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ABSTRACT

Atomic layer deposition (ALD) relies on alternated, self-limiting reactions between gaseous reactants and an exposed solid surface to deposit
highly conformal coatings with a thickness controlled at the submonolayer level. These advantages have rendered ALD a mainstream tech-
nique in microelectronics and have triggered growing interest in ALD for a variety of nanotechnology applications, including energy technol-
ogies. Often, the choice for ALD is related to the need for a conformal coating on a 3D nanostructured surface, making the conformality of
ALD processes a key factor in actual applications. In this work, we aim to review the current status of knowledge about the conformality of
ALD processes. We describe the basic concepts related to the conformality of ALD, including an overview of relevant gas transport regimes,
definitions of exposure and sticking probability, and a distinction between different ALD growth types observed in high aspect ratio struc-
tures. In addition, aiming for a more standardized and direct comparison of reported results concerning the conformality of ALD processes,
we propose a new concept, Equivalent Aspect Ratio (EAR), to describe 3D substrates and introduce standard ways to express thin film con-
formality. Other than the conventional aspect ratio, the EAR provides a measure for the ease of coatability by referring to a cylindrical hole
as the reference structure. The different types of high aspect ratio structures and characterization approaches that have been used for quanti-
fying the conformality of ALD processes are reviewed. The published experimental data on the conformality of thermal, plasma-enhanced,
and ozone-based ALD processes are tabulated and discussed. Besides discussing the experimental results of conformality of ALD, we will
also give an overview of the reported models for simulating the conformality of ALD. The different classes of models are discussed with spe-
cial attention for the key assumptions typically used in the different modelling approaches. The influence of certain assumptions on simu-
lated deposition thickness profiles is illustrated and discussed with the aim of shedding light on how deposition thickness profiles can
provide insights into factors governing the surface chemistry of ALD processes. We hope that this review can serve as a starting point and
reference work for new and expert researchers interested in the conformality of ALD and, at the same time, will trigger new research to fur-
ther improve our understanding of this famous characteristic of ALD processes.

VC 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5060967
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I. INTRODUCTION

Atomic layer deposition (ALD) is a gas phase thin film deposi-
tion technique which has been discovered and developed indepen-
dently in the 1960s in the Soviet Union and in 1974 in Finland.1–3

This technique is characterized by exposing the substrate to an
alternating sequence of vapor phase reactants. Due to the self-
saturating nature of the surface reactions, the film thickness can be
controlled at the atomic scale.4–8 A typical ALD process consists of
several ALD cycles with each ALD cycle comprising four character-
istic steps, which are shown in Fig. 1 for the prototypic4–6 trimethy-
laluminum (TMA)/H2O process:

1. Step 1: The first reactant A (TMA) reacts in a self-terminating way
with the available functional groups on the OH-terminated surface. FIG. 1. Schematic representation of one ALD cycle of the TMA/H2O process.
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2. Step 2: The excess of reactant A (TMA) and the gaseous by-products
(CH4) are purged or pumped away.

3. Step 3: The second reactant B (H2O) reacts in a self-terminating way
with the adsorbed species (A) on the surface.

4. Step 4: The excess of reactant B (H2O) and the gaseous by-products
(CH4) are purged or pumped away.

In this review, we will call steps 1 and 3 the first and second reac-
tions of the ALD cycle, respectively. After each ALD cycle, a certain
amount of material (coating) is deposited on the surface, which is
called the growth per cycle (GPC). The GPC can be expressed in vari-
ous units such as those of the thickness (e.g., nm), mass gain (e.g., g),
and an increase in the areal density (e.g., atoms/nm2).

As opposed to “line-of-sight” deposition techniques such as
physical vapor deposition (PVD),9,10 ALD has the capability to grow
uniform and conformal films in 3D structures with complex shapes
and with a large depth to width ratio or in more general terms a large
aspect ratio.11–15 For deposition techniques that are flux controlled
[such as chemical vapor deposition (CVD)16 and PVD], film growth
depends on the local gas flux. Because of the inherent kinetics of gas
transport within narrow trenches, the flux of reactant molecules can
be several orders of magnitude larger near the entrance as compared
to the bottom of the structure. Therefore, the entrance region to nar-
row trenches tends to get clogged at the beginning of the deposition,
making it difficult for reactant molecules to diffuse deeper into the
structure. Various approaches exist to improve the conformality of
CVD processes, e.g., inhibiting the growth,17 using pulsed CVD,18,19

and using surfactants to catalyze the growth.20,21 Also during ALD
deposition, the entrance region will receive a higher flux of reactant
molecules. However, the self-saturating nature of the surface reac-
tions during ALD results in surface-controlled deposition. Higher
flux near the entrance region will result in faster coverage at this loca-
tion, but once the surface is saturated, no further reaction can take
place at this site, avoiding clogging of the trench entrance and allow-
ing the reactant molecules to diffuse deeper into the trench and coat
the entire structure.

The miniaturization of semiconductor devices leads to the intro-
duction of more complex 3D geometries with an increasing aspect
ratio, often termed high aspect ratio (HAR) structures. Due to the self-
limited surface reactions, ALD is one of the most suitable deposition
techniques to deposit thin coatings with an excellent control of the
layer thickness onto such structures. ALD is, for example, used for the
fabrication of trench capacitors in dynamic random-access memory
(DRAM),22,23 in FinFETs,24,25 and 3D NAND structures.26,27 Also,
outside the field of semiconductor applications,28 ALD is being consid-
ered to deposit films onto 3D substrates, e.g., for surface functionaliza-
tion and protection of microelectromechanical systems (MEMSs),29,30

and coatings for fuel cells,31 solar cells,32–34 batteries,35–39 catalytic sur-
faces,40–46membranes,47,48 textiles,49 and pharmaceuticals.50

In this review article, we explore the status of current understand-
ing of the conformality of ALD processes, providing an overview of
published experimental and theoretical studies focusing on this topic.
First, conformality-related concepts of ALD processes will be intro-
duced in Sec. II. In Sec. III, we discuss methods and dedicated test
structures that have been used to quantify the conformality of ALD
processes. An overview of experimental reports on the conformality of
thermal, plasma-enhanced, and ozone-based ALD processes is pre-
sented in Sec. IV. In Sec. V, different models are discussed that have

been used to simulate ALD in narrow structures. These models can be
used to optimize process parameters towards improved conformality.
Fitting of model parameters to experimental data can also provide
insights into the ALD surface reactions, e.g., in sticking probabilities
and the impact of non-ideal side-reactions during ALD. In Sec. VI, we
simulate the influence of different ALD parameters on the conformal-
ity with a Monte Carlo model51 and discuss how one can obtain rele-
vant information on the growth mechanism from the analysis of such
thickness profiles.

II. CONCEPTS

A. ALD characteristics: Uniformity and conformality

Due to the self-limited nature of the chemisorption and subse-
quent surface reactions, it is possible to grow with ALD uniform and
conformal films in structures with a large depth to width ratio.
Uniform films have an equal thickness and composition (and other
properties) at each position along a planar substrate, e.g., along a
300mm wafer. Conformal films have the same thickness (and proper-
ties) also inside 3D features (“around-the-corner”). Figure 2 shows a
schematic representation of the coating of a 3D structured surface
with a non-conformal line-of-sight technique (a) and with the typical
conformality of an ALD coating (b). In the absence of the 3D feature,
both films could be considered uniform.

B. Gas transport: Molecular to viscous flow

During reactant transport, the reactant molecules penetrate into
narrow structures in a certain flow regime. To distinguish the different
flow regimes, Knudsen52 introduced a dimensionless parameter, the
Knudsen number Kn, which is defined as the ratio of the mean free
path k (m) and the pore diameter dp (m)

Kn ¼ k

dp
: (1)

If the mean free path of the reactant molecules is much larger than the
dimensions of the structures (Kn� 1), gas transport takes place in the
molecular flow regime.52 In this regime, the transport is dominated by
particle-surface interactions and inter-particle interactions can in most
cases be neglected.

The mean free path k (m) of molecules is given by53

k ¼ kBT
ffiffiffi

2
p

pd2P
; (2)

with kB (m
2 kg/(s2 K)) being the Boltzmann constant, T (K) being the

temperature, P (Pa) being the pressure, and d (m) being the diameter
of the molecules. The mean free path depends strongly on pressure,
while the molecule size and temperature affect the mean free path to a

FIG. 2. Schematic representation of a deposition on a 3D structured surface by a
line-of-sight technique (a) and by a conformal technique such as ALD (b).
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minor extent, as illustrated in Fig. 3. At sufficiently low pressure, a
molecular flow regime can be obtained in structures with macroscopic
(i.e., mm to cm) dimensions, while for near-atmosphere pressures,
molecular flow will only be achieved in nanometer scale features.

If the mean free path of the reactant molecules is much smaller
than the dimensions of the features (Kn � 1), gas transport is gov-
erned by viscous flow,52 also known as continuum flow.54 In viscous
flow, there are frequent particle-particle interactions in the gas phase.
The transition flow between molecular and viscous flow takes place
when Kn � 1 and is often termed Knudsen flow although the latter
term is also used as a synonym for molecular flow.16

When the gas phase consists of different types of molecules, e.g.,
when a mixture of reactant molecules (species A) and carrier gas mole-
cules (species B) is used in ALD, one has to adapt the above formula
[Eq. (2)] of the mean free path. Chapman et al.55 derived a specific
scattering length k0,A(m) for a particle of species A taking into account
the interaction with particles of species B

k0;A ¼ kBT
ffiffiffi

2
p

PArA;A þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þmA

mB

r

PBrA;B

; (3)

with kB (m
2 kg/(s2 K)) being the Boltzmann constant, T (K) being the

deposition temperature, Pi (Pa) being the partial pressure, and mi (kg)
being the mass of molecules of type i2 {A, B}. The cross-section between
the molecules i and jwith radii ri (m) and rj (m) is represented by55

ri;j ¼ pðr2i þ r2j Þ: (4)

C. ALD reactor types

One of the distinguishing factors among the different types of
ALD reactors is whether they operate in the temporal or spatial ALD
mode, with the first mode being the most conventional one. During
temporal ALD, the sample is stationary and the different reactants are
sequentially injected and removed from the sample cell. In spatial
ALD, there is a continuous supply of the reactants in isolated injection
regions which are separated by an inert gas curtain, while the substrate
moves between the different zones.56–58 Suntola developed in 1974 his
first ALD reactor where he applied spatial ALD.59 The reactor com-
prised a carousel that rotated at several rounds per second and worked
at a base pressure of 10�4Pa.3 In another reactor design, Suntola
et al.60 used a carrier gas to separate the different surface reaction steps
from each other in a temporal deposition mode.

As discussed above, the reactant (partial) pressure is a determin-
ing factor for the gas transport regime in high aspect ratio structures,
influencing in turn the process of conformal coating during ALD.
Therefore, we classify the different designs of ALD reactors according
to the typical pressure ranges that are applied. Following the classifica-
tion by George,4 we define pump-type and flow-type (temporal) ALD
reactors. In pump-type reactors, reactants are added into the reactor
chamber without the use of a carrier gas and the typical reactant

FIG. 3. Mean free path (left y-axis) as a function of pressure, calculated according to Eq. (2), for molecules with average diameters of 5, 7, and 9 Å at a temperature of 100 �C
(a) and for a molecule with an average diameter of 7 Å at temperatures of 100 �C, 300 �C, and 500 �C (b). The working pressure regimes of the pump-type, flow-type, and
atmospheric pressure (AP-type) ALD reactors are indicated in the figure. The right y-axis of the graphs shows the characteristic feature size (dp). Comparing dp with the mean
free path, k, allows to determine the corresponding flow regime for a given pressure: molecular flow regime (k � dp) and viscous flow regime (k � dp).
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pressures are in the range of 10�3–100 Pa. After the reactant exposure,
the chamber is evacuated by pumping down to a base pressure in the
range of 10�4–10�3Pa. Because of the low pressure and the corre-
sponding molecular flow regime, the reactor design is not restricted to
specific geometric constraints and can easily be adapted to accommo-
date plasma sources and in-situ characterization techniques. The main
disadvantage of pump-type reactors concerns the long cycle times in
the range of 101–102 s, due to the slow evacuation of the reaction
chamber without the use of a purge gas. In the classical flow-type reac-
tor design,3,60 the reactants are entrained in an inert carrier gas which
flows through the reactor in a viscous flow regime. Flow-type reactors
are typically operated at a pressure near 100Pa, and cycle times are on
the order of 100 s.4 Next to pump-type and flow-type reactors, atmo-
spheric pressure (AP-type) reactors in which ALD processes take place
at (or near) atmospheric pressure (�105Pa) form the third class of
ALD reactors. Over the past few years, there has been increasing inter-
est in spatial ALD approaches applying atmospheric pressures for high
throughput ALD for a number of applications including photovol-
taics.56–58 In this way, high deposition rates can be achieved for certain
processes, e.g.,�1 nm/s for ZnO.61

As shown in Fig. 3, different flow regimes occur during ALD
within high aspect ratio structures, depending on the characteristic
size of the 3D features that are present on the substrate and the abso-
lute pressure range, linked to the type of ALD reactor used. For
instance, in millimeter-sized features, reactant transport occurs in the
molecular flow regime in pump-type reactors, but in flow-type and
AP-type ALD reactors, it occurs in the viscous flow regime.

D. Exposure in ALD

Pressure plays a crucial role in the ALD process, as it determines
the impinging flux of reactant molecules on the substrate. At a given
pressure, a certain minimum amount of time is needed before the
sample surface is fully covered with adsorbed reactant molecules and
saturation is reached. A useful measure for the reactant exposure is
therefore given by the product of the reactant partial pressure and the
pulse time. In this way, the exposure is expressed in Langmuir
(1 L¼ 106Torr s¼ 7500Pa s). As an example, Gordon et al.62 esti-
mated that the exposure required to saturate a flat surface with
Hf(NMe2)4 molecules during ALD of HfO2 at 200

�C is in the range of
3–43L. Much larger exposures are commonly required during ALD
on high aspect ratio structures to compensate for diffusional limita-
tions. To deposit a conformal coating of HfO2 into holes with a pore
diameter of 0.17lm and a depth of 7.3lm, an exposure of 9000 L was
required.62 Applying sufficiently large exposures is one of the essential
conditions to obtain a conformal coating by ALD as will be exempli-
fied later in this review article.

E. Reaction mechanisms and sticking probability

The surface reaction kinetics of ALD processes can be com-
plex5,6,63 and should not be considered as trivial as depicted in Fig. 1.
For many processes, even the reaction stoichiometry during an ALD
cycle is not necessarily known.64 To cope with this complexity when
modelling the conformality of ALD processes, the reaction chemistry
is often simplified by using irreversible Langmuir surface kinetics.65–67

The sticking probability s is introduced as the probability that a reac-
tant molecule reacts upon collision with the surface and contributes to

film growth. It is often assumed that the sticking probability has a first
order dependence with the available surface sites16

s ¼ s0ð1� hÞ; (5)

with s0 being the initial sticking coefficient (i.e., reaction probability
with a bare surface) and h being the fraction of covered sites. This
expression implies that the surface reactivity gradually decreases with
the increase in the coverage and eventually becomes zero. This simple
model thus reflects the self-limiting nature of the surface reactions
during ALD, while the reaction kinetics (fast/slow) can be imple-
mented via the initial sticking coefficient s0 (high/low values).

Taking a step back and considering in the first instance reversible
Langmuir adsorption, the first reaction of an ALD cycle (Reaction A)
can be represented by

Ag þ �
�A�; (6)

with Ag being the gaseous reactant A, � a vacant surface site, and A�

the chemisorbed reactant A. A� can be interpreted as a “lumped reac-
tion product” (and not the result of an elementary reaction), contain-
ing multiple types of surface species simultaneously.

The adsorption rate rads is equal to the product of the adsorption
rate constant kads, the partial pressure of reactant A, PA, and the frac-
tion of uncovered surface sites, giving the overall second-order68 sur-
face reaction rate equation

rads ¼ kadsPAð1� hÞ: (7)

The desorption rate rdes is equal to the fraction of covered sites times
the desorption rate constant kdes

rdes ¼ kdesh: (8)

The rate of change in the surface coverage h is obtained by subtracting
the desorption rate from the adsorption rate

dh

dt
¼ rads � rdes: (9)

At equilibrium, dh
dt

is zero. In practice, gaseous byproducts are often
continuously pumped out, making reverse reactions unlikely and justi-
fying the assumption of irreversibility. When irreversible adsorption is
assumed, the second term, rdes, in Eq. (9) will be ignored.

