i.i.d.
one-dimensional standard (unit variance, zero mean) real Gaussians and the f;
are an orthonormal basis for H (D). This sum almost surely does not converge
within H (D) (since Z?‘;l le |2 is a.s. infinite). However, it does converge almost
surely within the space of distributions—that is, the limit (Z?‘; 1@ fj, p) almost
surely exists for all p € Hy(D), and the limiting value as a function of p is almost
surely a continuous functional on H;(D) [91]. We may view h as a sample from
the measure space (€2, F) where Q2 = Qp is the set of distributions on D and F
is the smallest o -algebra that makes (%, p) measurable for each p € Hy (D), and
we sometimes denote by dh the probability measure which is the law of A. If f;
are chosen in H, (D), then the values «; are clearly F-measurable. In fact, for any
f € H(D) with f =3, B f; the sum (h, f)v := ) ;;B; is as. well defined
and is a Gaussian random variable with mean zero and variance (f, f)v.

3.2. Green’s functions on C and H: Free boundary GFF. The GFF with free
boundary conditions is defined the same way as the GFF with zero boundary con-
ditions except that we replace Hs(D) with the space of all smooth functions with
gradients in L%(D) (i.e., we remove the requirement that the functions be com-
pactly supported). However, to make the correspondingly defined H (D) a Hilbert
space, we have to consider functions only modulo additive constants (since all
constant functions have norm zero). On the whole plane C, we may define the
Dirichlet inner product on the Hilbert space closure H(C) of the space of such
functions defined modulo additive constants.

Generally, given a compactly supported p (or more generally, a signed mea-
sure), we can write

1
(3.3) —ATp() =5 /C G y)p(y)dy.

with G(x,y) = —log|x — y|.
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As before, for compactly supported f and g, we have (f, g)v = %( f,—Ag)

by integration by parts, and moreover (f, —A™! p)y = ﬁ(p, f). The same holds
for bounded and not necessarily compactly supported smooth functions f and g if
the gradient of —A~!p tends to zero at infinity, which in turn happens if and only
if [cp(2)dz=0.

If [ p(z) dz # 0, then the Dirichlet energy of — A~ p will be infinite and more-
over (h, p) will not be independent of the additive constant chosen for 4. [If we
view C as a Riemann sphere, then [ p(z)dz # 0 can also be interpreted as the
statement that the Laplacian of —A~!p has a point mass at co.] When & is the
free boundary GFF on C, we will thus define the random variables (4, p) only if
the integral of p over C is zero. If p; and py each have total integral zero, we may
write

(3.4) Cov((h. p1). (h. p2)) = f(c

Using z — z to denote complex conjugation, we define, for smooth functions
h € H(C), the pair of projections

. P1(x)G(x, y)p2(y)dx dy.

X

hO(2) i= —=(h(z) — h(2)),

[\S)

E(y.— s

h(2) : ﬁ(h(z) + h(2)).
If A is an instance of the free boundary GFF on C, we may still define #© and hE
as projections of 4 onto complementary orthogonal subspaces. Their restrictions
to H are instances of the zero boundary GFF and free boundary GFF, respectively,
on H. For p supported on H we write (for z € C) p*(z) := p(z). Then we have by
definition

(19, p) = —=(h, p — p*),

[\®]

(h%, p) = —=(h. p + p%).

2

Note that (hE, p) is only defined if the total integral of p is zero, while (hO, p) is
defined without that restriction (since in any case the total integral of p — p™ will
be zero).

For p; and p, supported on H we now compute the following (first integral
taken over C x C, second over H x H):

Cov((h°, p1). (h°. p2))

1
(3.5) =2 / (1) — pE(0) log |x — ¥l (p2(y) — p2 () dx dy

— / p1(x)G™ (x, y) 2 (y) dx dy,
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where G0 (x, y) :=log |x — ¥| — log |x — y|. Similarly (first integral over C x C,
second over H x H),

Cov((hE, p1). (h®, p2))

1 i .
(3.6) =3 / (p1x) + ot (0)) log |x — ¥l (p2(y) + p2 () dx dy

= [ G (x, () dxdy,
where GHF (x, y) := —log|x — j| — log |x — y|.

