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Abstract

Several uncertainty estimation methods have
been recently proposed for machine transla-
tion evaluation. While these methods can
provide a useful indication of when not to
trust model predictions, we show in this pa-
per that the majority of them tend to under-
estimate model uncertainty, and as a result
they often produce misleading confidence
intervals that do not cover the ground truth.
We propose as an alternative the use of con-
formal prediction, a distribution-free method
to obtain confidence intervals with a theo-
retically established guarantee on coverage.
First, we demonstrate that split conformal
prediction can “correct” the confidence inter-
vals of previous methods to yield a desired
coverage level. Then, we highlight biases
in estimated confidence intervals, both in
terms of the translation language pairs and
the quality of translations. We apply con-
ditional conformal prediction techniques to
obtain calibration subsets for each data sub-
group, leading to equalized coverage.

1 Introduction

Neural models for natural language processing
(NLP) are able to tackle increasingly challenging
tasks with impressive performance. However, their
deployment in real world applications does not
come without risks. For example, systems that
generate fluent text might mislead users with fabri-
cated facts, particularly if they do not expose their
confidence. High performance does not guaran-
tee an accurate prediction for every instance—and
even less so when an instance is noisy or out of
distribution—which makes uncertainty quantifica-
tion methods more important than ever.

While most work on uncertainty estimation for
NLP has focused on classification tasks, uncer-
tainty quantification for text regression tasks, uncer-
tainty quantification has recently gained traction for
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Figure 1: Predicted confidence intervals and coverage
for the same ground truth/prediction points. We consider
the middle (green) interval to be desired as it covers
the ground truth but does not overestimate the model
uncertainty.
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Figure 2: Coverage obtained by different uncertainty
predictors. We compare originally obtained values (red),
with values after calibration (light blue) and after confor-
mal prediction (green) with the desired coverage thresh-
old (dashed line) set to 0.9 (90%).

text regression tasks, such as machine translation
(MT) evaluation, semantic sentence similarity, or
sentiment analysis (Wang et al., 2022; Glushkova
et al., 2021). A wide range of methods have been
proposed for estimating uncertainty in regression,
the majority of which involve underlying assump-
tions on the distribution or the source of uncertainty
(Kendall and Gal, 2017a; Kuleshov et al., 2018a;
Amini et al., 2020; Ulmer et al., 2023). However,
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it has been shown that such assumptions are of-
ten unrealistic and may lead to misleading results
(Izmailov et al., 2021; Zerva et al., 2022). More im-
portantly, most commonly used methods provide
confidence intervals without any theoretically
established guarantees with respect to coverage.
In other words, while a representative confidence
interval should include (cover) the ground truth tar-
get value for each instance (and ideally the bound
of the confidence interval should be close to the
ground truth as shown in Figure 1), frequently the
predicted interval is much narrower, excluding the
ground truth and underestimating the model un-
certainty. In fact, for the concrete problem of MT
evaluation, we show that the majority of uncer-
tainty quantification methods achieve very low
coverage even after calibration, as can be observed
in Figure 2. Finally, it has been shown that while
uncertainty quantification can shed light on model
weaknesses and biases, the uncertainty predic-
tion methods themselves can suffer from biases
and provide unfair and misleading predictions for
specific data subgroups or for examples with vary-
ing levels of difficulty (Cherian and Candès, 2023;
Ding et al., 2020; Boström and Johansson, 2020).

To address the aforementioned shortcomings,
we explore the use of conformal prediction as
a means to obtain more trustworthy confidence in-
tervals on textual regression tasks, using MT eval-
uation as the primary paradigm. We rely on the
fact that given a scoring or uncertainty estimation
function, conformal prediction can provide statisti-
cally rigorous uncertainty intervals for regression
models (Angelopoulos and Bates, 2021; Vovk et al.,
2005, 2022). More importantly, the conformal pre-
diction methodology provides theoretical guaran-
tees about coverage over a test set, given a chosen
coverage threshold. The predicted uncertainty in-
tervals are thus valid in a distribution-free sense:
they possess explicit, non-asymptotic guarantees
even without distributional assumptions or model
assumptions (Angelopoulos and Bates, 2021; Vovk
et al., 2005).

We specifically show that previously proposed
uncertainty quantification methods can be used
to design non-conformity scores for split confor-
mal prediction (Papadopoulos, 2008). We demon-
strate that, regardless of the initially obtained cov-
erage, the application of conformal prediction can
increase coverage to the desired —user defined—
value (see Figure 2). To this end, we compare four

parametric uncertainty estimation methods (Monte
Carlo dropout, deep ensembles, heteroscedastic re-
gression, and direct uncertainty prediction) and one
non-parametric method (quantile regression) with
respect to coverage and distribution of uncertainty
intervals.

Moreover, we investigate the fairness of obtained
intervals for two different attributes: (1) translation
language pair; and (2) translation difficulty, as re-
flected by human quality estimates. We highlight
unbalanced coverage for both cases and demon-
strate how conditional conformal prediction (An-
gelopoulos and Bates, 2021; Boström and Johans-
son, 2020; Boström et al., 2021) can address such
imbalances effectively.