The second reaction of the ALD cycle (reaction B) can be
described, in the lumped way, assuming an “average” reaction product
AB�

A� þ Bg ! AB�: (10)

In practice, in many models, reaction B is not modelled separately, and
it is only considered that the surface left behind by exposure to reactant
A, saturated with h� 1, is rendered reactive again in reaction B.

Furthermore, it is often assumed that the total number of adsorp-
tion sites for the Langmuir adsorption model is obtained from the
number of metal atoms deposited per cycle and thus growth per cycle
(GPC). The current authors understand this to be a gross oversimplifi-
cation, as, e.g., the number of OH groups on alumina, which act as
(reactive) adsorption sites in the trimethylaluminum reaction, is
known to be 7–9 per nm2 at typical ALD Al2O3 conditions, while the
number of aluminium atoms deposited per cycle is around 4.5 per
nm2.5 Despite the fact that this assumption is clearly oversimplified, it
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is being repeatedly used as it can give modelling results with a satisfac-
tory fit.

For radical-assisted ALD processes (e.g., plasma-enhanced or PE-
ALD) or ozone-based ALD processes, reactant molecules that collide
with the surface can undergo recombination processes. For example,
an O radical can recombine with an adsorbed O atom and form
molecular O2 that leaves the surface. The probability that a species
recombines during a collision with the surface is usually defined as the
recombination probability r.66,69,70 Although it depends on the process,
the recombined species can often no longer contribute to film growth
upon subsequent collisions with the surface, e.g., when the surface is
only reactive towards O radicals and not towards molecular O2.
Hence, recombination processes are usually considered loss processes.

F. ALD growth types in high aspect ratio structures

Elam et al.65 introduced the concepts of a diffusion versus a reac-
tion limited growth type for ALD growth in narrow features in the
molecular flow regime.71 In the diffusion limited growth type, it is the
geometry of the feature that causes the main difficulty in coating.72

During deposition, the most accessible sites will be covered first, result-
ing in a clear front between the accessible (covered) sites and the less
accessible (uncovered) sites. During the deposition, this front will
gradually penetrate deeper into the feature. In the reaction limited
growth type, the difficulty of coating is mainly related to a low sticking
probability of the reactant molecules. In this case, there is a less sharp
front between coated and as yet uncoated parts of the feature. For
plasma-enhanced ALD, Knoops et al.66 introduced a recombination
limited growth type, where saturation is not limited by the diffusion
rate or the sticking probability but by the recombination loss during
collisions of the radicals with the side-walls of the feature. These differ-
ent growth types are illustrated in Fig. 4, which shows unsaturated
thickness profiles. Note that both the aspect ratio of the feature and
the sticking probability of the ALD reactants will determine the ALD
growth type, as will be discussed in Sec. VIB 4 and in Fig. 23.

G. Aspect ratio and equivalent aspect ratio

The Aspect Ratio (AR) of a structure is typically defined as

AR ¼ L

w
; (11)

with L (m) being the depth andw (m) being the width of the structure,
as indicated in Fig. 5. Achieving a conformal coating in a structure

becomes more difficult with an increase in the AR of the structure. In
addition, it will be easier to coat an elongated trench with depth L and
width w than a cylindrical hole with the same depth L and diameter
w because the opening through which the reactant can enter will be
larger for the trench which facilitates the diffusion. AR is a 2D concept,
based on geometrical measures of a cross-section of a 3D object, and is
therefore not expected to be sufficient as a parameter to fully describe
the difficulty of precursor diffusion into 3D features. Therefore, not
only the AR will be important but also the length of the feature along
the third dimension will have an impact on the conformality. A sche-
matic representation of a hole and trench structure with equal AR is
given in Fig. 5.

Gordon et al.62 proposed a generalized expression for the aspect
ratio a of holes

a ¼ Lp

4A
; (12)

with L (m) being the depth of the hole, p (m) being its perimeter, and
A (m2) being the cross-sectional area. This expression takes into
account the 3D nature (third dimension) of the feature. For cylindrical
holes, Eq. (12) reduces to L/w which is equal to the depth to width AR
interpretation from Eq. (11). For trenches, Eq. (12) reduces to L/(2w),
which is a factor of two smaller than the conventionally used AR of
Eq. (11). Gordon et al. also showed that for large a, the required expo-
sure for conformal coating scales with a2. The difference of a with a
factor of two between trenches and cylinders implies that a four times
larger exposure is required to conformally coat a hole in comparison
with a trench with the same depth to width ratio (AR) as can be mea-
sured in a cross-sectional view. This example of trenches versus holes
clearly illustrates that a depth to width ratio of a 3D feature is not a
sufficient measure to estimate the difficulty in coating the 3D struc-
ture: gas flow into the real structure will depend on the full 3D geome-
try of the feature.

To facilitate a direct comparison between different structures and
literature reports, we propose a new concept to express the aspect ratio
in a structure-independent way. Analogous to the “equivalent oxide
thickness” which was introduced in the field of high-k oxides to enable
a straightforward comparison between different structures and

FIG. 4. Schematic representation of unsaturated thickness profiles: diffusion limited
(a), reaction limited (b), and recombination limited growth type (c). Adapted with
permission from H. C. M. Knoops et al., J. Electrochem. Soc. 157(12), G241–G249
(2010). Copyright 2010 The Electrochemical Society.

FIG. 5. Schematic representation of a cylindrical hole (a), a square hole (b), and a
trench structure (c) with width w and depth L. The three structures have the same AR;
however, the holes [(a) and (b)] have a different EAR than the trench structure (c).
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materials by expressing their key functional properties with respect to
a well-known reference material (SiO2),

73 we propose to introduce the
concept of an Equivalent Aspect Ratio (EAR) by referring to simple
cylindrical holes as the reference structure.74 The EAR of a given 3D
feature can then be defined as the aspect ratio of a hypothetical cylin-
drical hole that would require the same reactant exposure dose during
an ALD reaction as the feature of interest.

In Fig. 6, the AR and EAR are compared for arrays of holes,
trenches,62 and pillars.51 Following expressions for the (E)AR were
found:

• For circular holes: AR¼ L/w and EAR¼ L/w.
• For square holes: AR¼ L/w and EAR¼ L/w.
• For (infinite) trenches, AR¼ L/w and EAR¼ L/(2w).
• For elongated holes, AR¼ L/w and EAR¼ (L(w þ z))/(2wz), with z
being the length of the hole as indicated in Fig. 6.

• For squares pillars, AR¼ L/w and EAR ¼ L= 2
ffiffiffi

2
p

w
� �

(valid for L/w
in the range of 5–50, w/wpillar¼ 3).

Most expressions follow from Gordon’s definition (12) and were
further confirmed via Monte Carlo modelling.51 For arrays of pillars,
the EAR was not derived from analytical equations, but was deter-
mined from Monte Carlo simulations, assuming an initial sticking
coefficient of unity (see Sec. V). Comparing holes and trenches with
the same AR, the EAR of trenches is a factor of two smaller. For L/w
ratios in the range of 5–50 and w/wpillar¼ 3, we found that the EAR of
an array of pillars is a factor of 2

ffiffiffi

2
p

smaller than that for holes. It
should be noted that this EAR was determined for molecular flow con-
ditions. Additional calculations would be needed to determine the

EAR of an array of pillars for viscous flow conditions and hence con-
firm whether or not the EAR is a flow regime dependent parameter.

H. Ways to express the level of conformality

The 3D uniformity of a film is often discussed either in terms of
step coverage or conformality (sometimes conformity). The definition
of step coverage may vary from reference to reference.

Typically, Step Coverage (SC) is used for the ratio of the film
thickness at the bottom of a feature to the film thickness at the top of
the feature. Alternatively, it is calculated as the ratio of the film thick-
ness at the side wall to the film thickness at the top [Fig. 7(a)]. Step
coverage is typically expressed as percentage. The term is often used
for thin films made by PVD75 or (PE)CVD.76 In ALD, the “steps”
which may be challenging for PVD and (PE)CVD (e.g., EAR 5:1) are
typically coated 100% uniformly, i.e., with 100% SC, and therefore,
more demanding (e.g., lateral) test structures are needed for ALD (see
Sec. III).

When analysed with vertical structures, conformality of ALD is
often defined in a similar manner as step coverage: ratio of bottom-top
or sidewall-top film thickness and is given as percentage.

An alternative way to express the conformality of ALD coatings
is via the coated (E)AR. This approach is typically used when the ALD
coating did not reach the bottom of the feature and is especially useful
for lateral, highly demanding test structures (AR> 50:1). If a thickness
profile is experimentally obtained, one determines the penetration
depth at which the film thickness equals 50% of the film thickness at
the top, which we propose to call the half-thickness-penetration-depth
or 50%-thickness-penetration-depth, abbreviated PD50%.77 From the
PD50%, one can calculate the coated (E)AR. Alternatively, one can dis-
tinguish the coated versus uncoated regions of the feature in cross-
sectional electron microscopy or optical images. The transition point
is then used to calculate the coated (E)AR. Similar to the PD50%, one
can also define the PD80% which stands for the penetration depth at
which the film thickness is reduced to 80% of the original film

FIG. 6. The scheme in the central circle depicts the depth to width ratio (AR) as
measured on a cross-section of a 3D feature. The surrounding schemes provide
the Equivalent Aspect Ratio (EAR) taking into account the 3D geometry of square
holes (a), trenches (b), elongated holes (c), and square pillars (valid for L/w in the
range of 5–50 and w/wpillar¼ 3) (d). The EAR in (d) was determined for molecular
flow conditions.

FIG. 7. (a) Schematic cross-section of a high aspect ratio structure in which the
step coverage can be defined as the ratio of the film thickness at the bottom (3) to
the film thickness at the top (1) or the ratio of the film thickness at the sidewalls
half way into the feature (2) to the film thickness at the top (1). (b) Thickness
profile of an ALD process into a high aspect ratio structure. The PD50% and PD80%

are indicated.
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thickness. The concepts of step coverage,78–81 PD50% and PD80%, are
illustrated in Fig. 7.

III. STRUCTURES TO QUANTIFY THE CONFORMALITY
OF ALD

When studying the conformality of a certain ALD process, it is
important to use test structures in which gas diffusion occurs accord-
ing to a flow regime that is relevant for the envisioned application and
reactor. Most of the high aspect ratio structures on which ALD is used
for applications in micro-electronics,29 batteries,36 fuel cells,31 catalytic
surfaces,40 etc., exhibit micrometer- or nanometer-sized dimensions.
Note that for porous materials, IUPAC classifies three pore types
according to the pore size: micropores have a diameter below 2nm,
mesopores have a diameter in the range of 2 to 50nm, and macropores
have a diameter above 50nm.82 As shown in Fig. 3, gas diffusion into
structures with a characteristic width below ca. 1lm will be deter-
mined by molecular flow when the deposition is performed in tradi-
tional flow- (low-vacuum) and pump-type (high-vacuum) ALD
reactors (because the mean free path of the reactant molecules will be
much larger than the structure width). Therefore, the molecular flow
regime is most relevant for the majority of 3D substrates, ALD reac-
tors, and targeted applications although viscous flow applies in some
specific cases.

Table I and Fig. 8 overview different types of high aspect ratio
test structures that have been used for quantifying the conformality of
ALD processes, ordered according to a decreasing size. Many types of
structures have been used in mm-lm-nm ranges of feature sizes. We
classify them here as vertical structures, lateral structures, and porous
materials. These structures often differ in the methods typically used
to characterize the film after deposition. Table I includes some referen-
ces that discuss the fabrication of the specific structures and that intro-
duce a particular characterization approach for determining the
thickness/conformality of the deposited ALD coating, as further
detailed in Secs. IIIA–IIIC.

A. Vertical structures

Large surface area substrates with vertical features such as arrays
of trenches, forests of pillars, carbon nanotubes, or assemblies of pores

[e.g., anodized alumina (AAO)] have been used in combination with
ALD for applications in fuel cells,31 batteries,35 and supercapacitors.116

Evidently, these substrates can also be used to quantify the conformal-
ity of an ALD process. Cross-sectional imaging of the structures [e.g.,
by scanning electron microscopy (SEM)] allows relatively straightfor-
ward visualization of the depth up to which an ALD coating has been
deposited. The film thickness can be measured point-by point; accu-
racy depends on the sample preparation and skills of the electron
microscopy operator.

Trenches etched into silicon have most often a width in the range
of 100nm117 to several lm and achieve an EAR of >40:1 [Fig. 8(d)].
Vertical trenches are fabricated with an anisotropic etch process which
is designed so that a passivated film is deposited on the sidewalls, while
the feature is being etched.118 With the basic Bosch Deep Reactive Ion
Etching (DRIE) process, developed in the MEMS industry, one alter-
nates etching and passivation cycles.119 During the passivation cycle, a
protective fluorocarbon film is deposited on all the surfaces. This step
is followed by an etching step during which an ion bombardment
removes the protecting film from all the horizontal surfaces. This tech-
nique allows us to achieve trenches with EAR up to 80:1 for widths in
the range of 250–800nm.120 To characterize coated trenches, Gluch
et al.89 introduced a TEM lamellae preparation using focused ion
beam (FIB) to measure detailed thickness profiles in trenches.

AAO structures can be prepared121 by electrochemical anodiza-
tion of aluminum films in liquid electrolytes and consist typically of a
high density of well-defined parallel and uniform cylindrical pores
which are arranged in a hexagonal symmetry with pore diameters
between 5 and 300nm [Fig. 8(f)]. The length of the pores can be con-
trolled from a few tens of nm to a few hundreds of microns. After
deposition, cross-sectional SEM is most often used to evaluate the pen-
etration of the ALD coating. Elam et al.65 introduced an alternative
approach, where they polished the AAO membrane under a slight
angle. In this way, one can obtain cross-sections along the entire length
of the pore at different locations in one plane, simplifying the SEM
analysis. This measurement technique is illustrated with a thickness
profile of a ZnO coating in an AAO structure in Fig. 9(a). Perez et al.95

dissolved the AAO structures and studied the ALD formed nanotubes
directly by TEM, avoiding the need for preparing cross-sectional TEM

TABLE I. Overview of test structures used to quantify the conformality of an ALD process. The labels (a)-(j) correspond to the labeled images in Fig. 8.

Structure Characterization method References

Macroscopic lateral trenches (a) Ellipsometry/XRR/XRF/EDX 67, 69, 83, and 84

Capillary tubes (b) Optical microscope 85

Microscopic lateral trenches (c) Optical and IR microscope/reflectometry 83 and 86–88

SEM/EDX

Micron trenches (d) TEM 89 and 90

Pillars (e) SEM/EDX 91–94

Anodized alumina (AAO) (f) EPMA/TEM 65, 95, and 96

Nano trenches TEM 79 and 97

Forests of carbon nanotubes (g) SEM/EDX/TEM 98–100

Opals (h) FE-SEM/TEM 101–104

Mesoporous thin films (i) XRF/porosimetry/TEM/SIMS 47 and 105–108

Mesoporous powders (j) TEM/SEM/EDX 109–113
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samples from the AAO template. They also introduced an algorithm
to automatically determine the wall thickness and diameter of the
nanotube as a function of the depth from the TEM images. The thick-
ness profile of a nanotube obtained out of an AAO pore is shown in
Fig. 9(b). Recently, Macak and co-workers122 studied the conformality

of ALD processes in anodic TiO2 nanotube layers. The closely spaced
nanotubes had a diameter of 110nm and an EAR of 180:1. By deposit-
ing the TiO2 nanotube substrate on a quartz crystal that can be
mounted in a quartz crystal microbalance (QCM), they were able to
perform in-situ QCM measurements during the ALD process. This

FIG. 8. Overview of macro-, micro-, and
nano-sized test structures to quantify the con-
formality of ALD processes. (a) Macroscopic
lateral trenches.114 (b) Capillary tubes.
Adapted with permission from J. S. Becker
et al., Chem. Mater. 15(15), 2969–2976
(2003). Copyright 2003 American Chemical
Society. (c) Microscopic lateral trenches
(LHAR). Reprinted with permission from F.
Gao et al., J. Vac. Sci. Technol. A 33(1),
010601:1–010601:5 (2015). Copyright 2015
American Vacuum Society. (d) Trenches (Si).
Reproduced with permission from M.
Ladanov et al., Nanotechnology 24(37),
375301:1–375301:9 (2013). Copyright 2013
IOP Publishing. (e) Pillars (silicon). (f) AAO.
(g) CNT. Reprinted with permission from S.
Deng et al., RSC Adv. 4(23), 11648–11653
(2014). Copyright 2014 RSC Publishing. (h)
Opals (polystyrene). (i) Mesoporous titania
films. Reproduced with permission from J.
Dendooven et al., Nanoscale 6(24),
14991–14998 (2014). Copyright 2014 The
Royal Society of Chemistry. (j) Mesoporous
powders (Zeotile-4). Adapted with permission
from S. P. Sree et al., Chem. Mater. 24,
2775–2780 (2012). Copyright 2012 American
Chemical Society.
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enabled real-time monitoring of reactant uptake during the ALD reac-
tions. In principle, this approach could be extended to other porous
substrates.