3.3. GFF as a continuous functional. Note that we could have used (3.5) and
(3.6) to give an alternate and more direct definition of the zero and free boundary
Gaussian free fields on H. Here, (3.5) and (3.6) define inner products on the space
of functions p on H. They are well defined when p; and p, are smooth and com-
pactly supported functions on H [each with total integral zero in the case of (3.6)].
By taking the Hilbert space closure of functions of this type, we get a larger space
of p, which correspond to Laplacians of elements of H (H), and which cannot all
be interpreted as functions on H. For example, the p for which (4, p) is h.(2),
the mean value of & on dB.(z), is not a function, though it can be interpreted
as a measure—a uniform measure on d B;(z)—and the inner products (3.5) and
(3.6) still make sense when p1(z) dz and py(z) dz are replaced with more general
measures, as do the definitions of —A‘l,ol and —A‘l,oz.

The (h, p) are centered jointly Gaussian random variables, defined for each p
in this Hilbert space, with covariances given by the inner products (3.5) and (3.6)
(which can be defined on the entire Hilbert space). For each particular p in this
Hilbert space, (4, p) is a.s. well defined and finite; however, p — (h, p) is almost
surely not a continuous linear functional defined on the entire Hilbert space, since
a.s. h ¢ H(H).

In addition to the description of /4 as a distribution above, there are various ways
to construct a space of p values—a subset of the complete Hilbert space—endowed
with a topology that makes p — (k, p) almost surely continuous. For example,
the map i — h.(z) is an a.s. Holder continuous function of ¢ and z [29]. Also,
the zero boundary GFF can be defined as a random element of (—A)~¢L?(D)
for any ¢ > 0, and is hence a continuous linear function on (—A)?® L*(D),if D is
bounded. (See [91] for definitions and further discussion of fractional powers of
the Laplacian in this context.) Also, as mentioned earlier, both the free and zero
boundary GFFs can be understood as random distributions [91].

The issues that come up when defining p — (#, p) as a continuous function on
some topological space of p values are the same ones that come up when rigor-
ously constructing a Brownian motion B;: one can give the joint law of B, for any
finite set of ¢ values explicitly by specifying covariances, and this determines the
law for any fixed countable set of ¢ values, but one needs to overcome some (mild)
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technicalities in order to say “B; is almost surely a continuous function.” Indeed,
if one uses the smallest o -algebra in which B; is measurable for each fixed ¢, then
the event that B; is continuous is not even in the o -algebra.

On the other hand, if we are given a construction that produces a random contin-
uous function with the right finite dimensional marginals, then it must be a Brow-
nian motion. A standard fact (proved using characteristic functions and Fourier
transforms) states that a random variable on a finite dimensional space is a centered
Gaussian with a given covariance structure if and only if all of its one-dimensional
projections are centered Gaussians with the appropriate variance. Thus, to establish
that B; is a Brownian motion, it is enough to show that each finite linear combina-
tion of B; values is a (one-dimensional) centered Gaussian with the right variance.
The following proposition formalizes the analogous notion in the GFF context. It
is a standard and straightforward result about Gaussian processes (see [91] for a
proof in the zero boundary case; the free boundary case is identical).

PROPOSITION 3.1. The zero boundary GFF on H is the only random distri-
bution h on H with the property that for each p € Hy(H) the random variable
(h, p) is a mean-zero Gaussian with variance given by (3.5) (with p1 = p2 = p).
Similarly, the free boundary GFF is the only random modulo-additive-constant
distribution on H with the property that for each p € Hy(H) with [ p(z)dz =0
the random variable (h, p) is a mean-zero Gaussian with variance given by (3.6).

In our proofs of Theorem 1.1 and Theorem 1.2 in Section 4, we will first con-
struct a random distribution in the manner prescribed by the theorem statement
and then check the laws of the one dimensional projections (which determine the
laws of the finite and countably infinite dimensional projections) to conclude by
Proposition 3.1 that it must be the GFF.

