CONFORMALITY OF RIEMANNIAN MANIFOLDS TO SPHERES

KRISHNA AMUR & V. S. HEGDE

1. Introduction

Let M be an orientable smooth Riemannian manifold of dimension n with Riemannian metric g_{ij} . Let ∇ be the covariant differentiation operator on M, and K_{hijk}, K_{ij}, r be the Riemann curvature tensor, Ricci curvature tensor, and scalar curvature tensor of M respectively. Let X denote the infinitesimal conformal transformation on M so that we have

(1.1)
$$(\mathscr{L}_x g)_{ij} = \nabla_i X_j + \nabla_j X_i = 2\rho g_{ij} ,$$

where ρ is a function, and \mathscr{L}_x denotes the Lie differentiation with respect to X. Assuming that $\mathscr{L}_x r = 0$ Yano, Obata, Hsiung-Mugridge, Hsiung-Stern (see [1], [2], [6], [8]) have studied the condition for a Riemannian *n*-manifold M to be conformal to an *n*-sphere. The purpose of this paper is to relax the condition $\mathscr{L}_x r = 0$ further, that is, to assume $\mathscr{L}_{D\rho}\mathscr{L}_x r = 0$, and to obtain conditions for M to be conformal to an *n*-sphere where $D\rho$ is the vector field associated with the 1-form $d\rho$. Towards this end we prove the following theorems.

Theorem 1.1. If a compact orientable smooth Riemannian manifold M of dimension n > 2 admitting an infinitesimal conformal transformation $X: \mathscr{L}_{xg} = 2\rho g, \rho \neq \text{constant with } \mathscr{L}_{D\rho}\mathscr{L}_{x}r = 0 \text{ satisfies } \int_{\mathcal{M}} \left(A_{ij}\rho^{i}\rho^{j} + \frac{\alpha}{n^{2}}\mathscr{L}_{x}\mathscr{L}_{D\rho}r\right) dv$ $\geq 0 \text{ where } A_{ij} = K_{ij} - (\alpha r/n)g_{ij} \text{ and } \alpha = 1, \text{ then } M \text{ is conformal to an n-sphere.}$

Theorem 1.2. Let M be an orientable smooth Riemannian manifold of dimension n > 2 admitting an infinitesimal conformal transformation X satisfying (1.1) such that $\rho \neq \text{constant}$, and $\mathscr{L}_{D\rho}\mathscr{L}_x r = 0$. Then M is conformal to an n-sphere if $\mathscr{L}_x\mathscr{L}_{D\rho}r \geq 0$ and $\mathscr{L}_x|G|^2 = 0$ where $G_{ij} = K_{ij} - (r/n)g_{ij}$.

Theorem 1.3. Let M be an orientable smooth Riemannian manifold of dimension n > 2 admitting an infinitesimal conformal transformation X satisfying (1.1) such that $\rho \neq \text{constant}$ and $\mathscr{L}_{D\rho}\mathscr{L}_x r = 0$. Then M is conformal to an n-sphere if $\mathscr{L}_x\mathscr{L}_{D\rho}r \geq 0$ and $\mathscr{L}_x|W|^2 = 0$ where W is a tensor defined in § 2.

Received June 23, 1973.

It is shown in § 5 that when $\mathscr{L}_x r = 0$, Theorems 1.1 and 1.2 reduce to those of Yano [6], and Theorem 1.3 reduces to that of Hsiung and Stern [2]. Also it is proved that when r = constant, the condition $\alpha = 1$ in Theorem 1.1 may be replaced by $\alpha \ge 1$, and the manifold M would then be isometric to a sphere. The following known theorems are needed in the proofs of our theorems.

Theorem 1.4 (Obata [3]). If a complete Riemannian manifold M of dimension $n \ge 2$ admits a nonconstant function ρ such that $\nabla_i \nabla_j \rho = -c^2 \rho g_{ij}$ where c is a positive constant, then M is isometric to an n-sphere of radius 1/c.

Theorem (1.5 Tashiro [4]). If a complete Riemannian manifold M of dimension $n \ge 2$ admits a nonconstant function ρ such that $\nabla_i \nabla_j \rho + (1/n) \Delta \rho g_{ij} = 0$, then M is conformal to an n-sphere.