Track-etch membranes are another type of micro- or nanopo-
rous materials which are formed by irradiation of polymeric sheets.
The diameter of the etched pores can be in the range of a few nm to
mm, resulting in an EAR of 10:1–1000:1.123 SEM and cross-sectional

TEM are often used to investigate the conformality of the deposited
ALD coating in the membranes.124 Arrays of (silicon) pillars93,125 can
be either etched or grown through catalyzed chemical vapor deposi-
tion [Fig. 8(e)]. To ensure mechanical stability, the pillars often have a
diameter and spacing of 1–10lm and a typically height of 50lm.
Forests of carbon nanotubes (CNTs) can be grown by CVD.
Multiwalled CNTs can have a diameter of 10–100nm and a length up

FIG. 9. (a) The thickness profile of a ZnO
coating (measured with electron probe
micro-analysis) in an AAO structure for
several pulse times, as reported by Elam
et al.65 Adapted with permission from J.
W. Elam et al., Chem. Mater. 15(18),
3507–3517 (2003). Copyright 2003
American Chemical Society. (b) The thick-
ness profile of a HfO2 nanotube that was
ALD deposited into an AAO pore, as
reported by Perez et al.95 Reprinted with
permission from I. Perez et al., Small 4(8),
1223–1232 (2008). Copyright 2008 John
Wiley & Sons, Inc.
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to several micrometers126 [Fig. 8(g)]. To quantify the conformality of
an ALD process on pillars or CNTs, EDX mapping is performed on a
cross-section to quantify the amount of deposited material along the
wall of the pillar or nanotube.92,100

B. Lateral structures

Dedicated lateral test structures have been designed by several
groups to enable easy and accurate quantification of the penetration
depth and the composition profile of the deposited coating. Often, the
goal is to avoid the need of (time-consuming) cross-sectioning and
electron microscopy. In the CVD literature, Yang et al.127 used macro-
scopic lateral structures to analyze the CVD growth of HfO2 thin films.
More recently, Shima et al.84 introduced parallel-plate microchannels
to study CVD processes. A patterned Si wafer, fabricated by single step
etching, is clamped onto a planar Si substrate. In this way, one obtains
lateral trench-like features with a microscopic gap size of 1–15lm
(determined by the depth of the Si etching process) and EAR up to
1000:1. The chronological overview below discusses the most impor-
tant lateral structures that have been used to characterize the confor-
mality of ALD films.

Fused silica capillary tubes with a length of 2mm and a diameter
of 20lm were introduced as ALD conformality test structures by
Becker et al.85 [Fig. 8(b)]. After ALD, the coating on the exterior of the
tubes was burned off and the inside was filled with a liquid with a simi-
lar refracting index as fused silica. In this way, one could visually deter-
mine the penetration depth of the ALD coating on the interior of the
tubes using an optical microscope.

Macroscopic lateral structures were introduced by Dendooven
et al.67 [Fig. 8(a)] and were created by cutting a rectangular shaped
structure (typically 0.5 cm 	 2 cm) from a sheet of aluminum foil
(thickness of 100–500lm) and clamping the resulting foil in-between
two silicon wafers [Fig. 10(a)]. Because of the design of the structure,
exposed regions of the clamped Si wafer are effectively turned into the
sidewalls of a lateral trench. By using aluminum foils with different
thicknesses and by cutting different shapes, one can easily produce
structures with EARs in the range of 1:1–100:1. After ALD deposition,
the clamped structure can be disassembled, resulting in two planar Si
wafers. The penetration depth of the ALD coating can often be
observed with the naked eye. Since the lateral size of the structures is
on the order of cm, any technique for characterization of the layer
thickness or composition with an intrinsic lateral resolution of the
order of 1mm can be used for obtaining an accurate profile of the
thickness and composition of the ALD coating along the sidewalls of
the test structure. Quantitative thickness profiles can be obtained, e.g.,
by ellipsometry (SE), x-ray fluorescence (XRF), or Rutherford back-
scattering spectroscopy (RBS) mapping of the regions of the Si wafers
that constituted the sidewalls in the clamped structure. Not only the
film thickness as a function of the depth but also the change in the
composition of the deposited film can be monitored. This can be par-
ticularly important for complex coatings such as, e.g., ternary oxides
or LiPON for 3D battery applications. An advantage of the macro-
scopic lateral structures is that the small thickness of the deposited
film (nms) as compared to the total width of the trench (mms) implies
that the EAR of the trench remains essentially constant during deposi-
tion, which simplifies, e.g., modelling. The main disadvantage is that
their use is limited to pump-type reactors working at high vacuum if
the molecular-flow assumption needs to be valid.

Air wedge structures were used by Gabriel et al.83 to quantify the
conformality of optical coatings deposited by ALD. These structures
consist of two square silicon wafers with a side of 7 cm. The two wafers
are in contact along one edge and open at the opposite edge with an
air gap of 1560lm [Fig. 10(b)]. By using such wedge structures, one
can simultaneously estimate the penetration depth for a range of EARs
(38:1–1410:1).

Musschoot et al.69 extended the method of Dendooven et al. to
investigate the penetration of thermal and plasma-enhanced ALD
into fibrous materials. They used a hole, made of Teflon (1 cm 	 1 cm
	 5 cm), and filled it with non-woven polyester. The hole structure
was clamped between the substrate holder and a flat Teflon surface. In
this way, the ALD reactants could enter the fibrous material from only
one side and precursor penetration into the non-woven polyester
could be studied in a systematic way.

Puurunen and co-workers86,87 fabricated microscopic lateral high
aspect ratio (LHAR) trenches, code named PillarHall structures, with a
gap height of 200–1000nm and EARs up to 12 500:1, using micro-
fabrication techniques commonly used for MEMS [Figs. 10(c) and
8(c)]. In recent work, the gap height range was expanded to
100–2000nm.77 The lateral structures consist of a Si wafer (as bottom
surface) and a suspended polysilicon membrane that is locally sup-
ported by a network of Si or SiO2 pillars. Elongated openings are
etched through the top polysilicon membrane to define the access
points for the gas into the lateral structure. After ALD, the film pene-
tration can be investigated non-destructively through the membrane
using, e.g., infrared spectroscopy or in some cases using a laboratory
microscope. After the removal of the membrane, e.g., by using an
adhesive tape, one can measure the penetration depth by microscopy
and quantify the thickness of the ALD coating deposited onto the Si
wafer (i.e., onto the bottom part of the lateral test structures) by using
small-spot size techniques such as reflectometry or SEM/EDX. As
indicated in Fig. 3, these LHAR structures with a typical 500 nm gap
can be used in flow-type ALD reactors in the molecular flow gas trans-
port regime up to pressures of 1000Pa.

Recently, Schwille et al.128,129 studied the conformality of ALD in
microscopic rectangular cavities with lateral dimensions of 2000lm, a
height of 4.5lm, and a central access hole with a diameter in the range
of 4–60lm [Fig. 10(d)]. The centrosymmetric nature of the structure
slightly complicates the analysis as the equations for trenches do not
apply directly because of the different symmetry. These structures
resemble those encountered in real MEMS processing.

To tentatively demonstrate that the conformality of an ALD pro-
cess is indeed determined by the flow type and EAR and not by the
absolute dimension, a test was made for this review where a macro-
scopic lateral test structure reported by Dendooven et al.67 with EAR
of 200:1 and LHAR structures reported by Puurunen and co-workers
(Generation 1, Ref. 86) were used to compare the quantification of
conformality for the same ALD process in the same ALD run. Both
substrates were coated in a pump-type reactor during a TMA/H2O
process to deposit an Al2O3 film. The process parameters were identi-
cal for both substrates: T¼ 100 �C, PTMA¼ 0.28Pa, and PH2O

¼ 0:25 Pa. During the process, 1000 ALD cycles were applied with the
following pulse/pump times: TMA (20 s) - pump (60 s) - H2O (20 s) -
pump (60 s). The film thickness was measured with SE in the case of
the macroscopic lateral structure, while the coating was visualized
using an optical microscope for the microscopic LHAR substrate. For

Applied Physics Reviews REVIEW scitation.org/journal/are

Appl. Phys. Rev. 6, 021302 (2019); doi: 10.1063/1.5060967 6, 021302-11

VC Author(s) 2019

https://scitation.org/journal/are


both substrates, a coated EAR of roughly 100:1 was found as can be
seen in Fig. 11.

C. Porous materials

Most conformality research has focused on ALD coatings in
materials with critical dimensions > 30 nm, e.g., using the above-
mentioned Si-based trench structures, AAO, and lateral structures.
Fewer studies have focused on ALD coatings in sub-30 nm pores.

George and co-workers investigated ALD of Al2O3, TiO2, and
SiO2 in tubular alumina membranes with a pore diameter of 5 nm.47

After each ALD growth reaction, the pore diameter was derived from
in situ N2 conductance measurements (assuming molecular flow in
the pores). The pore size was smaller after a metal reactant exposure
than after the subsequent H2O exposure, in accordance with the
replacement of the bulkier metal reactant ligands on the pore walls by
the smaller OH groups during the H2O step. The pore diameter was
successfully reduced to molecular diameters (estimated in the range of
3–10 Å), demonstrating the potential of ALD in tailoring nanoporous
membranes for specific gas separation purposes.

To quantify the penetration of ALD coatings into nanosized
pores, Dendooven et al.106,115 developed an approach based on meso-
porous SiO2 and TiO2 films that were deposited onto silicon sub-
strates. The mesoporous SiO2 films had randomly ordered channel-

like pores with an average diameter of ca. 6.5 nm. The mesoporous
titania thin films contained ink-bottle shaped pores [Fig. 8(i)], i.e.,
spherical cages with a diameter in the range of 4–7nm connected to
each other via smaller pore necks (3–5 nm). The amount of deposited
material during the ALD process was monitored using in situ XRF105

and the remaining porosity using in situ grazing incidence small angle
x-ray scattering (GISAXS)115 and ellipsometric porosimetry (EP).106

Since the thickness of the deposited film was of the same order as the
gap size through which the gas had to enter the pore, the equivalent
aspect ratio was not constant, but was gradually increasing as the
thickness of the deposited film increased. They demonstrated tuning
of the pore size up to near molecular dimensions for both channel-
like and ink-bottle shaped mesopores, indicating that the key limiting
factor in ALD deposition into nanopores is the diameter of the reac-
tant molecules used during the process, e.g., a TDMAT molecule has
a molecular diameter of about 0.7 nm.130

Opal structures consist mostly of close-packed silica or polysty-
rene spheres with a diameter of several hundred nm [Fig. 8(h)]. With
ALD, one can deposit a coating into the void space between the
spheres.101–104 After the deposition, the original spheres can be
removed to obtain an inverse opal structure, with potential applica-
tions in photonics. The conformality of ALD in these structures can be
evaluated by EDX mapping of cross-sections of the opal structure to

FIG. 10. Lateral test structures to quantify the conformality of an ALD process: (a) Macroscopic trenches. Reproduced with permission from J. Dendooven et al. J.
Electrochem. Soc. 156(4), P63–P67 (2009). Copyright 2009 The Electrochemical Society. (b) Air wedges. Reprinted with permission from N. T. Gabriel and J. J. Talghader,
Appl. Opt. 49(8), 1242–1248 (2010). Copyright 2010 The Optical Society. (c) LHAR structures. Reprinted with permission from F. Gao et al., J. Vac. Sci. Technol. A 33(1),
010601:1–010601:5 (2015). Copyright 2015 American Vacuum Society. (d) A microscopic cavity. Reprinted with permission from M. C. Schwille et al., J. Vac. Sci. Technol. A
35(1), 01B118 (2017). Copyright 2017 American Vacuum Society.
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measure the penetration depth. After the removal of the opal template,
cross-sectional SEM can be used to measure the thickness and lateral
uniformity of the inverse opal structure.

Besides conformality in mesoporous thin films and opal structures,
ALD infiltration in mesoporous powders, including silica gel,109 Zeotile-
4111,131 [Fig. 8(j)], metal organic frameworks (MOFs),110,132 and alu-
mina and silica powder with a size of several hundred microns,112,133

has also been a subject of research. ALD functionalization of porous
powders is mainly explored for applications in the field of catalysis. The
diffusion into the interior portions of these materials is considered to be
highly challenging, not only because of the high EAR (few nm wide
pores of sometimes several microns in length) but also because of the
very large surface areas (up to 2500 m2/g)110 that need to be covered.
Because of these large surface areas, the conformality of ALD is gov-
erned not only by the diffusion of the molecules but also by the reactant
supply.109

IV. EXPERIMENTS ON CONFORMALITY OF ALD

In this section, we aim to provide a systematic overview of experi-
mental data on the conformality of ALD processes. This overview
does not aim to include all reported ALD processes but rather concen-
trates on those reports in which conformality has been investigated in
detail. We distinguish three types of ALD processes: thermal, ozone-
based, and plasma-enhanced processes. In thermal ALD, the confor-
mality is influenced by the molar mass and reactivity of the ALD reac-
tants as well as by the partial pressures and exposure times. Reactant
decomposition (not occurring in theoretical ALD, but sometimes
occurring in real processes) and too short purge/evacuation steps may
decrease the conformality. For ozone-based and plasma-enhanced

ALD, the conformality additionally depends on the recombination of
radicals (or ozone) which causes the flux of radicals (ozone) to
decrease inside trenches and hence leads to decreased conformality.
Therefore, in general, it is expected that better conformality will be
achieved for thermal ALD than for ozone-based or plasma-enhanced
ALD processes.

Tables II–IV overview experimental results on the conformality
of thermal, ozone-based, and plasma-enhanced ALD processes, respec-
tively, as reported in the literature. The indicated EAR has been calcu-
lated according to the definition given in Sec. II based on the feature
dimensions reported in the corresponding reference. For AAO pores
that are accessible from both sides, the tabulated EAR is calculated
using half of the pore length. Unless stated otherwise in the table foot-
notes, the given exposure corresponds to the metal reactant (reactant
A) of the ALD process. The value has been calculated from the reactant
partial pressures and pulse times reported in the referenced papers
(where available). The coated EAR equals the EAR of the structure in
the case of complete coverage or is determined by PD50% in the case of
incomplete coverage as described in Sec. II and indicated with �. If the
results were presented in a thickness profile (film thickness as a func-
tion of the depth of the structure), “D” is noted after the coated EAR.
Not all fields in the tables could be filled because the process parame-
ters were not always reported. For the PE-ALD processes shown in
Table IV, the type of plasma configuration is noted. The influence of
the type of configuration will be discussed in Sec. IVC.

A. Thermal ALD processes

Table II summarizes experiments on the conformality of thermal
ALD processes. According to the mean free path of the molecules as

FIG. 11. A TMA/H2O process was performed on a macroscopic67 (EAR 200:1 / gap 0.1 mm) (a) and microscopic LHAR86 test structure (EAR 200:1 / gap 500 nm) (b) in a
pump-type ALD reactor under equal process conditions. Thickness profiles were obtained using ellipsometry (a) and optical microscopy (b). In both cases, a coated EAR of
roughly 100:1 was found.
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TABLE II. Overview of experimental results on the conformality of thermal ALD processes. The coated EAR equals the EAR of the structure in the case of complete coverage
or is determined by PD50% in the case of incomplete coverage and indicated with �. If the results were presented in a thickness profile (film thickness as a function of the depth
of the structure), “D” is noted after the coated EAR.

