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CONFORMALLY FLAT NORMAL ALMOST CONTACT
3-MANIFOLDS

JoNG TAEK CHO

Abstract. We classify conformally flat Kenmotsu 3-manifolds and
classify conformally flat cosympletic 3-manifolds.

1. Introduction

Let M be a smooth manifold of odd dimension m = 2n 4 1. Then
M is said to be an almost contact manifold if its structure group of the
linear frame bundle is reducible to U(n) x {1}. This is equivalent to
existence of an endomorphism field ¢, a vector field £ and a 1-form 7
satisfying

(1) pr=—I+neE nE)=1,
where I denotes the identity transformation. Then M admits a Rie-
mannian metric g satisfying

(2) 9(0X,9Y) = g(X,Y) = n(X)n(Y)

for any vector fields X, Y on M. Such (¢, &,n, g) is called an almost con-
tact metric structure. In case that their automorphism groups have the
maximum dimension (n + 1)2, they are classified by the following three
classes (]26]): (i) Sasakian space forms, that is, complete, simply con-
nected, normal contact Riemannian manifolds of constant holomorphic
sectional curvature; (ii) R x F'(k) or S x F(k), the product spaces of a
line R or a circle S and a complex space form F'(k); (iii) warped product
spaces R x ..+ CE™ (¢ a positive constant) of a real line and a complex
Fuclidean space. Each class has been intensively developed. For the
class (i), the contact metric structure including Sasakian structure has
been investigated by many authors (cf. [2]). The geometric property of
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(ii) is represented as the so-called cosymplectic structure. The Riemann-
ian products of a real line or a circle and a Kéhlerian manifold admit
such a structure. Extending the model (iii), Kenmotsu [13] introduced
another class, which is expressed (locally) by a warped product space of
an open interval and a Ké&hlerian manifold. We call such a manifold M
a Kenmotsu manifold and its almost contact metric structure is called a
Kenmotsu structure. It is worth noting that every orientable Riemann-
ian 2-manifold N admits a Kéhlerian metric. Taking a product metric
or a warped product metric with a warping function p(t) = cexpt, re-
spectively on the product space R x N, then we have a cosymplectic
or a Kenmotsu 3-manifold, respectively. A Sasakian, a cosymplectic,
or a Kenmotsu manifold holds the CR-integrability, and moreover the
normality.

On the other hand, M. Okumura [19] proved that a conformally flat
Sasakian manifold of dimension > 5 is of constant curvature +1. S.
Tanno [25] extended the result to the dimension 3. Very recently, D-h.
Yang and the present author [10] develop the study of conformally flat
contact 3-manifolds. A confomally flat cosymplectic manifold M?"+1 is
locally flat for n > 1 ([11]). In [13] it was proved that a conformally flat
Kenmotsu manifold M?"+! is of constant curvature —1 for n > 1. In
this paper, we study the case of dimension 3. In Section 3, we classify a
conformally flat Kenmotsu 3-manifold (Theorem 3.3) and we classify a
conformally flat cosymplectic 3-manifold in Section 4 (Theorem 4.2). In
Section 5, we treat real hypersurfaces in a complex projective space or
a complex hyperbolic space. Due to a result in [14], we know that there
are no_conformally flat real hypersurfaces in a non-flat complex space
form Mp+1(c) (¢ #0), n > 2. Then, we show that a totally n-umbilical
real hypersurface in P,C or HoC cannot be conformally flat (Proposition
5.6).

2. Preliminaries

All manifolds in the present paper are assumed to be connected and
of class C®. First, we review briefly conformally flat manifolds. Let
(M™,g) be an m-dimensional Riemannian manifold. Denote by R its
Riemannian curvature tensor defined by

R(X,Y)Z =Vx(VyZ) - Vy(VxZ) = Vixy1Z
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for any vector fields X, Y, Z on M. The Weyl conformal curvature tensor
is defined by

W(X,Y)Z =R(X,Y)Z — ﬁ (DY, 2)X — p(X. )Y + a(Y. 2)SX

~ 9(X,2)8Y = ——(g(Y, 2)X - g(X, 2)X)]

m—
and the Schouten tensor of type (1,1) is defined by

LX = L(SX—

m — 2

r

2(m — l)X)

for any vector fields X,Y, Z on M, where S denotes the Ricci operator,
p the Ricci curvature tensor of type (0,2) and r the scalar curvature.
A Riemannian manifold (M™, g) is said to be conformally flat if it is
conformally related to the Euclidean metric in the local sense. Then the
following facts are well-known. For m > 4, M™ is conformally flat if and
only if the Weyl conformal curvature tensor W vanishes. For m = 3,
the manifold is conformally flat if and only if the Schouten tensor L is a
Codazzi tensor, that is, g((VxL)Y,Z) = g((Vy L)X, Z) for any vector
fields X,Y,Z on M.

