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CONFORMALLY FLAT NORMAL ALMOST CONTACT

3-MANIFOLDS

Jong Taek Cho

Abstract. We classify conformally flat Kenmotsu 3-manifolds and
classify conformally flat cosympletic 3-manifolds.

1. Introduction

Let M be a smooth manifold of odd dimension m = 2n + 1. Then
M is said to be an almost contact manifold if its structure group of the
linear frame bundle is reducible to U(n) × {1}. This is equivalent to
existence of an endomorphism field ϕ, a vector field ξ and a 1-form η
satisfying

(1) ϕ2 = −I + η ⊗ ξ, η(ξ) = 1,

where I denotes the identity transformation. Then M admits a Rie-
mannian metric g satisfying

(2) g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y )

for any vector fields X,Y on M . Such (ϕ, ξ, η, g) is called an almost con-
tact metric structure. In case that their automorphism groups have the
maximum dimension (n+ 1)2, they are classified by the following three
classes ([26]): (i) Sasakian space forms, that is, complete, simply con-
nected, normal contact Riemannian manifolds of constant holomorphic
sectional curvature; (ii) R × F (k) or S × F (k), the product spaces of a
line R or a circle S and a complex space form F (k); (iii) warped product
spaces R ×cet CEn (c a positive constant) of a real line and a complex
Euclidean space. Each class has been intensively developed. For the
class (i), the contact metric structure including Sasakian structure has
been investigated by many authors (cf. [2]). The geometric property of
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(ii) is represented as the so-called cosymplectic structure. The Riemann-
ian products of a real line or a circle and a Kählerian manifold admit
such a structure. Extending the model (iii), Kenmotsu [13] introduced
another class, which is expressed (locally) by a warped product space of
an open interval and a Kählerian manifold. We call such a manifold M
a Kenmotsu manifold and its almost contact metric structure is called a
Kenmotsu structure. It is worth noting that every orientable Riemann-
ian 2-manifold N admits a Kählerian metric. Taking a product metric
or a warped product metric with a warping function ρ(t) = c exp t, re-
spectively on the product space R × N , then we have a cosymplectic
or a Kenmotsu 3-manifold, respectively. A Sasakian, a cosymplectic,
or a Kenmotsu manifold holds the CR-integrability, and moreover the
normality.

On the other hand, M. Okumura [19] proved that a conformally flat
Sasakian manifold of dimension ≥ 5 is of constant curvature +1. S.
Tanno [25] extended the result to the dimension 3. Very recently, D-h.
Yang and the present author [10] develop the study of conformally flat
contact 3-manifolds. A confomally flat cosymplectic manifold M2n+1 is
locally flat for n > 1 ([11]). In [13] it was proved that a conformally flat
Kenmotsu manifold M2n+1 is of constant curvature −1 for n > 1. In
this paper, we study the case of dimension 3. In Section 3, we classify a
conformally flat Kenmotsu 3-manifold (Theorem 3.3) and we classify a
conformally flat cosymplectic 3-manifold in Section 4 (Theorem 4.2). In
Section 5, we treat real hypersurfaces in a complex projective space or
a complex hyperbolic space. Due to a result in [14], we know that there
are no conformally flat real hypersurfaces in a non-flat complex space

form M̃n+1(c) (c 6= 0), n ≥ 2. Then, we show that a totally η-umbilical
real hypersurface in P2C or H2C cannot be conformally flat (Proposition
5.6).

2. Preliminaries

All manifolds in the present paper are assumed to be connected and
of class C∞. First, we review briefly conformally flat manifolds. Let
(Mm, g) be an m-dimensional Riemannian manifold. Denote by R its
Riemannian curvature tensor defined by

R(X,Y )Z = ∇X(∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z
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for any vector fieldsX,Y, Z onM . TheWeyl conformal curvature tensor
is defined by

W (X,Y )Z =R(X,Y )Z − 1

m− 2

[
ρ(Y,Z)X − ρ(X,Z)Y + g(Y,Z)SX

− g(X,Z)SY − r

m− 1

(
g(Y, Z)X − g(X,Z)X

)]

and the Schouten tensor of type (1, 1) is defined by

LX =
1

m− 2

(
SX − r

2(m− 1)
X
)

for any vector fields X,Y, Z on M , where S denotes the Ricci operator,
ρ the Ricci curvature tensor of type (0, 2) and r the scalar curvature.
A Riemannian manifold (Mm, g) is said to be conformally flat if it is
conformally related to the Euclidean metric in the local sense. Then the
following facts are well-known. For m ≥ 4, Mm is conformally flat if and
only if the Weyl conformal curvature tensor W vanishes. For m = 3,
the manifold is conformally flat if and only if the Schouten tensor L is a
Codazzi tensor, that is, g((∇XL)Y, Z) = g((∇Y L)X,Z) for any vector
fields X,Y, Z on M .