Film (process) Substrate EAR T (�C)
Exposure
(103 L)

Characterization
method

Coated
EAR References

Oxides Al2O3 (TMA/H2O) Macro lateral 100 200 9 SE 50� (D) 67

Trench 5 300 SEM 5 134

AAO 8.5 200 300 SEM/TEM 8.5 135

Nanorods (ZnO)136 300 560 TEM Conformal 99

Pillars (Si)137 125 TEM Conformal 93

AAO 1750 177 SEM/TEM 1750 96

AAO 770 177 4500 SEM 770 65

LHAR 10-12500 300 Reflectometry,
optical/IR
microscopy,

SEM

75� (D) 86

LHAR 10-12500 300 Reflectometry 130� (D) 77

Trench 11 SEM 11 138

Macro lateral 5 75 18 SEM/EDX 2.5� (D) 69

Hole 17 200 370 SEM 17 139

TiO2 (TiCl4/H2O) Pillars (Si)137 110 TEM Conformal 93

AAO 7.5 200 SEM/TEM 7.5 140

LHAR 10-12500 110 Reflectometry 90� (D) 77

IR microscopy

LHAR 10-12500 110 Reflectometry 65� (D) 86

AAO 7000 100 SEM/TEM/EDAX 7000 96

Opal 70 FE-SEM Conformal 101

Opal 80 SEM 141

TiO2 (TTIP/H2O) VACNT142 225 SEM (D) 100

V2O5 (VOTP/H2O2) AAO 7000 100 SEM/TEM/EDAX 7000 96

Fe2O3 [Fe2(O
tBu)6/H2O] AAO 100 140 SEM/TEM 100 143

Fe3O4 [Fe(Cp)2/O2] AAO 400 SEM/TEM 144

ZnO (DEZ/H2O) AAO 700 177 2000 EPMA 700 (D) 65

AAO 5000 177 6 00 000 EPMA 5000 (D) 65

Opal 85 SEM 102

Trench 3 250 SEM 3 90

Nanowire (CuO) 145 150 SEM/TEM Conformal 146

Y2O3 [(CpCH3)3Y/H2O] Trench 35 300 50 000 TEM 15� 89

ZrO [Zr(NMe2)4/H2O] Elliptical holes 36 6 SEM 36 78

ZrO [Zr(NEtMe)4/H2O] Elliptical holes 36 6 SEM 36 78

ZrO [Zr(NEt2)4/H2O] Elliptical holes 36 6 SEM 36 78

RuO2 [Ru(od)3/O2] CNT147 300 SEM/TEM Conformal 148

SnOx (SnCl4/H2O) Porous silicon 140 500 TEM/SIMS 140 (D) 107

HfO2 (HfCl4/H2O) Trench 35 300 2000 TEM 22� 89

HfO2 [Hf(NMe2)4/H2O] Holes 36 150 9 SEM 36 62

Elliptical holes 36 6 SEM 36 78

HfO2 [Hf(NEtMe)4/H2O] Elliptical holes 36 6 SEM 36 78

HfO2 [Hf(NEt2)4/H2O] Elliptical holes 36 6 SEM 36 78

Nitrides BN (BBr3/NH3) AAO 10000 750 SEM 20 149

AlN (TMA/NH3) Trench 17.5 420 SEM 17.5 150

TiN (TiCl4/Zn/NH3) Trench 5 500 SEM 5 134
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discussed in Sec. II, all experiments were performed with the molec-
ular flow regime inside the structures. To conformally coat a sub-
strate with a large EAR, a large dose of reactant molecules is
needed because of the increased coated surface area and due to the
increased diffusion time of the molecules. For example, Elam
et al.65 used an exposure of 6 	 108 L for a conformal ZnO coating
of an AAO structure with an EAR of 5000:1. An unusually large
exposure time of 10min, resulting in an exposure of 6	 109 L, was
used to achieve a conformal W coating on an AAO structure with
an EAR of 1750:1.166 To reduce the deposition time, one can also
increase the reactant partial pressure230 to increase the total
exposure.

A majority of studies are done on oxides, nitrides, and metals.
Only a few studied the conformality of sulfides,231,232 fluorides,233 and
phosphates.92,234 The largest coated EAR by conventional (thermal)
ALD is in the range of 5000:1,65 in an extreme case an EAR of 7000:1
is achieved.96 All such ultra-high aspect ratio coatings published in sci-
entific journals are oxides and have so far been made with anodic alu-
mina (AAO) structures. The published processes96 are TiCl4/H2O,
DEZ/H2O, and VOTP/H2O2. For the commonly used TMA/H2O pro-
cess, the record coating so far is EAR 1750:1.96 As seen from Table II,
the coated EAR varies greatly for the same process, e.g., 5:1 to 1750:1
for the TMA/H2O process, depending on the test structures and pro-
cess conditions. Also, the purpose of coating high aspect ratio

TABLE II. (Continued.)

Film (process) Substrate EAR T (�C)
Exposure
(103 L)

Characterization
method

Coated
EAR References

TaN (TBTDET/NH3) Trench 11 SEM 11 138

WN [(tBuN)2(Me2N)2W/
NH3]

Silica capillary
tube

1000 300 110 Optical microscopy 210 85

Metals Ru [(iPr-Me-
Be)Ru(CHD)/O2]

Hole 4.6 225, 270, and
310

TEM 4.6 151

Hole 25 270 TEM 25152 151

Hole 24 220 XTEM 24 153

Ru [(EtCp)Ru(DMPD)/
O2]

AAO 20 280 TEM 20 154

Hole 17 250 SEM 17155 156

Ru [(Et-Be)Ru(CHD)/O2] Trench 2.25 225 TEM 2.25 157

Ru [(Et-Be)Ru(Et-CHD)/
O2]

Hole 32 225 and 270 XTEM 32 158

Ru [Ru(Me-Me2-CHD)2/
O2]

AAO 166 300 TEM 100 159

Ru [(EtCp)Ru(Py)/O2] Hole 20 275 SEM 20� 160

Trench 11 SEM 11 138

Ru [Ru(EtCp)2/O2] Trench 4 270 SEM 4 161

AAO 10 300 SEM/TEM 10 162

Ru (RuO4/H2) Pillars (Si)163 10 100 SEM/EDX Conformal (D) 94

Pd [Pd(hfac)2/formalin] AAO 1500 200 SEM/EDX electrical
conductivity

1500 164

W (Si2H6/WF6) AAO 1750 200 60 00 000165 SEM/EDX 1750 (D) 166

Ir [Ir(acac)3/O2/H2] LHAR 10-12500 250 EDX optical microscopy 20� (D) 87

Ir [Ir(acac)3/O2] LHAR 10-12500 250 EDX optical microscopy 15� (D) 87

Hole 142 300 Ref. 167 168

Trench 370 SEM 169

Pt (MeCpPtMe3/O2) AAO 8.5 250 405 SEM/TEM 8.5 135

AAO 150 250 SEM/EDX/SANS 110� (D)170 171

AAO 200 300 SEM 94 172

Trench 6 300 TEM 6 79

AAO 200 300 SEM/TEM 50 173

Hole 90 300 SEM/TEM 30 173

PtIr alloy [MeCpPtMe3/
O2/Ir(acac)3/O2]

AAO 7.1 300 SEM 7.1 172

Trench 9.5 300 SEM 9.5 174

Applied Physics Reviews REVIEW scitation.org/journal/are

Appl. Phys. Rev. 6, 021302 (2019); doi: 10.1063/1.5060967 6, 021302-15

VC Author(s) 2019

https://scitation.org/journal/are


structures can be different: Rose et al.180 wanted to determine the slope
of the thickness profile, and therefore, they on purpose used an unsat-
urated exposure.

Besides the exposure, high reactivity (often interpreted as high
sticking probability) of the reactant molecules is important to achieve
a good conformality in structures with a moderate EAR. In Table V,
an overview is given of sticking probabilities that have been reported
for specific ALD reactants. There is a large variety in reported sticking
probabilities, even in values reported for the same reactant molecule.
This variety of values is likely partly caused by the large range of meth-
ods used to determine the sticking probability. One can use not only
theoretical approaches such as density functional theory calcula-
tions176 or Monte Carlo modelling128,178 but also several experimental
methods to measure the sticking probability, e.g., Auger Electron
Spectroscopy235 and QCM measurements;78,236 and more recently,
sum frequency generation237,238 has been reported in the literature.

B. Ozone-based ALD processes

The use of ozone in ALD processes has several advantages.
Ozone is a strong oxidizer, whereby some metal reactants react with
O3 and not with H2O.

5 Another advantage is that at low deposition

temperatures, ozone is easier to purge away than the sticky H2O.
However, it often proves difficult to achieve a good conformality for
ozone-based processes.

In Table III, one observes the best conformality with an ozone-
based process for a film growth up to an EAR of 400:1. This result was
obtained for a SiO2 three-steps process from H2N(CH2)3Si(OCH2CH3)3
and water and ozone as reactants.177 Also, V2O5 has been deposited
conformally in a structure with an EAR of 100:1.78 A conformal
ZnO coating was achieved in an AAO structure with EAR of
250:1.187 In general, most of the other ozone-based ALD processes
have a relatively small coated EAR in comparison with the corre-
sponding thermal ALD process. While the largest coated EAR of the
thermal Al2O3 process was 1750:1,

96 for the ozone-based Al2O3 pro-
cess, the coated EAR was only equal to 20:1.176 This difference in
coated EAR between thermal and ozone-based ALD processes is
caused by the fact that ozone can thermally decompose in recombi-
nation processes on surfaces. The chemical composition of the sub-
strate and the temperature have a large influence on the
recombination probability of ozone. Knoops et al.241 studied the
recombination probabilities of ozone by measuring the transmission
of ozone through high aspect ratio capillaries (EAR 350:1). The
recombination probabilities from different processes are shown in

TABLE III. Overview of the experimental results on the conformality of ozone-based ALD processes. The coated EAR equals the EAR of the structure in the case of complete
coverage or is determined by PD50% in the case of incomplete coverage and indicated with �. If the results were presented in a thickness profile (film thickness as a function of
the depth of the structure), “D” is noted after the coated EAR.

Film (process) Substrate EAR T (�C)
Exposure
(103 L)

Characterization
method

Coated
EAR References

Oxides Al2O3 (TMA/O3) Trench Ref. 175 176

SiO2 ([H2N(CH2)3
Si(OCH2CH3)3]/H2O/O3)

AAO 400 SEM/TEM 400 177

TiO2 (TDMAT/O3) Hole 20 180 TEM 20� (D) 178

CNT179 100 4500 TEM/SEM/EDX 98

TiO2 [Cp
�Ti(OMe)3/O3] Hole 15.3 270 SEM/TEM (D) 180

V2O5 (VOTP/O3) AAO 100 SEM/EDX 100 150

AAO 185 170 SEM/TEM 44 159

Fe2O3 [Fe(Cp)2/O3] Trench 2 250 SEM 2 181

Silica aerogel 150 250 SEM/EDX 150 (D) 181

Fe2O3 [CpFeC5H4CHN(CH3)2/O3] Nanowire (TiO2) 230 TEM/EDX Conformal 182

Co3O4 (CoCp2/O3) Anodisc183 375 167 SEM/EDX 375 (D) 184

NiO [Ni(CpEt)2/O3] AAO 70 250 TEM/SEM/EDX 70 185

NiO (NiCp2/O3) AAO 238 300 TEM/SEM 238 186

ZnO (DEZ/O3) AAO 250 50 SEM/EDX 250 (D) 187

Hole188 2 85 SEM 2 189

HfO2 (TEMAHf/O3) Hole 15.3 180 SEM/TEM 9.6� (D) 180

IrO2 [Ir(acac)3/O3] LHAR 10-12500 185 EDX190 optical microscopy 15� (D) 87

PtOx(Pt(acac)2/O3) Trench 3.5 120 FE-SEM 3.5 191

PtOx (MeCpPtMe3/O3) Trench 5 120 SEM 5 192

Metal Ru [Ru(EtCp)2/O3] Hole 16 275 TEM 16193 194

Ir [Ir(acac)3/O3/H2] LHAR 10-12500 185 EDX optical microscopy 45�(D) 87

Trench 165 FE-SEM 192

Pt (MeCpPtMe3/O3) AAO 150 150 SEM/EDX 35� (D) 195

Pt (Pt(acac)2/O3) AAO 120 150 SEM 50 196
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TABLE IV. Overview of the experimental results on the conformality of PE-ALD processes. The plasma configuration is indicated as C (capacitive), I (inductive), R (remote),
and RE (radical enhanced). The coated EAR equals the EAR of the structure in the case of complete coverage or is determined by PD50% in the case of incomplete coverage
and indicated with �. If the results were presented in a thickness profile (film thickness as a function of the depth of the structure), “D” is noted after the coated EAR.

Film (process) Substrate EAR T (�C)
Plasma

configuration
Exposure
(103 L)

Characterization
method

Coated
EAR References

Oxides Al2O3ðTMA=O�
2Þ Macro lateral 10 200 RI 27 SE 10 (D) 70

Hole 8 200 RI SEM 8 197

Trench 13.5 250 RC SEM 13.5 198

Macro lateral199 5 75 RI 5 EDX 0.75� (D) 69

Hole 10 225 30 FE-SEM 10 200

Trench 2 250 C TEM 2 201

Trench 15 R SEM 15� 202

SiO2 ð3DMAS=O�
2Þ Trench 30 250 RC SEM 30 198

SiO2 ðH2Si½NðC2H5Þ2
2=O�
2Þ Trench 15 R SEM 15 202

Hole 50 75 TEM (D) 203

TiO2 ðTTIP=O�
2Þ Trench 13.5 150 RC SEM 13.5 198

Hole 8.7 225 TEM 8.7 (D) 204

Ti ðTiCl4=O�
2Þ Trench 4.5 200 RI 75 FE-SEM/FEI 4.5 205

HfO2 ðTEMAHf=O�
2Þ Trench 30 250 RC SEM 30 198

Ta2O5 (Ta(OEt)5/O
�) Trench 2.5 150-250 RE SEM 2.5 206

Trench 5 150-250 RE SEM 5 206

Ta2O5 ðTaðOEtÞ5=O�
2Þ Trench 10 200 RC SEM 10 198

Nitrides AlN ðTMA=NH�
3Þ Macro lateral 10 200 RI 40207 SE 2.5� (D) 70

SiNx ðSi2Cl6=NH�
3Þ Trench 2.5 400 C TEM 2.5 208

SiNx ðDTDN2-H2=N�
2Þ Trench 2.75 300 TEM Ref. 209 81

TiN ðTDMAT=NH�
3Þ Hole 10 250 R FE-SEM/AES 10 210

TiN ðTDMAT=NH3=H
�
2Þ Trench 10 180 C FE-SEM 10 80

TiN ðTDMAT=H�
2Þ Hole 10 250 R FE-SEM/AES 10 210

TiN ðTDMAT=N�
2Þ Hole 10 250 R FE-SEM/AES 10 210

AAO 14 200 FE-SEM 14 211

TiN ðTiCl4=H�
2 þ N�

2Þ Hole 6 350 C SEM 6 201

Nanotube (TiO2) 200 R FE-SEM 212

Trench 10.5 400 RI SEM 10.5 213

Mo2N Nanotrench 2.25 300 XTEM Ref. 214 215

ðMoðNtBuÞ2ðStBuÞ2=H�
2Þ

TaNðTBTDET=H�
2Þ Hole 10 260 C SEM 10 216

Trench 2 TEM 2 97

TaN (TBTEMAT/H2
�) Hole 7 250 7 217

TaNx (PDMAT/H2
�) Trench 5 250 TEM 5 218

Metals Co ððC5H5Þ2Co=NH�
3Þ Trench 5.5 300 HW 20 FE-SEM 5.5219 220

Ni ðNiðCpÞ2=H2O=H
�
2Þ Hole (TaN) 3.3 165 C SEM 3.3 221

Cu ðCuðacacÞ2=H�
2Þ Trench (SiO2) 1.75 85 C SEM 1.75 222

2.5 85 2.5 222

4.5 85 4.5 222

Ru ðRuðEtCpÞ2=NH�
3Þ Trench 2 290 TEM 2223 97

Si,Si/TaN

Ag Trench 30 120 RC FE-SEM 5224 198

ðAgðfodÞðPEt3Þ=H�
2Þ (SiO2/TiN)

Ag Trench 4.5 140 RE SEM 4.5 225

((Ag(O2C
tBu)(PEt3))/H

�)
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Table VI. There are low-loss oxides (silica and alumina), high-loss
oxides (MnO2 and Ru2O3), and high-loss noble metal surfaces (Pt).
Liu et al.150 reported that during ALD of HfO2 using O3, the decom-
position rate increased for increasing substrate temperature, leading
to a reduction in the step coverage. This temperature effect is also
shown in Table VI for the ZnO process. Besides the temperature
and the chemical nature of the surface, other parameters can also
influence the recombination coefficient of ozone. For Pt242 and

Fe2O3,
243 it has been reported that humidity can decrease the

decomposition rate of ozone. In these cases, a co-dosing of ozone
and H2O could lead to a higher conformality, as earlier suggested by
Knoops et al.241 Also, the addition of N2 could in some cases
decrease the recombination probability of ozone; however, this can
also influence the growth process (increase or decrease the film
thickness, depending on the ALD process) and the material proper-
ties, e.g., N impurities in the TMA/O3 process.