2 Conformal Prediction

In this section, we provide background on con-
formal prediction and introduce the notation used
throughout this paper. Later in §3 we show how
this framework can be used for uncertainty quan-
tification in MT evaluation.

2.1 Desiderata

Let X ∈ X and Y ∈ Y be random variables
representing inputs and outputs, respectively; in
this paper we focus on regression, where Y = R.
We use upper case to denote random variables and
lower case to denote their specific values. Tradi-
tional machine learning systems use training data
to learn predictors ŷ : X → Y which, when
given a new test input xtest, output a point estimate
ŷ(xtest). However, such point estimates lack un-
certainty information. Conformal prediction (Vovk
et al., 2005), in contrast, considers set functions
C : X → 2Y , providing the methodology for, given
xtest, returning a prediction set C(xtest) ⊆ Y with
theoretically established guarantees regarding the
coverage of the ground truth value. For regression
tasks, this prediction set is usually a confidence
interval (see Figure 1). Conformal prediction tech-
niques have recently proved useful in many applica-
tions: for example, in the U.S. presidential election
in 2020, the Washington Post used conformal pre-
diction to estimate the number of outstanding votes
(Cherian and Bronner, 2020).

Given a desired confidence level (e.g. 90%),
these methods have a formal guarantee that, in ex-
pectation, C(Xtest) contains the true value Ytest
with a probability equal to or higher than the given
confidence level. Importantly, this is done in a



distribution-free manner, i.e., without making any
assumptions on the data distribution beyond ex-
changeability, a weaker assumption than indepen-
dent and identically distributed (i.i.d.) data.1

In this paper, we use a simple inductive method
called split conformal prediction (Papadopoulos,
2008), which requires the following ingredients:

• A mechanism to obtain non-conformity scores
s(x, y) for each instance, i.e., a way to estimate
how “unexpected” an instance is with respect
to the rest of the data. In this work, we do
this by leveraging a pretrained predictor ŷ(x) to-
gether with some heuristic notion of uncertainty—
our method is completely agnostic about which
model is used for this. We describe in §2.2 the
non-conformity scores we design in our work.

• A held-out calibration set containing n exam-
ples, Scal = {(x1, y1), . . . , (xn, yn)}. The un-
derlying distribution from which the calibration
set is generated is assumed unknown but it must
be exchangeable (see footnote 1).

• A desired error rate α (e.g. α = 0.1), such that
the coverage level will be 1− α (e.g. 90%).

These ingredients are used to generate predic-
tion sets for new test inputs. Specifically, let
(s1, . . . , sn) be the non-conformity scores of each
example in the calibration set, i.e., si := s(xi, yi).
Define q̂ as the ⌈(n+ 1)(1− α)⌉/n empirical
quantile of these non-conformity scores, where
⌈·⌉ is the ceiling function. This quantile can be eas-
ily obtained by sorting the n non-conformity scores
and examining the tail of the sequence. Then, for a
new test input xtest, we output the prediction set

Cq̂(xtest) = {y ∈ Y : s(xtest, y) ≤ q̂}. (1)

We say that coverage holds if the true output ytest
lies in the prediction set, i.e., ytest ∈ Cq̂(xtest).
This simple procedure has the following theoretical
coverage guarantee:

1Namely, the data distribution is said to be exchangeable
iff, for any sample (Xi, Yi)

n
i=1 and any permutation func-

tion π, we have P((Xπ(1), Yπ(1)), . . . , (Xπ(n), Yπ(n))) =
P((X1, Y1), . . . , (Xn, Yn)). If the data distribution
is i.i.d., then it is automatically exchangeable, since
P((X1, Y1), . . . , (Xn, Yn)) =

∏n
i=1P(Xi, Yi) and the

product of scalars is commutative. By de Finetti’s theorem
(De Finetti, 1929), exchangeable observations are condition-
ally independent relative to some latent variable.

Theorem 1 (Vovk et al. 1999, 2005) Using the
above quantities, the following bounds hold:

P
(
Ytest ∈ Cq̂(Xtest)

)
∈
[
1− α, 1− α+

1

n+ 1

]
.

This result tells us two important things: (i) the
expected coverage is at least 1− α, and (ii) with a
large enough calibration set (large n), the procedure
outlined above does not overestimate the coverage
too much, so we can expect it to be nearly 1− α.2

2.2 Non-conformity scores
Naturally, the result stated in Theorem 1 is only
practically useful if the prediction sets Cq̂(Xtest)
are small enough to be informative—to ensure
this, we need a good heuristic to generate the non-
conformity scores. In this paper, we are concerned
with regression problems (Y = R), so we define
the prediction sets to be confidence intervals. We
assume we have a pretrained regressor ŷ(x), and
we consider two scenarios, one where we generate
symmetric intervals (i.e., where ŷ(x) is the mid-
point of the interval) and a more general scenario
where intervals can be non-symmetric.