Now, we return to almost contact Riemannian geometry. Let
(M ;ϕ, ξ, η, g) be an almost contact Riemannian manifold (equipped with
an almost contact Riemannian structure (ϕ, ξ, η, g)). The fundamental
2-form Φ is defined by Φ(X,Y ) = g(X,ϕY ) for any vector fields X,Y
on M . An almost contact Riemannian manifold M is said to be normal
if it satisfies [ϕ,ϕ] + 2dη⊗ ξ = 0, where [ϕ,ϕ] is the Nijenhuis torsion of
ϕ.

Definition 2.1. An almost contact Riemannian structure (ϕ, ξ, η, g)
is said to be almost Kenmotsu if it satisfies dη = 0 and dΦ = 2η ∧Φ. A
normal almost Kenmotsu manifold is called a Kenmotsu manifold.

Definition 2.2. An almost contact Riemannian structure (ϕ, ξ, η, g)
is said to be almost cosymplectic if it satisfies dη = 0 and dΦ = 0. A
normal almost cosymplectic manifold is called a cosymplectic manifold.

Definition 2.3. An almost contact Riemannian structure (ϕ, ξ, η, g)
is said to be contact Riemannian if it satisfies dη = Φ. A normal contact
Riemannian manifold is called a Sasakian manifold.

For more details about almost contact Riemannian manifolds, we
refer to [2].
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3. Kenmotsu 3-manifolds

Let (M ;ϕ, ξ, η, g) be a 3-dimensional Kenmotsu manifold. Then we
have ([13])

(3) ∇Xξ = X − η(X)ξ

for any vector field X on M . From (3), we have

(4) R(X,Y )ξ = η(X)Y − η(Y )X,

and

(5) Sξ = −2ξ.

Since the Weyl conformal curvature tensor W vanishes in a Riemannian
3-manifold, we have

R(Y,X)Z =ρ(X,Z)Y − ρ(Y,Z)X + g(X,Z)SY − g(Y,Z)SX

− r

2
{g(X,Z)Y − g(Y, Z)X}

for any vector fields X,Y, Z on M . Then together with (4) and (5) we
have ([9])

Proposition 3.1. For a Kenmotsu 3-manifold, we have

(6) S = (1 +
r

2
)I − (3 +

r

2
)η ⊗ ξ,

where I denotes the identity transformation.

In order to prove Theorem 3.3, the following lemma is useful. Due to
results in [12], we have

Lemma 3.2. A Kenmotsu 3-manifold M is locally isometric to the
warped product R ×cet N(k), where N(k) is a Riemannian 2-manifold
of constant Gaussian curvature k if and only if grad r ∈ {ξ}R.

Unfortunately, in a previous work (Theorem 3 in [5]) we had an in-
complete result. Now, we prove

Theorem 3.3. A conformally flat Kenmotsu 3-manifold is locally
isometric to the warped product R×cet N(k), where N(k) is a Riemann-
ian 2-manifold of constant Gaussian curvature k.

Proof. Let (M ;ϕ, ξ, η, g) be a Kenmotsu 3-manifold. Differentiating
(6) covariantly and using (3) we get
(7)

(∇Y S)X =
1

2
(Y r)(X−η(X)ξ)−(3+

r

2
)
(
g(Y,X)ξ+η(X)Y−2η(X)η(Y )ξ

)
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for any vector fields X and Y on M . Recall the formula:

(8) X(r) = 2
∑

i

(∇eiρ)(ei, X)

for any local orthonormal frame field {ei}. Then we have from (7) and
(8)

(9) ξ(r) = −4(3 +
r

2
).

Suppose that M is conformally flat. Then, since the Schouten tensor is
a Codazzi tensor, we have

(10) (∇XS)Y − (∇Y S)X =
1

4
(X(r)Y − Y (r)X)

for any vector fields X and Y on M . Using (7) and (10), we have
(11)
1

2

(
X(r)Y−Y (r)X

)
= (Xr)η(Y )ξ−(Y r)η(X)ξ+2(3+

r

2
)(η(Y )X−η(X)Y ).

Put X = ξ in (11) to get

(12)
1

2
Y (r) = −2(3 +

r

2
)η(Y )

for any vector field Y on M , where we have used (9). Then from (12)
we find that Y (r) = 0 for any vector field Y ⊥ ξ. Using Lemma 3.2
we have that M is locally isometric to the warped product R×cet N(k),
where N(k) is a Riemannian 2-manifold of constant Gaussian curvature
k. Conversely, the warped product R ×cet N(k) is conformally flat (cf.
[3]). Note that if k = 0 then the warped product is a space of of constant
curvature −1.