244

TABLE IV. (Continued.)

Film (process) Substrate EAR T (�C)
Plasma

configuration
Exposure
(103 L)

Characterization
method

Coated
EAR References

Ir ðIrðacacÞ3=O�
2Þ Hole (elongated) 370 I SEM 226

Trench 370 SEM 169

Pt ðMeCpPtMe3=O
�
2Þ227 Trench 17 300 I SEM 17 (D) 228

TaðTaCl5=H�
2Þ Trench 3 250 I SEM 3 229

TABLE V. Sticking probabilities for several ALD reactants and the method how they were derived, as reported in the literature. Updated from H. C. M. Knoops et al., J.
Electrochem. Soc. 157(12), G241–G249 (2010).

Species Deposited material Method T (�C) Sticking probability References

Al(CH3)3 Al2O3 Monte Carlo model 177 0.001 65

Ballistic model 225 0.026 200

Semi-Analytical model 200 0.1 67

DFT 0.1-0.9 176

Continuum model 300 0.00572 77

Monte Carlo model 200 0.02 128

Sum-frequency generation 100-300 0.002-0.005 237

Auger electron spectroscopy 25 0.01 235

Hf(NEtMe)4 HfO2 Monte Carlo model 180-270 0.03-0.6 180

Ti(NMe2)4 TiO2 Monte Carlo model 180 0.026 0.005 178

Ti(OiPr)4 TiO2 Ballistic model 125-225 0.04-0.1 204

Cp�Ti(OMe)3 TiO2 Monte Carlo model 270 0.01 180

TiCl4 TiN QCM 25-125 0.0066 0.002 236

Continuum model 110 0.1 77

ZnEt2 ZnO Monte Carlo model 177 0.007 65

SiCl4 SiO2 Monte Carlo model 10–8 65 and 239

H2Si[N(C2H5)2]2 SiO2 Monte Carlo model 300 3 	 10–5 128

Zr(NMe2)4 ZrO QCM 200 0.07 78

Co(C5H5)2 Co Monte Carlo model 300 0.002 220

H2O Al2O3 DFT 0.01-0.1 176

Sum-frequency generation 100 0.000001 238

Sum-frequency generation 300 0.0001 238

Auger electron spectroscopy 25 0.25; 0.009240 235

O3 Al2O3 DFT 0.001-0.01 176

O� Al2O3 DFT 0.1-0.9 176

H� TiN QCM 25-125 0.00036 0.0001 236

N� TiN QCM 25-125 0.016 0.002 236
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C. PE-ALD processes

In PE-ALD processes, one uses plasma excitation during the reac-
tant exposure step, to create reactive species, such as electrons, ions, and
radicals.245 In some cases, PE-ALD offers a higher GPC,197,246,247 higher
film density, and lower deposition temperature than those obtained with
thermal ALD. A lower deposition temperature can be useful for ther-
mally fragile samples such as biological substrates or polymers.248,249

The main disadvantages of PE-ALD include potential plasma damage to
the substrate, more challenges in batch processing for higher throughput,
and a limited conformality in high aspect ratio structures due to the
recombination of the radicals by collisions with the surface. Note that,
during two-particle collisions in the gas phase, recombination will not
occur because of preservation of energy and impulse.

When coating deep holes or trenches with PE-ALD, the reactive
species undergo multiple wall collisions during which they may be lost
through surface recombination before they can reach the surfaces
deeper in the hole. The elimination of radicals through recombination
on the sidewalls of high aspect ratio structures will inevitably limit the
conformality of PE-ALD. This is clear from Table IV, where the high-
est achieved conformally coated EAR for PE-ALD is only equal to
30:1,198 compared to the much higher conformally coated EAR of
thermal ALD (7000:1)96 (Table II).

Table VII lists recombination probabilities r for O, N, and H
atoms on various surfaces. The r values span a large range from
0.000094 for the recombination of O atoms on Pyrex to 0.8 for the
recombination of H atoms on silicon. In general, higher recombina-
tion rates are measured on metallic surfaces, which explains the lower
EAR values for PE-ALD of metals listed in Table IV. The largest
coated EAR for metals coated with PE-ALD is 17:1, for a Pt coating in
a trench structure.228 In contrast, the largest PE-ALD coated EAR for
oxides is 30:1 (SiO2 and HfO2).

198 Hydrogen radicals have a larger
recombination probability than O and N radicals. However, O radicals
have larger recombination probabilities on oxide surfaces containing
elements with an incomplete d-shell (transition metals, such as Mn,
Fe, Co, Ni, and Cu).250 Furthermore, the recombination coefficient
will also vary during the plasma pulse, because the surface changes
during the pulse, from a surface that is covered with metal reactant
ligands to the oxide, nitride, or metal that is deposited. When NH3,
N2, and H2 plasmas are used, the high recombination of the N and H
radicals may explain why in general it is more difficult to achieve good
conformality for these processes in comparison with O2 plasma-based
processes.

The conformality of a PE-ALD process depends on the recombi-
nation probability and therefore on the type of radical, on the type of
material on which it collides (the deposited material), and on the pro-
cess parameters, such as deposition temperature, gas pressure, and
plasma configuration. Varying the gas pressure or the plasma set-up
will not only affect the recombination probability but also affect the
radical density which has an influence on the conformality.

Dendooven et al.70 used macroscopic test structures to study the
influence of the gas pressure, the RF power, the plasma exposure time,

TABLE VI. Measured recombination probabilities of ozone for various surfaces at dif-
ferent temperatures. Reprinted with permission from H. C. M. Knoops et al., Chem.
Mater. 23(9), 2381–2387 (2011). Copyright 2011 American Chemical Society.

Surface Temperature (�C) Recombination probability

Al2O3 100-200 <10–6

ZnO 100 <10–6

150 (56 2) 	 10–5

200 >10–3

Pt 100 >10–3

MnOx 100 >10–3

TABLE VII. Overview of the surface recombination probabilities of O, H, and N
atoms on different surfaces as reported in the literature. Updated from H. C. M.
Knoops et al., J. Electrochem. Soc. 157(12), G241–G249 (2010).

Atom Surface
Recombination
probability r References

O Alumina 0.0021 250

0.00976 0.0019 251

Silica 0.0004 252

Titania 0.0146 0.003 251

Iron(III)oxide 0.0052 250

Iron(II, III)oxide 0.0156 0.003 251

Cobalt oxide 0.0049 250

0.0296 0.006 251

Oxidized cobalt 0.0856 0.005 253

Nickel oxide 0.0089 250

Oxidized nickel 0.276 0.04 254

Copper (II) oxide 0.043 250

Oxidized copper 0.225 253

Zinc oxide 0.00044 250

Pyrex 0.000045 250

0.00206 0.0005 255

Stainless steel 0.07026 0.009 256

N Aluminum 0.0018 257

Silicon 0.0016 257

Silica 0.000216 0.00003 258

Stainless steel 0.0063 257

H Aluminum 0.29 259

Oxidized aluminum 0.00186 0.0003 260

0.00176 0.0002 261

Silicon 0.8 262

0.66 263

Oxidized silicon 0.00306 0.0003 260

Titanium 0.35 259

Nickel 0.25 259

0.186 0.03 260

Copper 0.14 259

Pyrex 0.00586 0.0018 259

0.000946 0.0004 261

Stainless steel 0.0306 0.014 260

Oxidized stainless steel 0.00226 0.0002 261
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and the directionality of the plasma plume on the conformality of the
remote PE-ALD of Al2O3 from TMA and O2 plasma and PE-ALD of
AlN from TMA and NH3 plasma. Dendooven et al. used a remote
inductively coupled plasma ALD reactor where the plasma is located
at approximately 50 cm from the substrate. They showed that by
increasing the plasma power or the plasma pulse time, the conformal-
ity could be improved. For the Al2O3 process using O2 plasma, confor-
mal coatings in holes with an EAR of 10:1 were considered achievable
by optimizing the process parameters. The conformality of the AlN
process was more limited, and an EAR of 10:1 seemed already out of
reach.

Kariniemi et al.198 investigated the conformality of various PE-
ALD processes by deposition into microscopic trenches and subse-
quent characterization by cross-sectional SEM. They showed good
conformality of metal oxide coatings deposited in trenches with EARs
considerably larger than what had generally been achieved for PE-
ALD (up to 30:1). Kariniemi et al. used a capacitively coupled RF
plasma operated at two or three orders of magnitude higher pressure
configuration, enabling higher radical densities in closer proximity to
the substrate. These higher radical densities lead to higher radical
fluxes deeper in the trench, enhancing the conformality. In the case of
the Ag-PEALD process using H2 plasma, the coating penetrated con-
formally up to an EAR of 5:1. The low conformality is probably related
to the high recombination probability of H radicals on metal surfaces.

It is assumed that in some cases, secondary thermal ALD reac-
tions by the gaseous by-products can lead to an apparently better con-
formality than could be achieved with a “pure” plasma process. For
instance, experimental film thickness profiles obtained for PE-ALD of
Al2O3 by Dendooven et al.70 and Musschoot et al.69 could only be
reproduced by Monte Carlo simulations if a superposition of two reac-
tions was assumed, i.e., (i) combustion reactions of O radicals with
adsorbed TMA molecules near the entrance of the hole resulting in
CO2 and H2O as reaction products and (ii) a secondary thermal ALD
reaction of these H2O molecules that are diffusing deeper into the
structure and react with adsorbed TMA molecules deeper in the hole.
On the other hand, Kariniemi et al.198 concluded that the secondary
H2O effect played a minor role in their depositions as good conformal-
ity was also achieved for the SiO2 process, while the Si-reactant reacts
only slowly with H2O. The minor secondary H2O effect might be
explained by the difference in radical fluxes inside the high aspect ratio
structures. Indeed, for sufficiently large O radical fluxes, as is also the
case on planar substrates, the effect of the secondary H2O reaction
should be minor as it has to compete with the combustion-like O radi-
cal reactions which are likely to occur faster. If the radical flux is low,
secondary reactions with the H2Omay have a relatively large impact.

V. SIMULATION MODELS ON CONFORMALITY OF ALD

A number of models for simulating the conformality of ALD
processes, based on different theoretical and numerical approaches,
have been developed in recent years. In this section, we aim to provide
an overview of the analytical and computational models that are avail-
able in the literature. First, a classification for the models is proposed
in Sec. VA, while multiscale approaches are addressed in Sec. VB.
Next, attention is given to the key assumptions that are used and to
how these differ for different models. Finally, typical model output
results are discussed. An overview of the reported models focusing on
the conformality of ALD is given in Table VIII. In Table IX, an

overview of the multiscale models is presented (see also Sec. VB). For
each model, the main modelling approach, the key assumptions, simu-
lation space, simulated structures, and the most important conclusions
are listed.

A. Overview

1. Analytical models

In 2003, Gordon et al.62 introduced a kinetic model to describe
the diffusion and deposition of reactant molecules into holes with
aspect ratio a. Gordon et al. defined the aspect ratio as

a ¼ Lp

4A
; (13)

with L (m) being the length, p (m) being the perimeter, and A (m2)
being the cross-section of the hole.

Gordon et al.62 obtained an analytical expression, based on con-
ductance formulae derived for cylindrical holes, for the exposure
required to conformally coat a hole with a certain aspect ratio a

Pt ¼ Kmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pmkBT
p

1þ 19

4
aþ 3

2
a2

� �

: (14)

In this equation, Kmax is the saturated coverage of the reactant mole-
cule per unit surface area (molecules/m2, in practice, calculated from
the GPC value of the process),m (kg) is the mass of the reactant mole-
cules, kB is the Boltzmann constant, and T (K) is the temperature. For
large EARs, the required exposure increases approximately quadrati-
cally with a. The model assumes that reactant molecules react upon
their first collision with an unsaturated part of the substrate walls,
implying a sticking probability of unity. Therefore, the model is espe-
cially powerful in the diffusion limited growth type, where the expo-
sure time strongly depends on the value of a and much less on the
value of the sticking probability (see also Sec. VI B 4 and Fig. 24).
Alternatively, in the reaction limited growth type, the model pre-
dicts a minimum exposure for the reactant (with a sticking proba-
bility of less than one for any real ALD reaction) to coat a structure
with a certain a. The predictions of the model agreed with the
experimentally determined minimum exposure for coating holes
with HfO2 (EAR 36:1).62

Inspired by the model of Gordon et al., several analytical models
on the conformality of ALD processes have been derived. Dendooven
et al.67 used a similar approach based on conductance formulae to study
the effect of sticking probability on the thickness profile. Ylilammi
et al.77 used diffusion equations to study the propagation of ALD growth
in narrow channels. Yazdani et al.100 and Cremers et al.51 extended the
Gordon model for other geometries being forests of CNTs and arrays of
pillars, respectively. Also in these papers, closed-formulae were obtained
to calculate the required exposure for conformal coating.

2. Computational models

In addition to the (semi)analytical models, models that require
computational effort have been introduced to simulate the conformal-
ity of ALD processes. Following the classification suggested by
Yanguas-Gil et al.,264 these models can be categorized as ballistic, con-
tinuum, andMonte Carlo models.
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TABLE VIII. Overview of different modelling works describing the conformality of ALD process, listed in the chronological order.

References

Main
modelling
approach Key assumptions

Simulation
space Geometry Conclusion

Gobbert282 Ballistic Molecular flow 2D Trench Predict optimal pulse durations

Reversible adsorption during first ALD
reaction, irreversible reaction during sec-

ond ALD reaction

Simulation results for both ALD reac-
tions and purge steps

Species fluxes constant over small time
scales

Gordon62 Analytical
(conductance
formulae)

Molecular flow
Irreversible reactions assumed

Cosine distributed re-emission direction
Vapor by-products neglected

No depletion effects

3D Hole
Trench

Pt
Kmax

ffiffiffiffiffiffiffiffiffiffi

2pmkT
p ¼ 1þ 19

4
aþ 3

2
a2

Formula to estimate the minimum
exposure required for conformal
coating of a hole/trench with an

aspect ratio a

Elam65 Monte Carlo Molecular flow
Molecule is irreversibly adsorbed if

random number < s
Re-emission of the molecule over a distance
of6di

289 with di the diameter of the pore at
the ith position

All nanopores identical and molecules are
entering the pores from both ends with

equal rate

1D AAO Predict minimum exposure for confor-
mal coating

s � H diffusion limited growth type
integrated coverage �t1=2

s� H reaction limited growth type
integrated coverage �t

Neizvestny274 Monte Carlo Only reactant molecules on the substrate
are considered, not those in the gaseous

phase
By-products evaporate immediately
Nucleation starts around defects

(sticking centers)

3D Porous substrate Growth per cycle stabilization after 2–4
cycles due to the roughness of the sur-

face which increases nucleation

Kim204 Ballistic Molecular flow
Irreversible Langmuir adsorption
Studied 3 re-emission mechanisms:

Cosine distributed, random, and specular
All reactant molecules

chemisorbed on the surface are
converted into a solid film

Ideal gas at the hole entrance (flux

3D Hole Study step coverage depending on the
reactant injection time
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TABLE VIII. (Continued.)

References

Main
modelling
approach Key assumptions

Simulation
space Geometry Conclusion

constant in time)

Rose178 Monte Carlo Molecular flow
Adsorption if random number < s
Re-emission according a random

direction

2D Hole Predict thickness profile
Method to determine s

Dendooven67 Semi-analytical
(conductance
formulae)

Molecular flow
Irreversible Langmuir adsorption

Cosine distributed re-emission direction
Surface reactions occur at a much faster
time scale than gas transport into the

hole
Incoming flux at pore entrance constant

in time

1D Cylindrical hole Predict coverage as a function of depth
Extension Gordon model: Sticking
probability different from unity

Lee290 Continuum Molecular flow
Sticking probability of unity

“Outer” transport of molecules is much
faster than transport into the pores

Only radial diffusion
Concentration of reactant molecules is

constant
Irreversible adsorption

3D Cylindrical, spherical,
and planar monoliths
with tortuous pores

Calculate minimum exposure time for
conformal coating. This exposure is
largely dependent on the shape of the

substrate.