Now, we return to almost contact Riemannian geometry. Let
(M;p,€&,m, g) be an almost contact Riemannian manifold (equipped with
an almost contact Riemannian structure (¢,&,n,g)). The fundamental
2-form ® is defined by ®(X,Y) = g(X, ¢Y) for any vector fields X,Y
on M. An almost contact Riemannian manifold M is said to be normal
if it satisfies [p, p] +2dn ® £ = 0, where [p, ¢] is the Nijenhuis torsion of

®.

Definition 2.1. An almost contact Riemannian structure (p,&,n,g)
is said to be almost Kenmotsu if it satisfies dn = 0 and d® =2n A\ ®. A
normal almost Kenmotsu manifold is called a Kenmotsu manifold.

Definition 2.2. An almost contact Riemannian structure (¢,&,1, g)
is said to be almost cosymplectic if it satisfies dn = 0 and d® = 0. A
normal almost cosymplectic manifold is called a cosymplectic manifold.

Definition 2.3. An almost contact Riemannian structure (p,&,n,g)
is said to be contact Riemannian if it satisfies dn = ®. A normal contact
Riemannian manifold is called a Sasakian manifold.

For more details about almost contact Riemannian manifolds, we
refer to [2].
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3. Kenmotsu 3-manifolds

Let (M;¢,£,n,9) be a 3-dimensional Kenmotsu manifold. Then we
have ([13])

(3) Vx§=X—n(X)¢

for any vector field X on M. From (3), we have
(4) R(X,Y)E = n(X)Y —n(Y)X,
and

(5) S¢ = —2¢.

Since the Weyl conformal curvature tensor W vanishes in a Riemannian
3-manifold, we have

R(Y,X)Z =p(X, 2)Y — p(Y, Z)X + g(X, Z)SY — g(Y, Z)SX
— 59X, 2)Y —g(v.2)X}

for any vector fields X,Y,Z on M. Then together with (4) and (5) we
have ([9])

Proposition 3.1. For a Kenmotsu 3-manifold, we have
r r
(6) S=(+2I-(3+ e,
where I denotes the identity transformation.

In order to prove Theorem 3.3, the following lemma is useful. Due to
results in [12], we have

Lemma 3.2. A Kenmotsu 3-manifold M is locally isometric to the
warped product R Xt N(k), where N(k) is a Riemannian 2-manifold
of constant Gaussian curvature k if and only if grad r € {{}g.

Unfortunately, in a previous work (Theorem 3 in [5]) we had an in-
complete result. Now, we prove

Theorem 3.3. A conformally flat Kenmotsu 3-manifold is locally
isometric to the warped product R x ..+ N(k), where N (k) is a Riemann-
ian 2-manifold of constant Gaussian curvature k.

Proof. Let (M;p,&,n,g9) be a Kenmotsu 3-manifold. Differentiating
(6) covariantly and using (3) we get

(7
(V)X = S (Vn) (X =n(X)&)—(3+5) (9(¥, X)en(X)Y ~20(X)n(¥ )



Conformally flat normal almost contact 3-manifolds 63

for any vector fields X and Y on M. Recall the formula:

(8) X(r) =2 Z(Vem)(eia X)

for any local orthonormal frame field {e;}. Then we have from (7) and

(8)

(9) §r) = —43+ 3).

Suppose that M is conformally flat. Then, since the Schouten tensor is
a Codazzi tensor, we have

(10) (VxS)Y — (Vy8)X = {(X()Y ~ Y()X)

for any vector fields X and Y on M. Using (7) and (10), we have
(11)

(XY Y () X) = (XY e~ (Y rn(X)Ee+2(34 ) (V)X —(X)Y).

Put X = ¢ in (11) to get
(12) SY(r) =23+ Dyn(Y)

for any vector field Y on M, where we have used (9). Then from (12)
we find that Y (r) = 0 for any vector field Y L £. Using Lemma 3.2
we have that M is locally isometric to the warped product R Xt N(k),
where N (k) is a Riemannian 2-manifold of constant Gaussian curvature
k. Conversely, the warped product R x .. N(k) is conformally flat (cf.
[3]). Note that if £ = 0 then the warped product is a space of of constant
curvature —1. U

Remark 1. The present author proved ([7]) that an almost Kenmotsu
3-manifold is locally symmetric (VR = 0) if and only if it is locally
isometric to the hyperbolic space H?(—1) or a product space H?(—4) xR.