2. Notations and formulas

The raising and lowering of the indices are, as usual, carried out respectively with g^{ij} and g_{ij} . The tensors thus obtained are called associated tensors. Let S, T be covariant tensors of order s with local components $S_{i_1...i_s}$ and $T_{i_1...i_s}$ respectively. The associated contravariant components of T are $T^{i_1...i_s}$. We define the inner product of S and T by $S_{i_1...i_s}T^{i_1...i_s}$ and denote it by $\langle S, T \rangle$. If S = T we write $|S|^2$ for $\langle S, S \rangle$. For the sake of easy reference we list some known formulas; for details see Yano [7]:

(2.1)
$$\mathscr{L}_x r = 2(n-1)\Delta\rho - 2r\rho ,$$

$$(2.2) \qquad \qquad \mathscr{L}_x g^{ij} = -2\rho g^{ij} ,$$

(2.3)
$$\mathscr{L}_{x}K_{hijk} = 2\rho K_{hijk} - g_{hk}\nabla_{j}\rho_{i} + g_{hj}\nabla_{i}\rho_{k} - g_{ij}\nabla_{h}\rho_{k} + g_{ik}\nabla_{h}\varphi_{j}$$

(2.4)
$$\mathscr{L}_{x}K_{ij} = g_{ij}\varDelta\rho - (n-2)\nabla_{i}\rho_{j},$$

(2.5)
$$\nabla_k \nabla_i Y^j - \nabla_i \nabla_k Y^j = K_{kih}{}^j Y^h$$
, $g^{kj} (\nabla_k \nabla_i Y_j - \nabla_i \nabla_k Y_j) = K_i^h Y_h$,

where Δ is the Laplace-Beltrami operator on M, and Y is any differentiable vector field on M. If the associated 1-form of a vector field Y is ξ , the components of ΔY and $\Delta \xi$ are given by

(2.6)
$$\Delta Y : -g^{kj} \nabla_k \nabla_j Y^i + K^i_h Y^h , \qquad \Delta \xi : -g^{kj} \nabla_k \nabla_j Y_i + K^h_i Y_h .$$

If d is the exterior differentiation operator on M, and f is any function on M, then we denote the associated vector field of the 1-form df by Df.

Write $f_i = V_i f$, and $f^i = g^{ij} f_j$, and define the tensors Z and W by

(2.7)
$$Z_{hijk} = K_{hijk} - \frac{r}{n(n-1)} (g_{hk}g_{ij} - g_{hj}g_{ik}),$$

572

(2.8)
$$W_{hijk} = aZ_{hijk} + b_1g_{hk}G_{ij} - b_2g_{hj}G_{ik} + b_3g_{ij}g_{hk} - b_4g_{ik}G_{hj} + b_5g_{hi}G_{jk} - b_6g_{jk}G_{hi},$$

where a, b_1, \dots, b_6 are any constants.

3. Lemmas

Lemma 3.1. Let M be a compact orientable Riemannian manifold of dimension $n \ge 2$. For any vector field Y and a differentiable function f we have

$$\int_{M} (\nabla_{i} Y^{i}) dv = 0 , \qquad \int_{M} \Delta f dv = 0 .$$

The first equation is the well known Green's formula, and the second follows as a consequence of the first.

Lemma 3.2 (Yano and Sawaki [9]). Let M be a compact oriented Riemannian manifold of dimension n > 2 admitting an infinitesimal nonisometric conformal transformation X satisfying (1.1). Then for any function f on M we have

$$\int_{M} \rho f dv = -\frac{1}{n} \int_{M} \mathscr{L}_{x} f dv \; .$$

Lemma 3.3. For a manifold M having the same properties as in Lemma 3.2, we have

(3.1)
$$\int_{M} (\Delta \rho)^{2} dv = \int_{M} \rho^{i} \nabla_{i} \Delta \rho dv = \int_{M} (K_{ij} \rho^{j} - g^{kj} \nabla_{k} \nabla_{j} \rho_{i}) \rho^{i} dv .$$

Furthermore, if r = constant, then

(3.2)
$$\int_{M} (\Delta \rho)^{2} dv = \frac{r}{n-1} \int_{M} \rho^{i} \rho_{i} dv$$

Proof. $\nabla_i(\rho^i \Delta \rho) = \rho^i \nabla_i \Delta \rho - (\Delta \rho)^2 = (K_{ij}\rho^j - g^{kj}\nabla_k \nabla_j \rho_i)\rho^i - (\Delta \rho)^2$ by (2.5). Integrating and using Lemma 3.1 we get (3.1).

Setting $\mathscr{L}_x r = 0$ in (2.1) and using the result in (a) we obtain (3.2).