Dendooven70 Monte Carlo Molecular flow
Irreversible Langmuir adsorption

Cosine distributed re-emission direction
Recombination probability

3D Hole Predict coverage as a function of depth
of the feature, for PE-ALD

Knoops66 Monte Carlo Molecular flow 2D Trench Simulate PE-ALD

s,r constant291

Cosine distributed re-emission direction
Introduction of recombination limited

growth type

Adomaitis266 Ballistic Molecular flow
Irreversible Langmuir adsorption

Cosine distributed re-emission direction
Reactant in – reactant out¼ reactant

consumed
Steady-state fluxes

3D Circular
hole

Derive reactant transmission probabil-
ity functions for intra pore feature

fluxes
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TABLE VIII. (Continued.)

References

Main
modelling
approach Key assumptions

Simulation
space Geometry Conclusion

Musschoot69 Monte Carlo Molecular flow
Irreversible Langmuir adsorption

Re-emission according inverse reflection
Particles in the medium are at rest, and

the moving particle is small
Neglect multiple collisions in a cell

Transport equations (transmission, loss,
and reflection probability)

1D Hole filled
with non-
woven
polyester

Simulate thermal and PE-ALD
Predict coverage as function of depth in

porous/fibrous substrate

Yanguas–Gil272 Continuum Molecular flow
Irreversible Langmuir adsorption

The surface coverage changes concur-
rently with the diffusion process292

Time-dependent reaction equation

1D Via Predict saturation exposure times and
thickness profiles

Suited for high tortuosity structures
(high number of wall collisions)
Can be extended for viscous flow,

3D,…

Shimizu220 Monte Carlo Molecular flow 2D Trench Determine sticking probability

Irreversible Langmuir adsorption

Cosine distributed re-emission direction

Yazdani100 Continuum

(Semi)-analytical

Molecular flow
Quick equilibrium within and outside the

CNT arrays
Fast distribution of carrier gas

Adsorption rate � diffusion rate
Analytic approximation for s¼ 1

Exclude discrete nucleation phase293

3D CNT A larger precursor supply is needed
with increasing film thickness due to
the increasing diameter of CNTs in

combination with a larger surface area,
which results in a limited penetration
depth and non-uniform thickness

Keuter294 Continuum Based on the model by Yanguas-Gil272

Including second-order kinetics
Transport to the substrate is not

considered
Pores are not taken individually into

account (mean porosity, tortuosity, pore
size, and Knudsen diffusion coefficient)
Only reaction sites which are not shielded

are taken into account

1D Porous substrate Predict thickness profile
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TABLE VIII. (Continued.)

References

Main
modelling
approach Key assumptions

Simulation
space Geometry Conclusion

Cremers51 Monte Carlo Molecular flow
Irreversible Langmuir adsorption

Cosine distributed re-emission direction

3D Square hole
Square pillar

The required exposure for conformal
coating of an array of pillars is a factor
of 2-30 times smaller than an array of

holes with equal surface area

Analytic Molecular flow

Initial sticking coefficient of unity

Cosine distributed re-emission direction

Schwille129 Monte Carlo Molecular and viscous flow
Cosine distributed/specular re-emission

direction
Coverage if random number < s

2D
centro-

symmetric

Cavity Predict film thickness in 3D structures
Extraction of the sticking probability

of the reactant

Jin295 Monte Carlo Molecular and viscous flow 3D Nanoparticle
agglomerates

Predict pulse time for conformal
coating

Analytic Molecular flow

Poodt139 Monte Carlo Molecular and viscous flow 2D Trench Predict exposure for 95% coverage

Irreversible Langmuir adsorption

Simplified diffuse reflection model296

Analytic Molecular and viscous flow 3D Hole Predict the saturation dose for complete
coverage (only valid in the diffusion

limited growth type)

Ylilammi77 Continuum Molecular flow
Reversible Langmuir adsorption

Irreversible successive surface reaction

1D LHAR Calculate the thickness profile in high-
aspect ratio trenches

Extract kinetic growth information
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a. Ballistic models. The derivations for collisionless flow in cylin-
drical tubes made by Clausing et al.265 in the 1930s provide the basis
for the ballistic transport models that are used nowadays. Ballistic mod-
els204,266 inherently imply particle transport in the molecular flow
regime. One uses the balance of particles to compute fluxes at different
locations in the high aspect ratio structure. More specifically, the flux of
reactant molecules reaching section i (/i) is expressed as the sum of the
flux of reactant molecules coming from other sections in the structure
(/j) and the flux of molecules coming from outside (/0)

Si/i ¼
X

j

qjið1� sj � rjÞSj/j þ q0iS0/0; (15)

with Si being the surface area of the discrete section i and qji and q0i
being the probabilities that the molecules coming from section j/0
(outside the trench) can reach section i. sj and rj represent the reaction
and surface recombination probabilities. The ballistic transport models
used in the ALD literature are based on the earlier work of Cale and
co-workers on low-pressure CVD.267,268

b. Continuum models. In continuum models,230,269–273 one uses a
diffusion equation to simulate the transport inside a high aspect ratio
structure. When the transport of the precursor molecules is described

as a diffusion process without an additional flow, the diffusion can be
described by Fick’s second law

@nðt; zÞ
@t

¼ D
@2nðt; zÞ
@2z2

� aðt; zÞ; (16)

with n(t, z) being the precursor density, z being the axial position
along the depth of the high aspect ratio feature, t being the time,
D being the diffusion coefficient, and a(t, z) being a loss term rep-
resenting the adsorption of precursor molecules (chemisorption).
Assuming that the cross-sectional area of the pore is independent
of the position, particle conservation in a section of the feature
reduces Eq. (16) to

@nðt; zÞ
@t

� D
@2nðt; zÞ

@z2
¼ sðhÞDAsJwall; (17)

with DAs being the surface area per unit volume, s being the reaction
probability, h being the fraction of available sites, and Jwall being the
reactant flux per unit area to the walls. The change in surface coverage
is given by

@h

@t
¼ sðhÞA0Jwall; (18)

TABLE IX. Overview of multiscale modelling works describing the conformality of ALD, listed in the chronological order.

References Scale Model Key assumptions Space Geometry Conclusion

Prechtl176 Feature Ballistic B3LYP gradient corrected DFT
functional

2D Trench Derive the activation energy of the
initial adsorption and s

Reactor
Molecular flow
Viscous flow 2D Showerhead

reactor

For low s, depletion on the reactor scale
is small; filling time � 1/s

For high s, filling time independent of s
Predict minimum exposure for

conformal coating

Lankhorst230 Feature
Reactor

Continuum
Continuum

Molecular flow
Viscous flow

1D
3D

Trench
Batch reactor

Deposition time for conformal coating
of trenched wafers� than for flat

wafers

Adomaitis266,270 Feature
Reaction

Continuum
Monte Carlo

Molecular flow
Molecular flow

1D
2D

Nanopore Observe GPC, film density, and surface
roughness with varying ALD cycles and

reactant dose

Yanguas-Gil264 Feature

Reaction

Ballistic Markov chain
Molecular flow

Cosine distributed re-emission
direction

Multiple reaction channels each
with a specific probability

3D Circular pores Track the probabilities as a function of
the number of collisions

General expression for the absorption,
escape, and effective reaction
probability of the feature

Predict total exposure required to cover
the substrate

Miyano203 Reactor Continuum Flow rate of the gas below the
inlet is uniform over the plane

2D Showerhead
reactor

Predict the thickness profile in a hole
Precursor partial pressure and feeding
time can be estimated for a hole with a

given a
Feature Molecular flow 2D Hole

Reaction Reversible physisorption,
irreversible chemisorption
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with A0 being the average surface area of an adsorption site. One can
use Eqs. (16) and (17) both in the viscous flow regime and in the
molecular regime by using the corresponding diffusion coefficient
valid in that regime, as explained in Sec. VC2. This is an important
advantage of continuum models. In addition, the geometry of the sub-
strate is only incorporated via two parameters, the diffusion coefficient
and the surface area per unit volume, which makes this type of model
suitable for simulation of more complex substrates.

c. Monte Carlo models. In Monte Carlo models,51,65,66,114,178,274

one particle at a time is simulated based on an algorithm, as is exem-
plified in the flowchart in Fig. 12. Each particle typically represents a
certain number of reactant molecules. Following the path of the parti-
cle, the intersection of the path and one of the boundary walls of the
substrate feature is calculated. A random number x in the range of 0–1
is generated, and a sticking probability s of the reaction is assumed. If
x< s, the particle will be adsorbed and another particle will be simu-
lated. Otherwise, the particle will be re-emitted according to a certain
type of re-emission mechanism. The simulation stops if a predefined
number of particles are simulated or if the predefined integrated cover-
age of the high aspect ratio structure is achieved.

B. Multiscale approach

By modelling the conformality of ALD, one can focus on different
length scales, being the reactor, feature, and molecular scale. In Fig. 13,
a schematic representation of the different scales in the simulation
space is shown. Multiscale approaches aim at combining the transport
and/or reactions taking place at two (or more) different length scales.

1. Reactor and feature scale

Several models focus on the feature scale and do not take into
account transport at the reactor scale.51,62,66,275 One assumes that the

pressure at the opening of the feature or in the reactor, in general, is
constant, while, in practice, the pressure will vary during a reactant
pulse. For relatively small surface area structures, it can be correct to
assume a constant flux of molecules at the feature entry during the
ALD reaction. However, if one simulates high surface area materials
like porous powders (e.g., SBA-15 powder can have a BET value larger
than 300 m2/g)276 or batches of multiple trenched wafers (e.g., 100V-
NAND wafers yield a surface area of 1450 m2 in a batch reactor133),
saturation will no longer be limited by the diffusion of the molecules
but also by the limited availability of precursor molecules in the
reactor.

Lankhorst et al.230 developed a multiscale model in which contin-
uum reactor scale simulations and 1D feature scale simulations of
trench structures were combined. They simulated the HfO2 coating of
high aspect ratio trenched wafers loaded in a multi-wafer vertical batch
reactor. They found that the exposure time required for saturating all
trenched wafers with TEMAHf was mainly governed by the timescales
corresponding to the following three processes: (1) supply time needed
to saturate the gas phase with the reactant, (2) supply time needed to
provide sufficient reactant molecules to achieve full coverage, and (3)
deposition time needed to coat the trench structures. The latter one
can be estimated using the expression of Gordon et al.,62 yielding a
value of 6 s for a trench with an EAR of 60:1 and a reactor pressure of
93Pa. However, the total required exposure time for coating all
trenches was found to be a factor of 10 higher, showing that depletion
effects in the batch reactor, characterized by large required supply
times, have a considerable impact.

Prechtl et al.176 derived the sticking probability by ab initio calcu-
lations of the first adsorption step and fed that data as input into a fea-
ture scale simulator, coupled with a fluid dynamics based reactor
simulator. With this model, they could predict the step coverage and
saturation pulse time of an Al2O3 deposition, for a given deposition
temperature, ALD tool, trench geometry, and oxygen partial pressure.
Prechtl et al.176 performed TMA/H2O depositions in a trench and
these experimental results confirmed the validity of their multiscale
simulation model.

2. Feature scale and molecular scale

Besides the multiscale approach of the coupling between feature
and reactor scale, one can also study the coupling between the trans-
port in the high aspect ratio structure and detailed reaction simula-
tions at the surface. Yanguas-Gil et al.264 used a Markov chain
approach to decouple the transport from the complex chemical surface
reactions. In a Markov chain approach,277,278 the trajectory of a mole-
cule is represented by a series of transitions between different states. A
state represents a certain geometrical position in the simulated feature.

FIG. 12. Monte Carlo algorithm used by Cremers et al.51 for the simulation of ther-
mal ALD.

FIG. 13. Schematic representation of the reactor scale (for a rotary reactor) (a), the
feature scale (b), and the molecular scale (c).
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Figure 14 shows a schematical presentation of a Markov chain. State i
represents the molecule reaching the surface. The molecule can react
at point i on the surface according to a certain reaction, e.g., surface
reaction pathway F1

i . If the molecule does not react, it can be re-
emitted to point j of the surface or it can be re-emitted while leaving
the structure (transition to 0). Each transition is characterized with a
specific transition probability, e.g., Pij is the probability that the mole-
cule will be re-emitted from position i to position j.

Adomaitis et al.270 coupled a continuum model to describe the
reactant transport in a high aspect ratio nanopore and a Monte Carlo
model to describe growth of the ALD film at the molecular scale. This
model bridges different timescales: (1) the slower timescale of the film
growth over multiple ALD cycles and the resulting evolution in pore
geometry (decrease in the pore diameter as a function of pore depth)
(min to h) and (2) the faster timescale of the surface reactions taking
place during each exposure (ns-ps). Progressive film growth was
shown to influence the reactant transport in the nanopore (open at
both ends), leading to reactant depletion and reduced growth in the
central region of the pore.

In addition to the references listed in Tables VIII and IX and the
accompanying discussion in Secs. VA and VB, the authors want to
refer the reader to the recent book of Yanguas-Gil,16 providing a more
theoretical basis for the different models included here, together with a
discussion of growth and transport in the broader context of thin film
deposition, also including PVD and CVD concepts. More advanced
modeling approaches related to shape evolution during growth and
depletion effects at the reactor scale when coating high surface area
materials, briefly touched upon above, are also discussed in this book.16

C. Key assumptions used in modelling

1. Flow regime: Molecular or viscous flow

A majority of models assume a molecular flow regime where
particle-particle interactions can be neglected. This is especially true
for the listed ballistic204,266 and Monte-Carlo based mod-
els.51,65,66,69,114 As already discussed in Sec. II, one can only obtain a
molecular flow regime if the mean free path of the molecules is much
larger than the limiting dimensions of the studied features (Kn � 1).
An important characteristic of the molecular flow regime is the scale
invariance of the reactive transport process.16 The same model to sim-
ulate the transport of molecules at a reactor scale can be used to

model the transport of molecules inside high aspect ratio structures.
However, in the limit of very small pore sizes, i.e., micropores with
pore diameter < 2 nm, the diffusion is, in principle, governed by
molecular flow but also surface diffusion and the interaction potential
between molecules and the walls will affect the reactant transport.16

Due to the high pressure in atmospheric pressure-type reactors,
there is no molecular flow but a viscous flow regime where intermolec-
ular collisions control the diffusion. To be able to describe ALD pro-
cesses in atmospheric pressure reactors and to get a better insight into
the effect of the process parameters, one needs other models which
assume a viscous instead of a molecular flow regime. Yanguas-Gil
et al.279 developed a continuum formulation model in which the same
formulae can be applied for molecular and viscous flow as further
detailed. Poodt et al.,139 Schwille et al.,129 and Ylilammi et al.77 devel-
oped simulations models, which can be used in both the molecular
and viscous flow regimes.

2. Diffusion coefficient in continuum and analytical

models

The transport of reactant molecules can be described by a diffu-
sion coefficient. In the molecular flow regime, some models use a dif-
fusion coefficient DKn derived for a cylindrical geometry with pore
diameter dp (m)62,67

DKn ¼ dp

ffiffiffiffiffiffiffiffiffiffiffi

8kBT

9pmp

s

; (19)

where kB is the Boltzmann constant, T (K) is the temperature, and mp

(kg) is the mass of the reactant molecule.
Yazdani et al.100 developed a model to simulate an ALD process

on CNTs. The different geometry of the substrate required an adapta-
tion of the diffusion coefficient, which was approximated as

DKn ¼
1
ffiffiffiffiffiffiffiffiffiffi

rCNT
p � 2r

� �

ffiffiffiffiffiffiffiffiffiffiffi

8kBT

9pmp

s

; (20)

with r (m) being the radius and rCNT (1/m
2) being the areal density of

the CNTs. Other models assume an approximated diffusion coefficient
for other geometries such as square holes or pillars.51

In the continuum based model of Yanguas-Gil et al.,272 simula-
tions in the viscous flow regime are achieved by replacing DKn by an
effective diffusion coefficient D which represents the overall resistance
to molecular motion given by

1

D
¼ 1

Dgas
þ 1

DKn
; (21)

with DKn being the Knudsen diffusion coefficient (molecular flow con-
tribution) and Dgas being the gas phase diffusion coefficient (viscous
flow contribution) given by the Chapman-Enskog approximation.280

3. Simulation space in Monte Carlo models

Monte Carlo models offer the possibility for modelling complex
geometries. However, most models neglect the 3D nature of the exper-
imentally used structures and simulate features in one or two dimen-
sions for simplification and to reduce the computational time. One
assumes that the transport of reactant molecules in the structure is

FIG. 14. Schematic representation of a Markov chain. A molecule in state i can
undergo different transitions each with a characteristic transition probability. The
molecule can react via a surface reaction pathway or be re-emitted outside the fea-
ture (state 0) or re-emitted to position j. Adapted with permission from A. Yanguas-
Gil and J. W. Elam, Theor. Chem. Acc. 133, 1465:1–1465:13 (2014). Copyright
2014 Springer.
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largely determined by only one of the dimensions of the cross-section,
implying a trench structure instead of a hole structure. Elam et al.65

used a 1D Monte Carlo model, to simulate a TMA/H2O and DEZ/
H2O process into an AAO structure. The pores of the AAO structure
were modelled as a 1D array with array elements representing the
diameter of the nanopore at a specific distance of the opening of the
tube. If an element of the array becomes coated, the diameter of the
given segment decreased. Other models use a 2D structure.66

However, with a 2D model one cannot distinguish between, e.g., a
trench and a cylindrical hole. A 3DMC simulation model was recently
developed by Cremers et al.51 They gained insights into the required
exposure for conformal coating of an array of pillars versus holes and
found that the required exposure to coat an array of pillars is a factor
of 2–30 times smaller than the exposure needed to coat an array of
holes with equal dimensions. Figure 15 shows a schematic representa-
tion of a simulated structure by a 1D, 2D, or 3D model.