4. Cosymplectic 3-manifolds

For a cosymplectic manifold M, we have (cf. [11])
VeE=0.
From this, we easily get R(X,Y){ =0 and S§ = 0. Then we have ([8])
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Proposition 4.1. For a cosymplectic 3-manifold, we have the Ricci
operator:

(13) S =2 -n®¢).

Theorem 4.2. A conformally flat cosymplectic 3-manifold is locally
isometric to a product space R x N(k), where N(k) is a Riemannian
2-manifold of constant Gaussian curvature k.

Proof. Let (M;¢,&,1m,9) be a cosymplectic 3-manifold. Differentiat-
ing (13) covariantly and using V& = 0 we get

(14) (Vy8)X = S(V)(X ~ n(X)%)

for any vector fields X and Y on M. Then a similar computation as in
the proof of Theorem 3.3 yields

(15) &r) = 0.
Suppose that M is conformally flat. Then, we have

(16) (VxS)Y — (VyS)X = i(X(r)Y —Y (1) X)

for any vector fields X and Y on M. Using (14) and (16), we have
a1 S(XOY - Y()X) = (X)) — (Vrn(X)e

Put X = ¢ in (17) to get

(18) Y(r)=20

for any vector field Y on M, where we have used (15). From (14) and
(18), we find that the Ricci operator is parallel (for the Levi-Civita con-
nection). Then M is locally symmetric, and hence M is locally isometric
to a product space R x N(k), where N (k) is a Riemannian 2-manifold
of constant Gaussian curvature k (cf. [22]). O

The following examples are conformally flat almost cosymplectic 3-
manifolds which are neither normal nor of constant scalar curvature.

Example. ([11]) On M = {(z,y,2) € R3(x,y,2) : 2z # 0}, define
n=dzand £ = %. Take a global frame field

10 z 0
€1 = . €2 = E@iy’ e3 =&,
a € R and define a Riemannian metric g such that {ei,e2,e3} is or-
thonormal with respect to it. Moreover, we define ¢ by pe; = ea, peq =
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—ep and @€ = 0. Then, the fundamental 2-form is given by ® =
2e*dx A dy, and (¢,&,n,9) is an almost cosymplectic structure, that
is, dn = 0 and d® = 0. But V& # 0, and hence it is not cosympletic.
For a simpler one, we take a = 0. Then we find that {ej1, e2, e3} daiago-
nalizes the Ricci operator, that is,

1 1 2
S = — , S = ——e9, S = ——¢,
e1 = —e1, Se 262, 5§ ¢

and the scalar curvature r = —Z%. And then we have that the Schouten
tensor L is a Codazzi tensor. For more details, see [11].

5. Real hypersurfaces in P,C or H>C

Let M = Mnﬂ(c) be a complex space form of constant holomorphic
sectional curvature ¢, M be a real hypersurface of M and N be a unit
normal vector field of M in M. We denote by g and J a Kahlerian
metric tensor and its complex structure tensor on M , respectively. For
any vector field X tangent to M, we put

(19) JX =X +n(X)N, JN =—¢,

where ¢ X is the tangential part of JX, ¢ a (1,1)-type tensor field, 7 is
a 1-form, and £ is a unit vector field on M. The induced Riemannian
metric on M is denoted by g. Then by properties of (J,g) we see that
the structure (¢,&,7,9) is an almost contact metric structure on M.
Indeed, we can deduce (1) and (2) from (19).

The Gauss and Weingarten formula for M are given as

VxY = VxY + g(AX,Y)N,
VN = —AX

for any tangent vector fields X, Y on M, where V and V denote the
Levi-Civita connections of (M,(c),q) and (M, g), respectively, and A is
the shape operator field. An eigenvalue and an eigenvector of the shape
operator A is called a principal curvature and a principal curvature
vector, respectively. From (19) and VJ = 0, we then obtain

(20) (Vxp)Y =n(Y)AX — g(AX, Y)E,
(21) Vxé=pAX.
Then we find from (20)



66 Jong Taek Cho

Proposition 5.1. ([6]) Every real hypersurface in a Kidhlerian man-
ifold satisfies d® = 0.

Using (21) we have

Proposition 5.2. ([6]) There are no almost cosymplectic or almost
Kenmotsu real hypersurfaces in a non-flat complex space form.