Symmetric intervals. In this simpler scenario,
we assume that, along with ŷ(x), we have a
corresponding uncertainty heuristic δ(x), where
higher δ(x) values signify higher uncertainty. An
example—to be elaborated upon in §3.2.1—is
where δ(x) is the quantile of a symmetric prob-
ability density, such as a Gaussian, which can be
computed analytically from the variance. We then
define the non-conformity scores as

s(x, y) =
|y − ŷ(x)|

δ(x)
(2)

and follow the procedure above to obtain the quan-
tile q̂ from the calibration set. Then, for a random
test point (Xtest, Ytest) and from (1) and (2), we
have:

P
[
|Ytest − ŷ(Xtest)| ≤ δ(Xtest)q̂

]
≳ 1− α, (3)

which corresponds to the confidence interval

Cq̂(x) =
[
ŷ(x)− q̂δ(x), ŷ(x) + q̂δ(x)

]
. (4)

We examine this procedure in §3.2.1 with various
uncertainty heuristics (Monte Carlo dropout, deep
ensembles, heteroscedastic regression, and direct
uncertainty prediction estimates).

2For most purposes, a reasonable size for the calibration
set is n ≈ 1000. See Angelopoulos and Bates (2021, §3.2).



Non-symmetric intervals. Sometimes, better
heuristics can be obtained which are non symmet-
ric, i.e., where there is larger uncertainty in one
of the sides of the interval—we will see a con-
crete example in §3.2.2 where we describe a non-
parametric quantile regression procedure (although
this might happen as well with parametric heuris-
tics based on fitting non-symmetric distributions,
such as the skewed beta distribution). In this case,
we assume left and right uncertainty estimates δ−
and δ+, both non-negative and satisfying δ− ≤ δ+,
and define the non-conformity scores as:

s(x, y) =

{
y−ŷ(x)
δ+(x) if y ≥ ŷ(x)
ŷ(x)−y
δ−(x) if y < ŷ(x).

(5)

This leads to prediction sets

Cq̂(x) =
[
ŷ(x)− q̂δ−(x), ŷ(x) + q̂δ+(x)

]
, (6)

which also satisfy Theorem 1. Naturally, when
δ− = δ+ := δ, this procedure recovers the sym-
metric case.

3 Conformal MT Evaluation

We now apply the machinery of conformal pre-
diction to the problem of MT evaluation, experi-
menting with a range of uncertainty quantification
heuristics to generate ŷ(x) and δ(x) (or δ−(x) and
δ+(x) in the non-symmetric case).

In MT evaluation, the input is a triplet of source,
automatic translation, and human reference seg-
ment, x := ⟨s, t, r⟩, and the goal is to predict a
scalar value ŷ(x) that corresponds to the estimated
quality of the translation t. The ground truth is a
quality score y manually produced by a human an-
notator, called a direct assessment (DA) (Graham,
2013). We use DA scores that are standardised for
each annotator. An example instance is shown in
Figure 3.

We describe our datasets and experimental setup
in §3.1. With the application of symmetric para-
metric uncertainty methods, described in §3.2.1,
we obtain heuristics ŷ and δ which we use to obtain
non-conformity scores via (2), leading to the confi-
dence intervals Cq̂(x) in (4), for each x triplet. Al-
ternatively, in §3.2.2 we describe a non-symmetric
and non-parametric method which returns ŷ, δ−,
and δ+, and which we will use to compute the non-
conformity scores (5) and confidence intervals (6).

3.1 Experimental setup

Model. We use COMET as the underlying MT
quality evaluation model (Rei et al., 2020). We
train the COMET model using a pretrained XLM-
RoBERTa-Large encoder fine-tuned for 2 epochs
with the default training configurations.3

Data. For training, we use the direct assessment
(DA) data from the WMT17-19 metrics shared
tasks (Ma et al., 2018, 2019). We evaluate our
models on the WMT20 metrics dataset (Mathur
et al., 2020). For the calibration set Scal, we use
repeated random sub-sampling for k = 10 runs.
The WMT20 test data includes 16 language pairs,
of which 9 pairs are into-English and 7 pairs are
out-of-English translations. For the calibration set
sub-sampling, we sample uniformly from each lan-
guage pair. For metrics for which we report aver-
aged performance we use micro-average over all
language pairs.

3.2 Uncertainty quantification methods

We experiment with a diverse set of uncertainty pre-
diction methods, accounting both for parametric
and non-parametric uncertainty prediction. We ex-
tensively compare all the parametric methods pre-
viously used in MT evaluation (Zerva et al., 2022),
which return symmetric confidence intervals, and
also experiment with quantile regression (Koenker
and Hallock, 2001), a simple non-parametric ap-
proach that has never been used for MT evaluation,
and which can return non-symmetric intervals.

3.2.1 Parametric uncertainty

We compare a set of different parametric meth-
ods which fit the quality scores in the training
data to an input-dependent Gaussian distribution
N (µ̂(x), σ̂2(x)). All these methods lead to sym-
metric confidence intervals (see Eq. 4). We use
these methods to obtain estimates ŷ(x) := µ̂(x).
Then we use ˆsigma to extract the corresponding
uncertainty estimates as δ(x) := probit(1− α

2 )σ̂,
which correspond to the α

2 and 1 − α
2 quantiles

of the Gaussian, for a given confidence threshold
1− α. For α = 0.1 (i.e., a 90% confidence level)
this results in δ(x) = 1.64 × σ̂. We describe the
concrete methods used to estimate µ̂(x) and σ̂(x)
below.