Lemma 3.4. Let M be a manifold having the same properties as in Lemma 3.2 and satisfying the condition $\mathscr{L}_{De}\mathscr{L}_{x}r = 0$. Then

(3.3)
$$\int_{\mathcal{M}} (r\rho^{i}\rho_{i})dv = (n-1)\int_{\mathcal{M}} (\Delta\rho)^{2}dv + \frac{1}{n}\int_{\mathcal{M}} \mathscr{L}_{x}\mathscr{L}_{D\rho}rdv .$$

Furthermore, if $\mathscr{L}_x r = 0$, then

(3.4)
$$\frac{1}{n}\int_{M}\mathscr{L}_{x}\mathscr{L}_{D\rho}rdv = \int_{M}r\rho_{i}\rho^{i}dv - \frac{1}{n-1}\int_{M}r^{2}\rho^{2}dv .$$

Proof. From (2.1) we have

$$0 = \mathscr{L}_{D\rho}\mathscr{L}_{x}r = 2\mathscr{L}_{D\rho}((n-1)\Delta\rho - \rho r)$$

= 2[(n-1)\rho^{i}\nabla_{i}\Delta\rho - \rho\rho^{i}\nabla_{i}r - r\rho_{i}\rho^{i}].

Integrating and using Lemmas 3.2 and 3.3 we get (3.3). If $\mathscr{L}_x r = 0$, then $(n-1)\Delta \rho = \rho r$. Substituting this in (3.3) we obtain (3.4).

4. Proofs of Theorems

Proof of Theorem 1.1. For an arbitrary vector field Y, by writing $\nabla^j = g^{ji}\nabla_i$ and using (2.5) we find that

$$\begin{split} \mathcal{F}^{j}\Big(\mathcal{F}_{j}Y_{i} + \mathcal{F}_{i}Y_{j} - \frac{2\alpha}{n}g_{ij}\mathcal{F}_{t}Y^{t}\Big)Y^{i} \\ &= \Big(g^{jk}\mathcal{F}_{k}\mathcal{F}_{j}Y_{i} + \mathcal{F}_{i}\mathcal{F}_{j}Y^{j} + K_{jih}{}^{j}Y^{h} - \frac{2\alpha}{n}\mathcal{F}_{i}\mathcal{F}_{t}Y^{t}\Big)Y^{i} + \frac{2}{n}\alpha(1-\alpha)(\mathcal{F}_{t}Y^{t})^{2} \\ &+ \frac{1}{2}\Big(\mathcal{F}_{j}Y_{i} + \mathcal{F}_{i}Y_{j} - \frac{2\alpha}{n}g_{ij}\mathcal{F}_{t}Y^{t}\Big)\Big(\mathcal{F}^{j}Y^{i} + \mathcal{F}^{i}Y^{j} - \frac{2\alpha}{n}g^{ij}\mathcal{F}_{t}Y^{t}\Big) \,. \end{split}$$

Putting $Y^i = \rho^i$, integrating the above equation, using Lemmas 3.1 and 3.3, and setting $K_{ij} = A_{ij} + (r\alpha/n)g_{ij}$ we get

$$\begin{split} \int_{M} A_{ij} \rho^{i} \rho^{j} dv &+ \frac{1}{n} (-n + 2\alpha - \alpha^{2}) \int_{M} (\varDelta \rho)^{2} dv + \frac{\alpha}{n} \int_{M} r \rho_{i} \rho^{i} dv \\ &+ \int_{M} \left| \nabla \nabla \rho + \frac{\alpha}{n} g \varDelta \rho \right|^{2} dv = 0 \; . \end{split}$$

Substituting (3.3) in the above equation and simplifying we obtain finally

(4.1)
$$\int_{\mathcal{M}} \left(A_{ij} \rho^{i} \rho^{j} + \frac{\alpha}{n^{2}} \mathscr{L}_{x} \mathscr{L}_{D\rho} r \right) dv$$
$$+ \int_{\mathcal{M}} \left| \nabla \nabla \rho + \frac{1}{n} (1 + \sqrt{(\alpha - 1)(n - 1)}) g \Delta \rho \right|^{2} dv = 0 .$$

Hence Theorem 1.1 follows from Theorem 1.5 and the integral formula (4.1). *Proof of Theorem* 1.2. From (2.2) and (2.4) we easily get

(4.2)
$$\langle G, \nabla \nabla \rho \rangle = -\frac{2\rho}{n-2} |G|^2 - \frac{1}{2(n-2)} \mathscr{L}_x |G|^2.$$

574

On the other hand,

(4.3)
$$\nabla^{i}(G_{ij}\rho\rho^{j}) = G_{ij}\rho^{i}\rho^{j} + \rho\langle G, \nabla\nabla\rho \rangle + \frac{n-2}{2n}\rho(\rho^{i}\nabla_{i}r) .$$

Multiply (4.2) by ρ and integrate, integrate (4.3), and eliminate $\int_{M} \rho \langle G, \nabla \nabla \rho \rangle dv$ from the two resulting equations so that we have the integral formula

(4.4)
$$\int_{M} \left(G_{ij} \rho^{i} \rho^{j} + \frac{1}{n^{2}} \mathscr{L}_{x} \mathscr{L}_{D_{\rho}} r \right) dv$$
$$= \frac{2}{n-2} \int_{M} \left((\rho^{2} |G|^{2} + \frac{1}{4} \rho \mathscr{L}_{x} |G|^{2} \right) dv + \frac{1}{2n} \int_{M} \mathscr{L}_{x} \mathscr{L}_{D_{\rho}} r dv .$$

Hence Theorem 1.2 follows from Theorem 1.1 and the integral formula (4.4).