We remark that knowing 4 as a distribution determines the values of «; in a ba-
sis expansion h =}, « f;, as long as the —Af; are sufficiently smooth. This in
turn determines the value of /. (z) almost surely for a countable dense set of ¢ and
z values, which determines the values for all & and z by the almost sure continuity
of hy(z) [29]. This is convenient because it means that /4, as a distribution, a.s.
determines (z, &) — h.(z) as a function, which in turn determines w;, and vj,. [We
could alternatively have defined /. (z)—and hence wj, and v,—using weighted av-
erages of i defined by integrating against smooth bump functions on B, (z) instead
of averages on d B (z). Though we will not do this here, one can easily construct
measures this way that are almost surely equivalent to ©y and vy,.]

4. Coupling the GFF with forward and reverse SLE.

4.1. Proofs of coupling theorems. This section will simultaneously prove The-
orem 1.1 and Theorem 1.2. It is instructive to prove them together, and we will put
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TABLE 1
Forward flow SLE Reverse flow SLE
dfi(z) = f() — JkdB; dfz(z)zﬁ——(z)dr—ﬁdg,
dlog f,(z) = 2(; ("))2 dr — ;/(E) dB, dlog f;(z) = g}“;f ) di - f{ < dB,
-2 2
aff @ ==L ar aff@) =2 ar
dlog f/(2) = - (2)2 dt dlog f](z) = ﬁ dt

the relevant calculations in tables, with those for the forward SLE coupling of The-
orem 1.1 on the left side and those for the reverse SLE coupling of Theorem 1.2
on the right side.

Now, using the language of stochastic differential equations and applying Itd’s
formula in the case W; = /k B;, we compute the time derivatives of the four pro-
cesses f;(z), log fi(z), f/(z), and log f/(z) in both forward and reverse SLE set-
tings. Here, f/(z) denotes the spatial derivative a% ft. (Similar calculations appear
in [87] in the case k =4.)

We next define the martingales h; in both settings and compute their stochastic
derivatives. The purpose of the stochastic calculus below is to show that the quan-
tities (f;, p) are continuous local martingales (the fact that they are martingales
will become apparent later) and to explicitly computing their quadratic variations,
so that they can be understood as Brownian motions subject to an explicit time
change. Ultimately, we will use the properties of these Brownian motions to estab-
lish couplings between SLE and the Gaussian free field.

Note that while the two columns have differed only in signs until now, the defi-
nitions of h; below will diverge in that one involves the imaginary and one the real
part of . We will write y := /min(x, 16/«) € [0, 2].

Before continuing with the calculation, we make several remarks.

TABLE 2
Forward flow SLE Reverse flow SLE
2 Nk f
X=7"7 0= f == + r
b} (2) = ;—% log fi(2) = x log f{ (2) b () = = log fi @+ Qlog f/(z)
dhf (@) = 715 d db; (@) = 735 By
b (2) :=Imbj (z) b: (z) :=Rebf(z)

dh; (2) =Im%dB, db; (2) =Ref%)d8
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REMARK 4.1. The form of dh;(z) in the forward case is significant. At time
t =0, the function —2Im(f,(z)_1) is simply —2Im(z~"). This is a positive har-
monic function whose level sets are circles in H that are tangent to R at the origin.
It is a multiple of the so-called Poisson kernel, and it is a derivative of the Green’s

function G(y, z) = G (y, z) =log | | in the following sense:
0 d|z+is 2iz —1
—G is,z} =Re —:2Imz .
[as ( )so 05|z —isls—0 |22 =)

Intuitively, the value of —2Im( ft(z)_l) represents the harmonic measure of the
tip of n; := n([0, ¢]) as seen from the point z. Roughly speaking, as one makes
observations of the GFF at points near the tip of n,, the conditional expectation of
h goes up or down by multiples of this function.