We have the following Gauss and Codazzi equations:
R(X,Y)Z ={{g(Y. )X — g(X, Z)Y

(22) +g(oY, Z)pX — g(¢X, Z)oY —29(¢X,Y)dZ}
+ g(AY, Z)AX — g(AX, Z)AY,

for any tangent vector fields X,Y,Z on M. From (22) we get for the
Ricci tensor S of type (1,1):

(23) SX = 2{(2n +3)X — 3n(X)E} + hAX — A%X,

where h = trace of A denotes the mean curvature.

R. Takagi [23], [24] classified the homogeneous real hypersurfaces of
P,+1C into six types. T. E. Cecil and P. J. Ryan [4] extensively studied a
Hopf hypersurface (whose Reeb vector £ is a principal curvature vector),
which is realized as tubes over certain submanifolds in P,4+;C, by using
its focal map. By making use of those results, M. Kimura [16] proved
the local classification theorem for Hopf hypersurfaces of P,;1C whose
all principal curvatures are constant.

Theorem 5.3. ([16]) Let M be a Hopf hypersurface of P,1C. Then
M has constant principal curvatures if and only if M is locally congruent
to one of the following:

(A1) a geodesic hypersphere of radius r, where 0 <1 < 7,

(A2) a tube of radius r over a totally geodesic PC(1 <1 < mn—1),
where 0 <1 < 3,

(B) a tube of radius r over a complex quadric Q™ and P,11R, where
O<r<Z

47

(C) a tube of radius r over P,C x PuC, where 0 <r < 7 and n(= 4)
s odd,

(D) a tube of radius r over a complex Grassmann Go5C, where 0 <
r<% andn=3,

(E) a tube of radius r over a Hermitian symmetric space SO(10)/U(5),
where 0 <7 < 7 and n = 14.
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For the case H,4+1C, J. Berndt [1] proved the classification theorem
for Hopf hypersurfaces whose all principal curvatures are constant.

Theorem 5.4. ([1]) Let M be a Hopf hypersurface of H,1C. Then
M has constant principal curvatures if and only if M is locally congruent
to one of the following:

(Ag) a horosphere,

(A1) a geodesic hypersphere or a tube over a complex hyperbolic hy-
perplane H,C,

(A2) a tube over a totally geodesic HC(1 <1 <n—1),

(B) a tube over a totally real hyperbolic space H, 1 R.

We call simply type (A) for real hypersurfaces of type (A1), (42) in
P,4+1C and ones of type (Ayp), (A1) or (A2) in H,+1C.

Homogeneous real hypersurfaces of type (A) are characterized as fol-
lows:

Proposition 5.5. (]20],[21],[18]) Let M be a real hypersurface in

a non-flat complex space form M,11(c) (n > 1). Then the following
conditions are mutually equivalent:

o M satisfies A¢p = ¢A;
e M is locally congruent to a type (A) hypersurface;
e the almost contact metric structure is normal.

Let M be a real hypersurface P,C or HoC and suppose that its almost
contact metric structure is normal. Then by Proposition 5.5, we find
that M is totally n-umbilical, that is,

A=al+ ek,

where a,8 € R and I denotes the identity transformation. Indeed,
totally n-umbilical real hypersurfaces in P,1C or H,1C are classified
n [4], [24], [17]. They are realized as a homogeneous hypersurface of
type (41) in P,,+1C and a homogeneous hypersurface of type (Ap) and
(A7) in H,41C. Then we prove

Proposition 5.6. A totally n-umbilical real hypersurface M in P,C
or HyC does not admit conformally flat structure.

Proof. Let M be a totally p-umbilical real hypersurface in P>C or
H,C. Then from (23) we get

(24) S=M+ ¢,
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where \ = % +2a°+af, p=af — %. Differentiating (24) covariantly,
then using (21) we have

(25) (Vx9)Y = au(g(eX,Y)E +n(Y)eX)

for any vector fields X and Y on M. Suppose that M is conformally
flat. Then, since r is constant, we have

(26) ap(29(eX, Y)E+n(Y)pX —n(X)pY) =0

for any vector fields X, Y, Z on M. If we put Y = &, then we get au = 0.
And from (25) we see that the Ricci operator is parallel. But, by a result
due to [15] there are no such real hypersurfaces in P,C or HoC. This
completes the proof. ]

Remark 2. Totally n-umbilical real hypersurfaces in P,C or H2C have
quasi-Sasakian structure, that is, they are normal and satisfy d® = 0.
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