3More precisely, we used the wmt-large-da-estimator-1719
available at: https://unbabel.github.io/COMET/
html/models.html.

https://unbabel.github.io/COMET/html/models.html
https://unbabel.github.io/COMET/html/models.html
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Figure 3: Example of MT evaluation instance.

MC dropout (MCD). This is a variational infer-
ence technique approximating a Bayesian network
with a Bernoulli prior distribution over its weights
(Gal and Ghahramani, 2016). By retaining dropout
layers during multiple inference runs, we can sam-
ple from the posterior distribution over the weights.
As such, we can approximate the uncertainty over a
test instance x through a Gaussian distribution with
the empirical mean µ̂(x) and variance σ̂2(x) of the
quality estimates {ŷ1, . . . , ŷN}. We use 100 runs,
following the analysis of Glushkova et al. (2021).

Deep ensembles (DE). This method (Lakshmi-
narayanan et al., 2017) trains an ensemble of neu-
ral models with the same architecture but different
initializations. During inference, we collect the
predictions of each single model and return µ̂(x)
and σ̂2(x) as in MC dropout. We use N = 5 check-
points obtained with different initialization seeds,
following Glushkova et al. (2021).

Heteroscedastic regression (HTS). We follow
Le et al. (2005) and Kendall and Gal (2017b)
and incorporate σ̂2(x) as part of the training ob-
jective. This way, a regressor is trained to out-
put two values: (1) a mean score µ̂(x) and (2)
a variance score σ̂2(x). This predicted mean
and variance parameterize a Gaussian distribution
N (y; µ̂(x; θ), σ̂2(x; θ)), where θ are the model pa-
rameters. The negative log-likelihood loss function
is used:

LHTS(µ̂, σ̂
2; y) =

(y − µ̂)2

2σ̂2
+

1

2
log σ̂2. (7)

This framework is particularly suitable to express
aleatoric uncertainty due to heteroscedastic noise,
as the framework allows larger variance to be as-
signed to “noisy” examples which will have the
effect of downweighting the squared term in the
loss.

Direct uncertainty prediction (DUP). This is
a two-step procedure which relies on the assump-

tion that the total uncertainty over a test instance
is equivalent to the generalization error of the re-
gression model (Lahlou et al., 2021). A standard
regression model ŷ(x) is first fit on the training set
and then applied to a held-out validation set Sval.
Then, a second model is trained on this held-out
set to regress on the error ϵ = |ŷ(x)− y| incurred
by the first model predictions, approximating its
uncertainty. To train the error predicting model, we
follow the setup of (Zerva et al., 2022), using as
inputs the xval = ⟨s, t,R⟩ triplets combined with
the predictions ŷval of first model, which are used
as bottleneck features in an intermediate fusion
fashion. The loss function is

LDUP(ϵ̂; ϵ) =
ϵ2

2ϵ̂2
+

1

2
log(ϵ̂)2. (8)

We use σ̂(x) = ϵ̂(x) as the uncertainty heuristic.

3.2.2 Non-parametric uncertainty: Quantile
regression (QNT)

Quantile regression is a statistical method used to
model input-dependent quantiles within a regres-
sion framework (Koenker and Bassett Jr, 1978).
As opposed to regular (linear) regression that mod-
els the mean of a target variable Y conditioned on
the input X , quantile regression models a quan-
tile of the distribution of Y (e.g. the median, the
95%, or the 5% percentile scores). By definition,
quantile regression does not require any parametric
assumptions on the distribution of Y and is less
sensitive to outliers. Quantiles provide an attractive
representation for uncertainty: they allow for easy
construction of prediction intervals, at chosen confi-
dence levels. Learning the quantile for a particular
quantile level involves optimizing the pinball loss,
a tilted transformation of the absolute value func-
tion (see Figure 4). Given a target y, a prediction
ŷ, and quantile level τ ∈ (0, 1), the pinball loss Lτ

is defined as:

Lτ (ŷ; y) = (ŷ − y)(1{y ≤ ŷ} − τ). (9)



τ
1-τ

Figure 4: The pinball loss objective used for quantile
regression. The slope of the lines is determined by the
desired quantile level τ .

We can select τ to correspond to the error rate
α that we want to achieve. Note that for τ = 0.5
the the loss function reduces to (half) the mean
absolute error loss LMAE(ŷ; y) =

1
2 |ŷ − y|.

We use τ = α to train our models to predict
the Q̂1−τ/2 and Q̂τ/2 quantiles, as well as the Q̂0.5

quantile, which corresponds to the median (see be-
low), but there are extensions that either optimize
multiple quantiles that cover the full predictive dis-
tribution (Tagasovska and Lopez-Paz, 2019) or ex-
plore asymmetric loss extensions to account for
overestimating or underestimating the confidence
intervals (Beck et al., 2016).