Remark 1. The present author proved ([7]) that an almost Kenmotsu
3-manifold is locally symmetric (∇R = 0) if and only if it is locally
isometric to the hyperbolic space H3(−1) or a product space H2(−4)×R.

4. Cosymplectic 3-manifolds

For a cosymplectic manifold M , we have (cf. [11])

∇ξ = 0.

From this, we easily get R(X,Y )ξ = 0 and Sξ = 0. Then we have ([8])
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Proposition 4.1. For a cosymplectic 3-manifold, we have the Ricci
operator:

(13) S =
r

2
(I − η ⊗ ξ).

Theorem 4.2. A conformally flat cosymplectic 3-manifold is locally
isometric to a product space R × N(k), where N(k) is a Riemannian
2-manifold of constant Gaussian curvature k.

Proof. Let (M ;ϕ, ξ, η, g) be a cosymplectic 3-manifold. Differentiat-
ing (13) covariantly and using ∇ξ = 0 we get

(14) (∇Y S)X =
1

2
(Y r)(X − η(X)ξ)

for any vector fields X and Y on M . Then a similar computation as in
the proof of Theorem 3.3 yields

(15) ξ(r) = 0.

Suppose that M is conformally flat. Then, we have

(16) (∇XS)Y − (∇Y S)X =
1

4
(X(r)Y − Y (r)X)

for any vector fields X and Y on M . Using (14) and (16), we have

(17)
1

2

(
X(r)Y − Y (r)X

)
= (Xr)η(Y )ξ − (Y r)η(X)ξ.

Put X = ξ in (17) to get

(18) Y (r) = 0

for any vector field Y on M , where we have used (15). From (14) and
(18), we find that the Ricci operator is parallel (for the Levi-Civita con-
nection). Then M is locally symmetric, and hence M is locally isometric
to a product space R × N(k), where N(k) is a Riemannian 2-manifold
of constant Gaussian curvature k (cf. [22]).

The following examples are conformally flat almost cosymplectic 3-
manifolds which are neither normal nor of constant scalar curvature.

Example. ([11]) On M = {(x, y, z) ∈ R3(x, y, z) : z 6= 0}, define
η = dz and ξ = ∂

∂z . Take a global frame field

e1 =
1

z

∂

∂x
, e2 =

z

eax
∂

∂y
, e3 = ξ,

a ∈ R and define a Riemannian metric g such that {e1, e2, e3} is or-
thonormal with respect to it. Moreover, we define ϕ by ϕe1 = e2, ϕe2 =
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−e1 and ϕξ = 0. Then, the fundamental 2-form is given by Φ =
2eaxdx ∧ dy, and (ϕ, ξ, η, g) is an almost cosymplectic structure, that
is, dη = 0 and dΦ = 0. But ∇ξ 6= 0, and hence it is not cosympletic.
For a simpler one, we take a = 0. Then we find that {e1, e2, e3} daiago-
nalizes the Ricci operator, that is,

Se1 =
1

z2
e1, Se2 = − 1

z2
e2, Sξ = − 2

z2
ξ,

and the scalar curvature r = − 2
z2
. And then we have that the Schouten

tensor L is a Codazzi tensor. For more details, see [11].

5. Real hypersurfaces in P2C or H2C

Let M̃ = M̃n+1(c) be a complex space form of constant holomorphic

sectional curvature c, M be a real hypersurface of M̃ and N be a unit

normal vector field of M in M̃ . We denote by g̃ and J a Kählerian

metric tensor and its complex structure tensor on M̃ , respectively. For
any vector field X tangent to M , we put

(19) JX = ϕX + η(X)N, JN = −ξ,

where ϕX is the tangential part of JX, ϕ a (1,1)-type tensor field, η is
a 1-form, and ξ is a unit vector field on M . The induced Riemannian
metric on M is denoted by g. Then by properties of (J, g̃) we see that
the structure (ϕ, ξ, η, g) is an almost contact metric structure on M .
Indeed, we can deduce (1) and (2) from (19).

The Gauss and Weingarten formula for M are given as

∇̃XY = ∇XY + g(AX,Y )N,

∇̃XN = −AX

for any tangent vector fields X, Y on M , where ∇̃ and ∇ denote the
Levi-Civita connections of (Mn(c), g̃) and (M, g), respectively, and A is
the shape operator field. An eigenvalue and an eigenvector of the shape
operator A is called a principal curvature and a principal curvature

vector, respectively. From (19) and ∇̃J = 0, we then obtain

(20) (∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ,

(21) ∇Xξ = ϕAX.

Then we find from (20)
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Proposition 5.1. ([6]) Every real hypersurface in a Kählerian man-
ifold satisfies dΦ = 0.

Using (21) we have

Proposition 5.2. ([6]) There are no almost cosymplectic or almost
Kenmotsu real hypersurfaces in a non-flat complex space form.