REMARK 4.2. Also, in the forward case, hg is the harmonic function on H
with boundary conditions —27/,/k on the negative real axis and 0 on the positive
real axis. We could have (for sake of symmetry) added a constant to ho (and gen-
eral ;) so that hp is equal to —X on the negative real axis and A on the positive
real axis, where A := 7r/,/k. Observe that when k = 4, we have x =0, and hence
each h; would be the harmonic function on H \ n, with boundary conditions —A
on the left side of the tip of 1; and A on the right side. In this case, the A = 7 /2 is
the same (up to a /27 factor stemming from a different choice of normalization
for the GFF) as the value A = /7 /8 obtained in [87].

REMARK 4.3. In the reverse case, the expression for df; has Re f,__é) in place

of Im % Intuitively, at time zero, when one observes what f; looks like for
small ¢, one learns something about the difference between h just to the left of 0
and A just to the right of 0. (It is this difference that determines the ratio of the
vy, densities to the left and to the right of zero, which is what determines how
the zipping-up should behave in the short term.) The conditional expectation of &
thus changes by a small multiple of Re %, which is negative on one side of the

imaginary axis and positive on the other side. Unlike Im =7 o ( L the function Re == 1a) (z)

is nonzero on R.

We use (X, Y;) to denote cross variation between processes X; and Y; up to
time ¢, so that (X,, X,) represents the quadratic variation of the process X; up to
time ¢. (The cross variation (X, Y;) is also often written as (X, Y);.) In both for-
ward and reverse flow settings, h;(z) is a continuous local martingale for each fixed
z and is thus a Brownian motion under the quadratic variation parameterization,
which we can give explicitly.

If z is a point in a simply connected domain D, and ¢ conformally maps the
unit disc to D, with ¢ (0) = z, then we refer to the quantity |¢’(0)| as the confor-
mal radius of D viewed from z. If, in the above definition of conformal radius, we
replaced the unit disc with H and 0 with i, this would only change the definition by
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TABLE 3
Forward flow SLE Reverse flow SLE
Ci(z) :=logIm f;(z) — Relog f{(z) Ci(z) .= —logIm f;(z) — Relog f/(z)
d{h:(2), b1 (2)) = —dCy(2) d(b:(2), b (2)) = —dCi(2)

an additive constant. Thus, in the forward flow case, C;(z) is (up to an additive con-
stant) the log of the conformal radius of H \ n([0, ¢]) viewed from z. In both cases,
h;(z) is a Brownian motion when parameterized by the time parameter —C;(z)
(which is increasing as a function of ¢). The fact that d(h;(z2), h;(z)) = —dC;(z)
may be computed directly via It6’s formula but it is also easy to see by taking
y — z in the formulas for (h;(y), h;(z)) and —dG,(y, z) that we will give below.

We will now show that weighted averages of j; over multiple points in H are
also continuous local martingales (and hence Brownian motions when properly
parameterized). The calculation will make use of the function G(y, z), which we
take to be the zero boundary Green’s function G (y, z) on H in the forward case
and the free boundary Green’s function G (y, z) in the reverse case.

Now write G,(v, z) = G(f;(y), fi(2)) in the reverse case. In the forward case,
write G;(y,z) = G(f;(y), f;(2)) when y and z are both in the infinite component
of H \ n,—otherwise, let G;(y, z) be the limiting value of G(y, z) as s approaches
the first time at which one of y or z ceases to be in this infinite component. The
reader may check that for fixed y and z, this limit exists almost surely when 4 <
k < 8: it is equal to zero when y and z are in different connected components
of H \ n;, and when y and z lie in the same component, it is simply the Green’s
function of y and z on this bounded domain. Now we let p be a smooth compactly
supported function on H (which we will assume has mean zero in the reverse case)
and do some more calculations.

Each of the equations above comes from a straightforward It6 calculation. To
explain their derivation, we begin by expanding the d G; computation in the for-
ward case (the reverse case is similar):

dG(x,y) = —dRelog| f;(x) — fi(y)] + dRelog| fi(x) — fi(y)]
Re [ = fin™! 5
fi(x) = fi (y)
Ao TR
fix) = fi(y)
=2Re(f;(x) " f,(») ) dt —2Re(f, () (F () ) dr
=2Re(if; (x) " Im[2f,(y)"]) dt

=2

+

Im dt.