Unlike the parametric methods covered in §3.2.1,
the quantile regression method can be used to re-
turn asymmetric confidence intervals. This is done
by fitting 0.5, 1− τ

2 , and τ
2 quantile predictors to

the data, and setting ŷ(x) := Q̂0.5(x), δ̂+(x) :=
Q̂1− τ

2
(x)− ŷ(x), and δ̂−(x) := ŷ(x)− Q̂ τ

2
(x).

For completeness, we also consider a symmet-
ric variant of quantile regression where we do
not estimate the median Q̂0.5(x), but rather set
ŷ(x) = 1

2

(
Q̂1− τ

2
(x) + Q̂ τ

2
(x)

)
. We report cover-

age for both the non-symmetric (QNT-NS) and the
symmetric case (QNT-S) later in Table 1.

3.3 Comparison with calibration

We also compare the coverage obtained by uncer-
tainty methods and conformal prediction to a cal-
ibration approach that aims to minimize the ex-
pected calibration error (ECE; (Naeini et al.,
2015; Kuleshov et al., 2018b)). ECE has been pro-
posed as a measure of how well aligned the model
confidence is with the model accuracy, based on
the simple desideratum that a model with e.g. 80%
confidence over a set of examples should achieve
an accuracy of 80% over the same examples to be

Method Orig. Calib. Conform. q̂

QNT-NS 77.83 – 90.21 1.44
QNT-S 78.66 69.03 90.54 1.41
MCD 23.82 66.60 90.01 8.01
DE 29.10 66.23 91.31 7.06

HTS 82.18 68.29 89.89 1.31
DUP 86.23 66.13 89.88 1.14

Table 1: Coverage percentage for α = 0.1 over differ-
ent uncertainty methods. Values reported correspond to
the mean over 10 runs. The second, third, and fourth
columns refer respectively to the coverage obtained by
original methods without calibration, after the ECE cali-
bration described in §3.3, and with the conformal pre-
diction procedure described in §2.

well-calibrated. It is defined as

ECE =
1

M

M∑
b=1

|acc(γb)− γb|, (10)

where each b is a bin representing a confidence
level γb, and acc(γb) is the fraction of times the
ground truth y falls inside the confidence interval
associated to that bin. Several variants of uncer-
tainty calibration have been proposed to correct
unreliable uncertainty estimates that do not corre-
late with model accuracy (Kuleshov et al., 2018b;
Amini et al., 2020; Levi et al., 2022). We follow
Glushkova et al. (2021) who find that computing
a simple affine transformation of the original un-
certainty distribution that minimises the ECE is
effective to quantify uncertainty in MT evaluation.

3.4 Results

We first compare the uncertainty methods described
in §3.2 with respect to coverage percentage as
shown in Table 1. We select a desired coverage
level of 90%, i.e., we set α = 0.1. We also align
the uncertainty estimates with respect to the same α
value: for the parametric uncertainty heuristics, we
select the δ(x) that corresponds to a 1−α coverage
of the distribution, by using the probit function as
described in §3.2.1; and for the non-parametric ap-
proach, we train the quantile regressors by setting
τ = α/2, as described in §3.2.2.

Table 1 shows that coverage varies significantly
across methods, with the sampling-based methods
such as MC dropout and deep ensembles achiev-
ing coverage much below the desired 1− α level.
In contrast, direct uncertainty prediction achieves



Method Sharpness

QNT-NS/S 2.409
MCD 2.629
DE 3.074

HTS 2.304
DUP 2.486

Table 2: Sharpness of confidence intervals for each
uncertainty quantification method after conformal pre-
diction.

comparatively high coverage even before the appli-
cation of conformal prediction. This could be re-
lated to the fact that by definition, the DUP method
tries to predict uncertainty modeled as ϵ = |ŷ − y|.

Calibration helps improve coverage in the cases
of MC dropout and deep ensembles—albeit still
without reaching close to 0.9. Instead, it seems
that minimizing the ECE is not well aligned to
optimizing coverage as for all cases calibration
leads to less than 70% coverage. In contrast, we
can see that conformal prediction approximates
the desired coverage level best for all methods,
regardless of the initial coverage they obtain, in
line with the guarantees provided by Theorem 1.

Besides measuring the coverage achieved by the
several methods, it is also important to examine
the width of the predicted intervals—if intervals
are too wide, they will not be very informative
nor useful in practice (see also Figure 1). To that
end, we also compute the sharpness (Kuleshov
and Deshpande, 2022) as the average width of the
predicted confidence intervals after the conformal
prediction application 4,

sha =
1

|Stest|
∑

x∈Stest

|Cq̂(x)|. (11)

We show the results in Table 2. We observe that,
for the majority of methods, the sharpness values
are similar, except for deep ensembles (DE) where
we need to rely on wider intervals to achieve the
same level of coverage.

4 Conditional Coverage

The coverage guarantees stated in Theorem 1 re-
fer to marginal coverage—the probabilities are not

4In related work (Glushkova et al., 2021) sharpness is
computed with respect to σ2, but this cannot be applied to
non-parametric uncertainty cases, so we use the confidence
interval length to be able to compare conformal prediction for
all uncertainty quantification methods.

conditioned on the input points, they are averaged
(marginalized) over the full test set. In several
practical situations it is desirable to assess the con-
ditonal coverage P[Ytest ∈ C(Xtest) | Xtest ∈ G]
where G ⊆ X denotes a region of the input space,
e.g., inputs containing some specific attributes or
pertaining to some group of the population.