We have the following Gauss and Codazzi equations:

R(X,Y )Z =
c

4
{g(Y,Z)X − g(X,Z)Y

+ g(φY,Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ}
+ g(AY,Z)AX − g(AX,Z)AY,

(22)

for any tangent vector fields X,Y, Z on M . From (22) we get for the
Ricci tensor S of type (1,1):

(23) SX =
c

4
{(2n+ 3)X − 3η(X)ξ}+ hAX −A2X,

where h = trace of A denotes the mean curvature.
R. Takagi [23], [24] classified the homogeneous real hypersurfaces of

Pn+1C into six types. T. E. Cecil and P. J. Ryan [4] extensively studied a
Hopf hypersurface (whose Reeb vector ξ is a principal curvature vector),
which is realized as tubes over certain submanifolds in Pn+1C, by using
its focal map. By making use of those results, M. Kimura [16] proved
the local classification theorem for Hopf hypersurfaces of Pn+1C whose
all principal curvatures are constant.

Theorem 5.3. ([16]) Let M be a Hopf hypersurface of Pn+1C. Then
M has constant principal curvatures if and only ifM is locally congruent
to one of the following:

(A1) a geodesic hypersphere of radius r, where 0 < r < π
2 ,

(A2) a tube of radius r over a totally geodesic PlC(1 ≤ l ≤ n− 1),
where 0 < r < π

2 ,
(B) a tube of radius r over a complex quadric Qn and Pn+1R, where

0 < r < π
4 ,

(C) a tube of radius r over P1C×Pn
2
C, where 0 < r < π

4 and n(≥ 4)

is odd,
(D) a tube of radius r over a complex Grassmann G2,5C, where 0 <

r < π
4 and n = 8,

(E) a tube of radius r over a Hermitian symmetric space SO(10)/U(5),
where 0 < r < π

4 and n = 14.
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For the case Hn+1C, J. Berndt [1] proved the classification theorem
for Hopf hypersurfaces whose all principal curvatures are constant.

Theorem 5.4. ([1]) Let M be a Hopf hypersurface of Hn+1C. Then
M has constant principal curvatures if and only ifM is locally congruent
to one of the following:

(A0) a horosphere,
(A1) a geodesic hypersphere or a tube over a complex hyperbolic hy-

perplane HnC,
(A2) a tube over a totally geodesic HlC(1 ≤ l ≤ n− 1),
(B) a tube over a totally real hyperbolic space Hn+1R.

We call simply type (A) for real hypersurfaces of type (A1), (A2) in
Pn+1C and ones of type (A0), (A1) or (A2) in Hn+1C.

Homogeneous real hypersurfaces of type (A) are characterized as fol-
lows:

Proposition 5.5. ([20],[21],[18]) Let M be a real hypersurface in

a non-flat complex space form M̃n+1(c) (n ≥ 1). Then the following
conditions are mutually equivalent:

• M satisfies Aφ = φA;
• M is locally congruent to a type (A) hypersurface;
• the almost contact metric structure is normal.

LetM be a real hypersurface P2C orH2C and suppose that its almost
contact metric structure is normal. Then by Proposition 5.5, we find
that M is totally η-umbilical, that is,

A = αI + βη ⊗ ξ,

where α, β ∈ R and I denotes the identity transformation. Indeed,
totally η-umbilical real hypersurfaces in Pn+1C or Hn+1C are classified
in [4], [24], [17]. They are realized as a homogeneous hypersurface of
type (A1) in Pn+1C and a homogeneous hypersurface of type (A0) and
(A1) in Hn+1C. Then we prove

Proposition 5.6. A totally η-umbilical real hypersurface M in P2C
or H2C does not admit conformally flat structure.

Proof. Let M be a totally η-umbilical real hypersurface in P2C or
H2C. Then from (23) we get

(24) S = λI + µη ⊗ ξ,
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where λ = 5c
4 +2α2 +αβ, µ = αβ − 3c

4 . Differentiating (24) covariantly,
then using (21) we have

(25) (∇XS)Y = αµ
(
g(ϕX, Y )ξ + η(Y )ϕX

)

for any vector fields X and Y on M . Suppose that M is conformally
flat. Then, since r is constant, we have

(26) αµ
(
2g(ϕX, Y )ξ + η(Y )ϕX − η(X)ϕY

)
= 0

for any vector fields X,Y, Z on M . If we put Y = ξ, then we get αµ = 0.
And from (25) we see that the Ricci operator is parallel. But, by a result
due to [15] there are no such real hypersurfaces in P2C or H2C. This
completes the proof.

Remark 2. Totally η-umbilical real hypersurfaces in P2C or H2C have
quasi-Sasakian structure, that is, they are normal and satisfy dΦ = 0.
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