2 2
fix) fi(y)

=—Im
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TABLE 4
Forward flow SLE Reverse flow SLE
G(y,z):=logly —z| —log|y —z| G(y,z):=—logly —z| —log|y — Z|
Gt(y,2) :=G(fr(y), f1(2) Gt(y,2) =G(fr (), ft(2)
th(y,z):—Im%Im%dt dG,(y,z)z—ReﬁRe%dl
d(b:(y),0:(2)) =—dG(y,2) d{b: (), bt (2)) = —dG(y, 2)
Ei(p):= [gp(Gt(y,2)p(z)dydz Ei(p):= [gp (Gt (y,2)p(z)dydz
d{(bt, p), (bt, p)) = —dEt(p) d((bs, 0), (br, p)) = —dEs(p)

The fact that d(h;(v), h:(2)) = —d G (y, z) is then immediate from our calculation
of db;.

The fact that d((b;, p), (hs, p)) = —d E;(p) is essentially a Fubini calculation
but it requires some justification. First, we claim that the (h;, p) are continuous
martingales. We begin by considering b, (z) for a fixed z in the support of p. We
have shown above that the quantity h;(z) is a Brownian motion under a certain
parameterization. In the reverse case, the Loewner evolution gives that |%C +(2)]
is uniformly bounded above for z in the support of p and for all times ¢. [Note that
Im f;(z) is strictly increasing in ¢.] This immediately implies that h;(z) is a mar-
tingale (not merely a local martingale) because for each z and ¢, h;(z) represents
the value of a Brownian motion stopped at a random time that is strictly less than
a constant times ¢. The fact that the expectation of h;(z)—given the filtration up to
time s < t—is h;(z) is then immediate from the optional stopping theorem.

In the forward case, one obtains something similar by noting that the law of the
conformal radius » of z in H \ n([0, ¢]) has a power law decay as r — 0—that is,
the probability that —C;(z) > ¢ decays exponentially in ¢, and is in fact bounded
by an exponentially decaying function that is independent of z, for z in the support
of p. (A precise description of the law of the conformal radius at time infinity
appears as the main construction in [88].) This implies that h,(z) is a Brownian
motion stopped at a time whose law decays exponentially (uniformly over z in
the support of p) which is again enough to apply the optional stopping theorem
and conclude that h;(z) is martingale. In both cases, we obtain that for any ¢, the
probability distribution function for |§,(z)| decays exponentially fast, uniformly
for z in the support of p. In both cases, we also see that (for any fixed ¢), b;(z)
is an L' function of z and the probability space, which allows us to use Fubini’s
theorem and conclude that the (b, p) are martingales.

Let sz)c denote the set of v for which the integral of |1/|? over every compact
subset of H is finite. The exponential decay above implies that b; is almost surely
in Llloc, since the expected integral of |h;| over any compact set is finite. (Note
that we can define b, arbitrarily on the measure zero set 1([0, ¢]) without affecting
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the definition of h; as an element of LllOC (H).) In fact, since E|bh;(z)|? is bounded
uniformly for z in a compact set, it follows that b, is almost surely in Lﬁ)c (H) for
any p € (1, 00). The fact that b, is almost surely in LllOC also implies that it can be
understood as a random distribution on H.

Moreover,

4.1) sup [h(2)|
s€[0,1]

also has, by Doob’s inequality, a law that decays exponentially, uniformly in z.
Thus, (4.1) also belongs a.s. to sz)C(H) for any p € (1, 00). From this and the
a.s. continuity of SLE, it follows that (h;, p) is a.s. continuous in ¢. [This conti-
nuity is obvious in the reverse case; in the forward case, it is also obvious if one
replaces p by p., which we define to be zero on an ¢ neighborhood of 1 and p
elsewhere. The fact that (4.1) belongs to sz)c (H) implies that the (h;, o) converge
to (b, p) uniformly, for almost all 1, and a uniform limit of continuous functions
is continuous. ]

Now we can show d{(b;, p), (h:, p)) = —d E;(p), as noted in [87], either via a
stochastic Fubini’s theorem (see, e.g., [77], Section IV.4) or by using the following
simpler approach proposed in private communication by Jason Miller.