In fact, evaluating the conditional coverage with
respect to different data attributes may reveal bi-
ases of the uncertainty estimation methods towards
specific data subgroups which are missed if we
only consider marginal coverage. In the next exper-
iments, we follow the feature stratified coverage
described in Angelopoulos and Bates (2021); we
use conformal prediction with MC dropout as our
main paradigm where MC dropout is used as the
underlying uncertainty quantification method. We
demonstrate three examples of imbalanced cov-
erage in Figure 5 with respect to three different
attributes: language pairs, translation quality level,
and estimated uncertainty scores.

We can see that, in all cases, coverage varies
significantly across groups, revealing biases to-
wards specific attribute values. For example, the
plots show that into-English translations are under-
covered (coverage ≤ 0.9), i.e., we consistently
underestimate the uncertainty over the predicted
quality for these language pairs. More impor-
tantly, we can see that examples with low trans-
lation quality (measured by human scores) are sig-
nificantly under-covered, as coverage for quality
scores where y ≤ −1.5 drops below 50%. Observ-
ing the frequencies of these segments, we can see
that the drop in segment frequency seems to corre-
late with a significant drop in coverage. For MCD-
based uncertainty scores on the other hand, the
drop in coverage seems to be related to the low un-
certainty scores, indicating that due to the skewed
distribution of uncertainty scores, the calculation
of the q̂ quantile is not well tuned to lower uncer-
tainty values (i.e., higher non-conformity scores).
Similar patterns for these three dimensions are also
observed for the other uncertainty quantification
methods revealing the biases of these methods.

Ensuring we do not overestimate confidence for
these examples (specially for low quality segments)
is crucial for MT evaluation, in particular for ap-
plications where MT is used on the fly and one
needs to know if a translation can be shared or
would require further editing with human interven-
tion. Hence, in the rest of this section, we elaborate
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Figure 5: Conditional coverage imbalance per language
pair (top), quality score level (middle) and uncertainty
score (bottom) for conformal prediction with MCD-
based non-conformity scores 6.

approaches to assess and mitigate coverage imbal-
ance in the aforementioned examples, in order to
obtain more equalized coverage (Romano et al.,
2020). We consider conditional coverage both for
discrete (language pairs) and continuous (quality
scores) attributes.

6Note that to facilitate plotting, the segment frequencies
are re-scaled with respect to the maximum bin frequency (such
that the bin with the maximum segment frequency equals 1).

4.1 Conditioning on discrete attributes:
language-pairs

To deal with imbalanced coverage for discrete data
attributes, such as the language pair, we use an
equalized conformal prediction approach, i.e., we
compute the conditional coverage for each attribute
value and, upon observing imbalances, we com-
pute conditional quantiles instead of a single
one on the calibration set.

Let {1, . . . ,K} index the several attributes (e.g.,
language pairs). We partition the calibration set
according to these attributes, Scal =

⋃K
k=1 Scal

k ,
where Scal

k denotes the partition corresponding to
the kth attribute and Scal

k ∩ Scal
k′ = ∅ for every

k ̸= k′. Then, we follow the procedure described
in §2 to fit attribute-specific quantiles q̂k to each
calibration set Scal

k .
We demonstrate the application of this process

on language pairs for all uncertainty quantification
methods examined in the previous section. Table
3 shows the language-based conditional coverage,
using a heatmap coloring to highlight the language
pairs that fall below the guaranteed marginal cover-
age of 1−α = 0.9. We can see that for all language
pairs we achieve coverage >75% but some are be-
low the 90% target. For all methods except for
DUP, the coverage is high for out-of-English trans-
lations and drops for the majority of into-English
cases. Instead, DUP seems to be the method ob-
taining the most balanced performance across lan-
guages, with smaller deviations that do not seem
to favor a specific translation direction. Applying
the equalizing approach described above, we suc-
cessfully rectify the imbalance for all uncertainty
quantification methods, as shown in the heatmap
of Table 4.

4.2 Conditioning on continuous attributes:
translation quality and uncertainty scores

With some additional constraints on the equalized
conformal prediction process described in §4.1
we can generalize this approach to account for at-
tributes with continuous values, such as the quality
scores (ground truth quality y) in the case of MT
evaluation or the uncertainty scores obtained by dif-
ferent uncertainty quantification methods. To that
end, we adapt the Mondrian conformal predic-
tion methodology (Vovk et al., 2005). Mondrian
conformal predictors have been used initially for
classification and later for regression, where they
have been used to partition the data with respect



QNT MCD DE HTS DUP

En-Cs 0.982 0.959 0.939 0.875 0.931
En-De 0.973 0.971 0.925 0.863 0.927
En-Ja 0.990 0.978 0.987 0.886 0.972
En-Pl 0.977 0.948 0.914 0.882 0.914
En-Ru 0.974 0.958 0.936 0.862 0.926
En-Ta 0.970 0.952 0.949 0.892 0.858
En-Zh 0.934 0.983 0.991 0.919 0.945
Cs-En 0.890 0.871 0.884 0.898 0.875
De-En 0.880 0.888 0.867 0.896 0.902
Ja-En 0.883 0.856 0.921 0.910 0.887
Kn-En 0.881 0.875 0.948 0.943 0.840
Pl-En 0.862 0.833 0.825 0.873 0.849
Ps-En 0.851 0.854 0.932 0.922 0.786
Ru-En 0.851 0.828 0.831 0.879 0.888
Ta-En 0.793 0.809 0.878 0.898 0.883
Zh-En 0.861 0.833 0.868 0.886 0.827

Table 3: Conditional coverage over different language
pairs of WMT 2020 DA data. Red coloured entries
signify coverage < 0.9.