Proof of Theorem 1.3. From (2.7), (2.8), (2.3), (2.4) and (2.2) we get (for details see [2])

(4.5)
$$\langle \mathscr{L}_x W, W \rangle = 2\rho |W|^2 - c \langle G, \nabla \nabla \rho \rangle,$$

where c is a constant given by

$$\frac{c-4a^2}{n-2} = 2a \sum_{i=1}^4 b_i + \left(\sum_{i=1}^6 (-1)^{i-1} b_i\right)^2 \\ - 2(b_1b_3 + b_2b_4 - b_5b_6) + (n-1) \sum_{i=1}^6 b_i^2.$$

Here $c \ge 0$. Use of (2.2) yields

(4.6)
$$\mathscr{L}_{x}|W|^{2} = 2\langle \mathscr{L}_{x}W,W\rangle - 8\rho |W|^{2}$$

Thus from (4.3), (4.5) and (4.6) we obtain

(4.7)
$$c \int_{M} \left(G_{ij} \rho^{i} \rho^{j} + \frac{1}{n^{2}} \mathscr{L}_{x} \mathscr{L}_{D\rho} r \right) dv$$
$$= 2 \int_{M} \rho^{2} |W|^{2} dv + \frac{1}{2} \int_{M} \rho \mathscr{L}_{x} |W|^{2} dv + \frac{c}{2n} \int_{M} \mathscr{L}_{x} \mathscr{L}_{D\rho} r dv .$$

Hence Theorem 1.3 follows from Theorem 1.1 and the integral formula (4.7).

5. Special cases

1. Let $\alpha = 1$ and $\mathscr{L}_x r = 0$. The condition for conformality in Theorem 1.1 reduces, by (3.4), to

KRISHNA AMUR & V. S. HEGDE

$$\int_{\scriptscriptstyle M} \Big(K_{ij}
ho^i
ho^j - rac{r^2
ho^2}{n(n-1)} \Big) dv \geq 0 \; .$$

Also we have

$$\mathscr{L}_x |G|^2 = \mathscr{L}_x |R|^2 , \qquad \mathscr{L}_x |W|^2 = a^2 \mathscr{L}_x |K|^2 + \frac{c-4a^2}{n-2} \mathscr{L}_x |R|^2 ,$$

where $|K|^2 = K_{hijk}K^{hijk}$ and $|R|^2 = K_{ij}K^{ij}$. The condition $\mathscr{L}_x\mathscr{L}_{D_{\ell}}r \ge 0$ for M implies by (3.4) that

$$\int_{\scriptscriptstyle M} \Big(r
ho_i
ho^i - rac{r^2
ho^2}{n-1} \Big) dv \geq 0 \; .$$

With these, Theorem, 1.1 and 1.2 reduce to results due to Yano [6], and Theorem 1.3 reduces to that due to Hsiung and Stern [2].

2. Let $\alpha \ge 1$ and r = constant. From (4.1) it follows that M is isometric to a sphere if

$$\int_{M} A_{ij} \rho^{i} \rho^{j} dv \geq 0;$$

when $\alpha = 1$, this is a known condition [5]

$$\int_{M} G_{ij} \rho^{i} \rho^{j} dv \geq 0$$

for M to be isometric to a sphere.

References

- [1] C. C. Hsiung & L. R. Mugridge, Conformal changes of metrics on a Riemannian manifold, Math. Z. 119 (1971) 179–187. [2] C. C. Hsiung & L. W. Stern, Conformality and isometry of Riemannian manifolds
- to spheres, Trans. Amer. Math. Soc. 163 (1972) 65-73.
- [3] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962) 333-340.
- [4] Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc. 117 (1965) 251-275.
- [5] K. Yano, On Riemannian manifolds with constant scalar curvature admitting a conformal transformation group, Proc. Nat. Acad. Sci. U.S.A. 55 (1966) 472-476.
- , On Riemannian manifolds admitting an infinitesimal conformal transforma-tion, Math. Z. 113 (1970) 205–214. [6] -
- ---, Integral formulas in Riemannian geometry, Marcel Dekker, New York, 1970. [7] —
- [8] K. Yano & M. Obata, Conformal changes of Riemannian metrics, J. Differential Geometry 4 (1970) 53-72.
- [9] K. Yano & S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Differential Geometry 2 (1968) 161-184.

KARNATAK UNIVERSITY, DHARWAR, INDIA

576