First, note that ((h;, p1), (b, p2)) is characterized by the fact that

(bl‘v Pl)(ht, /02) - ((hl‘? 101)’ (hl‘v 102)>

is a local martingale. Thus, it suffices for us to show that

(4.2) (e, p0) (B, p2) + / p1(X)p2(y)Gi(x, y)dx dy
is a martingale. We know from the above calculations that

b (x)b:(y) + G (x, y)

is a martingale for fixed x and y in H. Since G;(x, y) is nonincreasing and the §;(z)
have laws that decay exponentially, uniformly in z, we can use Fubini’s theorem to
conclude that (4.2) is a martingale. Thus, we have that (h;, p) is a Brownian motion
when parameterized by time —FE;(p). To complete the proofs of Theorems 1.1
and 1.2, recall that in the theorem statements h denotes an instance of the free
boundary GFF on H, and note that since each (hr + ho fr,p) is a sum of a
standard Brownian motion stopped at time Eg(p) — E7(p) and a conditionally
independent Gaussian of variance E7(p), it has the same law as a Gaussian of
variance Eo(p) and mean (ho, p). (See Figure 14.) For future reference, we note
that in the reverse flow case one may integrate the expression for df;(z) above to
find (using the stochastic Fubini’s theorem) that

(4.3) d(b:, p) = (—2Re(f) ™", p)dB,.
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. (h7 p)

—Eq(p) —Er(p) 0

F1G. 14. The pair (—E;(p), (B¢, p)) traces the graph of a Brownian motion (solid curve) as t
ranges from 0 to T. Conditioned on this, the difference between (h, p) and (W, p) is a centered
Gaussian of variance ET(p). Choosing (h, p) to be (ht, p) plus a Gaussian of this variance is
equivalent to continuing the Brownian motion parameterized by —E;(p) time (solid curve) all the
way to time zero (dotted curve) and letting (h, p) be its value at time zero.

REMARK 4.4. The statement of Theorem 1.1 excluded the case « > 8, since
SLE(k) is space-filling in that case and f; cannot be defined as a function al-
most everywhere. Nonetheless, we may still define (fj;, o) to be the solution to the
stochastic differential equation d(f;, p) = (—2Im( f;)_l, p)dB;. In this case, the
calculations above again yield that d{((b;, p), (b, p)) = —d E;(p), which as before
implies that (hr +ho fr,p) and (ho + h, p) agree in law for each p, just as in the
k < 8 case, which yields a x > 8 analog of Theorem 1.1. (Figure 14 still makes
sense then k > 8.)

It will be useful for later purposes to note that (at least in the reverse SLE case)
the graph in Figure 14 actually uniquely determines (and is uniquely determined
by) the process W; = \/k B; almost surely; see Figure 15. This is a special case
of a much more general theorem about stochastic processes (see Chapter IX, The-
orem 2.1 of [78]—it suffices that (fj;, p) satisfies an SDE in W, with a diffusive
coefficient that remains strictly bounded away from zero and infinity, at least as
long as we stop at any time strictly before r = co). This means that the evolution
of n can be described by the Brownian motion in Figure 14, as well as by the Brow-
nian motion B;. Context will determine which description is more convenient to
work with.

R
AN\ " ad

—Eo(p) —Er(p) 0 0 / T

FI1G. 15. The graph traced by (—E;(p), (hs, p)) as t ranges from O to T (left) and the graph traced
by (t, By) (right), where Wy = \/k B;. The left graph uniquely determines the right graph, and vice
versa, almost surely. Each has the law of a standard Brownian motion (up to a stopping time).
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4.2. Alternative underlying geometries and SLE, ,. Both Theorems 1.1
and 1.2 can be generalized to other values of hy using the so-called SLE, , pro-
cesses. (As discussed at the end of Section 1.2, changing g can be interpreted as
changing the underlying geometry on which Liouville quantum gravity is defined.)
We generalize the latter here (see [20] for t