4. Reaction mechanism

In several models, surface dynamics are related to reactant
impingement fluxes, which are computed using the kinetic theory of
gases. The Langmuir adsorption kinetics are often used as a simplifica-
tion to model the complex reaction chemistry as was discussed in Sec.
II E. Different models67,69,114,241,266,272,279 introduce a sticking proba-
bility s to model the conformality of ALD. In Sec. VI, we will further
look into the effect of the sticking probability on the thickness profile.
Gobbert et al.281,282 combine reversible and irreversible reactions to
describe an ALD cycle283

Ag þ �
�A�; (22)

where Ag denotes the gaseous reactant A, � is a vacant surface
site available for adsorption, and A� stands for chemisorbed
reactant A. The irreversible reaction by the second reactant B is
described by

A� þ Bg ! AB�; (23)

where Bg stands for the gaseous reactant B, A
� is the chemisorbed reac-

tant A, and AB� is the chemisorbed product made from reactants A
and B. Equation (22) describes a reversible adsorption of A on a single
site, and Eq. (23) describes the irreversible reaction of B with the
adsorbed A (known as the Eley-Rideal mechanism).

Yanguas-Gil et al.264 used a Markov chain approach to simulate
ALD processes in holes as discussed in Sec. VB. One of the advantages
of a Markov chain is that one can easily introduce more complex surface

kinetics by adding additional surface kinetic channels with their own
transition probability, e.g., extra secondary CVD reaction pathways.

5. Re-emission mechanism

When a particle hits the surface but is not adsorbed, it will be re-
emitted (i.e., bounced back) in a certain direction. Three re-emission
mechanisms are typically reported in the literature:284 cosine re-
emission, specular re-emission, and diffuse elastic re-emission. The dif-
ferent re-emission mechanisms are illustrated in Fig. 16. In the cosine
and diffuse elastic re-emission mechanisms, the particle experiences a
strong interaction with the surface and loses all information of the
incoming trajectory. Following the cosine re-emission mechanism, par-
ticles are re-emitted according a cosine distribution. This mechanism
was first suggested byMaxwell et al.285 and was later experimentally ver-
ified in the work of Clausing286 and Hurlbut et al.287 Knudsen et al.288

used the cosine re-emission mechanism in the derivation of the diffu-
sion coefficient for low-density gases in narrow tubes. This assumption
is often used in models of ALD.62,66,67,114,266 When the particle under-
goes a diffuse elastic re-emission mechanism, the re-emission direction
of colliding particles is random: the particles have an equal probability
to be re-emitted in any direction above the surface. The latter mecha-
nism was used by Rose et al.178 in their simulation model. In the specu-
lar re-emission mechanism, the re-emission angle is equal to the angle
of incidence, and the surface acts as a perfectly reflecting wall. This
mechanism is often used for the modelling of CVD processes. Kim
et al.204 compared their simulation results with the experimental results
of the coverage of a hole with TiO2 to fit several parameters including
the re-emission mechanism, and they concluded that the cosine re-
emission mechanism produced the best fit to the experimental data.

6. Simulating one or multiple ALD cycles

To simplify the simulations, models do not typically simulate the
entire ALD cycle, but simulate the first ALD reaction, assuming the
second ALD reaction to be fully saturated. A difference between the
various models is including or neglecting the film growth. Some mod-
els simulate only one ALD reaction.65,66,178,271 The simulated profile is
taken as the thickness profile obtained after a multiple cycle deposi-
tion. This interpretation is correct as long as the film thickness is small
in comparison with the dimensions of the high aspect ratio feature.

FIG. 15. Simulated hole structure using a 1D (a), 2D (b), or 3D (c) model.

FIG. 16. Three re-emission mechanisms which are often used in ALD models: (a)
cosine re-emission, (b) diffuse elastic re-emission, and (c) specular re-emission
mechanism. Adapted with permission from H. C. Wulu et al., J. Electrochem. Soc.
138(6), 1831–1840 (1991). Copyright 1991 Electrochemical Society.
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Otherwise, the EAR experienced by the molecules will increase with
an increasing number of ALD cycles, which will have an additional
effect on the thickness profile.

Several models include film growth and can simulate multiple
ALD cycles.77,100,270,282 In these models, one simulates multiple times
the first ALD reaction, assuming the second ALD reaction to be satu-
rated. The film growth is determined by the entire ALD cycle (first
reactionþ second reaction) and the film thickness equals a multiple of
the GPC.

During ALD in a nanoscopic hole, such as an AAO pore, the
coating deposited during each ALD cycle decreases the pore diam-
eter, while the EAR increases. This was also demonstrated by
Gordon et al.62 with a deposition of HfO2 into patterned holes.
The EAR of the holes increased from 36:1 to 43:1, after the deposi-
tion. Consequently, for a fixed unsaturated exposure, the Gordon
model predicts a decrease in the penetration depth with each ALD
cycle deposited. Perez et al.95 showed good agreement between the
slope obtained in the thickness profiles for HfO2 ALD in AAO
pores and the slope predicted by iteratively applying Gordon’s
model to a pore that is gradually getting narrower as the ALD pro-
cess progresses. Similarly, Yazdani et al.100 observed the influence
of the film thickness on the exposure required to coat a forest of
CNTs. The increasing film thickness leads to an increasing hin-
derance of the precursor molecules.

In some cases, an additional coating will influence not only the
transport of the precursor molecules but also the surface area which
has to be coated. When coating nanopores, the pores will gradually
shrink, as discussed in Sec. III C. When coating nanowires or CNTs as
done by Yazdani et al.,100 the effective surface area which has to be
covered will, in fact, increase as the coating thickens.

D. Model output

1. Exposure and EAR

Based on the simulations, one can predict the required exposure
to conformally coat a structure with a certain geometry. In addition,
systematic simulations can provide valuable insights into the effect of
specific simulation parameters on the required exposure time, such as
the effect of sticking probability, geometry, and recombination
probability.

As an example, Fig. 17 shows the calculated required TMA expo-
sure for holes, trenches, and two arrays of pillars as a function of depth
to width ratio using a 3D Monte Carlo model. If we compare the L/w
ratios that can be obtained for a given exposure time, for example, for
the value indicated by the dashed line in the figure, the L/w ratio that
can be coated in a trench is 2 times larger than in a hole, and 2

ffiffiffi

2
p

times larger in a pillar structure with w/wpillar¼ 3. These factors of 2
and 2

ffiffiffi

2
p

are valid in the plotted range of L/w values, being 5–25.
These results confirm the earlier proposed definitions of EAR for
trenches and illustrate how simulations can be used to calculate the
corresponding EAR of a given structure, as done here for square pillars
with w/wpillar¼ 3. Note that, for square pillars with w/wpillar¼ 1, it is
not possible to derive a general expression for the EAR as a function of
L/w that is valid for a large L/w range. Instead, the EAR should be calcu-
lated for a particular L/w value. For example, for L/w¼ 25, we find that
the required exposure for an array of pillars with w/wpillar¼ 1 is equal to

the required exposure for an array of holes with L/w¼ 10, yielding an
EAR of 10 for the array of pillars with L/w¼ 25 and w/wpillar¼ 1.

2. Thickness profile and sticking coefficient

In addition to knowledge about the required exposure, which
is a critical parameter in the experimental optimization of the con-
formality of ALD processes, fundamental insights into the ALD
process can be obtained by simulating detailed thickness profiles as
a function of depth in the feature. Figure 18 shows some typical
thickness profiles obtained from simulations, published in the lit-
erature.66,129,180,272 To evaluate the models, one often compares
the simulated thickness profiles with the experimentally obtained
thickness profiles. A distinct feature often observed in both experi-
mental and simulated profiles is the slope near the end of the thick-
ness profile. For nanoscopic features, this slope has been partly
attributed to the evolution of the EAR of the structure as the
deposited film thickness has the same order of magnitude as the
width of the structure,95 as already discussed in Sec. V C 6.

However, the slope observed, e.g., in the thickness profiles for
Al2O3 ALD in macroscopic holes,67 cannot be explained by an
increasing EAR during the deposition because the deposited film
thickness (�nm) is negligible compared to the width of the hole
(�100 lm). In this case, the observed slope is interpreted to be
related to a sticking probability which is less than one.67 By com-
paring experimental and simulated thickness profiles, one can
determine the initial sticking coefficient as will be explained in
more detail in Sec. VI B 3. To give the reader more insights into the
effect of the sticking probability on the thickness profiles and, in

FIG. 17. Absolute TMA exposure required to conformally coat a certain structure with
L/w ratio. The structure is either a square hole, a trench or an array of square pillars. L is
the height of the structures, and w is the width of the hole or the trench, or is the gap
between two adjacent pillars. The width of the square pillars is denoted by wpillar. The
data points were obtained using the Monte Carlo model reported by Cremers et al.51

using an initial sticking probability of s0¼ 1 and an integrated coverage of 90%.
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turn, how an experimentally observed profile can provide informa-
tion on the chemistry of the ALD process, a systematic simulation
study is presented and discussed in Sec. VI.

3. Other output

In addition to exposure and thickness profiles, some models can
also explicitly provide information on the pressure profile inside the
structure during the deposition, providing information on the reactant
molecule distribution and on gas diffusion within the structure.66,114

Yanguas-Gil et al.264 reported statistical information such as the aver-
age interaction time, the trajectory of individual reactant molecules,
and the average number of wall collisions.

VI. INSIGHTS INTO ALD THICKNESS PROFILES BY
MONTE CARLO SIMULATIONS

One can obtain fundamental insights into the factors governing
the surface chemistry of an ALD process by simulating thickness pro-
files along the depth of high aspect ratio structures. A schematic figure
of a typical experimental thickness profile inside a high aspect ratio fea-
ture is shown in Fig. 19. In this review paper, we will focus on the slope
at a 50% thickness (PD50%), which we will simply call the slope of the
thickness profile. In this section, the effect of the initial sticking coeffi-
cient, feature size, and contributions of possible secondary CVD-type
reactions on the thickness profile will be investigated by 3D Monte
Carlo simulations. The effect of recombination probability has been pre-
viously discussed by Knoops et al.66 and will not be considered here.

FIG. 18. Thickness profiles of a feature, showing the coverage along the depth of the feature. (a) Trench structure (EAR 50:1) simulated with a MC model. Reprinted with per-
mission from H. C. M. Knoops et al., J. Electrochem. Soc. 157(12), G241–G249 (2010). Copyright 2010 The Electrochemical Society. (b) Comparison of experimental and sim-
ulated (MC model) thickness profiles of HfO2 films in a cylindrical hole with EAR of 15:1. Reprinted with permission from M. Rose et al., Appl. Surf. Sci. 256(12), 3778–3782
(2010). Copyright 2010 Elsevier. (c) Comparison of experimental and simulated (MC model) thickness profiles of SifO2 films in a centrosymmetric cavity with the diameter of
the access hole being 10lm. Reprinted with permission from M. C. Schwille et al., J. Vac. Sci. Technol. A 35(1), 01B118 (2017). Copyright 2017 American Vacuum Society.
(d) Thickness profiles into a structure simulated with a continuum model. Reprinted with permission from A. Yanguas-Gil and J. W. Elam, Chem. Vap. Depos. 18(1-3), 46–52
(2012). Copyright 2012 John Wiley Sons, Inc.
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A. Monte Carlo simulation program

The calculated deposition profiles are obtained through 3D Monte
Carlo simulations51 and describe the coverage of the ALD film along the
hole wall after the first reaction of the ALD cycle. All simulations were
performed for a square hole with an EAR of 50:1 (width of 10 and depth
of 500 distance units). To investigate the evolution of the sidewall cover-
age as a function of time during the ALD process, several thickness pro-
files are given for different exposure doses. The exposure doses are
expressed in terms of the normalized exposure which is the exposure
divided by the exposure required to saturate a flat surface. In Fig. 20, an
overview is presented of the thickness profiles for theoretical saturation-
based ALD processes. It was chosen to plot the thickness profiles as a
function of EAR as this, in principle, would allow a better comparison of
the profile shape, and the slope at PD50% ð dh

dðEARÞÞ with earlier published
results. For each case, two profiles are shown, calculated for open-ended
structures and structures terminated by a bottom surface. In both cases,
the reactant molecules can only enter the structure from the top, as is
illustrated in Fig. 21. The effect of the terminating bottom surface will be
discussed for all cases in Sec. VIB5.

B. Theoretical ALD cases

1. Model of Gordon et al.: Sticking probability of unity

Assuming a constant sticking probability of unity, the thickness
profile consists of a fully covered part and an almost uncovered part,
separated by a distinct and abrupt front (a step function). Gordon
et al.62 suggested that the top part of the trench, where all active sur-
face sites have been saturated, can be considered as a “vacuum tube”
because impinging molecules simply bounce back. The bottom part of
the trench, which presents a surface covered with reactive sites, acts as
a “vacuum pump” because all impinging molecules will stick to the
wall. Based on this representation of the problem as a vacuum system,
Gordon et al. derived an expression to calculate the exposure required
to saturate a hole with given dimension, as already discussed in Sec.
VA1. For an unsaturated exposure, the Gordon model predicts com-
plete coverage of the pore walls up to a depth l

l ¼ 4w

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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A: (24)

Step profiles calculated with Eq. (24) are shown in Fig. 20(a).

2. Irreversible Langmuirian adsorption: Influence of

sticking probability on the thickness profile

Thickness profiles simulated assuming Langmuir-type irrevers-
ible adsorption with different values of the initial sticking coefficient
are shown in Figs. 20(b)–20(e). If one introduces Langmuir’s adsorp-
tion assumption to describe the sticking probability, (s¼ s0(1 – h)), still
assuming the initial sticking probability to be one, one observes a
more gentle slope in the thickness profile compared to the step func-
tion of Gordon et al.62 With the decrease in s0, the profile becomes
smoother. For very low initial sticking probabilities, the unsaturated
thickness profiles do not necessarily show the initial plateau as shown
in Fig. 20(e). This situation corresponds to the sketch in Fig. 4(b).
Similar thickness profiles were also observed in the simulations of
Rose et al.,178Dendooven et al.,67 and Knoops et al.66

3. Determining the initial sticking coefficient through

comparing simulation with experiment

By comparing simulated thickness profiles with experimentally
obtained profiles, one could quantify the initial sticking coefficient of a
given ALD reactant. This approach was suggested by Rose et al.178 who
obtained a value of 0.026 0.005 for TDMAT on TiO2. Shimizu et al.220

obtained a sticking probability of 0.002 for a (C5H5)2Co reactant.
However, one should realize that a high density of data points along the
depth profile, and especially in the slope region, are needed in order to
make a fair conclusion about the sticking probability, as illustrated in Fig.
22. In this respect, the recent development in experimental test structures
and analysis methods to extract depth profiles, e.g., by the microscopic
LHAR structures86 or the recently introduced methods by Schwille
et al.,129 might allow for a more detailed investigation of the initial stick-
ing coefficient. By comparing experimental and simulation results,
Bartha and co-workers could extract an initial sticking coefficient of 2 	
10�2 for TMA and 3 	 10�5 for the BDEAS reactant.128 Ylilammi
et al.77 compared experimental results, obtained using the microscopic
LHAR structures, with simulation results, obtained using their diffusion
model, to extract an initial sticking coefficient of 0.00572 for TMA.