QNT MCD DE HTS DUP

En-Cs 0.893 0.917 0.888 0.892 0.902
En-De 0.902 0.902 0.902 0.896 0.893
En-Ja 0.909 0.891 0.900 0.891 0.904
En-Pl 0.882 0.905 0.895 0.900 0.898
En-Ru 0.900 0.898 0.908 0.906 0.903
En-Ta 0.903 0.895 0.883 0.886 0.903
En-Zh 0.880 0.890 0.884 0.896 0.896
Cs-En 0.890 0.917 0.909 0.904 0.894
De-En 0.897 0.901 0.901 0.897 0.903
Ja-En 0.900 0.912 0.899 0.894 0.902
Kn-En 0.896 0.903 0.902 0.904 0.894
Pl-En 0.900 0.905 0.893 0.894 0.877
Ps-En 0.905 0.899 0.900 0.884 0.907
Ru-En 0.910 0.896 0.907 0.900 0.900
Ta-En 0.884 0.901 0.886 0.901 0.908
Zh-En 0.900 0.910 0.908 0.900 0.905

Table 4: Conditional coverage over different language
pairs of WMT 2020 DA data, after balanced conformal
prediction. Red coloured entries signify coverage < 0.9.

to the residuals |y − ŷ(x)| (Johansson et al., 2014).
Boström and Johansson (2020) proposed a Mon-
drian conformal predictor that partitions along the
expected “difficulty” of the data as estimated by
the non-conformity score s(x, y) or the uncertainty
score δ(x).

In all the above cases, the calibration instances

are sorted according to continuous variable of inter-
est and then partitioned into calibration bins. While
the bins do not need to be of equal size, they need
to satisfy a minimum length condition that depends
on the chosen α threshold for the error rate (Jo-
hansson et al., 2014). Upon obtaining a partition
into calibration bins, and similarly to what was de-
scribed in §4.1 for discrete attributes, we compute
bin-specific quantiles q̂b, where b ∈ {1, . . . , B}
indexes a bin.

We apply the aforementioned approach to the
MT evaluation for the translation quality scores as
well as the predicted uncertainty scores. For both
cases, we set a threshold of at least 200 segments
per bin. For the translation quality scores, we ini-
tially compute quality score bins and quantiles over
the calibration set using the ground truth scores y
as described previously. Subsequently, to apply the
conformal prediction on a test instance xtest, we
use the predicted quality score ŷ(xtest) and choose
the best bin b̂ to use by computing the smallest
difference between ŷ(xtest) and the mean quality
score ȳb of the calibration bins. We then predict
the confidence interval by using the correspond-
ing quantile q̂b̂. For the uncertainty scores, the
application is easier, since we have access to the
uncertainty prediction for both the calibration and
test instances. Thus upon splitting the calibration
set with respect to the uncertainty scores and com-
puting the new quantiles q̂b per bin, we can directly
identify the bin that δ(xtest) falls into.

The equalized coverage over binned human
scores and uncertainty values is shown in Figures
6 and 7, respectively. We can see that in both
cases the coverage approaches the threshold bet-
ter (cf. the original coverage in Figure 5), but not
equalized performance is not equally achievable for
both cases. For the case of translation uncertainty
we manage to achieve balanced coverage across
bins, that is very closed to the desired one. Instead,
for the case of translation quality, we can see that
the coverage for the very low quality translations
is increased compared to the original coverage but
is still far away from the desired threshold (similar
behaviour can be observed for the very high quality
translations). We hypothesize that this behaviour
relates to our approximation of quality bin on the
test data using the model predictions instead of the
ground truth values.
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Figure 6: Equalized coverage over translation quality
scores.
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Figure 7: Equalized coverage over uncertainty scores.

5 Related Work

5.1 Conformal prediction

We build on literature on conformal prediction that
has been established by Vovk et al. (2005), pro-
posed as a finite-sample, distribution-free method
for obtaining confidence intervals with guarantees
on a new sample. Subsequent works focus on im-
proving the predictive efficiency of the conformal
sets or relaxing some of the constraints (Angelopou-
los and Bates, 2021; Jin and Candès, 2022; Tibshi-
rani et al., 2019). Most relevant to our paper are
works that touch conformal prediction for regres-
sion tasks, either via the use of quantile regression
(Romano et al., 2019) or using other scalar uncer-
tainty estimates (Angelopoulos and Bates, 2021;
Johansson et al., 2014; Papadopoulos et al., 2011).
Other strands of work focus on conditional confor-
mal prediction and methods to achieve balanced
coverage across different attributes (also referred to
as equalized coverage) (Angelopoulos and Bates,

2021; Romano et al., 2020; Boström et al., 2021;
Lu et al., 2022).