4. Influence of the initial sticking coefficient on the

required exposure

In addition to the influence of sticking probability on the thickness
profile, it is of interest to understand the effect of sticking probability on
the reactant exposure required for creating a conformal coating up to a
certain EAR. In Fig. 23, the exposure is shown as a function of the EAR,
simulated by the Monte Carlo code of Cremers et al.51 Similar simulation
results were earlier published by Knoops et al.66 For small EAR (up to
EAR 30:1), one observes an increasing exposure for decreasing s0 in the
range of 1 to 0.01. With the increase in EAR, the exposure becomes inde-
pendent of s0. As already discussed in Sec. II, these two behaviors corre-
spond to the reaction limited (low EAR) and diffusion limited (high
EAR) growth types, respectively. The exposure required to obtain a fully
covered trench with high EAR (100:1) is equal for different initial sticking
coefficients, in the range of 1–0.01; however, the thickness profile for
unsaturated doses differs with the initial sticking coefficient due to differ-
ences in the ALD reaction kinetics. Figure 23 shows the difference in the
thickness profile for an unsaturated coating of a trench structure with
EAR of 100:1 and for an initial sticking coefficient of 1 and 0.01,
respectively.

FIG. 19. Schematic figure of a typical thickness profile of an ALD process in a high
aspect ratio structure, showing the film thickness as a function of the depth of the
structure. This profile is characterized by an initial slope and a slope at 50% film
thickness (PD50%).
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5. Influence of the bottom of the feature

The existence of a bottom in the structure is expected to have an
impact on the thickness profile for an unsaturated exposure dose. In
Monte Carlo simulations, we observe that for each case listed in Fig.
20, in general, the bottom of the structure is covered faster than the

adjacent walls. This phenomenon of a faster coverage of the bottom of
the structure has been observed in other Monte Carlo simulations51,66

and was also reported in ballistic models264,266 which can be explained
by the contribution of the direct pore-opening to pore-bottom flux,
leading to a higher coverage of the bottom in comparison with the
pore walls.

FIG. 20. Thickness profiles of a hole
structure with EAR of 50:1, in the case of
a theoretical ALD process, based on satu-
rating, irreversible reactions. The sche-
matic s-plots represent the sticking
probability s as a function of the surface
coverage h. The analytical derived thick-
ness profile according to Gordon et al.62 is
shown in (a). Simulated thickness profiles
are shown, assuming the irreversible
Langmuir-type adsorption with varying ini-
tial sticking coefficients s0¼ 1 (b), 0.1 (c),
0.01 (d), and 0.001 (e). For each case,
the thickness profiles are shown for a hole
structure without (middle) or with (right) a
terminating bottom surface. The normal-
ized exposure required to obtain the differ-
ent thickness profiles is given by black
line: 700, blue line: 1400, red line: 2100,
and green line: 2800.
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C. Contribution of secondary CVD-type reactions

In a typical flux-controlled CVD process, film growth depends
on the local gas flux and lacks the characteristic self-limited behavior
of ALD. To simulate the contribution of a CVD-type process, the
same simulation program was used for the ALD processes, omitting
the limit on the number of adsorbed reactant molecules per unit area
and with an adapted sticking probability s. We reduce the chemistry of
the CVD process to one parameter preaction which represents the reac-
tion probability and which is independent of the local coverage h. In
the schemes in Fig. 24, the CVD contribution is represented by the
orange curve. The ALD contribution during the process is similar as
in the theoretical ALD case, assuming the irreversible Langmuir
adsorption (blue curve). The total probability that a reactant molecule

sticks on the surface (green curve) is given by the sum of the probabil-
ity for ALD reaction and preaction of the irreversible CVD process, lead-
ing to

s ¼ s0ð1� hÞ þ preaction: (25)

FIG. 21. Schematic figure of the simulated square holes with (a) and without a bot-
tom (b). In both cases, the reactant molecules can only enter the structure from the
top, as indicated by the arrows.

FIG. 22. Experimental thickness profile obtained using spectroscopic ellipsometry
for Al2O3 ALD (TMA/H2O process) in a macroscopic rectangular hole with EAR of
100 and a cross-section of 0.1 mm 	 5 mm. The deposition was done in a pump-
type reactor with a partial pressure of TMA of 0.27 Pa, a TMA pulse time of 4 s,
and a deposition temperature of 200 �C. The simulated profiles were calculated
using the MC model of Dendooven et al.114 and scaled to the film thickness mea-
sured in the first experimental data point.

FIG. 23. Absolute exposure for a TMA/H2O process as a function of the EAR for a trench structure (with bottom) and s0¼ 1, 0.1, and 0.01 and an integrated coverage of 90%
obtained from 3D Monte Carlo simulations. The inset shows the difference for s0¼ 1 and s0¼ 0.01 in the thickness profile for an EAR of 100:1 and an integrated coverage of 49%.
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In Fig. 24, we show two cases of an ALD reaction with a small
CVD contribution described with a preaction of 0.0002. In (a) and (b),
the initial sticking probability for the ALD reaction is considered 0.1
and 0.01 so that the simulation results can be compared to the ideal
ALD cases in Figs. 20(c) and 20(d), respectively. The main impact of
the CVD contribution can be observed in the thickness profile near
the feature opening. A coverage degree of more than 100% can be
observed at the entrance of the structure, with a value of ca. 160% for
the highest simulated exposure. As expected due to the flux controlled
nature of the CVD contribution, the coverage degree increases with
exposure time, surpassing the value of 100%, meaning that more than
one saturated ALD layer is deposited. Instead of the initial plateau typ-
ically observed in the ideal ALD simulations for s0 above 0.01 (Fig. 20),
the CVD contribution gives rise to a decreasing contribution because
the flux decreases inside the feature. With the increasing exposure
time, the slope of this initial part of the thickness profile increases,
ultimately leading to clogging of the feature mouth. This first part
of the thickness profile is in agreement with the classical CVD pro-
file.297 Deeper in the trench, where the coverage drops below 100%,
we recognize the characteristics of the typical ALD profile, with a
marked slope. This slope decreases with the decrease in the initial
sticking probability, as for the ideal ALD case, and the slope and its
position (PD50%) are only slightly affected by the CVD component.
The PD50% is a bit lower because the reactant molecules that are
consumed in the CVD reactions near the feature entrance are no
longer available to contribute to deposition deeper in the structure.

The effect of the presence of a feature bottom is comparable to the
ideal ALD case.

To the best our knowledge, simulated profiles including a CVD
contribution have not been studied in detail before nor have they been
compared to experimental data. A more extended study of simulations
could be instructive on how even a minor CVD component can
impact the conformality of an ALD process. Moreover, comparing
those thickness profiles with experimental thickness profiles can
potentially give a hint on the possible contribution of a CVD-like com-
ponent in the ALD process. To this end, it would also be useful to
extract experimental thickness profiles for processes where intention-
ally a CVD component is present, e.g., by selecting a deposition tem-
perature slightly above the decomposition temperature of the metal
ALD reactant.

D. Other reactions potentially influencing the

thickness profile

The position of the slope and the gradient of the slope of the sim-
ulated profiles are often in good agreement with the experimental
results.67,178 However, there are also examples of experimental data
which cannot yet be explained by the simulations. For example, there
are experimental profiles in which no initial plateau is observed114

(e.g., experimental profile in Fig. 22), or which show a more gradual
decrease lacking a well-defined slope,69 or a long tail following the
slope.69 Although irreversible Langmuir adsorption can often

FIG. 24. Simulated thickness profile of a hole structure with EAR of 50:1, in the case of an ALD process with a CVD contribution, based on irreversible reactions. The sche-
matic s-plots represent the sticking probability s as a function of the surface coverage h assuming the irreversible Langmuir-type adsorption with varying initial sticking coeffi-
cients s0¼ 0.1 (a) and 0.01 (b) and reaction probability of the CVD contribution preaction¼ 0.0002. For each case, the deposition profiles are shown for a hole structure without
(middle) or with (right) a terminating bottom surface. The normalized exposure required to obtain the different thickness profiles is given by black line: 700, blue line: 1400, red
line: 2100, and green line: 2800.
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satisfactorily describe the thickness profile, real processes are more
complex, and the assumptions of the Langmuir model likely oversim-
plify the reactions. Moreover, additional reactions might contribute in
real ALD processes:

• The more complex real surface chemistry may also include reversible
reactions, which would affect the observed thickness profile. Then,
some surface groups left behind after one reaction of the ALD pro-
cess may desorb during the purging/pumping step, resulting in less
reaction sites for the next ALD reaction. Indeed, when coating
demanding 3D structures, the purging/pumping time is typically pro-
longed to allow excess reactants and reaction by-products to diffuse
out of the structure. This prolonged evacuation time may affect the
possible desorption of surface species.298

• Real gas-solid reactions used in ALD may involve multiple surface
reaction pathways that occur simultaneously or consequently. For
example, for the TMA/H2O process, the existence of multiple reaction
pathways has been proposed on the basis of experimental evidence.5

Simulations have been made264 to illustrate possible coverage profiles
with a theoretical two-site model with different reaction probabilities.

• With this Monte Carlo code, the simulations are limited to the first
reactant exposure of the ALD process, assuming the second reaction
to be saturated. However, in the experimental cases, it is possible that
both reactions are unsaturated and both limit the conformal nature
of the coating. In this case, both reactions will contribute in their
own particular way to the profile, which may lead to more complex
profiles.

• As already discussed in Sec. VC 6, by deposition of more cycles, the
EAR of the coated structure increases and the deposited film gradu-
ally limits the diffusion on molecules. As a consequence, the steep-
ness of the slope of the thickness profile will decrease.

• In the growth of composite films by ALD, etching reactions of one of
the reactants can occur.275 This etching effect may be dependent on
the flux of one of the reactants and may therefore have an influence
on the corresponding thickness profile of the ALD process.

• Metal ALD on oxide supports usually suffers from nucleation
difficulties. Islands form at the start of the process, which in turn act
as catalysts for the ALD reactions, speeding up the growth. However,
in 3D structures, due to differences in local reactant pressure along
the feature, the nucleation process will likely be delayed deeper in the
trench. In that way, the catalytic enhancement of the ALD growth
will be affected and as such also the conformality. Also for applica-
tions in catalysis where one is mainly interested in nanoparticles
grown by ALD, the diffusional limitations may cause an uneven
nucleation over a 3D porous structure.

• Gaseous by-products (e.g., HCl) may not be inert, but they can
occupy the same sites as the reactant.273 Therefore, less sites will be
available for the reactant molecules, potentially leading to a decrease
of the GPC deeper in the structure.

VII. SUMMARY AND OUTLOOK

In this review, an overview was given on the analysis and model-
ling of the conformality of ALD processes. Vertical, lateral, and (meso)-
porous substrates can be used to quantify the conformality of ALD
processes. In general, a higher conformality is obtained for substrates
coated with thermal ALD processes than with energy-assisted pro-
cesses, such as plasma-enhanced and ozone-based ALD where surface
recombination inevitably leads to a decrease in the impingement flux of
radical/ozone species at an increasing penetration depth. To gain more
insight into the process parameters influencing the conformality of
ALD, several models (classified as analytical, ballistic, continuum,

Monte Carlo) have been reported in the literature. Models can predict
the exposure required to conformally coat a certain substrate and can
simulate detailed thickness profiles as a function of the penetration
depth. These profiles for unsaturated exposures are characterized by a
slope, the steepness of which increases with the increasing initial stick-
ing coefficient. The steepness of the slope can also be influenced by an
increasing aspect ratio of the coated feature during deposition due to
the comparable dimensions of the feature and the film thickness.
Besides ALD, also other reactions can influence the profile. CVD type
contributions lead to growth beyond the ALD GPC and clogging at the
entrance of the feature. An interesting potential direction of future
work concerns investigating howmore complex effects, such as etching,
nucleation, and undersaturation, contribute to the thickness profile.

To define the achieved conformality, in the literature, one
often focuses on the conformality as percentage or on the penetra-
tion depth of the deposited film along the high aspect ratio sub-
strate. However, also the properties of the film could change along
the depth of the structure. It would be interesting to extend the
work on conformality to the observation of differences in the com-
position, crystallinity, morphology, and functional properties (e.g.,
dielectric constant, electronic conductivity, or Li ion conductivity)
of the deposited coating.

Experiments on the conformality of ALD films have been per-
formed on a variety of test structures for which often the height to
width ratio (AR) is reported. This diversity of substrates and the
lack of a standard definition of a geometry-independent aspect
ratio often complicate a direct comparison of the reported results.
In this article, we propose a geometry independent equivalent
aspect ratio (EAR), to facilitate comparison. For benchmarking
purposes, it would be interesting to investigate a specific process
with different types of conformality test structures and cross-
compare the results. In the future, it might be beneficial if a con-
sensus could grow within the ALD community on the use of stan-
dardized test structures which could be used to validate
conformality across a wide range of ALD reactor types, pressure
ranges, and ALD processes.
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NOMENCLATURE

� Vacant surface site
3DMAS Tris(dimethylamino)silane

a Aspect ratio according to Gordon et al.62

a(t, z) Loss term representing the adsorption of precur-
sor molecules

A Cross-sectional area
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A� Chemisorbed reactant A
Ag Gaseous reactant A
DAs Specific surface area (area per unit volume)
A0 Average surface area of an adsorption site

AAO Anodized Aluminum Oxide
acac Acetylacetone

AES Auger Electron Spectroscopy
ALD Atomic Layer Deposition

AP-type reactor Atmospheric pressure type reactor
AR Aspect ratio

B3LYP Becke, three-parameter, Lee-Yang-Parr
Be Benzene

CHD Cyclohexadienyl
CNT Carbon Nanotube
Cp Cyclopentadienyl

CVD Chemical vapor deposition
d Molecule diameter
dp Pore diameter
D Diffusion coefficient

Dgas Gas phase diffusion coefficient (viscous flow
contribution)

DKn Knudsen diffusion coefficient
DEZ Diethylzinc

DMPD Dimethylpentadienyl
DRAM Dynamic random-access memory
DRIE Deep Reactive Ion Etching
EAR Equivalent aspect ratio
EDX Energy-dispersive x-ray spectroscopy

EPMA Electron probe microanalysis
EP Ellipsometric Porosimetry
/0 Flux of reactant molecules coming from outside
/i Flux of reactant molecules reaching section i

(FE)-SEM (Field emission)-scanning electron microscope
FIB Focused Ion Beam
fod 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-

octanedionate
Gg Gaseous reaction by-product

GISAXS Grazing Incidence Small Angle X-ray Scattering
GPC Growth per cycle
HAR High aspect ratio
hfac Hexafluoroacetylacetone
IR Infrared

IUPAC International Union of Pure and Applied
Chemistry

Jwall Reactant flux per unit area to the walls
kads Adsorption rate constant
kB Boltzmann constant
kdes Desorption rate constant

Kmax Saturated coverage of the reactant molecule per
unit surface area

Kn Knudsen number
k Mean free path

k0,i Specific scattering length of molecules i
L Depth

LHAR Microscopic lateral trenches86

mi Mass of molecules i
MEMS Microelectromechanical sytems

MOF Metal Organic Framework
n(t, z) Precursor density

p Perimeter
Pi Partial pressure of reactant i

preaction Reaction probability in a CVD-contributed
process

P Pressure
PD50% Half-thickness-penetration-depth
PD80% Penetration depth at which the film thickness is

reduced to 80% of the original film thickness
PDMAT Pentakis dimethylamino tantalum

Pr Propyl
PVD Physical vapor deposition
Py Pyrrolyl
qji Probability that the molecules coming from sec-

tion j can reach section i
QCM Quartz Crystal Microbalance

r Recombination probability
rads Adsorption rate
rdes Desorption rate
ri Radius of the molecule i

RBS Rutherford Backscattering spectroscopy
ri,j Cross-section between molecules i and j
s Sticking probability
s0 Initial sticking coefficient
Si Surface area of the discrete section i

SANS Small Angle Neutron Scattering
SC Step coverage

SCM Shrinking Core Model299

SE Spectroscopic ellipsometry
SIMS Secondary Ion Mass Spectrometry

h Fraction of covered sites
t Pulse time
T Temperature

TBTDET Tris(diethylamido)(tert-butylimido)tantalum(V)
TBTEMAT Tert-butylimino-tris-ethylmethylamino

tantalum
TDMAT Tetrakis(dimethylamido)titanium(IV)

TEM Transmission electron microscopy
TEMAHf Tetrakis(ethylmethylamido)hafnium(IV)

TMA Trimethylaluminum
TTIP Titanium(IV)isopropoxide
VOTP Vanadium(V)oxytripropoxide

w Width
XRF X-ray fluorescence
XRR X-ray reflectivity
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