There are few works that use conformal pre-
diction in NLP, so far focusing only on classifi-
cation or generation. Specifically, there have been
some attempts to apply conformal prediction to
sentence classification tasks, such as sentiment and
relation classification and entity detection (Fisch
et al., 2021, 2022; Maltoudoglou et al., 2020). Mal-
toudoglou et al. (2020) use a transformer-based
architecture to classify sentiment and then use the
output probabilities of classifier to compute non-
conformity scores and obtain prediction sets via
conformal prediction. Fisch et al. (2022), on the
other hand, focus on obtain tight prediction sets
while maintaining the marginal coverage guaran-
tees by casting conformal prediction as a meta-
learning paradigm over exchangeable collections
of auxiliary tasks, applied on both text and image
classification. Recently, Ravfogel et al. (2023) and
Kumar et al. (2023) considered natural language
generation, with the former proposing the use of
conformal prediction applied to top-p nucleus sam-
pling, and the latter proposing the use of confor-
mal prediction to quantify the uncertainty of large
language models for question answering. They
specifically proposed the use of conformal predic-
tion to calibrate the parameter p as a function of
the entropy of the next word distribution. Concur-
rent to this work, Giovannotti (2023) proposed the
use of conformal prediction with k-nearest neigh-
bor (kNN) non-conformity scores as a method to
quantify uncertainty for MT quality estimation, and
show that it can be used as a new standalone un-
certainty quantification method for this task. They
empirically demonstrate the impact of violating the
i.i.d. assumption on the obtained performance and
show that kNN conformal prediction outperforms
a fixed-variance baseline with respect to ECE, AU-
ROC and sharpness, but they do not consider the as-
pect of marginal or conditional coverage for the es-
timated confidence intervals. They also did not con-
sider any of the uncertainty quantification methods
discussed in this paper as non-conformity scores.

Our work complements the aforementioned ef-
forts, as it focuses on a regression NLP task (MT
evaluation) and investigates the impact of confor-
mal prediction on the estimated confidence inter-
vals. Contrary to previous approaches, however,
we provide a detailed analysis of conformal predic-
tion for an NLP regression task and investigate a



wide range of uncertainty methods that can be used
to design non-conformity scores. Additionally, we
elaborate different aspects of equalized coverage
for MT evaluation, revealing biases with respect to
different data attributes, and providing an effective
method that corrects for these biases.

5.2 Uncertainty quantification

Several uncertainty methods have been previously
proposed for regression tasks in NLP and the task
of MT evaluation specifically. Beck et al. (2016)
focused on the use of Gaussian processes to obtain
uncertainty predictions for the task of quality es-
timation, with emphasis on cases of asymmetric
risk. Wang et al. (2022) also explored Gaussian
processes, but provided a comparison of multiple
NLP regression tasks (semantic sentence similar-
ity, MT evaluation, sentiment quantification) in-
vestigating end-to-end and pipeline approaches to
apply Bayesian regression to large language mod-
els. Focusing on MT evaluation, Glushkova et al.
(2021) proposed the use of MC dropout and deep
ensembles as efficient approximations of Bayesian
regression, inspired by work in computer vision
(Kendall and Gal, 2017a). Zerva et al. (2022) pro-
posed additional methods of uncertainty quantifica-
tion for MT evaluation, focusing on methods that
target aleatoric or epistemic uncertainties under spe-
cific assumptions. They specifically investigated
heteroscedastic regression and KL-divergence for
aleatoric uncertainty and direct uncertainty predic-
tion for epistemic uncertainty, highlighting the per-
formance benefits of these methods, when com-
pared to MC dropout and deep ensembles, with re-
spect to correlation of uncertainties to model error.
However, none of the previous works in uncertainty
for NLP regression considered the aspect of cov-
erage. We compare several of the aforementioned
uncertainty quantification methods with respect to
coverage and focus on the impact of applying con-
formal prediction to each uncertainty method.

6 Conclusions

In this work, we apply conformal prediction to the
important problem of MT evaluation. We show that
most existing uncertainty quantification methods
significantly underestimate uncertainty, achieving
low coverage, and that the application of confor-
mal prediction can help rectify this and guarantee
coverage tuned to a user-specified threshold. We
also use conformal prediction tools to assess the

conditional coverage for three different attributes:
language pairs, translation quality, and estimated
uncertainty level. We highlight inconsistencies and
imbalanced coverage in all three cases, and we
show that equalized conformal prediction can cor-
rect the initially unfair confidence predictions to
obtain more balanced coverage across attributes.

Overall, our work aims to highlight the potential
weaknesses of using uncertainty estimation
methods without a principled calibration procedure.
To this end, we propose a methodology that can
guarantee more meaningful confidence intervals.
In future work, we aim to further investigate
the application of conformal prediction across
different data dimensions as well as different
regression tasks in NLP.
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